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Introduction

One of the most fundamental quantities in scattering theory is the scattering
cross section, which is directly related to experimental observations in laboratories.
The total cross section is a quantity which measures how much the motion of
particles scattered by potentials differs from the motion of free particles. In the
present work, we study the semi-classical asymptotic behavior of total scattering
cross sections with two-body initial states for iV-body systems. The scattering
process with two-body intial states is not only relatively easy to analyze from a
theoretical viewpoint but also is practically important, because situations with
many-body initial states are difficult to realize through actual experiments in
laboratories. The problem of semi-classical bounds or asymptotics for total cross
sections has been already studied by many works [5, 16, 19, 20, 21, 22, 23] in the
case of two-body systems. On the other hand, some important properties of total
cross sections in many-body systems have been also obtained by a series of works
[2, 3, 4] (see also the recent work [9]). In these works, the following problems have
been mainly considered: (1) finiteness of total cross section; (2) continuity as a
function of energy (3) behavior at high and low energies. The semi-classical
asymptotics has not been discussed in detail in the works above. Many basic
notations and definitions in many-body scattering theory are required to define
precisely the total scttering cross section. We here mention the obtained result
somewhat loosely. In section 2, the precise formulation of the main result is given
as Theorem 2.1 together with the definition of total scattering cross section.

Throughout the entire discussion, the positive constant h, 0</z<l, denotes a
small parameter corresponding to the Planck constant. We consider a system
consisting of N, N>2, particles which move in the three-dimensional space R3 and
interact with each other through pair potentials Vjk, l<j<k<N. We denote by
rj€ΞR3, l<j<N, the position vector of the j-th particle. For notational brevity,
we also assume that all the N particles take the identical masses m, = l for all j , 1
<j<N. For such a TV-body system, the configuration space X is described as
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X={r = (n, - , rN)(ΞR3xN: Σ r , =0}
J = l

in the center-of-mass frame and the energy Hamiltonian (Schrδdinger operator)

takes the form

(0.1) H(h)=-(h2/2)A+V on L2(I),

where Δ denotes the Laplacian over X and V=V(r) is given as the sum of pair
potentials

V(r)= Σ VJk(rj-rk).
\<j<k<N

The pair potentials Vjk(y), y^R3, are assumed to fall off like Vjk=O(\y\~p) at

infinity for some p>2.

Let a = {l, (2, 3, •••, N)} be a two-cluster decomposition. For one example of

two-body initial states, we consider the situation in which at time t = — °°, the N

— 1 particles labelled by 2, 3, ,••• ,and N form a bound state at some energy Ea(h)

< 0 and the remaning particle labelled by 1 comes into the scatterer from the long

distance at relative energy λ — Ea(h), λ>0, and at incident direction ω^S2, S2

being the two-dimensional unit sphere. For such a two-body initial state a, the

total scattering cross section Oa(λ, ω h) can be defined for a. e. (λ, &>)^(0, oo)χ

S2 ([2, 3]). The exceptional set {(Λ, ω): σa(λ, ω h) = oo) i s expected to be empty

but it seems that this has not yet been established under the above decay assump-

tion of pair potentials. The finiteness or smoothness in (λ, ω) of total scattering

cross sections is one of the most important problems in many-body quantum

scattering theory (see [9, 18] for the related problems). The exceptional set above

may depend on the parameter h. Thus we here regard the quantity Oa(λ, ω\ K)m

the distributional sense <2)'((0, oo)χ5 2 ) as a function of (Λ, ώ) and study its

asymptotic behavior in the semi-classical limit h—»0. The main result obtained

here, somewhat loosely speaking, is that

, ω)σa(λ9 ω K)dωdλ-hΓ2l{p-ι\ A->0,

for F<ΞCo°((0, OO)X5 2 ) . When p>5/2, the result above has been already proved

by the authors [ l l ] in the case of three-body systems and the method developed

there extends to iV-body systems without essential changes. A special emphasis in

the present work is put on the case 2<p<5/2.

The proof of the main theorem depends on the two basic results in spectral and

scattering theory for many-body Schrόdinger operators. One is the principle of

limiting absorption proved by [13, 14] and the other is the asymptotic complete-

ness of wave operators proved by [8, 17]. The principle of limiting absorption

guarantees the existence of boundary values R(λ±iO H(h)) to the positive real
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axis of resolvents R(λ±ik H(ti)) = (H(ti) — λTik)~ι in an appropriate weighted

L2 space topology and makes it possible to represent scattering amplitudes with

two-body initial states in terms of R(λ + iO; H(h)). On the other hand, the

asymptotic completeness enables us to prove the optical relation through which

total scattering cross sections are related to forward scattering amplitudes. The

main theorem is proved by analyzing the resolvent R(λ + iO H(h)) through the

time-dependent representation formula. The proof also uses the microlocal resol-

vent estimate at high energies for the free Hamiltonian ([10, 12]), which makes it

possible to improve the result obtained in the previous work [ l l ] .

1. iV-body scattering systems

In this section, we fix several basic notations and definitions used in many-

body scattering theory. We begin by making the assumption on pair potentials

Vjk(y), y^R3. Let<:y> = (l + M2)1/2. The pair potentials Vjk are assumed to fulfill

the following assumption :

(V)P Vjk(y) is a real C°°-smooth function and obeys

\d?Vjk\<Ca<y>-p-lal for some p>2.

Throughout the entire discussion, we use the constant p with the meaning ascribed

above. Under this assumption, the Hamiltonian H(h) formally defined by (0.1)

admits a unique self-adjoint realization in L2(X). We denote by the same notation

H(h) this self-adjoint realization.

The letter a or b is used to denote a partition of the set {1, 2, •••, N) into

non-empty disjoint subsets. Such a partition is called a cluster decomposition. We

denote by #(a) the number of clusters in a. We consider only a cluster decomposi-

tion a with 2<#(a)<N. For pair ( , k), l<j<k<Nt we also use the notation /

a k if j and k are in the same cluster of a and ~ / a k if they are in different

clusters.

Let < , > be the usual Euclidean scalar product in the configuration space X.

For given cluster decomposition a, we define the two subspaces Xa and Xa of X

as follows:

Xa = {r = (n, •••, rN)(ΞX: Σ r, = 0 for all custers C in a),

Xa = {r = (ri, ••*, rN)^X: rj=rk for pairs (/, k) with / a k).

These two subspaces are mutually orthogonal with respect to the scalar product

< , > and span the total space X, X=Xa®Xa, so that L2(X) is decomposed as the

tensor product L\X) = L\Xa) ® L2(Xa). We write x for a generic point in X and

denote by xa and xa the projections of x onto Xa and Xa, respectively. Let

(1.1) /*(*)= Σ Vjk(rj-rk)
~jak
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be the intercluster potential between clusters in a. The cluster Hamiltonian Ha(h)

is defined as

a(h) on L\Xa)®L2(Xa\

where Ta(h)=-(h2/2)A acts on L2{Xa) and Ha(h) is given by

rk) on L\Xa).
jah

Let Ha(h) be as defined above. We denote by da(h\ 0< da{h) <oo, the

number of eigenvalues of Ha(h) with repetition according to their multiplicities.

A pair a=(a, /), l<j<da(h), is called a channel. The following notions are

associated with channel a : (1) Ea(ti) is the -th eigenvalue of Ha(h) (2) ψa =

φa{xa h)^L2{Xa) is the normalized eigenstate corresponding to eigenvalue

Ea(h) (3) Ha(h) is the channel Hamiltonian defined by

(1.2) Ha(h)=Ta(h) + Ea(h) on L2(Xa);

(4) Ja{ti): L2(Xa)-^L2(X) is the channel identification operator defined by Jau

= φa®u (5) WaK/z): L2(Xa)—>L2(X) is the channel wave operator defined by

Wa±(h) = s-limexv(ih-1tH(h))Ja(h)exv(-ih-1tHa(h)).
ί-»±oo

We know ([15]) that under assumption (V)P, the channel wave operators really

exist and that their ranges are mutually orthogonal

Range W?(h)±.Range Wf{h), a*β.

The channel wave operators are said to be asymptotically complete, if

ΣθRange Wϊ(h) = Σ®Range Wa

+(h),
a a

where the summation is taken over all channels a. It is also known ([8, 17]) that

under assumption (V)P, the channel wave operators are asymptotically complete.

Let a and β be two channels associated with cluster decompositions a and b,

respectively. We define the scattering operator Sa^β(h): L2(Xa)-^L2(Xb) for

scattering from the initial state to the final one as follows :

By definition, it follows that Sa^β(h) intertwines the channel Hamiltonians Ha{h)

and Hβ(ti) in the sense that

(1.3)

and also we obtain by the asymptotic completeness of channel wave operators that

(1.4) ( ) ( )
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as an operator acting on L2{Xa). This relation plays a basic role in proving the
optical theorem.

2. Total scattering cross sections

In this section, we give the precise definition of total scattering cross section
and formulate the main theorem. We first construct the spectral representation for
the operator Ha(h) defined by (1.2). Let Sa be the unit sphere in Xa and let Ya

= L2(Λa)®L2(Sa) with Λa = (Ea(h), oo). We define the generalized eigenfunction
ψa Of Ha{h), Ha(h)φa = λ<pa, by

(2.1) ψa(xa\ Λ, cϋa, h)=exv(ih~1ηa{λ)ixa, ωa»

for (Λ, ωa)^ΛaXSa, where ηa — V2(Λ — Ea{h)). We also define the unitary
mapping Fa(h): L2{Xa)-> Ya by

(Fa(ti)f)(λ, ωa) = Ca(λ, h)J<Pa(Xa\ λ, COa, h)f(xa)dxa

with ca = (2πh)~ya/2ηίUa~2)/2, yβ = 3(#(β) —1), where the integration with no domain
attached is taken over the whole space. This abbreviation is used throughout. The
mapping Fa(h) yields the spectral representation for Ha(h) in the sense that Ha(h)
is transformed into the multiplication by λ in the space Ya

(Fa(h)Ha(k)f)(λ, Cϋa) = λ(Fa(h)f)(λ, Q)a).

From now on, we fix the two-cluster decomposition a, #(#) = 2, as a = {Ci, C2} and
consider the two-body channel ot=z(a, j) as an initial state. Let Ea(h)<0 be the-
binding energy of initial channel a. We assume, in addition to (V)P, that for Co
>0 fixed arbitrarily,

(E) Ea(ti)-mί σess(Ha(h))<-co<0

uniformly in h, where aess(Ha{h)) denotes the set of essential spectrum of Ha(h).
If (E) is fulfilled, then we can prove that for any L > 1 , the normalized eigenstate

Xa) associated with eigenvalue Ea(h) obeys the bound

(2.2) f<xa>L\φa(xa h)\2dxa<CL

with CL independent of h.
We proceed to defining the total scattering cross section Oa(λ, ωa h) with

two-body initial channel a. Let β be a channel with b as a cluster decomposition.
We define the operator Ta^fi(ti): L2{Xa)->L\Xb) as

(2.3) Ta^β(h) = Sa^β(h) - δaβld,

where δaβ is the Kronecker delta notation. As is easily seen, this operator also has
the same intertwining property as in (1.3). This enables us to represent Ta^β(h) as
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a decomposable operator

Ta^(h)= f θ Tβ-β(λ h)dλ, Λaβ=(Eaβ(h), oo),
JΛctβ

where Eaβ=max(Ea(h), Eβ(ti)) and the fibers Ta^β(λ h): L2(Sa)-^L2(Sb) are
defined for α.e. /ϊeylα^. For example, Ta^a(λ /z) is defined through the relation

ωa) = (Ta^a(λ; h)(Fa(h)f)(λ, ))(<Wα).

We can show (see Proposition 3.2) that under assumption (V)P, Ta^β(λ h) is of
Hilbert-Schmidt class for a.e. λ>0 and that its Hilbert-Schmidt norm is locally
integrable as a function of energy λ>0. Denote by Ta^β(θb, Cϋa Λ, h), (λ, ωa, θb)
^(0, ° °)x5 α xS6, the integral kernel of Ta^β(λ h). Then the scattering ampli-
tude fa^β((ϋa-*θb λ, h) for scattering from the initial state a to the final one β at
energy λ is defined by

fa^β(ωa->θb\ λ, h)=-2πinamηa(λ)-1hTa^β(θb, ωa\ λ, h\

Va = J2{λ — Ea(h)) being again as in (2.1), where na is the reduced mass for a = {Ci,
C2} and is given as

na=N~ wij Σ
Ci /eeC2

for the Λ/'-body system with the identical masses mj = l, l<j<N. We refer to the
book [l, p. 627] for the above definition of scattering amplitude. We now define
the total scattering cross section Oa(λ, ωa ti) for scattering initiated in the two-
body channel a at energy Λ>0 and at incident direction ωa^Sa as follows:

σa(λ, ωa; Λ) = Σ f \fa^β(ωa-*θh\ λ, h)\2dθb.
β JSb

As stated above, Oa(λ, ωa\ h) is defined only for a.e. (λ, ωa)^(0, oo)xSa. It
should be noted that the exceptional set may depend on the parameter h.

We proceed to formulating the main theorem. Let Ia(x) = Ia(xa, xa) be the
intercluster potential defined by (1.1). We denote the intercluster coordinates for
a = {Ci, C2} by

where the summations Σ i and Σ * are taken over /£= Ci and k^Ξ C2, respectively.
The coordinates xa over Xa are represented only in terms of ζa and hence we can
write

(2 4) Iaθ(Xa) = Ia(0 Xa)== Σ Vkiβkζa)

where e^, l<j<k<N, takes the value + 1 or —1 according as (/, &)eCiX C2 or
2̂ X Ci. We identify Sa with the two-dimensional unit sphere S2 and write
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as

(2.5) ζa = b + sωa> b^Πω, s<^R,

where Πω is the two-dimensional hyperplane (impact plane) orthogonal to ωa.
With these notations, we are now in a position to formulate the main theorem.

Theorem 2.1. Let the notations be as above. Assume that the pair potential
Vjk fulfills (V)p with p>2 and that the binding energy Ea(h) of two-body initial
channel a satisfies (E). Then, as a function of (λ, ωa)^(0, °°)xSa, the total
scattering cross section ύa{λ, ωa h) behaves like

in the distributional sense <2)'((0, °o)xSα), where Lo is given as

oU ωa\ h)=if sirf&h)-1 Σ
JΠω ~jak

with μa = V2(λ — Ea{h))/na ,μa being the intercluster relative velocity along the
incident direction ωa.

The next result can be obtained as an immediate consequence of the above
theorem, if the non-negativity of oa is taken into account.

Corollary 2.2. Suppose that the same assumptions as in Theorem 2.1 are
fulfilled. Let

σSΌ(λ; ti)=(iπYι( σa(λ, ωa\ h)dωa
JSa

be the averaged total scattering cross section. Then one has

ίσSΌ(λ\ ti)dλ={±π)~ι( f Lo(λ, ωa; ti)d
JΛ J A JSa

for any compact interval Λd(0, oo).

We conclude the section by making some comments on the theorem above.

REMARK 1. The leading term Lo is of order O(h~2l{p~ι)). If, in particular, Vjk

behaves like Vjk(y) = \y\~p(c~\-o(ϊ)), c^O, at infinity, then Lo can be calculated as

o(l)\ A->0,

for some tfb>0 by making use of the spherical coordinates over R3.

REMARK 2. The proof of the theorem makes only an essential use of the
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behavior at infinity of pair potentials Vjk. The theorem can be extended to a
certain class of pair potentials with local singularities.

REMARK 3. Recently Isozaki [9] has proved that if p> 11/2, oa(λ, ωa h) is
finite and continuous in (λ, ωa)^(0, °°) X Sa in the case of three-body systems. We
can combine this with the semi-classical resolvent estimates obtained by [7] to
derive the semi-classical asymptotic formula as in the theorem for (λ, ωa) fixed, if
λ is restricted to a non-trapping energy range in the sense of classical dynamics.

3. Optical theorem

We keep the same notations as in the previous sections and always assume the
assumptions in the main theorem (Theorem 2.1). In particular, the two-cluster
decompsiton a and the two-body initial channel a associated with a are fixed
throughout the discussion below. The first step toward the proof of the main
theorem is to represent oa(λ, ωa h) in terms of the forward scattering amplitude
fa^a(coa-^cΰa λ, h). This representation formula is called the optical theorem.
The aim here is to prove this relation.

We begin by making a brief review on some important spectral properties of
the N-boάy Schrόdinger operator H(h), which are required to formulate the
optical theorem. The operator H(h) is known to have the following spectral
properties ([6, 14]): (1) H(h) has no positive eigenvalues. (2) The boundary
values R(λ±iO H{h)) to the positive real axis exist as an operator from Ll(X)
into L2-v(X) for any y >l/2 and have the local Holder continuity as a function of
λ >0 in the uniform topology, where Lϊ(X) = L2(X iχy2υdx) denotes the weight-
ed L2 space with weight ixY.

We denote by ( , )o and || ||o the L2 scalar product and norm in L2(X). The
proposition below is concerned with the representation formula for scattering
amplitude Λ-α and it can be verified in almost the same way as in the two-body
case.

Proposition 3.1. Let φa be the generalized eigenfunction defined by (2.1)
and let ψa^L2(Xa) be the normalized eigenstate associated with the binding
energy Ea(h). Define ea(ωa) as

ea(ωa) = ea(x; λ, ωa, h) = φa(xa; h)®<pa(xa; λ, ωa, h).

Then the operator Ta^a(λ h): L\Sa)-+L\Sa) is of Hίlbert-Schmidt class for
all λ>0 and has the integral kernel

Ta-^a{θa, 0)a\ λ, h) = Cθa((-Ia + IaR(λ+i0'9 H {K)) I a) β a((ϋ a), βa{θa)\

with Coa=i(2π)~2ηah~3. In particular, the scattering amplitude fa^a(ωa-^θa\ λ,
h) is represented as
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kr\(-Ia + IaR(λ + to H(h))Ia)ea(ωa), ea{θa)\.

The argument here based on the proposition above. By making use of this

proposition, we first prove the following

Proposition 3.2. The operator Ta-+β(λ h) : L\Sa)-^L\Sb) is of Hίlbert-

Schmidt class for a.e. λ>0.

Proof. The proof uses the relation (1.4) follows from the asymptotic complete-

ness of wave operators. If we use this relation, then we have by definition (2.3) that

(3.1) ΈTaΛλ; h)*Ta~β(λ; h)=-2Re Ta^a(λ; h)

for a.e. λ>0, where

a^a(λ; h)*)/2.

As is easily seen from Proposition 3.1, Re Ta^a(λ h): L2(Sa)-^L2(Sa) is of trace

class for all Λ>0. This proves the proposition. D

The next result is called the optical theorem, which is obtained as a conse-

quence of the asymptotic completeness of channel wave operators.

Theorem 3.3. Assume that the same assumptions as in Theorem 2.1 are

fulfilled. Then one has

/2Va(λ)~1hImfa^a((ϋa—>(ϋa', λ, k)

in g)'((0, oo)χS β), where

Im fa^a = (2π)-1na1/2h-2 Im(/?(λ + ίθ H(h))Iaea(a)a), Iaea(ωa))o.

Proof. Let F(λ, ωa) be a real smooth function with compact support in (0, oo)

X Sa. We denote by Fχ the multiplication operator by F(λ, ωa) acting on L2(Sa).

Then we have by Proposition 3.1 and relation (3.1) that

j\F(λ, cϋa)
2σa(λ, ωa h)dωadλ

λ)-2\\FλTa^(λ h)\\hdλ

(λ)-2 Trace(FλRe Ta^(λ; h)Fλ)dλ

A, ωa)
2ηa{λ)~ι lmfa^a(ωa-^ωa λ, h)dωadλ.

This proves the theorem. D
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4. Representation formula

By the optical theorem, the total scattering cross section in question is now
represented as

(4.1) σa(λ, ωa\ h)=2na1ηa(λ)-1h-1Q(λ9 h) in e»'((0, oo)χS f l),

where

Q(λ, h)=lm(R(λ + iQ; H(h))Iaea(ωa)9 Iaea(ωa))o.

The proof of the main theorem is reduced to analyzing the behavior as h—*0 of Q(λ,
h). The aim here is to rewrite this quantity in a form adapted to this purpose.
Throughout the discussion below, ωa^Sa is fixed and λ>0 is assumed to range
over a compact interval Λc(0, oo) fixed arbitrarily.

Several new notations are required. Let Iao(xa) = la(0, Xa) be as in (2.4). We
define θ± = θ±(xa\ λ, h) by

X+oo

Iaθ(Xa + Sηa(ϋa

with ηa = J2(λ — Ea{h)) again. As is easily seen, θ± solves the equation
(4.3) ηa<Cϋa, Vχa>θ±+th-1Iaθθ± = 0.

Let <po(s)^G?([0, oo))9 0 < ^ o ^ l , be a basic cut-off function such that

Po=l for 0 < 5 < l , £>o=0 fors>2

and let ôo be defined by <p<x>=l — <po. With these functions, we introduce a partition
of unity over Xa as follows :

X-(Xa\ M, d) = φa,(\

(4.4) χ+(xa; M, d) = φ*>(\xa\/M)φ~(«Xa, ωa> + D/d),

l-χ+(xa\ M, d)-χ-(xa; M, d)

for M>\ and l>d/>0, where xa=Xa/\xa\. We write da for d/dxa. It follows from
assumption (V)fi that

(4.5) χ±dS(θ±-l) = O(\xa\-p+1-™)9 kβHoo.

Here the order relation depends on h but it does not matter to the argument below.
Let IaR(xa) = <Po(\xa\/R)Iao(xa) for i ? > l and define Θ-R = θ-R(xa λ, h) by (4.

2) with Iao replaced by I OR. We also define

WOR=(1- X-Θ-R- χ+)ea=(χ + χ-(l- Θ-R))ea,

where we write ea=
:ea{ωa) for notational brevity. As is easily seen, WQR is of

compact support as a function of xa and converges to Wo—(1 — X-θ- — χ+)ea as
7?-+oo in L-v(X) for any v>l/2. We now set
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, x>0,

where the remainder term WR solves the equation

with w+R=—(H(h) — λ)woR. By the principle of limiting absorption, the resolvent
R(λ + ix H(h)) is bounded uniformly in x, 0 < # < l , as an operator from Ll(X)
into L2-v(X) for any y>l/2, which implies

x\R(λ + ix\ H(h))wOR\\o-^0, x-+0.

Thus we have

We calculate W+R on the right side and take the limit /?—>oo. Recall that the cluster
Hamiltonian Ha{h) is defined as

Ta(h),

where Ta(h)=-h2A/2 acts on L2{Xa). Since ea satisfies (Ha(h) — λ)ea = 0, we
have (H(h) — λ)ea = Iaea. Similarly we have

(H(ti) — λ)χ+ea = [Ta(h), x+]ea + χ+IaRβaΛ-χ+(Ia — IaR)ea,

where the notation [ , •] stands for the commutator relation. Since Θ-R satisfies the

equation (4.3) with ho replaced by IOR, it follows that

[Ta(h\ θ-R]ea + IaRθ-Rea

and hence we have

Let χo(xa M) = φo(\xa\/2M). Then ^o=l on the support of χ and hence

[Ta{h\ χ+ + χ-]=χo[Ta(h\ χ+ + χ-].

The sum [Ta(ti), χ+] + [Ta(ti), X-]Θ-R is written as

Xo([Ta(h), x+] + [Ta(h), χ-]θ-*)Hl-χo)[Ta(h)9 χ-](θ-*-ϊ).

Estimate (4.5) is still true for Θ±R uniformly in i?>l . Hence, W+R converges to w+
as i?^oo strongly in IΛ(X) for some i^>l/2 and the limit w+ is given as w+ =

zj&Wj, where

u>ι = χo{[Ta(h), χ-]θ- + [Ta(h), χ+]}ea,
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Here the brackets {•••} are regarded as operators acting on ett. Thus we have

(4.6) R(λ + iO; H(h))Iaea = w0+ Σ R(λ + iO; H(h))wj.

We fix the constant / throughout as

(4.7)

and take β > γ as

(4.8) β

with δ to be determined later. According to notation (4.4), we also define

(4.9) po(xa; h) = φo(hβ\xa\/32),p±(xa; h)=χ±(xa; I6h~β, 1/2)

with M = 16h~f and d = l/2. Then we have

R(λ + iO; H(h))Iaea=uo+jlR(λ + i0 H(h))uj

by (4.6), where

uo(x; λ, ti) = (l—p-θ- — p+)ea,

( ' } u2(x; λ, h) = {(l-po)[Ta(h), p-](θ--l)+p+Iao}ea,

uz(x; λ, h)={p-(Ta(h)θ-) + (p-θ-+p+)(Ia-Iao)}ea.

Hence Q(λ, h) can be written as

(4.11) Q=Im(wo, / α ^ ) o + Σ I m ( ^ , /?(λ-/0; H(h))Iaea)o.

The same argument as above applies to R(λ — iO H(h))Iaea. We again use the

notation (4.4) to define

(4.12) qlxa\ h) = φo(hβ\xa\/2), q±(xa\ h) = χ±(xa; h~β, 1/16)

with M = h~β and d = l/16. Then we obtain

R(λ-iO; H(h))Iaea = Vo+ilR(λ-i0; H(h))vj9
i=i

where

Z;0(Λ;; /ί, h) = (l-q--q+θ+)ea,

vι(x /ί, A) = ̂ o{[Tβ(Λ), q+]θ+ + [Ta(h), q-]}ea,
( ' j vz(x\ λ, h) = {(l-qo)[Ta(h\ q+](θ+-

vs(x; λ, h) = {Q+(Ta

Hence it follows from (4.11) that
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Q(λ, h) = Q0(λ, h)+ Σ QM, h),

where (?o and Qjk are given as

3

Qo(λ, h)=Im(uo, /flββ)o+Σlm(wi, fo)o,
(4.14) i=i

; H(h))uj9 vk)o,

This is a representation formula which plays a basic role in studying the asymptotic
behavior as h—*0 of quantity ζ)(Λ, /z).

The remaining sections are devoted to evaluating each term defined in (4.14).
Stating our conclusion first, only the term Qu makes a contribution to the leading
term of asymptotic formula in the main theorem and the other terms which are
dealt with as remainder terms are shown to behave like o{hι~2γ) as /z—>0 in
<2)'((0, °°)) as a function of λ uniformly in ωa^Sa, y being as in (4.7).

By definitions (4.10) and (4.13), Uj and Vj take the form

We end the section by formulating several simple properties of fj and gj as a series
of lemmas, which are required in the proof of the main theorem. Below we again
write da for d/dxa and use the following notations:

B(m, M) = {xa^Xa: m<\xa\<M},

Γ±(M, d) = {xaξΞXa: \xa\>M, <xa, ωa>^d}

for M>m>0 and l>d>— 1. If, in paricular, m = 0, then B(0, M) is simply
denoted as B(M).

Lemma 4.1. (i) θ±(xa λ, h) defined (4.2) satisfies the estimates

\P-Re(θ--l)\<Ch-2<xay
2{p-1\ \p-lm θ-\

\q+ ReC^-DI^CA" 2 ^)- 2 ^-^ \q+ Im θί

iiϊ) If xa^Γ-(MhΓβ, d), then \dk

λθ-\<Ck and

Similar estimates remain true for dλθ+ in Γ+(Mh~β, d).

Lemma 4.2. (i) fι=f\(xa λ, h) is supported in B(16h~β, 64h'β) and satisfies
the estimates

"^ \lmfι\<Ch<Xa>-\
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(ϋ) 9ι=9ι(xa λ, h) is supported in B(h~β, 4h~β) and obeys the same bounds
as above.

Lemma 4.3. (i) /2=/2(Λ:β λ, h) is supported in Γ+(l6h~β, -1/2) and
satisfies the estimates

|Re h\ < C<xaY
p, |Im /2| < C(h<xaY

p-1

(ii) g2=g2(xa; λ, h) is supported in Γ-(h~β, —7/8) and obeys the same
bounds as above.

Lemma 4.4. (i) fz=f^{xa\ λ, h) has support in \xa\>lbh~β and obeys the
bound

(ii) gz = gz{xa Λ, h) has support in \xa\>h~β and satisfies the same estimate
as above.

These lemmas can be easily verified by a direct calculation. We give only a
sketch for the proof.

Proof of Lemma 4.1. (i) follows from assumption (V)P. Since β(p — ϊ)>γ(p
-1) = 1 by choice (4.8), we have h~ι<C<xaY~ι for \xa\>mh~β. If this is taken
into account, (ii) can be easily proved. D

Proof of Lemma 4.2. We prove (i) only. By definition, it is clear that /i has
support in B(16h~β, 6£h~β). Denote by Vα the gradient over Xa. Then we have

by Lemma 4.1. We can take δ in (4.8) so small that h2<xa>~2<C<xa>~p on supp
podB(64h~β). The lemma follows from these facts. D

Proof of Lemma 4.3. The lemma can be proved in the same way as Lemma 4.
2. Since p- — \ on Γ-(32h~β, —1/2), it is easy to see that h has support in the
outgoing region Γ+(16h~β, —1/2). By Lemma 4.1, we have

u2=p+Iaoea-h2(l-p0)(θ--l)<Vap-, Vaea> + 0{h)<Xa>~p~lea,

from which the lemma follows. D

Proof of Lemma 4.4. We have \p-Ta(h)θ-\<Ch<XaYp~ι by Lemma 4.1 and
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also it follows from assumption (V)P that

(4.15) \la-Iaθ\<CL<Xa>-p-l<Xa>L, L>1.

This proves the lemma. D

5. Preparatory lemmas

In this section, we prepare three preparatory lemmas which are often used
throughout the proof of the main theorem. These lemmas are stated without proofs
and their proofs are giveri in section 8.

5.1. Let u = u(x λ, h) be a function such that u is C2-smooth in λ and that
for some (7>0 and y>0, u satisfies the estimates

\\u\\o=o{hΰ\

uniformly in λ^Λ, /lc(0, oo) being again a compact interval fixed arbitrarily.

Lemma 5.1. Let F(/0^Co°((0, °°)) Assume that u = u(x λ, h) and v =
v(x λ, ,h) belong to Ll(X) and fulfill (5.1) with a—0\ and a=σ2, respectively,
for some v>l. Define the integral J as

J= Γ
Jo

iO; H{h))u, υ\dλ.

Then one has J=O{hσι+σ2~β-1).

By Lemmas 4.2 and 4.4, U\ and Uz satisfy the condition of the lemma above.
We apply this lemma to ovaluate the terms Qjk with (/, k) = (l, 3), (3, 1) and (3,
3). However the condition of Lemma 5.1 is not necessarily satisfied by Ui behaving
like O((xa}~p) under the assumption p>2.

5.2. The second lemma is mainly used to evaluate the terms Qjk with j = 2 or
k = 2. Before formulating the lemma, we recall the notations. ea is defined by ea

= ψa®<Pa. Ja\ L2(xa)—*L,2(X) is the channel identification operator defined by
JaU = φa(h)®u. Ha(h)=Ta(h) + Ea(h) acting on L\Xa) is the channel
Hamiltonian associated with the two-body initial channel a.

Lemma 5.2. (i) Assume that f(xa λ, h) is supported in Γ+(Mh~β, d) and
obeys the bound \d£dλf\<Cak(xay~p~lal uniformly in λ^Λ. Then one has

R(λ + iO; H(h))fea=JaR(λ + i0', Ha(h))f<pa + R(λ + i0 H(h))w,

where the remainder term w = w(x; λ, h)^Ll(X) satisfies (5.1) with σ=β(2p

-l for any\ 0
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(ii) // g(xa λ, h) is supported in Γ-(Mh~β, d)and obeys the same bound as
above, then one has a similar representation for R(λ — iO; H(h))gea.

5.3. The third lemma is employed in calculating the leading term which comes

from the term Qn. Let ηa = J2(λ — Ea(h)) be as before. We define the self- adjoint

operator A(λ, h) as

(5.2) A(λ, h) = ηa<ωa, -ihVa> + Iao on L2(Xa)

and denote by Gt(λ, h)=exp( — ih~1tA(λ, h)) the unitary propagation group

generated by A(λ, h). This unitary group is explicitly expressed as

rt

(5.3) Gί(Λ, h)f=f(xa-t7]a(Oa)exv(-ih~1jQ Iao(xa-(t-s)ηaωa)ds).

Lemma 5.3. Let the notations be as above. Denote by ( , ) a the scalar

product in L2(Xa). Assume that f(xa λ, h) and g(xa λ, h) are supported in

B(mh~β, Mh~β) and obey the bound

uniformly in λ e Λ Then one has in <O'((0, oo))

iO; H(h))fea, gea)o=ihΓι Γ(Gt(λ, h)f,
Jo

5.4. Let To= — Δ/2 be the free Hamiltonian acting on L2(Xa). Then we can
write

R(λ + iO; Ha(h)) = h-2R(h-2ζa(λ)±i0 To)

with ζa=λ — Ea(h). The resolvent estimate at high energies for the free
Hamiltonian To plays an important role in the proof of Lemma 5.2 as well as in
the proof of the main theorem. Such a result has been already established by [10,
12]. We here formulate this result in a form adapted to our purpose.

We require several new notations. Let ξa^Xa be the coordinates dual to xa

and let u denote the Fourier transformation

v(-ih-\xa, ξa»u(xa)dxa.

We denote by Sm the set of all a(xa, Sa)^C°°(XaXXa) such that

\(d/dxa)a(d/dξa)
βa\<CaβL<Xa>m-lal<ξa>-L for any L > 1 .

A family of symbols a(xa, ξa e) with parameter e is said to belong to Sm

uniformly in ε, if the constants CW above can be taken uniformly in e. Most of
symbols which we consider in the later application have compact support in ξa and
hence are of class Sm. For given symbol a(xa, ξa)^Sm, we define the
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pseudodifferential operator a(xa, hDa) as

a(xa, kDa)u = (2πh)~3/2Jexpiih-Kxa, ξa»a{xa, ξa)ϋ(ξa)dξa

and denote by OPSm the class of such operators. We also use the notation

Σ±(M, d, c) = {(Xa, ξa)\ \Xa\>M, ξa^Ω(c),<Xa, ξa>^d},

where Ω(c) = {ξa : \ξa— VaO)a\<c} for 0 < c < l small enough.

Proposition 5.4. Write R±a(λ, h) for R(λ±iO; Ha{h)) and Qa for the
multiplication operator with (Xa>. Denote by || || the operator norm when
considered as an operator from L2(Xa) into itself Then one has following
resolvent estimates uniformly in λ^Λ.

(i) // μ>l/2, then

|| Qaμ-k{(hdλ)
kR±a(λ, h)}Qaμ~k\\ = 0(h~l).

(ii) Let μ<\/2. If b± is of class OPSo with symbol supported in Σ±(M±,
d±, c), then

(iii) Let b±^OPSo be as above. If d+>d~, then

\\Qμabτ{(hdλ)
kR±a(λ,

for any μ > l and L > 1 .
(iv) Let b±^OPSo be again as above and let ψ±=iφo(\xa\/in±). If m±<€M±,

then

\\Φ±{(hdλ)
kR±a(λf h)}b±QS\\ =

for any μ > l and L > 1 .

REMARK. The proposition above is a special case of the results obtained in [10,
12]. Statement (iv) is not explicitly mentioned there but it can be verified in the
same way as (iii), if we take account of the fact that classical free particles with
initial satates in Σ± never pass over the support of ψ±.

6. Remainder estimates

The present and next sections are devoted to proving the main theorem. Let
Qo(λ, h) and Qjk(λ, h), 1^/, k<?>, be defined in (4.14). The aim here is to prove
that Qo and Qjk, (/, A?)=*=(l, 1), behave like o(hl~27) as *->0 in #'((0, oo)) as a
function of λ.

(i) We first consider the term Qo. This is split into Qo=:Qoo + Σi=iQoi, where
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3, and

Qoo=Im(uo, Iaea)o=Im(—p-θ-βa, Iaea\.

We prove that each term obeys the bound

(6.1) QoAλ, ti) = o(hι-2Ύ\ 0</<3.

The function p- is supported in |#β|>16A~* and also we have

by (4.15). Hence it follows from (2.2) and Lemma 4.1 that

(6.2) Qoo= O(h~ι) f <Xa>-2p+ιdxa=O{h-ι+mp-2)).

Since β>γ by choice (4.8), we obtain the bound (6.1) for Qoo.

Next we evaluate the terms Qoj. By Lemmas 4.2^4.4, all the functions fj, 1 ^

y<3, vanish on B(16h~β). If we write Vo—(q-\rq+(l — θ+))ea with q = l — q+ — q-

supported in B{2h~β), then we have Qoj=lm(fjea, q+(l — θ+)ea)o. By Lemmas 4.

1 and 4.2, the term Qoi is estimated as in (6.2) and hence we have (6.1) for Qoi. By

Lemma 4.3, Λ also obeys the bounds |Re/2|^CO;α>~p and \lvcγf2\^Chixay~ι,

which implies (6.1) for Q02. The bound for Q03 also follows from Lemma 4.4 at

once. Thus we have proved that Qo=o(h1~27).

(ii) The aim here is to prove that

(6.3) QM, h) = o(h1~2γ) in <S'((0, 00))

for (/, k) = (l, 3), (3, 1) and (3, 3). This is obtained as a simple application of

Lemma 5.1. By Lemma 4.2, U\ satisfies the estimates in (5.1) with ύz=θι = l — β/2

for any y>0. On the other hand, m satisfies these estimates with O=ύz = β{p — l/

2 ) > l + /?/2 for any v, 0< v<p —1/2, by Lemma 4.4. The functions Vi and V3 also

satisfy the same estimates as U\ and m, respectively. Since β(ρ — 2)>1 — 2γ, (6.3)

follows from Lemma 5.1 at once.

(iii) We deal with the term Q22 and prove that

(6.4) Q22U, ti) = o{hι~2Ύ) in £'((0, 00)).

We again write ( , )α for the scalar product in L2(Xa) and denote by || ||α the

norm in this space. By Lemma 4.3, fi and gi satisfy the assumption of Lemma 5.

2. Hence we obtain

i0; H(h))w+9

R(λ-iO; H(h))g2ea=JaR(λ-i0; Ha(ti))g2φa + R(λ + iϊ) H(h))w-.

Here the remainder terms w± satisfy (5.1) with σ=β(2p — 5/2) — 1 for any v, 0< v
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<p — 1. Since

it follows from Lemma 5.1 that

(R(λ + iO; H(h))w+9 w-\=o{hι~27) in i)'((0, oo)).

Thus we have

in <S0'(((), °°)). We now use Proposition 5.4(i) to evaluate the first term on the right
side. Take μ>\/2 close enough to 1/2. Then we have

and \\<Xa}μJaW+\\a=O(h(r~βμ), because w+ satisfies (5.1) for any y9 0<v<p —

We can choose μ so close to 1/2 that 2β{p — μ — 3/2) —1>1 — 2/ and

Hence (6.4) is obtained.

(iv) The terms Q23 and Q32 are estimated in the same way as Q22. As stated
previously, Vz satisfies (5.1) with σ=ύz = β(p — l/2) for any v9 0<v<p —1/2, so
that

for σ=β(2p — 5/2) — l. This, together with Lemmas 5.1 and 5.2, implies that

iO; Hβ(h))f2φa9 J^Vs)a + o(h1-2γ) in #'((0, 00)).

By Lemma 4.4, \\<xa>
μJSvJi\a=O(hβip-μ'm)) for //>l/2, // being close enough to 1/

2. Hence we again use Proposition 5.4(i) to obtain that Q2z = o(hι~2γ) in
$'((0, 00)). A similar argument applies to Q32.

(v) Finally we analyze the remaining two terms Q\2 and Q21. the function U\
satisfies (5.1) with O=G\ = \ — βl2 for any y>0 and hence

for ΰ=β(2p — 5/2) — l. By Lemmas 5.1 and 5.2 again, we have

a, R(λ-iO; Ha(h))g2<Pa)a + o(h1-27) in #'((0, 00)).

We denote by T the first term on thr right side of the relation above. By Lemma
4.2, fi=Mxa'9 Λ, h) is supported in B(16h~β, 64h~β) and obey the bound |/i|<
Chixa}'1. However it does not necessarily satisfy \fι\<Cixa

s>~p uniformly in h.
Thus the first term T above cannot be controlled by a direct application of
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Proposition 5.4(i) as in the previous steps (iii) and (iv). We employ a slightly
different argument to evaluate this term.

By Lemma 4.3, g2=g2(xa λ, h) is supported in Γ-(h~β, —7/8) and satisfies the
estimate {dS&l^ Ca(xa}~p~lal. We now take M > 1 large enough and decompose gi
into

so that T is split into T=T 0+Too according to the decomposition above. Let
a~(xa ξa λ, h)^S~P be the symbol defined by

a-(xa, ξa\ Λ, h) = g2oO{Xa\ λ, h)<Po(2\ξa— VaCϋa\/c),

where c >0 is chosen so small that it is supported in Σ-(Mh~β, —3/4, c). We write
a- for the pseudodiίferential operator a~(xa, hDa λ, h). Then we have g2oo=a~φa

by definition and hence it follows from Proposition 5.4(iv) that Too= O(hL) for any
L > 1 . On the other hand, the term To can be written as

Γo=Im(i?(Λ + zΌ; Ha(h))fιea, g2oea)o.

Both the functions /1 and #20 satisfy the assumption of Lemma 5.3. Hence we use
this lemma with Ia = 0 to obtain that

To=h~1 f°Re(G?(Λ, h)fu g2o)adt + o(h1-27) in #'((0, 00)),
Jo

where Gt(λ, h)fi=fi(xa — tηaωa; λ, h). The integration on the right side is
actually taken only over a finite interval (0, Ch~β) for some C>1, because G?/i
vanishes on the support of #20 for t>Ch~β. Since ixay~ι^h~β is comparable on
the support of f\ and #20, we have by Lemmas 4.2 and 4.3 that

| |Re/ill.-O(*' ( '-8 / a >), ||ImΛ|U= O(hι~β/2\

||Re ^ 2 0 | | α - O ( ^ - 3 / 2 ) ) , Him g2o\\a

Hence To is estimated as To=o(h1~2γ) in <SO'((0, 00)). This yields the desired bound
for Q12. A similar argument applies to Q21 also.

Summing up the results obtained here, we can conclude that all the terms Qo
and Qjk except for Qu in (4.14) obey the bound o(hι~2γ) in <Z)'((0, 00)) as a function
of λ uniformly in ωa^Sa and hence it follows from relation (4.1) that

(6.5) σa(λ, ω; h) = 2na1ηa(λ)-1h-1Qn(λ, h) + o{hr2r)

in £'((0, oo)χsβ).

7. Calculation of leading term

In this section, we complete the proof of the main theorem by calculating the
leading term arising from φπ.
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(i) According to Lemma 4.2, /i and gi satisfy the assumption of Lemma 5.3.
Hence

, h)fu gι)adt + o(hι-2γ) in #'((0, oo)),

where the integration is actually taken only over a bounded interval (0, Ch~β) for
some O l . Recall definitions (4.10) and (4.13) of U\ and V\. We decompose U\
=fιea and Vi = giea into Uι = u+ + U- and Vi = v+ + v-, where

u+=po[Ta(h), p+]ea, u-=po[Ta(h), p-]θ~ea,

), q+]θ+ea, v- = qo[Ta(h), q-]ea.

We further define f± and g± through the relations u±—f±ea and v± — g±ea. Since
/+ is supported in Γ+(l6h~β, —1/2), we can easily see from (5.3) that Gt(λ, h)f+
vanishes on supp g\CB{kh~β) for />0. Thus we obtain

©ii = /+0ϊ, Λ) + / - U ti) + o(hι-2γ) in <S'((0, oo)),

where

± = h~1 ΓRe(Gt(λ9 h)f-9 g±)adt.
Jo

(ii) We analyze /+ defined above. Write dω for (ωa, Vα>. Then /- and g~ take
the forms

/- = — iη<χhpo(dωp-)θ-+r, g-= — iηahqo(dωq-) + r_,

where the remainder terms obey the bound ||H|α + ||r_||α=O(/z2+/?/2) by Lemma 4.1.
We can choose δ>0 so small that these remainder terms do not make any contribu-
tion to the leading term. If we neglect such a contribution from the remainder
terms, then Gt(λ, h)f- takes the form

Gt(λ, h)f- iηah(po(dωp-))(xa — tηaωa)θ-{xa λ, h)

by (5.3). Since Re θ- behaves like

Reθ-(xa; λ, h) = l + O{h-2)<Xa>-2{p-ι) = l

for xa^suppg-ClΓ-(h~β, -7/8), it follows that

(7.1) I-(λ, h) = L-(λ, ti) + o{hι~27)

where

-=ηlhί

A smilar argument applies to /+ and we obtain
(7.2) I+(λ, h) = L+(λ,
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where

Xoo r
Kpθdωp-)(Xa—tηaCϋa)(qodωq+)(Xa)Θ(Xa)dXadt

J

with

We now write xa^Xa as

(7.3) Xa =

where Πω again denotes the impact plane orthogonal to direction ωa (see (2.5)).

As is easily seen, Θ defined above depends only on

Θ = Θ(ya; λ, h)=

and behaves like Θ = \ + h~2 0{\ya\~2{p~ι)) as b α h * 0 0 uniformly in h, so that we

have

(7.4) f (l~

(iii) The argument below uses the relation between the supports of cut-off

functions po, p-, Qo and q+ defined by (4.9) and (4.12). We here recall that:

(1) supp p0ClB(6ih~β) and po=l on B(32h~β).

(2) suppp-ClΓ-(16h-β, 0) and p- = l on Γ-(32h~β, -1/2).

(3) supp q0ClB(4h-β) and qo=l on B(2h~β).

(4) suppq+CΓ+(h-β, -15/16) and q+ = l on Γ+(2tΓp, -7/8) .

We now assert that

(7.5) jf

To see this, we first note the relation

(7.6) qodω(q- + q+)= — qodωq = - dωq,

where q = l — q+ — q~ has support in B(2h~β). If xa represented by (7.3) satisfies \ya\

^2h~β, then xa<£supp q and hence qodω(q- + q+) = 0. On the other hand, if xa

satisfies \ya\<2h~β, then podωp- = dωp- at such a point xa and hence

-)(Xa ~ tηa(ΰa) = ~ dtp-(Xa ~

so that we have

ί°°
(7.7) ηa \ (podωp-)(xa — tηaωa)dt = —

Jo
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for Xa&suppp- with \ya\<2h~β and hence, in particular, for xa^supp q. This,
together with relation (7.6), proves (7.5). Therefore the sum of the two leading
terms in (7.1) and (7.2) equals

If Xa^supp dωq+ with \ya\<mh~β, m>0 being small enough, then it follows that
Xa&suppp- and qodωq+=zdωq+ at such a point xa. Hence we have

Vaj(qodωq+)(xa)dza =

for \ya\<mh~β, 0 < m < l . By (7.3), we can write dxa^Vadyadza. If (7.4) and (7.
7) are further taken into account, then we see that the sum behaves like

(X-Θ(ya\ λ, ωa, h^dya + oih1'27).

This yields the leading term in the asymptotic behavior of Qn

Qn=2-ιnaηahLo(λ, ωa\ h) + o(h1-27) in S'((0, oo)),

where

Lo=4^α1 / sin2j(2/z)~1 Iao(ya + ZaVa(oa)dza\dya.
JΠω I J )

By use of (2.4) and (2.5), Lo can be put into the form as in the theorem. Thus
we can obtain from (6.5) that

ύa(λ, (ϋa\ ti) = Lo(λ, (ϋa\ h) + θ(kΓ27) in S'((θ, ™)XSa)

and the proof of the main theorem is now completed.

8. Proof of Lemmas 5.1^-5.3

In this section, we prove the three lemmas (Lemmas 5.1-—'5.3) which remain as
unproved.

Proof of Lemma 5.1. The lemma can be easily proved. The proof uses the
timedependent representation formula

More precisely, we have to write

R(λ + iO H(h)) = ih-1lim Γ
xlO JO

However we proceed with this formal representation for notational brevity. The
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rigorous justification can be easily done.

Let F(/0^Co°((0, °°)) By the time-dependent representation formula above,
the integral / can be written as J=ih~ιI, where

1= Γ ΓF{λ)ey^{ih-ιtλ){ey^{-ih-ιtH{h))u, v\dtdλ.
Jo Jo

To prove the lemma, it suffices to show that 1= O(h*1+(T2~β). Take τ as τ = h'β and
divide the intergal / into two parts

Γ=Γ{Γ+Γhdtdλ-
We denote by h and h the first and second integrals, respectively. By assumption,
we can immediately obtain Ii=O(hσi+<f2~β).

Next we consider the integral h. We write u^ψo^x^l t)uΛ- φooi\xa\/ t)u
similarly for v. Then h is split into four integrals. Denote by l£, Ii and Ii the
integrals associated with decompositions (<p«>— φo), {φo—φ<^) and (φ<χ>—φ<^), respec-
tively. These integrals can be easily estimated by repeated use of the relation

which follows from assumption. Since v>l , we lίave l£=O(h<ri+(r2~β). Similarly
Ii and Ii are shown to obey the same bound as above. The last integral U
associated with decomposition (^o—^o) is estimated with aid of partial integration
in λ. Making use of the relation

exp(ih~1tλ)= — iht~λdλ expiih^tλ),

we repeat integration by parts in λ twice to obtain that U is majorized by a linear
sum of such terms as

with 0<j + k<2. We may assume that v<2. Then we have by assumption that

similarly for v with σ2. This implies that Ii also obeys the bound l2 = O(hσi+ffz~β)
and the proof of the lemma is complete. D

Proof of Lemma 5.2. We prove (i) only. A similar argument applies to (ii)
also. Let O=β(2ρ — 5/2) — 1 be as in the lemma. We again write R+a(λ, h) for the
resolvent i?(λ + zΌ Ha(h)). As is easily seen, the remainder term w in the lemma
is given as w=—IaJaR+a(λ, h)fφa. Therefore, to complete the proof, it suffices to
show that Wo=Wo(xa; λ, h) defined as Wo=(xa)~pR+a(λ, h)fφa satisfies the esti-
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mate

\\<XayWo\\a
( } \\<X

for any v, 0<v<ρ— 1, where || ||α again denotes the L2 norm in L2(Xa).
By assumption, / is supported in Γ+(Mh~β, d) and satisfies the estimates

\da

ad
kJ\<Cak<Xa>-p-^. We take Mi<M and di<d9 and define the symbol a+(xa9

ξa; λ9 h)^S-P as

<Z+(Xa, ξa\ λ9 h)=f(Xal λ, k)φo(2\ξa ~ 7?aO)a\/c),

where c>0 is chosen so small that the symbol is supported in Σ+(Mih~β, d\, c).
We also write a+ for the pseudodifferential operator a+(xa, hDa λ, h). Then we
have fφa — a+φa. By a simple calculus of pseudodifferential operators, we see that
there exists bo^OPSo uniformly in h and λ€=Λ such that

with /=/o, where the remainder term ro=ro(xa /ί, A) obeys the bound

(8.2) \\<xa>
Lr\\a=O(hL) f o r a n y L > l .

We may assume that the symbol of bo is still supported in Σ+(Mih~β, di, c).
Similarly we have

with remainder term r* obeying the bound (8.2), where bk is of class OPSo with
symbol supported in Σ+(Mih~β, di, c) and fk=fk(xa; λ, h) has support in
Γ+(Mh~β, d) and satisfies the estimate \fk\<C<xa>~p+k.

The remainder terms rk, 0 < ^ < 2 , are all negligible. In fact, it follows from
Proposition 5.4(i) that

\\<xay-fiRM h)ro\\a=0(hL\ \\<Xa>-p{(hdλγ-kR+a(λ, h)}rk\\a=O{hL)

for k, 0<^<l, and

\\<xay-2-p{(hdλ)
2-kR+a(λ, h)}rk\\a =

for k, 0 < ^ < 2 . In particular, the third estimate above is obtained, if we note that

We now set vk = bkfk<Pa, 0<&<2. Let Φo=φo(hβ\xa\/m) and φoo^l — ψo. We
take m, m<Mι, small enough. Then it follows from Proposition 5.4(iv) that

WΦoRM h)vo\\a = 0(hL\ \\φo{(hdλy-kR+a(λ, h)}vk\\a=O(hL)

for k, 0<^<l, and

\\Φo{(hdλ)
2-hR+a(λ9 h)}vh\\a=O(hL)
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for k, 0 < & < 2 . The terms cut-off by </>«> are evaluated by making repeated use of

Proposition 5.4(ii). We apply this proposition with μ = 0 to obtain that

If we further use the same proposition with μ= — k, 0<&<l> then it follows that

\\φ-<Xa>-p{(hdλy-kR+a(λ, h)}vk\\a=

Similarly we have

We combine these estimates to obtain (8.1) and the proof of the lemma is complete.

D

Proof of Lemma 5.3. The proof again uses the time-dependent representation

formula for resolvents. Let F(/0^Co°((0, °°)). We consider the integral

Xoo z oo

/ F{λ)eyLΏ(ih~ιtλ)(eyLΏ( — ih~ιtH(h))fea, gea)odtdλ.
Jo

To prove the lemma, it suffices to show that

(8.3) 1= Γ ΓF(λ)(Gt(λ, h)f, g)adtdλ + o(h2-27).
Jo Jo

As stated previously, the ^-integration above is actually taken only over a finite

interval (0, Ch~β) with some O l , because Gt(λ9 ti)f vanishes on the support of

g for t>Ch~β. Let c = (l+4δ)γ>/3 for the same δ>0 as in (4.8). We set τ = h~c

and divide the integral / into two parts

By partial integration in λ, the integral h over (r, °°) is majorized by a linear sum

of such terms as

By assumption, we have

Hence h is shown to behave like I2=O(h2+c-3β) = o(h2-27) by choice of c.

To control the integral I\ over (0, r), we represent this as a sum of two integrals

by decomposing / into two terms with small and large imapact parameters. We set

# = (1 — 55)7 for the same δ>0 as in (4.8) and decompose / into

f=fs+fl=<Po(hK\ya\)f+<P~(hK\ya\)f.
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According to this decomposition, I\ is split into a sum of two integrals. Since
\\fsea\\o=0(hι+β/2~κ), the integral Iis with cut-off φ0 is evaluated as Iis=O(h2~c~κ)
= o(h2'27) by choice of c and x. Similarly we have

(8.4)

The leading term comes from the integral hi associated with cut-off £>«>. To
see this, we construct an approximate representation for the solution

v(t) = v(t; λ, h)=exv(ih-1tλ)exv(-ih-1tH(h))fίea

to the equation

ihdtV = {H(h) — λ)v, v\t=o=fιea=Jafιφa.

As an approximate solution to this equation, we define

u(t) = u(t; λ, h)=JaφaGt{λ, h)fι=Jaφaexv(-ih-ιtA(λ, h))U

Recall the definition (5.2) of A(λ, h). Since the relation

Ja<PaA(λ, h)-(H(h)-A)ja<Pa=-Ja<PaTa(h)-(la-Iao)Ja<Pa

holds as an operator from L2(Xa) into L2(X), we see that u(t) solves the equation

ihdtu = (H(h)-λ)u-ri(t)-r2(t\

where rj(t) = rj(t A, h), 1^;<2, are given as

n(t)=Ja<Pa(Ta(h)Gt(λ, h)fι\ r2(t) = (la- Iaθ)ja<PaGt(λ, h)fι.

Hence the Duhamel principle yields that

v(t) = u(t)-ih-1 Γexp(-ih-1(t-s)(H(h)-λ))(r1(s) + r2(s))ds.
Jo

Both the remainder terms n and r2 have support in [ya : h~κ<\ya\< Ch~β) for
some 0 0 as a function of ya^Πω, so that h<C(ya)~{p~ι)l2 on their supports,
provided that δ>0 is chosen small enough. By the assumption of the lemma, we
have

I Ta(h) Gtfι\ <: Ch<ya>-p-ι<ya + (za - t)ηaωa>-1

and hence n{t) obeys the bound

\\n(t)\l=O{h2) f
J\y

\
\ya\>h-'c

uniformly in t, 0< t< r. A similar estimate remains true for r2(t) also. Thus it

follows that
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where μ = l + x(p + l/2) + l-β/2-2c + 2γ-$=γ(l + O(δ)). We can choose δ>
0 so small that μ>0 and hence

Iu= Γ ΓF(λ)(Gt(λ, h)fi9 g)adtdλ + o(h2-2γ).
Jo Jo

This, together with (8.4), proves (8.3), because (Gt(λ9 h)f, g)a = 0 for t>τ and
hence the proof is complete. D
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