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Let R be an artinian ring. In [10], we have studied R on which the following

condition holds : for i?-modules M and N, if M is iV-projective, then Mf is always

almost iV-projective for every submodule Mf of M. If Mr is always Af-projective

in the above, then this property characterizes hereditary rings with / 2 = 0 [2] and

[6], where / is the Jacobson radical of R.

We have investigated the above condition in [10], when i) M and N are

local and ii): M is local and N is a direct sum of local modules. In this paper we

give a characterization of R over which the above condition is satisfied for any

i?-modules M and N.

1. Preliminaries

In this paper R is always an artinian ring with identity, and every module is

a finitely generated i?-module. We shall use the same notations given in [10].

We have studied rings R over which the following condition is satisfied in

[10]:

For any /?-modules M and N

(#) if M is 7V-projective, then M' is always almost iV-projective for every

submodule M' of M.

We denote primitive idempotents in R by e, /, g, and so on. Assume that (#)

holds whenever M and Λf are local. Then we have shown in [10] that R has the

following structure:

/ 3 = 0 and for a primitive idempotent e with eJ2Φ0

(0) eRZ)eJ^llκ®(fkRTk)®Έj®SJ,

where the fίR is a uniserial and projective module with Λ/2 = 0, fJ=t=O

and the Si is simple.

(If necessary, we use the following decomposition :

We shall use frequently the following theorem : [10], Theorem 1.

Theorem 0. Let R be artinian. Then (#) holds whenever M and N are local
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// and only if i) / 3 = 0 and (eR^>) ej has the decomposition (0), ii) if
then fuRηhf2j for any i and /, iii) /R/fJ is never isomorphic to any simple
component of Soc(i?) and iv) for any simple submodule S in Ί]κ®(fkRYnk\
eReS = Σ>κ'®(fkJYnk) for some K'(ZK, where e and f are in (0).

2. Condition(#)

In this section we study (#) where M and N are any finitely generated
i?-modules. In this case gj is almost projective for any primitive idempotent g, and
hence R is a right almost hereditary ring [7], i.e. / is almost projective as a right
i?-module.

First we give

Proposition 1. Let R be right almost hereditary. Then the following are
equvalent:

1) (#) holds whenever M and N are local
2) (#) holds whenever M is local and N is a finite direct sum of local

modules.

Proof. 1)—>2). Since R is almost hereditarty, Soc(i?) is almost projective by
definition and Theorem 0. If gR/gJ is monomorphic to Soc(7?), then gR is
uniserial by [9], Theorem 1 and we have 2) by [10], Theorem 2.

Next we study (#) when M is local and N is any /?-module. We use the
decomposition (0) of ej. Put fiR=/R and S = Soc(JR)=fJ.

Lemma 1. Assume that (#) holds whenever M is local and let
be as above. Then 1) every element in Hom*(S, 5) is extensible to an element in
Hom*(/i?, fR), and 2) S is neither isomorphic to any simple component of
Soc(gR) nor any Sj in (0), where gRφeR, gR^fR and gJΦO.

Proof. Assume that Soc(#i?) contains a simple component isomorphic to S
via θ for some primitive idempotent g. Take fR φ gR and its submodule 5 =
{<> + #(s) |seS} and put N=(JR Θ gR)/S. If gRφeR, eR/S is N-projective by
[l], p. 22, Exercise 4 and [10], Lemma 6. Hence fR/S is almost 7V-projective by
(#). However fR/S is not Af-projective by [l], p. 22, Exercise 4. Therefore N is
decomposable by [3 ], Theorem 1. LetN=Ni®N2. Suppose gRφfR. Then we
can assume Ni/J(Ni)*fR/fJ and N2lf{M2)^gRlgJ. Further N= /7?+ gR, where
fR^fRsinά gR^gR. Since |JV| = | fR\ + \gR\-l, we obtain a) Ni* fR or b)
Λ 2̂̂  gR via the projections. In a) N= fR® N2, and hence θ~ι is extensible to
an element in Horrυ?(#i?, fR), and in b) N=Ni® gR, and hence θ is extensible
to an element in Horri/?(/i?, gR). We obtain the similar result even if gR^fR.
Hence from the above observation we obtain 1) and that 5 is never isomorphic to
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any simple component of Soc(e'R) and Soc(f'R) form Theorem 0, where
eR, f'RφfR and e'J2Φ0, f'JΦO. Finally assume S^SideR, where Si is a
simple module inJO). Take (JR ® eR/(JJYnι))/S. Since eReUJ)d(JJ){n*\ eR/S
is (JR® eR)/(S Θ07)(;2l))-projective. Similarly to the above we obtain an
extension of #(or θ~ι) in Hom*(/R, eR/(fJ)(nι)) (or in Hom*(ei?/07)(>ll\ /#)).
However there are no extensions of 0 by Theorem 0, a contradiction.

If i? is left QF-2 in the above, then any element in Horn* (S, S) is extensible
to an element in YίomR(eR, eR) by [10], Lemma 13, however this fact is not true
in lemma 1 (see Proposition 3 and Example 2 below). Under the assumption (#)
we can state the content of Lemma 1 as follows:

let Sf be a simple submodule in gR, then any element in Hom#(S, 50 is
extensible to an element in Horrυ?C/7?, gR), where g is any primitive idempotent.

Finally we study (#) for any i?-modules M and N. We start with studying a
structure of N. Let eR^eJ^Σ ®(JiR)ini) ® — be as in (0). We consider the
condition :
(*) the properties in Lemma 1 and Theorem 0 hold.

We fix primitive idempotents e and f—fi above. Take a projective module T
and put T = (eR){p)®(fR){q)® Σ gjR, where gjR^eR and gjRφfR for all /.

Lemma 2. Assume (*) . Let T, e and f be as above. If T/C is indecomsa-
ble, then T=fR or q = 0.

Proof. Assume (7^1. Consider the decomposition T = (fR)® T', where Tf

= (eR)iP)®(fR){q-ι)® Σ Θ gjR, and use the same notations as in [10], Lemma 10
for this decomposition. We may assume C C / ( Γ ) (note that T is a lifting
module). Suppose Ci = 0 and Cl=fJ. Put C1=xR; xk=x for a primitive
idempotent k and let θ\Cι = Cι/Ci^C2lC2CLj(Tr)lC2 be the ismorphism. Then
Θ(x)=xι+X2+Xz+C2, where Xι^(eJ){p\ x2^(fj){q-ι\ Xs^ΣθgJ and xtk=xi
for all i. Since XiJ=0 for all i form iii) in Theorem 0, θ : xR~(xi + X2 + Xs)R
C Γ , i.e., (xi + X2 + X3)R®C2=C2. Therefore θ is extensible to an element θr in
Horrυ?(/i?, Tr) by the properties in Lemma 1 (note (xι + X2-\-Xz)R^X\R®
X2RX3R). Asa consequence T=T'® fR(θ')^>C=CΠT'(B CΠfR(θ'), pro-
vided Ci = 0. If CiΦO, Ci = C\ and hence T=fR9 since T/C is indecomposable.
Accordingly we know that if T/C is indecomposable, T=fR or q = 0.

We consider following modules : Z = (fR)(m) ® fj and U= V ® fj, where V
is a submodule of (JR)im\ Similarly to Lemma 2 we have

Lemma 3. Assume iii) in Theorem 0. Let U be as above and X a
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submodule of U. Then XcV or U=V®fJ{θ) and XDfl(θ), where θ
, V).

More generally we consider Z*={fR)(p) Θ (fJYg) and U*= V*
where V* is a submodule of (fR){p\

Corollary. Assume iii) in Theorem 0. Let U* be as above and X* a
submodule of U*. Then we obtain the following decomposition of U* : U*
= F* © (//)<9'> © Fi © - Θ Yq-c, and X*Z) Y1 0 - 0 y,-,s where Yi~fJ
for all i, X*C V* 0 Yι 0 - 0 Yq.q,, Z*={fR){p) 0 (//)(9'» 0 Fi 0 - © Y,-q.
and U*=V*Φ (fj)1^ 0 Yι © ••• 0 Γ,-,-.

This corollary means that there exists an automorphism ΰ of Z* such that

= F *

We shall denote the above situation by the diagram:

P Q~ Qr

Z* _JR // . //
U

U* V* fj , //
u

x* x' , // , o
Next we study a structure of a submodule M' of an i?-module M under (*) .

Let P be a projective cover of M, i.e.,

(2) M^P/Q and M'^P'/Q for some submodule P ' of P.

Then we have a decomposition of P such that P = P i Θ P2, P ' = P i Θ P 2 Π P ' and
P 2 ' = P 2 n P ' C / ( P 2 ) .
Let

(2') P2 = (eιRYaι) Θ (e2RYa2) Θ - Θ (/ni?) ( f e l l ) Θ - Θ (/iβ l/?) Θ
(/2ii?)(62l) Θ ••• Θ (f2S2R)(b2S2) θ θ Σ θ ^ , where the e£, the /i are given in
(0) and gJ2=0 (βiRφejR, fikRφfjsR if iΦj and gRφftkR for all i).

Consider /(P2) and rearrange it as follows :

(Λi (αi) θ (/π/)(6ll)) θ (A2

(αi) θ (/i2/)(6l2)) θ - θ (Dlsι

{aι) θ (AsJΪ^)
θ (Ai(α2) θ (/2i/)(62l)) Θ Θ Σ Θ <7/, where D^UuR)™.

Put Eiy=Diό

{aί) 0 (/ϋ)(6w) and F = Σ 0 #/. Then from (*) we know that any
simple sub-factor modules of £V are not isomorphic to any ones of Est> and F for
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{i, i)^{s> t}. Hence we obtain

Γ2 — Z J VP ±\2ij \V "o

©^ΣΘOS'ΘQSand
( J Q2 = Σ Θ Q^ Θ Q20 (see [10], Lemma 10 for Qι and Q2),

where £ί,θP2'z,O Q%1) Qf

2ij and F D P o ^ QO=> Q20. We may observe En^PίnZ) Ql[
?2ii for the fixed (1,1) without loss of generality. From Corollary to Lemma 3

we have

&\ d\ C\ b\ do
_Du , fuj , fuj , fuj , fuj ,

(4) E Ά X

Q211

u
P211

u
Q2uu
Q211

, fuj

, fuj

fuj

where bu = ao~\~b\-\-C\-\-d\.
Next we observe DnZDP2u^QliZDQ2u.

P211 fR

, fuj

0

We put

ft

, fnj ,

, 0 ,

0

fu=f. Then

//

0

0

0

from [4],1

£3

0 ,

where
Further from Corollary to Lemma 3 we have

eι hi gι e ί

H

u
Qm / // , 0 , 0 , ,

where e2=hi+gi + eί.
We observe the left side of the above diagram : (/i?) ( β l )=)//3/. From (*) and [4],
Lemma 5 we have

k t2 eι
(fR)(eι) (=E) fR , fR , fR ,

H fR . fJ , 0 , ,

where ei =
We apply Lemma 3 to / and H=Hι Θ //, where Hλ = (fR){h) Θ (//)<ί2"υ Then

i of I^>fJ(h) for some * e H o m * ( # , /ίi)cHomΛ(//, £Ί), where £Ί =
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((/R)(iι) Θ W * - " ) Θ/RC1E. From (*) h is extensible to h&HomR(fR, E).
Hence £ = £ i Θ fR(4ΐ)ΏHι Θ //(/z) and I^fJ(h). Repeating this argument we
may assume

E

( 6 ) #

where i%=iι + iί.

Applying again [4], Lemma 5 to the left corner of the above diagram we have
finally

fR

fR
U
/'

, fR

, //

, //

2 12

, fR ,

0

e
fR ,

0

0 ,

(7)

fR

fR

fR

iί
fR ,

/* ,

o , JJ

n
fR

0

* fR ,

, o ,

, 0 ,

1

/ /

fJ

fJ

hi

1

g

fJ ,

// ,

0 ,

eί
fJ ,

0 ,

0 ,

//

//

//

dx c

fJ

fJ

0

•i b

, fJ ,

, 0 ,

, 0 ,

Po
U

u
©20 ,

where zΊ = &i + fe+zί and / rums over all the idempotents in (0). From the above
we have

ki k2 iί h iί eί hi
P2/Q2 0 JR/fJ, fR ,fR/ff, fR , fR , 0 , //

Q2/Q2 0 , fR/J , fR , 0 , // , 0 , 0 , //

e ί d\ C\ b\
fj , 0 , / / , / / , P0/Q20

u
0 , 0 , // . 0 , c
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Now we come back to (2). Mf=P'lQ and FQ = {PιlQι®

ΘQz)) and Q/(Qi®Q2) = Q2/Q2(θ) for some β^Uom^Q'/Q
Since Po is semisimple, Q0/Q20 is a direct summand of P0/Q20. Now P2/Q2 =

EΛifR/fJY™ Θ - Θ 0K) ( ί^ Θ -)Θ Po/Q2o^Q2/Q2=ΊlΛ(fR/fjyk2) Θ - θ
(//)(zV/) θ •••) θ Q0/Q20. We compare direct summands ofPί/Q2 and ©2/©2. Then

we know that only one summand (fj){ivf) of Q2/Q2 is a proper submodule of

(/i?)(ί2/), which is a direct summand of PίlQ2 for each /. Consider θ\(fj){irf\

Since ζ)C/(P), we know from a similar argument in the proof of Lemma 2 that

θ\(JJYivf) is induced from an fi'EHom^^, Pi), and hence #|(//) ( 'V / ) is extensi-

ble to 6>eHom*(C/7?)UV/), Pi/φi). Therefore

Lemma 4. Lei ΛΓ δe #s above and assume ( * ) .

M'=P'/Q*Pi/Qi@Σf@((fRyβ''l)@(fR/fjyi^^
where S is a direct sum of simple components of Soc(i?).

Theorem. Let R be artinian. Then the following are equivalent:

1) (#) holds whenever M is local

2) (#) holds for any finitely generated R-modules.

3) R is a right almost hereditary ring with ( * ) .

Proof. 1)—>3) This is given by Lemma 1 and Theorem 0.

3)—>2). Assume that M is iV-projective. Put M = P/Q, where P is a projective

cover of M. For any submodule Mr of M we can suppose Mf=zPf/Q for some P'

C P . From Lemma 4, Mr is a direct sum of the following modules :

1) P1/Q1, 2) projective module, 3) simple component of Soc(i?) and 4) fR/fJ,

where fR is given in (0).

From the proof of Theorem 1 in [6], p.813 we know that P1/Q1 is TV-projective in

cases 2) and 3) from ( * ) . We assume 4), i.e. M/=/R/fJ. First we suppose that N

is indecomposable. For the fixed / above (and hence e) we apply Lemma 2. Let

N= T/C T is a projective cover of N. We use the same notations as in Lemma

2. If T=fR, then M' is trivially almost 7V-projective (cf. Theorem 0). Hence we

assume q = 0 from Lemma 2. Take any element θ in Horrυ?(./7?, T). Then θ

= θι+θ2 where AEHom^/Λ, (^i?)(p)), and &eHom*(/R,ΣΘ&-/?). Here we

recall the proof of Lemma 4. First we consider the decomposition :

Σk Θ (fikRynik) Θ Σ Θ So- as in (0). Let

be the projection of ej onto the kth component (fikRynth). Next we take the

decompositon of P2 in (2') Let

be the projection of J{P2) onto the radical £/>/ of the qth component of (ePR.yap)
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in (2'). we recall the situation where the case 4) occurs. If we carefully observe it,

then we know that it comes from Pijk and (6), i.e., fjk=f, e = ej and βjR^eJ^

{fjkRTik) Θ - , and OΦμiξKQ2)c:(fjkRyn^ for some *(note Q2C/(P2)). Since

ζ)2C/(P2), there exists a simple submodule S in Q2 such that μίξk(S)Φ0 from

Theorem 0 and [10], Corollary to Lemma 2. Further since S is simple, £ΐ(S)c

Σ * Θ (fjqR){niq) Θ Σ ί Θ Sjt) from (*) . To the above e and / we consider a

homorphism

(9) Θ: P^Pτ^eR^eRC-T,

where π is the projection, λ is the projection onto eR such that λ\J(P2) = ξi, θ is

any homorphism and the last eR is the any direct component of (eR){p) in T.

Since P/Q is N= T/C-projective, θ ( Q ) c C . Further since ξί(S) in non-zero and

simple and μΐξί(S)Φ0, eReξί(S)^(fjjynik) by Theorem 0. Moreover fί(S) =

λπ(S\ and hence (/,WΓ)(^)cΣΘe(β/?β)<p>^i(5) = Σ Θ ^ ^ ( S ) = Σ Θ Θ(5)cΣΘΘ(Q)

CC. As a consequence θι(fJ)d(fjjypnjk)c:C, and clearly Θ2(/J) = O. Accordingly

AT is T/C-projective. Finally let iV=Σ Θ iVi•; the Ni: are indecomposable. Then

Mr is almost M-projective as above. If M'=fR/fJ is not iWprojective, Ni=fR/A

from [3], Theorem 1. Hence Mf is almost Λ/'-projective by [5], Theorem. Thus we

have shown the implicartion.

2)—>1). This is trivial.

Here we apply Theorem to special hereditary algebras. Let R be a hereditary

algebra over a field K. Assume

(10) eRe = eK for any primitive idempotent e.

Corollary. Let R be a basic hereditary algebra as above. Then the

following are equivalent:

1) (#) holds when M and N are local

2) (#) holds when M is local and N is a direct sum of local modules.

3) i) J3 = 0, ii) / is a direct sum of uniserial modules, and iii) R/Soc(R) is

left serial.

Furthermore the following are equivalent:

4) (#) holds for any R-modules.

5) i) 3) holds, ii) J2 is square-free and iii) any simple component (~fj) of

f2 is never isoomorphic to any simple ones which are not contained in J2, except

ff in fR, where f is a primitive idempotent given in (0).

In this case (H) in [6] holds.

Proof. 1)<—»2) Since Soc(i?) is projective, this is clear from [10],

Theorem 2.

1)< >3) Since R is hereditary, iii) in Theorem 0 always holds and i), ii) in the
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proposition are equivalent to i) in Theorem 0. Further iii) in the proposition is
equivalent to ii), iv) in Theorem 0.

4)<—>5) This is clear from the assumption (10), Lemma 1 and Theorem 0.
The last statement is clear from [6], Theorem 2.

3. QF-2 rings

In this section we study a left QF-2 ring with (#) as right i?-modules (cf. [10],
Proposition 3).

Lemma 5. Let R be left QF-2. Further assume that (#) holds as right
R-modules when M is local and N is a direct sum of local modules. Then
Soc(7?) is almost projective, and hence R is right almost hereditary, (cf. Example
4 below).

Proof. Let eR^eJ be as (0). Then for any submodule X of ej we have X
= Σ* Θ Xi Θ Xf by Theorem 0 and [10], Lemma 13, where Xi = Xΐλ(fiR){ni) and
Γ = X ί l ( Σ Θ Sj). Further XMfiR){m) φ (/J) ( m ' ι ) by [4], Lemma 5, where Πi
^ mi + nϊi. Let Y be a submodule of Xi. Then after changing direct decomposi-
tion of UiR){m) Θ (fJYmfi\ we can assume F = Σ * Θ Λ/?Π Y Θ Σ ; Θ/j/Π Y
again by [4], Lemma 5. Now we prove the lemms. Let gR/gJ be monomorphic
to Soc(i?) for a primitive idempotent g. Then gR is uniserial by [10], Lemma 9.
First we shall show that #7? is injective if gJΦO. Let k be any primitive idempotent
and take any diagram

0^ K^kR
ΪP

gR

In order to show that gR is injective, we may assume by [8], Lemma 1# that p(K)
is simple and KakJ.

a) kJ2Φ0.

Then kR~DkJ have the structure (0). Then from the initial observation and ([4],
Lemma 5), K/p~ι{ύ) is isomorphic to one of Sj, fj and fιR/fJ for some i and /
in (0). However the last case does not occur by assumption. Hence gR^kR or gR
zzkR by [10], Corollary to Lemma 13, provided pΦO. In the former case gR^
fjR in (0) for some /. On the other hand fiR^gR/gJ is not isomorphic to any
simple component of Soc(i?), a contradiction. Therefore p = 0 in this case.
Assume gR^kR. Then kR is uniserial, and hence p is a monomorphism by
assumption and K is simple. Accordingly p is extensible to an element in
HomR(kR, gR) by [10], Lemma 13.

b) kJ2 = 0.
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Then kR^gR or kR^gR by [10], Corollary to Lemma 13, provided p^O, and
hence kR is uniserial. Then p is extensible to an element in YlomR(kRygR) by
[10], Lemma 13.
Thus we have shown that gR is injective. Finally we shall show that gR/gJ is
injective if gpΦO. In the above diagram we replace gR with gR/gJ2.

a') kpΦO.

Then since iί/p~1(0)~{5i, ftJ, fkR/fkJ} as the initial observation and gj is
projective, fiR/fJ^gJ/gP for some i by Theorem 0. Hence gR^kR by
Theorem 0. As a consequence we may assume gR = kR. Since gj is projective, p
is given by an element θ' in Hoπii?(<7/, gj) (which induces Hom/?/?(#/2, gp)). Then
θ'r^HomR(gp\ gp) is extensible to θ in YlomR(gR, gR) by [10], Lemma 13. Now
consider (θ-θ')\gj. Since (0-θ')(gp) = θ, (θ~ θj\gJ=O by Theorem 0. Hence
p is extensible to y# : gR^gR/gJ2, where y : gR^gR/gp is the natural epimor-
phism.

b') kp=0.

Then p = 0 by assumption. Therefore gR/gJ is almost projective by [9],
Theorem 1.
Thus / is almost projective from (*), and hence R is right almost hereditary.

Proposition 2. Let R be a left QF-2 ring. Then the following are equiva-
lent :

1) R is a right almost herditary ring such that / 3 = 0 and if epΦO for a
primitive idempotent e, then ej has the decomposition (0).

2) R is right almost hereditary and (#) holds when M and N are local.
3) (#) holds when M is local and N is a direct sum of local modules.
4) (#) holds for any R-modules M and N, (cf. Example 4 below).

Proof. 1)<—>2). This is given in [10], Proposition 3.
2)—>3). This is clear from Proposition 1.
3)—>4). Since R is right almost hereditary by Lemma 5, we obtain 4) by

Theorem and [10], Lemma 13.
4)—>2). This is clear from Theorem.

We shall add one more property when R is left QF-2. Let eRΊ)eJ^(fR){n)

Θ ••• as in (0), and put e/Z>Σ«*/i Θ UifR^fR{n\ where UifR^fR. We identify
(fR){n) with

Lemma 6. Assume 1) and 2) in [10], Lemma 13 and (0). Let N\ and N2 be
submodules in (fR){n), which are isomorphic to fR and hence θ : N\—*N2 be an
isomorphism. Then θ is given by an element z in eRe.
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Proof. Let eRZD/RZ)S = Soc(/R). Then from 1), 2) and [10], Lemma 6 we
obtain

a) every automorphism of 5 is extensible uniquely to an automorphism of
fR (cf. a') in the proof of Lemma 5).
Put Si=Soc(Ni) for / = 1 , 2.

b) Assume N\ = u\fR and Si = S2. Let Sι=xR and N2=yR; y = eyf
e(fR) {n\ Then y = UiWi~\ \- unwn the W\ are units or zero in fRf by 2). Then
^=.yr = Mii(;i + ---M«2(;nr for some rEif. On the other hand x = uir' for some r '

Hence ^ 2 = = Ww = 0 (cf. the proof of [10], Lemma 13), and Ni=N2.
c) Assume Ni = UifR and 5': N2-^Ni. Then 0'|S2 is extensible to Zι<B

eR, eR), the left-sided multiplication of z, by 1).
Further zN2=N\ from b), and z is a unit by [10], Lemma 6. Consider Zιθ'~ι\S\
= l β l U/^ / - 1 : Nι-+Nι). Then from a) ^ f l ' " 1 ^ ^ , and zt\N2=θ'.
Since UifR^Ni^N2, we obtain a unit 2, in £i?£ such that Zi/: N\-*u\fR and 22/:
N2—>uifR from c). Hence again by c) z2ιθz\Γλ — Zι for some 2, and 5 = (̂ 2"1>2̂ i)/.

Concerningly Proposition 2, we have

Proposition 3. Let R be artinian. Assume that J3=0 and (eR^>)eJ has the
demomposition (0). Then the following are equivalent:

1) i) Let Si be a simple submodule of hiR for i=l, 2. If θ : Si—>S2 is
isomorphic, then θ is extensible to an element in Horrυ?(/zi7?, h2R) or in
HomR(h2R, hiR), where hi, h2 are primitive idempotents, ii) /R/fJ is never
monomorphic to Soc(i?), where f appears in (0).

2) R is left QF-2. (cf. Example 3.)

Proof. 2)—>1). This is clear from [10], Lemma 13.
1)—>2). Let Si and 52 be simple left i?-modules of Rh(JhΦθ) for a primitive

idempotent h. Suppose Si^Rki for i = l. 2, where the fa are primitive
idempotents. Put Si = Rxi with kiXih=Xi^J. Then kiR^XίR and there exists a
homomorphism φΰhR-^XiR.

a) kJ2 — Q for z" = l, 2. Then xiR^ hR since Xi^kJ and the ^J? are local.
Hence there exists z in fei?£i (or in k\Rk2) such that ^^1^X2 (or zx2=X\) by
assumption. As a consequence S2 = Sι.

b) ^i/2Φ0 and &2/
2=0. Then Λ;2i?» Ai? as above. IfxiR* hR, then Si = S2

as in a). Suppose that XiR is not simple. Since XiRdkJ and %ii? is local, XiR
is projective by (0), and hence XiR^hR, which is a contradiction to iii) in
Theorem 0 for x2R^ hR.

c) kJ2Φ0. Since XiR is local, XiR is simple or projective by iii) in
Theorem 0. Hence again from iii) in Theorem 0 we obtain two cases ά)x\R^
x2RhR and β)xιR^x2R^hR (and kiR^kiR). Then from Lemma 6 and the
arguemt in a) we obtain 5i = 52 in both cases. Hence R is left QF-2.
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We note the following fact:
the class of rings with (#) for local modules M and iV2 the class of rings
with (#) for local module M and any direct sum of local modules N
3 the class of rings with (#) for any finitely generated R-modules. See the
following examples.

4.

Let
1.

Ri =

Examples

LZ)K

lκ

I 0

\ θ

Γbe

K
Jζ

0
0

fields

K
jζ

K
0

K
0
P

R

\
, where P=L, K or 0 and

I

If P=L, then i?i satisfies the conditions in Theorem 0, but the conditions in [10],
Theorem 2. If P=K, Ri satisfies the conditions in [10], Theorem 2, but Ri is not
almost hereditary. If P = 0 , then i?i satisfies the conditions in Theorem.

2.

ί?2 satisfies the condition in Theorem, but not left QF-2.
3. R3 = eK Θ fK Θ aK 0 bK Θ cϋί Θ caK, where {e, /} is the set of

mutually orthogonal primitive idempotents with 1 = £ + / , a — eaf, b — ebf, c —
fee, and ca = cb. Then R( = Rs) is a left QF-2 ring with / 3 = 0, but 1) in
Proposition 3 does not hold as right i?-modules. However R satisfies 1) in
Proposition 3 as left i?-modules, but not right QF-2.

4. As above R,=eK 0 fK 0 gK Θ aK Θ abK Θ 6ϋΓ Θ cϋΓ, where <z =
ββ/, b=fbe and c = ecg. Then i?( = /?4) is left serial and (#) holds for local
modules M and iV, however i? is not right almost hereditary.

References

[l] T. Albu and C. Nastasescu : Relative finiteness in module theory, Monographs Textbooks Prue and

Appl. 84, Marcel Dekker Inc. New York and Basel.
[2] K.R. Fuller : Ralative projectivity and injectivity classes by simple modules, J.London Math. Soc.

5 (1972), 423-431.

[3] M. Harada and T. Mabuchi: On almost relative projectives, Osaka J. Math. 26 (1989), 837-848.
[4] M. Harada and A. Tozaki: Almost M-projectίves and right Nakayama rings, J. Algebra 122



ARTINIAN RINGS RELATED TO RELATIVE ALMOST PROJECTIVITY II 589

(1989), 447-474.
[5] M. Harada : On almost relative projectives over perfect rings, Osaka J. Math. 27 (1990), 655-665.
[6] : Hereditary rings and relative projectives, Osaka J. Math. 28 (1991), 811-827.
[7] : Almost hereditary rings, Osaka J. Math. 28 (1991), 793-809.
[8] : Note on almost relative projectives and almost relative injectives, Osaka J. Math. 29

(1992), 435-446.
[9] : Almost projective modules, J. Algebra 157 (1993), 150-157.
[10] : Artinian rings related with almost relative projectivity I, to appear.

Department of Mathematics
Osaka City University
Sumiyoshi-ku, Osaka 558
Japan






