ARTINIAN RINGS RELATED TO RELATIVE ALMOST PROJECTIVITY II

Manabu HARADA

(Received November 8, 1993)

Let R be an artinian ring. In [10], we have studied R on which the following condition holds : for R-modules M and N, if M is N-projective, then M^{\prime} is always almost N-projective for every submodule M^{\prime} of M. If M^{\prime} is always N-projective in the above, then this property characterizes hereditary rings with $J^{2}=0$ [2] and [6], where J is the Jacobson radical of R.

We have investigated the above condition in [10], when i); M and N are local and ii) : M is local and N is a direct sum of local modules. In this paper we give a characterization of R over which the above condition is satisfied for any R-modules M and N.

1. Preliminaries

In this paper R is always an artinian ring with identity, and every module is a finitely generated R-module. We shall use the same notations given in [10].

We have studied rings R over which the following condition is satisfied in [10] :

For any R-modules M and N
if M is N-projective, then M^{\prime} is always almost N-projective for every submodule M^{\prime} of M.
We denote primitive idempotents in R by e, f, g, and so on. Assume that (\#) holds whenever M and N are local. Then we have shown in [10] that R has the following structure :
$J^{3}=0$ and for a primitive idempotent e with $e J^{2} \neq 0$
$e R \supset e J \simeq \sum_{K} \oplus\left(f_{k} R\right)^{\left(n_{k}\right)} \oplus \Sigma_{J} \oplus S_{j}$,
where the $f_{i} R$ is a uniserial and projective module with $f_{i} J^{2}=0, f_{i} J \neq 0$ and the S_{j} is simple.
(If necessary, we use the following decomposition :
$\left.e_{i} R \supset e_{i} J \approx \sum_{K(1)} \oplus\left(f_{i k} R\right)^{\left(n_{i k}\right)} \oplus \sum_{J(1)} \oplus S_{i j}\right)$
We shall use frequently the following theorem: [10], Theorem 1.

Theorem 0. Let R be artinian. Then (\#) holds whenever M and N are local
if and only if i) $J^{3}=0$ and (eRゝ) eJ has the decomposition (0), ii) if $e_{1} R \not \not \approx e_{2} R$, then $f_{1 i} R \not \approx f_{2 j}$ for any i and j, iii) $f R / f J$ is never isomorphic to any simple component of $\operatorname{Soc}(R)$ and iv) for any simple submodule S in $\Sigma_{K} \oplus\left(f_{k} R\right)^{\left(n_{k}\right)}$, $e \operatorname{Re} S=\sum_{K^{\prime}} \oplus\left(f_{k} J\right)^{\left(n_{k}\right)}$ for some $K^{\prime} \subset K$, where e and f are in (0).

2. Condition(\#)

In this section we study (\#) where M and N are any finitely generated R-modules. In this case $g J$ is almost projective for any primitive idempotent g, and hence R is a right almost hereditary ring [7], i.e. J is almost projective as a right R-module.

First we give
Proposition 1. Let R be right almost hereditary. Then the following are equvalent:

1) (\#) holds whenever M and N are local.
2) (\#) holds whenever M is local and N is a finite direct sum of local modules.

Proof. 1) $\rightarrow 2$). Since R is almost hereditarty, $\operatorname{Soc}(R)$ is almost projective by definition and Theorem 0 . If $g R / g J$ is monomorphic to $\operatorname{Soc}(R)$, then $g R$ is uniserial by [9], Theorem 1 and we have 2) by [10], Theorem 2.

Next we study (\#) when M is local and N is any R-module. We use the decomposition (0) of eJ. Put $f_{1} R=f R$ and $S=\operatorname{Soc}(f R)=f J$.

Lemma 1. Assume that (\#) holds whenever M is local and let $e R \supset f R \supset S$ be as above. Then 1) every element in $\operatorname{Hom}_{R}(S, S)$ is extensible to an element in $\operatorname{Hom}_{R}(f R, f R)$, and 2) S is neither isomorphic to any simple component of $\operatorname{Soc}(g R)$ nor any S_{j} in (0), where $g R \not \approx e R, g R \not \approx f R$ and $g J \neq 0$.

Proof. Assume that $\operatorname{Soc}(g R)$ contains a simple component isomorphic to S via θ for some primitive idempotent g. Take $f R \oplus g R$ and its submodule $\widetilde{S}=$ $\{s+\theta(s) \mid s \in S\}$ and put $N=(f R \oplus g R) / \widetilde{S}$. If $g R \not \approx e R, e R / S$ is N-projective by [1], p. 22, Exercise 4 and [10], Lemma 6. Hence $f R / S$ is almost N-projective by (\#). However $f R / S$ is not N-projective by [1], p. 22, Exercise 4. Therefore N is decomposable by [3], Theorem 1. Let $N=N_{1} \oplus N_{2}$. Suppose $g R \not \approx f R$. Then we can assume $N_{1} / J\left(N_{1}\right) \approx f R / f J$ and $N_{2} / J\left(M_{2}\right) \approx g R / g J$. Further $N=\widetilde{f} R+\widetilde{g} R$, where $\widetilde{f} R \approx f R$ and $\widetilde{g} R \approx g R$. Since $|N|=|\widetilde{f} R|+|\widetilde{g} R|-1$, we obtain a) $N_{1} \approx \widetilde{f} R$ or b) $N_{2} \approx \widetilde{g} R$ via the projections. In a) $N=\widetilde{f} R \oplus N_{2}$, and hence θ^{-1} is extensible to an element in $\operatorname{Hom}_{R}(g R, f R)$, and in b) $N=N_{1} \oplus \widetilde{g} R$, and hence θ is extensible to an element in $\operatorname{Hom}_{R}(f R, g R)$. We obtain the similar result even if $g R \approx f R$. Hence from the above observation we obtain 1) and that S is never isomorphic to
any simple component of $\operatorname{Soc}\left(e^{\prime} R\right)$ and $\operatorname{Soc}\left(f^{\prime} R\right)$ form Theorem 0 , where $e^{\prime} R \not \approx \not$ $e R, f^{\prime} R \not \approx f R$ and $e^{\prime} J^{2} \neq 0, f^{\prime} J \neq 0$. Finally assume $S \approx S_{1} \subset e R$, where S_{1} is a simple module in (0). Take $\left(f R \oplus e R /(f J)^{\left(n_{1}\right)}\right) / \widetilde{S}$. Since $e \operatorname{Re}(f J) \subset(f J)^{\left(n_{1}\right)}, e R / S$ is $(f R \oplus e R) /\left(\widetilde{S} \oplus(f J)^{\left(n_{1}\right)}\right)$-projective. Similarly to the above we obtain an extension of θ (or θ^{-1}) in $\operatorname{Hom}_{R}\left(f R, e R /(f J)^{\left(n_{1}\right)}\right.$) (or in $\operatorname{Hom}_{R}\left(e R /(f J)^{\left(n_{1}\right)}, f R\right)$). However there are no extensions of θ by Theorem 0 , a contradiction.

If R is left QF-2 in the above, then any element in $\operatorname{Hom}_{R}(S, S)$ is extensible to an element in $\operatorname{Hom}_{R}(e R, e R)$ by [10], Lemma 13, however this fact is not true in lemma 1 (see Proposition 3 and Example 2 below). Under the assumption (\#) we can state the content of Lemma 1 as follows:
let S^{\prime} be a simple submodule in $g R$, then any element in $\operatorname{Hom}_{R}\left(S, S^{\prime}\right)$ is extensible to an element in $\operatorname{Hom}_{R}(f R, g R)$, where g is any primitive idempotent.

Finally we study (\#) for any R-modules M and N. We start with studying a structure of N. Let $e R \supset e J \approx \Sigma \oplus\left(f_{i} R\right)^{\left(n_{1}\right)} \oplus \cdots$ be as in (0). We consider the condition:
(*) the properties in Lemma 1 and Theorem 0 hold.
We fix primitive idempotents e and $f=f_{i}$ above. Take a projective module T and put $T=(e R)^{(p)} \oplus(f R)^{(q)} \oplus \sum g_{j} R$, where $g_{j} R \not \approx e R$ and $g_{j} R \not \approx f R$ for all j.

Lemma 2. Assume (*). Let T, e and f be as above. If T / C is indecomsable, then $T=f R$ or $q=0$.

Proof. Assume $q \geqq 1$. Consider the decomposition $T=(f R) \oplus T^{\prime}$, where T^{\prime} $=(e R)^{(p)} \oplus(f R)^{(q-1)} \oplus \Sigma \oplus g_{j} R$, and use the same notations as in [10], Lemma 10 for this decomposition. We may assume $C \subset J(T)$ (note that T is a lifting module). Suppose $C_{1}=0$ and $C^{1}=f J$. Put $C^{1}=x R ; x k=x$ for a primitive idempotent k and let $\theta: C^{1}=C^{1} / C_{1} \approx C^{2} / C_{2} \subset J\left(T^{\prime}\right) / C_{2}$ be the ismorphism. Then $\theta(x)=x_{1}+x_{2}+x_{3}+C_{2}$, where $x_{1} \in(e J)^{(p)}, x_{2} \in(f J)^{(q-1)}, x_{3} \in \sum \oplus g_{j} J$ and $x_{i} k=x_{1}$ for all i. Since $x_{1} J=0$ for all i form iii) in Theorem $0, \theta: x R \approx\left(x_{1}+x_{2}+x_{3}\right) R$ $\subset T^{\prime}$, i.e., $\left(x_{1}+x_{2}+x_{3}\right) R \oplus C_{2}=C^{2}$. Therefore θ is extensible to an element θ^{\prime} in $\operatorname{Hom}_{R}\left(f R, T^{\prime}\right)$ by the properties in Lemma 1 (note $\left(x_{1}+x_{2}+x_{3}\right) R \subset x_{1} R \oplus$ $\left.x_{2} R x_{3} R\right)$. As a consequence $T=T^{\prime} \oplus f R\left(\theta^{\prime}\right) \supset C=C \cap T^{\prime} \oplus C \cap f R\left(\theta^{\prime}\right)$, provided $C_{1}=0$. If $C_{1} \neq 0, C_{1}=C^{1}$, and hence $T=f R$, since T / C is indecomposable. Accordingly we know that if T / C is indecomposable, $T=f R$ or $q=0$.

We consider following modules : $Z=(f R)^{(m)} \oplus f J$ and $U=V \oplus f J$, where V is a submodule of $(f R)^{(m)}$. Similarly to Lemma 2 we have

Lemma 3. Assume iii) in Theorem 0. Let U be as above and X a
submodule of U. Then $X \subset V$ or $U=V \oplus f J(\theta)$ and $X \supset f J(\theta)$, where θ $\in \operatorname{Hom}_{R}(f J, V)$.

More generally we consider $Z^{*}=(f R)^{(p)} \oplus(f J)^{(q)}$ and $U^{*}=V^{*} \oplus(f J)^{(q)}$, where V^{*} is a submodule of $(f R)^{(p)}$.

Corollary. Assume iii) in Theorem 0. Let U^{*} be as above and X^{*} a submodule of U^{*}. Then we obtain the following decomposition of $U^{*}: U^{*}$ $=V^{*} \oplus(f J)^{\left(q^{\prime}\right)} \oplus Y_{1} \oplus \cdots \oplus Y_{q-q^{\prime}}$, and $X^{*} \supset Y_{1} \oplus \cdots \oplus Y_{q-q^{\prime}}$, where $Y_{i} \approx f J$ for all $i, X^{*} \subset V^{*} \oplus Y_{1} \oplus \cdots \oplus Y_{q-q^{\prime}}, Z^{*}=(f R)^{(p)} \oplus(f J)^{\left(q^{\prime}\right)} \oplus Y_{1} \oplus \cdots \oplus Y_{q-q^{\prime}}$ and $U^{*}=V^{*} \oplus(f J)^{\left(q^{\prime}\right)} \oplus Y_{1} \oplus \cdots \oplus Y_{q-q^{\prime}}$.

This corollary means that there exists an automorphism σ of Z^{*} such that

$$
\begin{aligned}
& Z^{*}=(f R)^{(p)} \oplus(f J)^{\left(q^{\prime}\right)} \oplus(f J)^{\left(q-q^{\prime}\right)} \supset \sigma\left(U^{*}\right)=V^{*} \oplus(f J)^{\left(q^{\prime}\right)} \oplus(f J)^{\left(q-q^{\prime}\right)} \supset \sigma\left(X^{*}\right) \\
& \oplus(f J)^{\left(q-q^{\prime}\right)} .
\end{aligned}
$$

We shall denote the above situation by the diagram :
(1)

Next we study a structure of a submodule M^{\prime} of an R-module M under (*). Let P be a projective cover of M, i.e.,

$$
\begin{equation*}
M \approx P / Q \text { and } M^{\prime} \approx P^{\prime} / Q \text { for some submodule } P^{\prime} \text { of } P \tag{2}
\end{equation*}
$$

Then we have a decomposition of P such that $P=P_{1} \oplus P_{2}, P^{\prime}=P_{1} \oplus P_{2} \cap P^{\prime}$ and $P_{2}^{\prime}=P_{2} \cap P^{\prime} \subset J\left(P_{2}\right)$.
Let
(2') $\quad P_{2}=\left(e_{1} R\right)^{\left(a_{1}\right)} \oplus\left(e_{2} R\right)^{\left(a_{2}\right)} \oplus \cdots \oplus\left(f_{11} R\right)^{\left(b_{11}\right)} \oplus \cdots \oplus\left(f_{1 s_{1}} R\right) \oplus$ $\left(f_{21} R\right)^{\left(b_{21}\right)} \oplus \cdots \oplus\left(f_{2 s_{2}} R\right)^{\left(b 2 s_{2}\right)} \oplus \cdots \oplus \Sigma \oplus g R$, where the e_{i}, the f_{1} are given in (0) and $g J^{2}=0\left(e_{i} R \not \not \nexists e_{j} R, f_{i k} R \not \approx f_{j s} R\right.$ if $i \neq j$ and $g R \not \approx f_{i k} R$ for all i).

Consider $J\left(P_{2}\right)$ and rearrange it as follows :

$$
J\left(P_{2}\right)=\left(D_{11}\left(a_{1}\right) \oplus\left(f_{11} J\right)^{\left(b_{11}\right)}\right) \oplus\left(D_{12}^{\left(a_{1}\right)} \oplus\left(f_{12} J\right)^{\left(b_{12}\right)}\right) \oplus \cdots \oplus\left(D_{1 s_{1}}{ }^{\left(a_{1}\right)} \oplus\left(f_{1 s_{1}} J\right)^{\left(b_{13}\right)}\right)
$$ $\oplus\left(D_{21}{ }^{\left(a_{2}\right)} \oplus\left(f_{21} J\right)^{\left(b_{21}\right)}\right) \oplus \cdots \oplus \Sigma \oplus g J$, where $D_{i j}=\left(f_{i j} R\right)^{\left(n_{i j}\right)}$.

Put $\left.E_{i j^{\prime}}=D_{i j}{ }^{\left(a_{i}\right)} \oplus\left(f_{i j}\right)^{(} b^{i j}\right)$ and $F=\Sigma \oplus g J$. Then from (*) we know that any simple sub-factor modules of $E_{i j^{\prime}}$ are not isomorphic to any ones of $E_{s t^{\prime}}$ and F for
$\{i, j\} \neq\{s, t\}$. Hence we obtain

$$
P_{2}^{\prime}=\Sigma \oplus P_{2 i j}^{\prime} \oplus P_{0}
$$

$$
Q^{2}=\sum \oplus Q_{i j^{\prime}}^{2 \prime} \oplus Q_{0}^{2} \text { and }
$$

$$
\begin{equation*}
\mathrm{Q}_{2}=\Sigma \oplus Q_{2 i j}^{\prime} \oplus Q_{20}\left(\text { see }[10], \text { Lemma } 10 \text { for } Q_{1} \text { and } Q^{2}\right), \tag{3}
\end{equation*}
$$

where $E_{i j}^{\prime} \supset P_{2 i j}^{\prime} \supset Q_{i j}^{2 \prime} \supset Q_{2 i j}^{\prime}$ and $F \supset P_{0} \supset Q_{0}^{2} \supset Q_{20}$. We may observe $E_{11}^{\prime} \supset P_{211}^{\prime} \supset Q_{11}^{2 \prime}$ $\supset Q_{211}^{\prime}$ for the fixed (1,1) without loss of generality. From Corollary to Lemma 3 we have
(4)

$E_{11}{ }^{\prime}$					
	$D_{11}$$\cup$	$f_{11} J$	$f_{11} J$	$f_{11} J$	$f_{11} J$

$E_{211}{ }^{\prime}$	P_{211}	$f_{11} J$,	$f_{11} J$,	$f_{11} J$,	0
	\bigcup				
$Q^{2}{ }_{11}{ }^{\prime}$	$Q^{2}{ }_{11}$	$f_{11} J$,	$f_{11} J$	0	0
$Q_{211}{ }^{\prime}$	Q_{211}	$f_{11} J$	0	0	0

where $b_{11}=a_{0}+b_{1}+c_{1}+d_{1}$.
Next we observe $D_{11} \supset P_{211} \supset Q_{11}^{2} \supset Q_{211}$. We put $f_{11}=f$. Then from [4], Lemma 5

where $e_{1}+e_{2}+e_{3}=a_{1} n_{11}$.
Further from Corollary to Lemma 3 we have
(5)

where $e_{2}=h_{1}+g_{1}+e_{2}^{\prime}$.
We observe the left side of the above diagram : $(f R)^{\left(e_{1}\right)} \supset H \supset I$. From (*) and [4], Lemma 5 we have
where $e_{1}=i_{1}+i_{2}+e_{1}^{\prime}$.
We apply Lemma 3 to I and $H=H_{1} \oplus f J$, where $H_{1}=(f R)^{\left(i_{1}\right)} \oplus(f J)^{\left(i_{2}-1\right)}$. Then $I \subset H_{1}$ of $I \supset f J(h)$ for some $h \in \operatorname{Hom}_{R}\left(f J, H_{1}\right) \subset \operatorname{Hom}_{R}\left(f J, E_{1}\right)$, where $E_{1}=$

$$
\begin{aligned}
& (f R)^{\left(_{1}\right)}(=E) \quad f R^{i_{1}} \quad f R^{i_{2}} \quad{ }^{\prime} \quad f R^{e_{1}^{\prime}} \\
& \text { H }
\end{aligned}
$$

$\left((f R)^{\left(_{1}\right)} \oplus(f R)^{\left(i_{2}-1\right)}\right) \oplus f R \subset E$. From $(*) h$ is extensible to $\tilde{h} \in \operatorname{Hom}_{R}(f R, E)$. Hence $E=E_{1} \oplus f R(\tilde{h}) \supset H_{1} \oplus f J(h)$ and $I \supset f J(h)$. Repeating this argument we may assume
(6)

H

I
$I^{\prime}, f J, 0,0$,
where $i_{2}=i_{1}+i_{2}^{\prime}$.
Applying again [4], Lemma 5 to the left corner of the above diagram we have finally
(7)

$Q^{2} \quad f R, f R, f R, f J, f J, 0, f J, f J$,
Q_{2}
$f R, f J, 0, f J, 0,0, f J, 0$

			c_{1}	
$f J$	fJ	fJ		fJ

0,	$f J$,	$f J$,	0	Q_{0}^{2} 0 0,$f J$,
	0	0	\cup	
Q_{20},				

where $i_{1}=k_{1}+k_{2}+i_{1}^{\prime}$ and f rums over all the idempotents in (0). From the above we have
(8)

Now we come back to (2). $\quad M^{\prime}=P^{\prime} / Q$ and $P^{\prime} Q=\left(P_{1} / Q_{1} \oplus P_{2}^{\prime} / Q_{2}\right) /$ $\left.\left(Q / Q_{1} \oplus Q_{2}\right)\right)$ and $Q /\left(Q_{1} \oplus Q_{2}\right)=Q^{2} / Q_{2}(\theta)$ for some $\theta \in \operatorname{Hom}_{R}\left(Q^{2} / Q_{2}, Q^{1} / Q_{1}\right)$. Since P_{0} is semisimple, Q_{0}^{2} / Q_{20} is a direct summand of P_{0} / Q_{20}. Now $P_{2}^{\prime} / Q_{2}=$ $\Sigma_{f}\left((f R / f J)^{\left(k_{2 f}\right)} \oplus \cdots \oplus(f R)^{\left(i^{\prime} f\right)} \oplus \cdots\right) \oplus P_{0} / Q_{20} \supset Q^{2} / Q_{2}=\Sigma_{f}\left((f R / f J)^{\left(k_{2}\right)} \oplus \cdots \oplus\right.$ $\left.(f J)^{\left(i_{2} \cdot f\right)} \oplus \cdots\right) \oplus Q_{0}^{2} / Q_{20}$. We compare direct summands of P_{2}^{\prime} / Q_{2} and Q^{2} / Q_{2}. Then we know that only one summand $(f J)^{\left(i_{2} \cdot f\right)}$ of Q^{2} / Q_{2} is a proper submodule of $(f R)^{\left(i_{2} \cdot f\right)}$, which is a direct summand of P_{2}^{\prime} / Q_{2} for each f. Consider $\theta \mid(f J)^{\left(i_{2} f\right)}$. Since $Q \subset J(P)$, we know from a similar argument in the proof of Lemma 2 that $\theta \mid(f J)^{\left(i_{2}^{\prime} f\right)}$ is induced from an $\theta^{\prime} \in \operatorname{Hom}_{R}\left(f J^{\left(i_{2} \cdot f\right)}, P_{1}\right)$, and hence $\theta \mid(f J)^{\left(i_{2} ; f\right)}$ is extensible to $\Theta \in \operatorname{Hom}_{R}\left((f R)^{\left(i_{2} / f\right)}, P_{1} / Q_{1}\right)$. Therefore

Lemma 4. Let M^{\prime} be as above and assume (*). Then $M^{\prime}=P^{\prime} / Q \approx P_{1} / Q_{1} \oplus \sum_{f} \oplus\left((f R)^{\left(e^{\prime} f 1\right)} \oplus(f R / f J)^{\left(\left(j^{\prime} 1+i^{\prime} 2\right) f\right)} \oplus(f J)^{\left(\left(b_{1}+e^{\prime}\right)_{f}\right)}\right) \oplus \widetilde{S}$, where \widetilde{S} is a direct sum of simple components of $\operatorname{Soc}(R)$.

Theorem. Let R be artinian. Then the following are equivalent :

1) (\#) holds whenever M is local.
2) (\#) holds for any finitely generated R-modules.
3) R is a right almost hereditary ring with (*).

Proof. 1) $\rightarrow 3$) This is given by Lemma 1 and Theorem 0.
$3) \rightarrow 2$). Assume that M is N-projective. Put $M=P / Q$, where P is a projective cover of M. For any submodule M^{\prime} of M we can suppose $M^{\prime}=P^{\prime} / Q$ for some P^{\prime} $\subset P$. From Lemma $4, M^{\prime}$ is a direct sum of the following modules :

1) $P_{1} / Q_{1}, 2$) projective module, 3) simple component of $\operatorname{Soc}(R)$ and 4) $f R / f J$, where $f R$ is given in (0).
From the proof of Theorem 1 in [6], p. 813 we know that P_{1} / Q_{1} is N-projective in cases 2) and 3) from (*). We assume 4), i.e. $M^{\prime}=f R / f J$. First we suppose that N is indecomposable. For the fixed f above (and hence e) we apply Lemma 2. Let $N=T / C ; T$ is a projective cover of N. We use the same notations as in Lemma 2. If $T=f R$, then M^{\prime} is trivially almost N-projective (cf. Theorem 0). Hence we assume $q=0$ from Lemma 2. Take any element θ in $\operatorname{Hom}_{R}(f R, T)$. Then θ $=\theta_{1}+\theta_{2}$ where $\theta_{1} \in \operatorname{Hom}_{R}\left(f R,(e R)^{(p)}\right)$, and $\theta_{2} \in \operatorname{Hom}_{R}\left(f R, \Sigma \oplus g_{j} R\right)$. Here we recall the proof of Lemma 4. First we consider the decomposition : $e_{i} R \supset e_{i} J \approx$ $\sum_{k} \oplus\left(f_{i k} R\right)^{\left(n_{i k}\right)} \oplus \Sigma \oplus S_{i j}$ as in (0). Let

$$
\mu_{k}^{i}: e_{i} J \rightarrow\left(f_{i k} R\right)^{\left(n_{i k}\right)}
$$

be the projection of $e_{i} J$ onto the kth component $\left(f_{i k} R\right)^{\left(n_{i k}\right)}$. Next we take the decompositon of P_{2} in (2'). Let

$$
\xi_{q}^{p}: J\left(P_{2}\right) \rightarrow e_{p} J
$$

be the projection of $J\left(P_{2}\right)$ onto the radical $e_{p} J$ of the qth component of $\left(e_{p} R\right)^{\left(a_{p}\right)}$
in (2'). we recall the situation where the case 4) occurs. If we carefully observe it, then we know that it comes from $P_{2 j k}$ and (6), i.e., $f_{j k}=f, e=e_{j}$ and $e_{j} R \supset e_{j} J \approx$ $\left(f_{j k} R\right)^{\left(n_{j k}\right)} \oplus \cdots$, and $0 \neq \mu_{k}^{j} \xi_{x}^{j}\left(Q^{2}\right) \subset\left(f_{j k} R\right)^{\left(n_{j k}\right)}$ for some $x\left(\right.$ note $Q^{2} \subset J\left(P_{2}\right)$). Since $Q^{2} \subset J\left(P_{2}\right)$, there exists a simple submodule S in Q^{2} such that $\mu_{k}^{j} \xi_{k}^{j}(S) \neq 0$ from Theorem 0 and [10], Corollary to Lemma 2. Further since S is simple, $\xi_{x}^{j}(S) \subset$ $\left.\Sigma_{q} \oplus\left(f_{j q} R\right)^{\left(n_{j q}\right)} \oplus \Sigma_{t} \oplus S_{j t}\right)$ from $(*)$. To the above e and f we consider a homorphism

$$
\begin{equation*}
\Theta: P \xrightarrow{\pi} P_{2} \xrightarrow{\lambda} e R \xrightarrow{\theta} e R \subset T, \tag{9}
\end{equation*}
$$

where π is the projection, λ is the projection onto eR such that $\lambda \mid J\left(P_{2}\right)=\xi_{k}^{j}, \theta$ is any homorphism and the last $e R$ is the any direct component of $(e R)^{(p)}$ in T. Since P / Q is $N=T / C$-projective, $\Theta(Q) \subset C$. Further since $\xi_{k}^{j}(S)$ in non-zero and simple and $\mu_{k}^{j} \xi_{k}^{j}(S) \neq 0$, $e \operatorname{Re} \xi_{x}^{j}(S) \supset\left(f_{j k} J\right)^{\left(n_{j k}\right)}$ by Theorem 0 . Moreover $\xi_{x}^{j}(S)=$ $\lambda \pi(S)$, and hence $\left(f_{j k} J\right)^{\left(\text {pn }_{j k)} \subset \sum_{\theta \in(e R e)^{(p)}} \theta \xi_{x}^{j}(S)=\sum_{\theta} \theta \lambda \pi(S)=\sum_{\Theta} \Theta(S) \subset \sum_{\theta} \Theta(Q), ~(S)\right.}$ $\subset C$. As a consequence $\theta_{1}(f J) \subset\left(f_{j k} J\right)^{\left(p_{j k}\right)} \subset C$, and clearly $\theta_{2}(f J)=0$. Accordingly M^{\prime} is T / C-projective. Finally let $N=\Sigma \oplus N_{i}$; the N_{i} are indecomposable. Then M^{\prime} is almost N_{i}-projective as above. If $M^{\prime}=f R / f J$ is not N_{i}-projective, $N_{i}=f R / A$ from [3], Theorem 1. Hence M^{\prime} is almost N-projective by [5], Theorem. Thus we have shown the implicartion.
$2) \rightarrow 1$). This is trivial.

Here we apply Theorem to special hereditary algebras. Let R be a hereditary algebra over a field K. Assume

$$
\begin{equation*}
e R e=e K \text { for any primitive idempotent } e . \tag{10}
\end{equation*}
$$

Corollary. Let R be a basic hereditary algebra as above. Then the following are equivalent:

1) (\#) holds when M and N are local.
2) (\#) holds when M is local and N is a direct sum of local modules.
3) i) $J^{3}=0$, ii) J is a direct sum of uniserial modules, and iii) $R / \operatorname{Soc}(R)$ is left serial.
Furthermore the following are equivalent:
4) (\#) holds for any R-modules.
5) i) 3) holds, ii) J^{2} is square-free and iii) any simple component ($\approx f J$) of J^{2} is never isoomorphic to any simple ones which are not contained in J^{2}, except $f J$ in $f R$, where f is a primitive idempotent given in (0). In this case (H) in [6] holds.

Proof. 1) $\longleftrightarrow 2$) Since $\operatorname{Soc}(R)$ is projective, this is clear from [10], Theorem 2.

1) $\longleftrightarrow 3)$ Since R is hereditary, iii) in Theorem 0 always holds and i), ii) in the
proposition are equivalent to i) in Theorem 0 . Further iii) in the proposition is equivalent to ii), iv) in Theorem 0 .
$4) \longleftrightarrow 5$) This is clear from the assumption (10), Lemma 1 and Theorem 0.
The last statement is clear from [6], Theorem 2.

3. $\mathbf{Q F}-2$ rings

In this section we study a left QF-2 ring with (\#) as right R-modules (cf. [10], Proposition 3).

Lemma 5. Let R be left $\mathrm{QF}-2$. Further assume that (\#) holds as right R-modules when M is local and N is a direct sum of local modules. Then $\operatorname{Soc}(R)$ is almost projective, and hence R is right almost hereditary, (cf. Example 4 below).

Proof. Let $e R \supset e J$ be as (0). Then for any submodule X of $e J$ we have X $=\sum_{i} \oplus X_{i} \oplus X^{\prime}$ by Theorem 0 and [10], Lemma 13, where $X_{i}=X \cap\left(f_{i} R\right)^{\left(n_{i}\right)}$ and $X^{\prime}=X \cap\left(\Sigma \oplus S_{j}\right)$. Further $X_{i} \approx\left(f_{i} R\right)^{\left(m_{i}\right)} \oplus\left(f_{i} J\right)^{\left(m_{i}^{\prime}\right)}$ by [4], Lemma 5, where n_{i} $\geqq m_{i}+m_{i}^{\prime}$. Let Y be a submodule of X_{i}. Then after changing direct decomposition of $\left(f_{i} R\right)^{\left(m_{i}\right)} \oplus\left(f_{i} J\right)^{\left(m^{\prime}\right)}$, we can assume $Y=\sum_{i} \oplus f_{i} R \cap Y \oplus \sum_{j} \oplus f_{j} J \cap Y$ again by [4], Lemma 5. Now we prove the lemms. Let $g R / g J$ be monomorphic to $\operatorname{Soc}(R)$ for a primitive idempotent g. Then $g R$ is uniserial by [10], Lemma 9 . First we shall show that $g R$ is injective if $g J \neq 0$. Let k be any primitive idempotent and take any diagram

$$
0 \rightarrow \underset{\substack{\downarrow \rho \\ g R}}{K} \rightarrow k R
$$

In order to show that $g R$ is injective, we may assume by [8], Lemma 1^{\sharp} that $\rho(K)$ is simple and $K \subset k J$.
a) $k J^{2} \neq 0$.

Then $k R \supset k J$ have the structure (0). Then from the initial observation and ([4], Lemma 5), $K / \rho^{-1}(0)$ is isomorphic to one of $S_{j}, f_{i} J$ and $f_{i} R / f_{i} J$ for some i and j in (0). However the last case does not occur by assumption. Hence $g R \subsetneq k R$ or $g R$ $\approx k R$ by [10], Corollary to Lemma 13, provided $\rho \neq 0$. In the former case $g R \approx$ $f_{j} R$ in (0) for some j. On the other hand $\bar{f}_{i} R \approx g R / g J$ is not isomorphic to any simple component of $\operatorname{Soc}(R)$, a contradiction. Therefore $\rho=0$ in this case. Assume $g R \approx k R$. Then $k R$ is uniserial, and hence ρ is a monomorphism by assumption and K is simple. Accordingly ρ is extensible to an element in $\operatorname{Hom}_{R}(k R, g R)$ by [10], Lemma 13.
b) $k J^{2}=0$.

Then $k R \subsetneq g R$ or $k R \approx g R$ by [10], Corollary to Lemma 13, provided $\rho \neq 0$, and hence $k R$ is uniserial. Then ρ is extensible to an element in $\operatorname{Hom}_{R}(k R, g R)$ by [10], Lemma 13.
Thus we have shown that $g R$ is injective. Finally we shall show that $g R / g J$ is injective if $g J^{2} \neq 0$. In the above diagram we replace $g R$ with $g R / g J^{2}$.
a') $k J^{2} \neq 0$.
Then since $K / \rho^{-1}(0) \approx\left\{S_{j}, f_{k} J, f_{k} R / f_{k} J\right\}$ as the initial observation and $g J$ is projective, $f_{i} R / f_{i} J \approx g J / g J^{2}$ for some i by Theorem 0 . Hence $g R \approx k R$ by Theorem 0. As a consequence we may assume $g R=k R$. Since $g J$ is projective, ρ is given by an element θ^{\prime} in $\operatorname{Hom}_{R}(g J, g J)$ (which induces $\operatorname{Hom}_{R R}\left(g J^{2}, g J^{2}\right)$). Then $\theta^{\prime} \in \operatorname{Hom}_{R}\left(g J^{2}, g J^{2}\right)$ is extensible to θ in $\operatorname{Hom}_{R}(g R, g R)$ by [10], Lemma 13. Now consider $\left(\theta-\theta^{\prime}\right) \mid g J$. Since $\left(\theta-\theta^{\prime}\right)\left(g J^{2}\right)=0,\left(\theta-\theta^{\prime}\right) \mid g J=0$ by Theorem 0 . Hence ρ is extensible to $\nu \theta: g R \rightarrow g R / g J^{2}$, where $\nu: g R \rightarrow g R / g J^{2}$ is the natural epimorphism.
b) $k J^{2}=0$.

Then $\rho=0$ by assumption. Therefore $g R / g J$ is almost projective by [9], Theorem 1.
Thus J is almost projective from $(*)$, and hence R is right almost hereditary.
Proposition 2. Let R be a left QF-2 ring. Then the following are equivalent:

1) R is a right almost herditary ring such that $J^{3}=0$ and if $e J^{2} \neq 0$ for a primitive idempotent e, then eJ has the decomposition (0).
2) R is right almost hereditary and (\#) holds when M and N are local.
3) (\#) holds when M is local and N is a direct sum of local modules.
4) (\#) holds for any R-modules M and N, (cf. Example 4 below).

Proof. 1) $\longleftrightarrow 2$). This is given in [10], Proposition 3.
$2) \rightarrow 3$). This is clear from Proposition 1 .
$3) \rightarrow 4$). Since R is right almost hereditary by Lemma 5 , we obtain 4) by Theorem and [10], Lemma 13.
$4) \rightarrow 2$). This is clear from Theorem.
We shall add one more property when R is left QF-2. Let $e R \supset e J \approx(f R)^{(n)}$ $\oplus \cdots$ as in (0), and put $e J \supset \sum_{i \leq n} \oplus u_{i} f R \approx f R^{(n)}$, where $u_{i} f R \approx f R$. We identify $(f R)^{(n)}$ with $\Sigma \oplus u_{i} f R$.

Lemma 6. Assume 1) and 2) in [10], Lemma 13 and (0). Let N_{1} and N_{2} be submodules in $(f R)^{(n)}$, which are isomorphic to $f R$ and hence $\theta: N_{1} \rightarrow N_{2}$ be an isomorphism. Then θ is given by an element z in eRe.

Proof. Let $e R \supset f R \supset S=\operatorname{Soc}(f R)$. Then from 1), 2) and [10], Lemma 6 we obtain
a) every automorphism of S is extensible uniquely to an automorphism of $f R$ (cf. a') in the proof of Lemma 5).
Put $S_{i}=\operatorname{Soc}\left(N_{i}\right)$ for $i=1,2$.
b) Assume $N_{1}=u_{1} f R$ and $S_{1}=S_{2}$. Let $S_{1}=x R$ and $N_{2}=y R ; y=e y f$ $\in(f R)^{(n)}$. Then $y=u_{1} w_{1}+\cdots+u_{n} w_{n}$; the w_{1} are units or zero in $f R f$ by 2). Then $x=y r=u_{1} w_{1}+\cdots u_{n} w_{n} r$ for some $r \in R$. On the other hand $x=u_{1} r^{\prime}$ for some r^{\prime} $\in f R$. Hence $w_{2}=\cdots=w_{n}=0$ (cf. the proof of [10], Lemma 13), and $N_{1}=N_{2}$.
c) Assume $N_{1}=u_{1} f R$ and $\theta^{\prime}: N_{2} \rightarrow N_{1}$. Then $\theta^{\prime} \mid S_{2}$ is extensible to $z_{l} \in$ $\operatorname{Hom}_{R}(e R, e R)$, the left-sided multiplication of z, by 1$)$.
Further $z N_{2}=N_{1}$ from b), and z is a unit by [10], Lemma 6. Consider $z_{l} \theta^{\prime-1} \mid S_{1}$ $=1_{s_{1}}\left(z_{l} \theta^{\prime-1}: N_{1} \rightarrow N_{1}\right)$. Then from a) $z_{l} \theta^{\prime-1}=1_{N_{1}}$, and $z_{l} \mid N_{2}=\theta^{\prime}$.
Since $u_{1} f R \approx N_{1} \approx N_{2}$, we obtain a unit z_{i} in $e R e$ such that $z_{1 l}: N_{1} \rightarrow u_{1} f R$ and $z_{2 l}$: $N_{2} \rightarrow u_{1} f R$ from c). Hence again by c) $z_{2 \ell} \theta z_{1 \ell}{ }^{-1}=z_{l}$ for some z, and $\theta=\left(z_{2}^{-1} z z_{1}\right)_{l}$.

Concerningly Proposition 2, we have
Proposition 3. Let R be artinian. Assume that $J^{3}=0$ and (eRD)eJ has the demomposition (0). Then the following are equivalent:

1) i) Let S_{i} be a simple submodule of $h_{i} R$ for $i=1$, 2. If $\theta: S_{1} \rightarrow S_{2}$ is isomorphic, then θ is extensible to an element in $\operatorname{Hom}_{R}\left(h_{1} R, h_{2} R\right)$ or in $\operatorname{Hom}_{R}\left(h_{2} R, h_{1} R\right)$, where h_{1}, h_{2} are primitive idempotents, ii) $f R / f J$ is never monomorphic to $\operatorname{Soc}(R)$, where f appears in (0).
2) R is left QF-2. (cf. Example 3.)

Proof. 2) $\rightarrow 1$). This is clear from [10], Lemma 13.
$1) \rightarrow 2$). Let S_{1} and S_{2} be simple left R-modules of $R h(J h \neq 0)$ for a primitive idempotent h. Suppose $S_{i} \approx R \bar{k}_{i}$ for $i=1$. 2 , where the k_{i} are primitive idempotents. Put $S_{i}=R x_{i}$ with $k_{i} x_{i} h=x_{i} \in J$. Then $k_{i} R \supset x_{i} R$ and there exists a homomorphism $\phi_{i}: h R \rightarrow x_{i} R$.
a) $k_{i} J^{2}=0$ for $i=1,2$. Then $x_{1} R \approx \bar{h} R$ since $x_{i} \in k_{i} J$ and the $x_{i} R$ are local. Hence there exists z in $k_{2} R k_{1}$ (or in $k_{1} R k_{2}$) such that $z x_{1}=x_{2}$ (or $z x_{2}=x_{1}$) by assumption. As a consequence $S_{2}=S_{1}$.
b) $k_{1} J^{2} \neq 0$ and $k_{2} J^{2}=0$. Then $x_{2} R \approx \bar{h} R$ as above. If $x_{1} R \approx \bar{h} R$, then $S_{1}=S_{2}$ as in a). Suppose that $x_{1} R$ is not simple. Since $x_{1} R \subset k_{1} J$ and $x_{1} R$ is local, $x_{1} R$ is projective by (0), and hence $x_{1} R \approx h R$, which is a contradiction to iii) in Theorem 0 for $x_{2} R \approx \bar{h} R$.
c) $k_{i} J^{2} \neq 0$. Since $x_{i} R$ is local, $x_{i} R$ is simple or projective by iii) in Theorem 0 . Hence again from iii) in Theorem 0 we obtain two cases $\alpha) x_{1} R \approx$ $x_{2} R \bar{h} R$ and β) $x_{1} R \approx x_{2} R \approx h R$ (and $k_{1} R \approx k_{2} R$). Then from Lemma 6 and the arguemt in a) we obtain $S_{1}=S_{2}$ in both cases. Hence R is left QF-2.

We note the following fact :
the class of rings with (\#) for local modules M and $N \supseteqq$ the class of rings with (\#) for local module M and any direct sum of local modules N \supsetneq the class of rings with (\#) for any finitely generated R-modules. See the following examples.

4. Examples

Let $L \supset K$ be fields.
1.
$R_{1}=\left(\begin{array}{cccc}K & K & K & K \\ 0 & K & K & 0 \\ 0 & 0 & K & P \\ 0 & 0 & 0 & R\end{array}\right)$, where $P=L, K$ or O and $e_{13} e_{34} P=0=e_{23} e_{34} P$.
If $P=L$, then R_{1} satisfies the conditions in Theorem 0 , but the conditions in [10], Theorem 2. If $P=K, R_{1}$ satisfies the conditions in [10], Theorem 2, but R_{1} is not almost hereditary. If $P=0$, then R_{1} satisfies the conditions in Theorem.
2.

$$
R_{2}=\left(\begin{array}{ccc}
K & L & L \\
0 & L & L \\
0 & 0 & L
\end{array}\right)
$$

R_{2} satisfies the condition in Theorem, but not left QF-2.
3. $R_{3}=e K \oplus f K \oplus a K \oplus b K \oplus c K \oplus c a K$, where $\{e, f\}$ is the set of mutually orthogonal primitive idempotents with $1=e+f, a=e a f, b=e b f, c=$ $f c e$, and $c a=c b$. Then $R\left(=R_{3}\right)$ is a left QF-2 ring with $J^{3}=0$, but 1) in Proposition 3 does not hold as right R-modules. However R satisfies 1) in Proposition 3 as left R-modules, but not right QF-2.
4. As above $R_{4}=e K \oplus f K \oplus g K \oplus a K \oplus a b K \oplus b K \oplus c K$, where $a=$ $e a f, b=f b e$ and $c=e c g$. Then $R\left(=R_{4}\right)$ is left serial and (\#) holds for local modules M and N, however R is not right almost hereditary.

References

[1] T. Albu and C. Nastasescu : Relative finiteness in module theory, Monographs Textbooks Prue and Appl. 84, Marcel Dekker Inc. New York and Basel.
[2] K.R. Fuller : Ralative projectivity and injectivity classes by simple modules, J.London Math. Soc. 5 (1972), 423-431.
[3] M. Harada and T. Mabuchi : On almost relative projectives, Osaka J. Math. 26 (1989), 837-848.
[4] M. Harada and A. Tozaki : Almost M-projectives and right Nakayama rings, J. Algebra 122
(1989), 447-474.
[5] M. Harada: On almost relative projectives over perfect rings, Osaka J. Math. 27 (1990), 655-665.
[6] -: Hereditary rings and relative projectives, Osaka J. Math. 28 (1991), 811-827.
[7] -: Almost hereditary rings, Osaka J. Math. 28 (1991), 793-809.
[8] -: Note on almost relative projectives and almost relative injectives, Osaka J. Math. 29 (1992), 435-446.
[9] -: Almost projective modules, J. Algebra 157 (1993), 150-157.
[10] -: Artinian rings related with almost relative projectivity I, to appear.

Department of Mathematics
Osaka City University
Sumiyoshi-ku, Osaka 558
Japan

