ON STANDARD L-FUNCTIONS ATTACHED TO ALT ${ }^{n-1}\left(C^{n}\right)$-VALUED SIEGEL MODULAR FORMS

Hideshi TAKAYANAGI

(Received February 8, 1993)

Introduction

In [23], we studied some properties of standard L-functions attached to $\operatorname{sym}^{l}(V)$-valued Siegel modular forms of weight $\operatorname{det}^{k} \otimes \operatorname{sym}^{l}$. More precisely, let $\operatorname{det}^{k} \otimes \operatorname{sym}^{l}$ be an irreducible rational representation of $G L(n, C)$ with representation space $\operatorname{sym}^{l}(V)$, where V is isomorphic to C^{n} and $\operatorname{sym}^{l}(V)$ is the l-th symmetric tensor product of V. Let f be a $\operatorname{sym}^{l}(V)$-valued holomorphic cusp form of weight $\operatorname{det}^{k} \otimes \operatorname{sym}^{l}$ for $\operatorname{Sp}(n, \boldsymbol{Z})$ (size $2 n$). Suppose f is an eigenform, i.e., a non-zero common eigenfunction of the Hecke algebra. Then we define the standard L-function attached to f by

$$
\begin{equation*}
L(s, f, \underline{\mathrm{St}}):=\prod_{p}\left\{\left(1-p^{-s}\right) \prod_{j=1}^{n}\left(1-\alpha_{j}(p)^{-1} p^{-s}\right)\left(1-\alpha_{j}(p) p^{-s}\right)\right\}^{-1}, \tag{0.1}
\end{equation*}
$$

where p runs over all prime numbers and $\alpha_{j}(p)(1 \leq j \leq n)$ are the Satake p parameters of f. The right-hand side of (0.1) converges absolutely and locally uniformly for $\operatorname{Re}(s)>n+1$. We put

$$
\Lambda(s, f, \underline{\mathrm{St}}):=\Gamma_{R}(s+\varepsilon) \Gamma_{c}(s+k+l-1)\left\{\prod_{j=2}^{n} \Gamma_{c}(s+k-j)\right\} L(s, f, \underline{\mathrm{St}}),
$$

with

$$
\Gamma_{R}(s):=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right), \Gamma_{c}(s):=2(2 \pi)^{-s} \Gamma(s)
$$

and

$$
\varepsilon:=\left\{\begin{array}{l}
0 \text { for } n \text { even, } \\
1 \text { for } n \text { odd. }
\end{array}\right.
$$

Then we have the following (cf. Andrianov and Kalinin [Z], Böcherer [5] and Mizumoto [19] for $l=0$).

Theorem. ([23, Theorems 2 and 3]) For $k, l \in 2 \boldsymbol{Z}, k, l>0, \Lambda(s, f, \underline{\text { St }})$ has a meromorphic continuation to the whole s-plane and satisfies the functional equation

$$
\Lambda(s, f, \underline{\mathrm{St}})=\Lambda(1-s, f, \underline{\mathrm{St}})
$$

Suppose $k>n$. Then $\Lambda(s, f, \underline{\mathrm{St}})$ is holomorphic except for possible simple poles at $s=0$ and $s=1$; it has a pole at $s=1$ (or equivalently, $s=0$) if and only if f belongs to the C-vector space spanned by certain theta series in [24] which is invariant under the action of the Hecke algebra.

If we note that the signature of $\operatorname{det}^{k} \otimes \operatorname{sym}^{l}$ is $(k+l, k, \cdots, k) \in \boldsymbol{Z}^{n}$, we expect the following [23, §3.1 Remark]:
(C). Let ρ be an irreducible rational representation of $G L(n, \boldsymbol{C})$ with representation space \boldsymbol{V} whose signature is $\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right) \in \boldsymbol{Z}^{n}$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ ≥ 0. Let f be a \boldsymbol{V}-valued holomorphic cusp form of weight ρ for $\operatorname{Sp}(n, \boldsymbol{Z})$. Suppose that f is an eigenform. Then, it is expected that the completed Dirichlet series

$$
\Lambda(s, f, \underline{\mathrm{St}}):=\Gamma_{R}(s+\varepsilon) \prod_{j=1}^{n} \Gamma_{c}\left(s+\lambda_{j}-j\right) L(s, f, \underline{\mathrm{St}})
$$

should satisfy a functional equation.
Unfortunately, within our knowledge it is not verified so far whether (\boldsymbol{C}) holds or not except det^{k} and $\operatorname{det}^{k} \otimes \operatorname{sym}^{l}$ cases. We will give another example satisfying (C).

For $l \in \boldsymbol{Z}, 0 \leq l \leq n$, let $\operatorname{det}^{k} \otimes$ alt l be an irreducible rational representation of $G L(n, \boldsymbol{C})$ with representation space $\operatorname{alt}^{l}(V)$, where V is isomorphic to \boldsymbol{C}^{n} and $\operatorname{alt}^{l}(V)$ is the l-th alternating tensor product of V. Let $M_{k}^{n}\left(\operatorname{alt}^{l}(V)\right)$ (resp. $S_{k}^{n}\left(\operatorname{alt}^{l}(V)\right)$) be the \boldsymbol{C}-vector space consisting of $\operatorname{alt}^{l}(V)$-valued holomorphic modular (resp. cusp) forms of weight $\operatorname{det}^{k} \otimes$ alt l for $S p(n, \boldsymbol{Z})$.

Suppose that $f \in S_{k}^{n}\left(\operatorname{alt}^{n-1}(V)\right)$ is an eigenform. We note that the signature of $\operatorname{det}^{k} \otimes \operatorname{alt}^{n-1}$ is $(k+1, \cdots, k+1, k)$. We put

$$
\Lambda(s, f, \underline{\mathrm{St}}):=\Gamma_{R}(s+1)\left\{\prod_{j=1}^{n-1} \Gamma_{c}(s+k+1-j)\right\} \Gamma_{c}(s+k-n) L(s, f, \underline{\mathrm{St}})
$$

Then the main result of this paper is the following (cf. Piatetski-Shapiro and Rallis [21], Weissauer [24]).

Theorem 1. Let k be an even integer, n an odd integer and $2 k \geq n>2$. Then $\Lambda(s, f, \underline{\mathrm{St}})$ has a meromorphic continuation to the whole s-plane and satisfies the functional equation

$$
\Lambda(s, f, \underline{\mathrm{St}})=\Lambda(1-s, f, \underline{\mathrm{St}})
$$

Moreover, suppose $k>n$. Then, $\Lambda(s, f, \underline{\mathrm{St})}$ is entire.

Notation.

1°. As usual, \boldsymbol{Z} is the ring of rational integers, \boldsymbol{Q} the field of rational numbers, \boldsymbol{R} the field of real numbers, \boldsymbol{C} the field of complex numbers.
2°. Let $m, n \in \boldsymbol{Z}, m, n>0$. If A is an $m \times n$-matrix, then we write it also as $A^{(m, n)}$, and as $A^{(m)}$ if $m=n$. The identity matrix of size n is denoted by 1_{n}.
3°. For $m, n \in \boldsymbol{Z}, m, n>0$, and a commutative ring R containing 1 , let $R^{(m, n)}$ (resp. $R^{(n)}$) be the R-module of all $m \times n$ (resp. $n \times n$) matrices with entries in R.
4°. For a real symmetric positive definite matrix $S, S^{1 / 2}$ is the unique real symmetric positive definite matrix such that $\left(S^{1 / 2}\right)^{2}=S$.
5°. For matrix $A^{(m)}, B^{(m, n)}$, we define $A[B]:={ }^{t} \bar{B} A B$, where ${ }^{t} B$ is the transpose of B and \bar{B} is the complex conjugate of B.
6°. For a matrix $A^{(m)}=\left(a_{j h}\right)_{1 \leq j, k \leq m}, \widetilde{a_{j h}}$ is the cofactor of $a_{j h}$ and $\widetilde{A}=\left(\widetilde{a_{j h}}\right)$.
7°. For $n \in \boldsymbol{Z}, n>0$, we put

$$
\boldsymbol{T}^{(n)}:=\left\{\left.T=\left(\begin{array}{cccc}
t_{1} & & & 0 \\
& t_{2} & & \\
& & \ddots & \\
0 & & & t_{n}
\end{array}\right) \in \boldsymbol{Z}^{(n)}\left|t_{j}>0(1 \leq j \leq n), t_{1}\right| \cdots \right\rvert\, t_{n}\right\}
$$

8. For $n \in \boldsymbol{Z}, n>0$, let $\Gamma^{n}:=S p(n, \boldsymbol{Z})$ be the Siegel modular group of degree n and let \mathfrak{S}_{n} be the Siegel upper half space of degree n, that is,

$$
\mathfrak{S}_{n}:=\left\{Z=X+\left.i Y \in C^{(n)}\right|^{t} Z=Z, Y>0\right\} .
$$

For each $r \in \boldsymbol{Z}$ with $0 \leq r \leq n$, we put

$$
P_{n, r}:=\left\{\left.\left(\begin{array}{cc}
* & * \\
C^{(n)} & D^{(n)}
\end{array}\right) \in \Gamma^{n} \right\rvert\, C=\left(\begin{array}{cc}
0 & 0 \\
0 & C_{4}^{(r)}
\end{array}\right), D=\left(\begin{array}{cc}
* & 0 \\
\boldsymbol{*} & D_{4}^{(r)}
\end{array}\right)\right\} .
$$

All these are subgroups of Γ^{n}.
9°. For $n \in \boldsymbol{Z}, n \geq 0$, we put

$$
\Gamma_{n}(s):=\prod_{j=1}^{n} \Gamma\left(s-\frac{j-1}{2}\right)
$$

and

$$
\gamma(s):= \begin{cases}\frac{\Gamma_{n}\left(\frac{s+n}{2}\right)}{\Gamma_{n}\left(\frac{s}{2}\right)} & \text { for } n \text { even } \\ \frac{\Gamma_{n-1}\left(\frac{s+n}{2}\right)}{\Gamma_{n-1}\left(\frac{s-1}{2}\right)} & \text { for } n \text { odd }\end{cases}
$$

where $\Gamma(s)$ is the gamma function. We note that

$$
\gamma(s)=\gamma(1-s)
$$

Moreover, we put

$$
\xi(s):=\Gamma_{R}(s) \zeta(s)=\xi(1-s)
$$

where $\zeta(s)$ is the Riemann zeta function.
Throughout the paper we understand that a product (resp. a sum) over an empty set is equal to 1 (resp. 0).

1. Preliminaries

Let ρ be a finite-dimensional representation of $G L(n, \boldsymbol{C})$ with representation space \boldsymbol{V}. By definition, \boldsymbol{V}-valued C^{∞}-Siegel modular forms of weight ρ are C^{∞}-functions from \mathfrak{y}_{n} to V satisfying

$$
\begin{equation*}
\left(\left.f\right|_{\rho} M\right)(Z)=f(Z) \tag{1.1}
\end{equation*}
$$

for all $Z \in \mathfrak{S}_{n}$ and $M=\left(\begin{array}{ll}A^{(n)} & B^{(n)} \\ C^{(n)} & D^{(n)}\end{array}\right) \in \Gamma^{n}$, where

$$
\left(\left.f\right|_{\rho} M\right)(Z):=\rho\left((C Z+D)^{-1}\right) f(M\langle Z\rangle) \text { and } M\langle Z\rangle:=(A Z+B)(C Z+D)^{-1}
$$

The space of all such functions is denoted by $M_{\rho}^{n}(\boldsymbol{V})^{\infty}$.
We write $\left.\right|_{k}$ for $\rho=\operatorname{det}^{k}$ and we omit subscripts ρ, k when there is no fear of confusion.

A holomorphic function f from \mathfrak{S}_{n} to \boldsymbol{V} is called a \boldsymbol{V}-valued Siegel modular form of weight ρ if it satisfies (1.1) and if it is holomorphic at the cusps when n $=1$. The space of \boldsymbol{V}-valued Siegel modular forms of weight ρ is denoted by $M_{\rho}^{n}(\boldsymbol{V})$.

We define the Siegel operator on $M_{\rho}^{n}(\boldsymbol{V})$ by

$$
(\Phi f)(Z):=\lim _{t \rightarrow \infty} f\left(\left(\begin{array}{cc}
Z & 0 \\
0 & i t
\end{array}\right)\right)
$$

for $Z \in \mathfrak{F}_{n-1}$. Let \boldsymbol{W} be the subspace of \boldsymbol{V} generated by the values of Φf for all $f \in M_{\rho}^{n}(\boldsymbol{V})$. Then \boldsymbol{W} is invariant under the transformations

$$
\rho\left(\left(\begin{array}{ll}
g & 0 \\
0 & 1
\end{array}\right)\right), g \in G L(n-1, \boldsymbol{C})
$$

If we assume $\boldsymbol{W} \neq\{0\}$, we get the representation σ of $\mathrm{GL}(n-1, \boldsymbol{C})$ with representation space W. Thus the operator Φ defines the map

$$
\Phi: M_{\rho}^{n}(\boldsymbol{V}) \rightarrow M_{\sigma}^{n-1}(\boldsymbol{W})
$$

Suppose $f \in M_{\rho}^{n}(\boldsymbol{V})$. Then it is called a cusp form if it satisfies $\Phi f=0$, and we put

$$
S_{\rho}^{n}(\boldsymbol{V}):=\left\{f \in M_{\rho}^{n}(\boldsymbol{V}) \mid f \text { is a cusp form }\right\} .
$$

If ρ is an irreducible rational representation, ρ is equivalent to an irreducible rational representation $\widetilde{\rho}$ satisfying the following condition: Let \widetilde{V} be the representation space of $\widetilde{\rho}$. Then, there exists a unique one-dimensional vector subspace $\boldsymbol{C} \widetilde{v}$ of $\widetilde{\boldsymbol{V}}$ such that for any upper triangular matrix of $G L(n, \boldsymbol{C})$,

$$
\widetilde{\rho}\left(\left(\begin{array}{ccc}
g_{11} & & * \\
& \ddots & \\
0 & & g_{n n}
\end{array}\right)\right) \widetilde{\boldsymbol{v}}=\left(\prod_{j=1}^{n} g_{j^{\lambda} j}^{\lambda_{j}}\right) \widetilde{\boldsymbol{v}}
$$

where $\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right) \in \boldsymbol{Z}^{n}$ and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$.
Then we call $\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)$ the signature of ρ.
Remark. Suppose the signature of ρ is $\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)$. We note that $M_{\rho}^{n}(\boldsymbol{V})$ $=\{0\}$ if $\lambda_{n}<0$ and that $M_{\rho}^{n}(\boldsymbol{V})^{\infty}=\{0\}$ if $\lambda_{1}+\cdots+\lambda_{n} \not \equiv 0 \bmod 2$.

Now, we put

$$
G^{+} S p(n, \boldsymbol{Q}):=\left\{\left.M \in G L(2 n, \boldsymbol{Q})\right|^{t} M\left(\begin{array}{cc}
0 & 1_{n} \\
-1_{n} & 0
\end{array}\right) M=\mu(M)\left(\begin{array}{cc}
0 & 1_{n} \\
-1_{n} & 0
\end{array}\right), \mu(M)>0\right\}
$$

For $g \in G^{+} \operatorname{Sp}(n, \boldsymbol{Q})$, let $\Gamma^{n} g \Gamma^{n}=\bigcup_{j=1}^{r} \Gamma^{n} g_{j}$ be a decomposition of the double coset $\Gamma^{n} g \Gamma^{n}$ into left cosets. For $f \in M_{\rho}^{n}(\boldsymbol{V})$ (resp. $\left.S_{\rho}^{n}(\boldsymbol{V}), M_{\rho}^{n}(\boldsymbol{V})^{\infty}\right)$, we define the Hecke operator ($\Gamma^{n} g \Gamma^{n}$) by

$$
f\left|\left(\Gamma^{n} g \Gamma^{n}\right):=\sum_{j=1}^{r} f\right| g_{j}
$$

Let $f \in S_{\rho}^{n}(\boldsymbol{V})$ be an eigenform. We define the standard L-function attached to f by (0.1). We also define the following series:

$$
\begin{equation*}
D(s, f):=\sum_{T \in T^{(n)}} \lambda(f, T) \operatorname{det}(T)^{-s} \tag{1.2}
\end{equation*}
$$

where $\lambda(f, T)$ is the eigenvalue on f of the Hecke operator $\left(\Gamma^{n}\left(\begin{array}{cc}T & 0 \\ 0 & T^{-1}\end{array}\right) \Gamma^{n}\right), T$ $\in \boldsymbol{T}^{(n)}$. By Böcherer [6], we have :

$$
\begin{equation*}
\zeta(s) \prod_{j=1}^{n} \zeta(2 s-2 j) D(s, f)=L(s-n, f, \underline{\mathrm{St}}) \tag{1.3}
\end{equation*}
$$

For $k \in 2 \boldsymbol{Z}, k>0, s \in \boldsymbol{C}$ and $Z=\left(z_{j h}\right) \in \mathfrak{S}_{n}$ with $z_{j h}:=x_{j h}+i y_{j h}$, we define the Eisenstein series by

Then $E_{k}^{n}(Z, s) \in M_{k}^{n \infty}$, where $M_{k}^{n \infty}$ is the space of C^{∞}-Siegel modular forms of weight k. The function $E_{k}^{n}(Z, s) \operatorname{det}(\operatorname{Im}(Z))^{-s}$ converges absolutely and locally uniformly for $k+2 \operatorname{Re}(s)>n+1$. Moreover, we have the following:

Theorem 2. (Langlands [18], Kalinin [13] and Mizumoto [19, 20]) Let n $\in \boldsymbol{Z}, k \in 2 \boldsymbol{Z}$ and $n, k>0$. Then for $Z \in \mathfrak{S}_{n}$,

$$
\boldsymbol{E}_{k}^{n}(Z, s):=\frac{\Gamma_{n}\left(s+\frac{k}{2}\right)}{\Gamma_{n}(s)} \xi(2 s) \prod_{j=1}^{\left[\frac{n}{2}\right]} \xi(4 s-2 j) E_{k}^{n}\left(Z, s-\frac{k}{2}\right)
$$

is invariant under $s \rightarrow \frac{n+1}{2}-s$ and it is an entire function in s.
It is also known that every partial derivative (in $z_{j h}$'s) of the Eisenstein series $E_{k}^{n}(Z, s)$ is slowly increasing (locally uniformly in s).

Theorem 3. (Mizumoto [20]) Let $n \in \boldsymbol{Z}, k \in 2 \boldsymbol{Z}$ and $n, k>0$.
(i) For each $s_{0} \in \boldsymbol{C}$, there exist constants $\delta>0$ and $d \in \boldsymbol{Z}(d \geq 0)$, depending only on n, k and s_{0}, such that

$$
\left(s-s_{0}\right)^{d} E_{k}^{n}(X+i Y, s)
$$

is holomorphic in s for $\left|s-s_{0}\right|<\delta$, and is C^{∞} in (X, Y).
(ii) Furthermore, for given $\varepsilon>0$ and $N \in \boldsymbol{Z}(N \geq 0)$, there exist constants $\alpha>0$ and $\beta>0$ depending only on $n, k, d, s_{0}, \varepsilon, \delta$ and N such that

$$
\left|\left(s-s_{0}\right)^{d} D_{X, Y} E_{k}^{n}(X+i Y, s)\right| \leq \alpha \operatorname{det}(\operatorname{Im}(Z))^{\beta}
$$

for $Y \geq \varepsilon 1_{n}$ and $\left|s-s_{0}\right|<\delta$, where $D_{X, Y}$ is an arbitary monomial of degree N in $\frac{\partial}{\partial x_{j h}}$ and $\frac{\partial}{\partial y_{j h}}(1 \leq j, h \leq n)$.

The assertion above for the case $N=0$ has been proved by Langlands [18] and Kalinin [13].

2. Differential operators

In what follows, we put

$$
\begin{gathered}
V_{1}=\boldsymbol{C} e_{1} \oplus \cdots \oplus \boldsymbol{C} e_{n}, \boldsymbol{e}_{1}=\left(e_{1}, \cdots, e_{n}\right), \\
V_{2}=\boldsymbol{C} e_{n+1} \oplus \cdots \oplus \boldsymbol{C} e_{2 n}, \boldsymbol{e}_{2}=\left(e_{n+1}, \cdots, e_{2 n}\right)
\end{gathered}
$$

Let $\operatorname{alt}^{n-1}\left(V_{1}\right)$ (resp. $\left.\operatorname{alt}^{n-1}\left(V_{2}\right)\right)$ be the $(n-1)$-th alternating tensor product of V_{1} (resp. V_{2}). If we put

$$
\begin{gathered}
t_{j}:=(-1)^{j-1} e_{1} \wedge \cdots \wedge e_{j-1} \wedge e_{j+1} \wedge \cdots \wedge e_{n} \\
t_{n+j}:=(-1)^{j-1} e_{n+1} \wedge \cdots \wedge e_{n+j-1} \wedge e_{n+j+1} \wedge \cdots \wedge e_{2 n}(1 \leq j \leq n),
\end{gathered}
$$

we can write

$$
\operatorname{alt}^{n-1}\left(V_{1}\right)=\boldsymbol{C} t_{1} \oplus \cdots \oplus \boldsymbol{C} t_{n} \text { and } \operatorname{alt}^{n-1}\left(V_{2}\right)=\boldsymbol{C} t_{n+1} \oplus \cdots \oplus \boldsymbol{C} t_{2 n}
$$

Moreover, we put

$$
\boldsymbol{t}_{1}:=\left(t_{1}, \cdots, t_{n}\right) \text { and } \boldsymbol{t}_{2}:=\left(t_{n+1}, \cdots, t_{2 n}\right)
$$

If for each $g \in G L(n, \boldsymbol{C}), g$ acts on $\boldsymbol{e}_{j}(j=1,2)$ by $\boldsymbol{e}_{j} g$, then $\operatorname{det}^{k} \otimes \operatorname{alt}^{n-1}(g)$ acts on $\boldsymbol{t}_{j}(j=1,2)$ by

$$
\operatorname{det}^{k} \otimes \operatorname{alt}^{n-1}(g) \boldsymbol{t}_{j}:=\operatorname{det}(g)^{k} \boldsymbol{t}_{j} \widetilde{g}=\operatorname{det}(g)^{k+1} \boldsymbol{t}_{j}^{t} g^{-1}
$$

If we put $\alpha=\left(a_{1}, \cdots, a_{n}\right) \in \boldsymbol{C}^{n}, \operatorname{det}^{k} \otimes \operatorname{alt}^{n-1}(g)$ acts on $\sum_{j=1}^{n} a_{j} t_{j}=\boldsymbol{t}_{1}^{t} \alpha \in \operatorname{alt}^{n-1}\left(V_{1}\right)$ and $\boldsymbol{t}_{2}{ }^{t} \alpha \in$ alt $^{n-1}\left(V_{2}\right)$ by

$$
\operatorname{det}^{k} \otimes \operatorname{alt}^{n-1}(g)\left(\boldsymbol{t}_{j}^{t} \alpha\right):=\operatorname{det}(g)^{k} \boldsymbol{t}_{j} \widetilde{g}^{t} \alpha=\operatorname{det}(g)^{k+1} \boldsymbol{t}_{j}^{t} g^{-1 t} \alpha \quad(j=1,2)
$$

Thus we get the action of $\operatorname{det}^{k} \otimes \operatorname{alt}^{n-1}$ on $\operatorname{alt}^{n-1}\left(V_{j}\right)(j=1,2)$.
Let ι be the isomorphism from V_{1} to V_{2} defined by $\iota\left(e_{j}\right)=e_{n+j}(1 \leq j \leq n)$. It induces the isomorphism (also denoted by ι) from $\operatorname{alt}^{n-1}\left(V_{1}\right)$ to alt ${ }^{n-1}\left(V_{2}\right)$. For a $\operatorname{alt}^{n-1}\left(V_{1}\right)$-valued function f on \mathfrak{S}_{n} and for $Z \in \mathfrak{F}_{n}$, we define $\iota(f)$ by

$$
(\iota(f))(Z):=\iota(f(Z)) .
$$

For a function F on $\mathfrak{S}_{2 n},\left(\begin{array}{cc}Z^{(n)} & U^{(n)} \\ { }^{(} U^{(n)} & W^{(n)}\end{array}\right) \in \mathfrak{F}_{2 n}$, we define the pullback d^{*} by

$$
\left(d^{*} F\right)\left(\left(\begin{array}{cc}
Z & U \\
{ }^{t} U & W
\end{array}\right)\right):=F\left(\left(\begin{array}{cc}
Z & 0 \\
0 & W
\end{array}\right)\right)
$$

We consider $\Gamma^{n} \times \Gamma^{n}$ imbedded in $\Gamma^{2 n}$ by

$$
\left(\begin{array}{ll}
A^{(n)} & B^{(n)} \\
C^{(n)} & D^{(n)}
\end{array}\right) \times\left(\begin{array}{ll}
A^{\prime(n)} & B^{\prime(n)} \\
C^{\prime(n)} & D^{\prime(n)}
\end{array}\right) \mapsto\left(\begin{array}{cccc}
A & 0 & B & 0 \\
0 & A^{\prime} & 0 & B^{\prime} \\
C & 0 & D & 0 \\
0 & C^{\prime} & 0 & D^{\prime}
\end{array}\right)
$$

and when convenient will identify $\Gamma^{n} \times \Gamma^{n}$ with its image in $\Gamma^{2 n}$.
We summarize some facts on differential operators obtained from invariant pluri-harmonic polynomials in Ibukiyama [12]. Let ρ_{0} (resp. $\rho_{0}{ }^{\prime}$) be an irreducible rational representation of $G L(n, \boldsymbol{C})$ with representation space \boldsymbol{V} (resp. $\left.\boldsymbol{V}^{\prime}\right)$, where ρ_{0} is equivalent to $\rho_{0}{ }^{\prime}$. For $n, k \in \boldsymbol{Z}, n, k>0$, let $X=\left(x_{j v}\right)$ be a variable on $\boldsymbol{C}^{(n, 2 k)}$. We put

$$
\Delta_{j h}:=\sum_{v=1}^{2 k} \frac{\partial^{2}}{\partial x_{j v} \partial x_{h v}}
$$

A polynomial $P(X)$ on $\boldsymbol{C}^{(n, 2 k)}$ is called pluri-harmonic if $\Delta_{j h} P=0$ for each j, h with $1 \leq j \leq h \leq n$.

From now on, we assume that $2 k \geq n$. Suppose that a polynomial map

$$
P: \boldsymbol{C}^{(n, 2 k)} \times \boldsymbol{C}^{(n, 2 k)} \rightarrow \boldsymbol{V} \otimes \boldsymbol{V}^{\prime}
$$

satisfies the following three conditions:
(2.1) $\quad P\left(X_{1}, X_{2}\right)$ is pluri-harmonic for each $X_{j} \quad(j=1,2)$,
(2.2) $\quad P\left(X_{1} g, X_{2} g\right)=P\left(X_{1}, X_{2}\right)$ for each $g \in O(2 k)$,
(2.3) $P\left(a_{1} X_{1}, a_{2} X_{2}\right)=\left(\rho_{0}\left(a_{1}\right) \otimes \rho^{\prime}{ }_{0}\left(a_{2}\right)\right) P\left(X_{1}, X_{2}\right)$ for each $a_{j} \in G L(n, \boldsymbol{C}) \quad(j$ $=1,2$).
Then there exists a unigue polynomial map Q on $\boldsymbol{C}^{(2 n)}$ such that

$$
P\left(X_{1}, X_{2}\right)=Q\left(\begin{array}{ll}
X_{1}^{t} X_{1} & X_{1}^{t} X_{2} \\
X_{2}^{t} X_{1} & X_{2}^{t} X_{2}
\end{array}\right)
$$

Let $\mathcal{B}=\left(z_{j n}\right)$ be a variable on $\mathfrak{S}_{2 n}$. We put

$$
\frac{\partial}{\partial 3}:=\left(\frac{1+\delta_{j h}}{2} \frac{\partial}{\partial z_{j h}}\right)_{1 \leq j, h \leq 2 n}
$$

where, for $z_{j h}=x_{j h}+i y_{j h}$,

$$
\frac{\partial}{\partial z_{j h}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j h}}-i \frac{\partial}{\partial y_{j h}}\right), \frac{\partial}{\partial \bar{z}_{j h}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j h}}+i \frac{\partial}{\partial y_{j h}}\right) .
$$

If we put

$$
\boldsymbol{D}:=d^{*} Q\left(\frac{\partial}{\partial 马}\right)
$$

we have the following:
Theorem 4. (Ibukiyama [12]) Let $n, k \in \boldsymbol{Z}$ and $2 k \geq n>0$.
(i) Let F be any \boldsymbol{C}-valued C^{∞}-function on $\mathfrak{S}_{2 n}$. If we put $\rho=\operatorname{det}^{k} \otimes \rho_{0}$ and
$\rho^{\prime}=\operatorname{det}^{k} \otimes \rho^{\prime}{ }_{0}$, then for each $\left(g, g^{\prime}\right) \in \Gamma^{n} \times \Gamma^{n}$ and $3=\left(\begin{array}{cc}Z^{(n)} & U^{(n)} \\ { }^{t} U^{(n)} & W^{(n)}\end{array}\right) \in \mathfrak{F}_{2 n}$, we get the following commutation relation:

$$
\left(\left.\left.(\boldsymbol{D} F)\right|_{\rho}(g)_{z}\right|_{\rho^{\prime}}\left(g^{\prime}\right)_{W}\right)(\Omega)=\left(\boldsymbol{D}\left(\left.F\right|_{k}\left(g, g^{\prime}\right)\right)\right)(\mathbb{8}),
$$

where ()$_{z}$ (resp. ()$\left._{W}\right)$ denotes the action on Z (resp. W).
(ii) The operator \boldsymbol{D} sends modular forms to modular forms:

$$
\boldsymbol{D}: M_{k}^{2 n \infty} \rightarrow M_{\rho}^{n}(\boldsymbol{V})^{\infty} \otimes M_{\rho^{\prime}}^{n}\left(\boldsymbol{V}^{\prime}\right)^{\infty} .
$$

Moreover, \boldsymbol{D} is a holomorphic operator and it satisfies

$$
\boldsymbol{D}: M_{k}^{2 n} \rightarrow M_{\rho}^{n}(\boldsymbol{V}) \otimes M_{\rho^{\prime}}^{n}\left(\boldsymbol{V}^{\prime}\right)
$$

Now we apply it to $\operatorname{det}^{k} \otimes$ alt $^{n-1}$ cases. Let $\rho_{0}=\operatorname{alt}^{n-1}$ (resp. $\rho_{0}^{\prime}=$ alt $^{n-1}$) be the representation of $G L(n, \boldsymbol{C})$ with representation space alt ${ }^{n-1}\left(V_{1}\right)$ (resp. alt $^{n-1}\left(V_{2}\right)$). For a variable $3=\left(z_{j h}\right)$ on $\mathfrak{S}_{2 n}$, we put

$$
u_{j h}:=z_{j n+h}(1 \leq j, h \leq n), U^{(n)}:=\left(u_{j h}\right) \text { and } \frac{\partial}{\partial U}:=\left(\frac{\partial}{\partial u_{j h}}\right)_{1 \leq j, h \leq n} .
$$

For functions on $\mathfrak{F}_{2 n}$, we define the differential operator \mathscr{D} by

$$
\mathscr{D}:=d^{*}\left(\boldsymbol{t}_{1} \frac{\tilde{\partial}}{\partial U}{ }^{2} \boldsymbol{t}_{2}\right) .
$$

Then we have :
Proposition 1. Let $n, k \in \boldsymbol{Z}$ and $2 k \geq n>2$.
(i) Let F be any \boldsymbol{C}-valued C^{∞}-function on $\mathfrak{S}_{2 n}$. Then for each $\left(g, g^{\prime}\right) \in \Gamma^{n}$ $\times \Gamma^{n}$ and $\mathcal{B}=\left(\begin{array}{cc}Z & U \\ { }_{t} U & W\end{array}\right) \in \mathfrak{F}_{2 n}$, we get the following commutation relation:

$$
\left(\left.\left.(\mathscr{D} F)\right|_{\rho}(g)_{z}\right|_{\rho^{\prime}}\left(g^{\prime}\right)_{W}\right)(\mathbb{Z})=\left(\mathscr{D}\left(\left.F\right|_{k}\left(g, g^{\prime}\right)\right)\right)(\mathbb{Z}) .
$$

(ii) The operator \mathscr{D} sends modular forms to modular forms:

$$
\mathscr{D}: M_{k}^{2 n \infty} \rightarrow M_{k}^{n}\left(\operatorname{alt}^{n-1}\left(V_{1}\right)\right)^{\infty} \otimes M_{k}^{n}\left(\operatorname{alt}^{n-1}\left(V_{2}\right)\right)^{\infty} .
$$

Moreover, \mathscr{D} is a holomorphic operator and it satisfies

$$
\mathscr{D}: M_{k}^{2 n} \rightarrow M_{k}^{n}\left(\operatorname{alt}^{n-1}\left(V_{1}\right)\right) \otimes M_{k}^{n}\left(\operatorname{alt}^{n-1}\left(V_{2}\right)\right)
$$

Proof. Let $X_{j}(j=1,2)$ be variables on $C^{(n, 2 k)}$. If we put

$$
\frac{\partial}{\partial U}=X_{1}^{t} X_{2},
$$

Therefore we get Proposition 1 by Theorem 4.

3. Proof of Theorem 1

We prove Theorem 1 according to Böcherer's method in [5]. We first apply the differential operator \mathscr{D} to the Eisenstein series $E_{k}^{2 n}(3, s)$. For this, we use the coset decomposition by Garrett :

Lemma 1. (Garrett [9] and Mizumoto [19, Appendix B])
(i) The double coset $P_{2 n, 0} \backslash \Gamma^{2 n} / \Gamma^{n} \times \Gamma^{n}$ has an irredundant set of coset representatives

$$
g_{\hat{T}}=\left(\begin{array}{cccc}
1_{n} & 0 & 0 & 0 \\
0 & 1_{n} & 0 & 0 \\
0 & \hat{T}^{(n)} & 1_{n} & 0 \\
\hat{T}^{(n)} & 0 & 0 & 1_{n}
\end{array}\right)
$$

where $\hat{T}=\left(\begin{array}{cc}0 & 0 \\ 0 & T^{(r)}\end{array}\right), T \in \boldsymbol{T}^{(r)}(0 \leq r \leq n)$.
(ii) The left coset $P_{2 n, 0} \backslash P_{2 n, 0} g_{\bar{T}}\left(\Gamma^{n} \times \Gamma^{n}\right)$ has an irredundant set of coset representatives $g_{\overparen{T}} \widehat{g}_{1} g_{2} \widehat{g}^{\prime}{ }_{1} g^{\prime}{ }_{2}$,

$$
\widehat{g}_{1} \in G_{n, r}, g_{2} \in P_{n, r} \backslash \Gamma^{n}, \widehat{g}^{\prime}{ }_{1} \in \Gamma^{r}(T) \backslash G_{n, r}, g^{\prime}{ }_{2} \in P_{n, r} \backslash \Gamma^{n},
$$

where

$$
G_{n, r}:=\left\{\left.\left(\begin{array}{cc}
\widehat{A}^{(n)} & \widehat{B}^{(n)} \\
\widehat{C}^{(n)} & \widehat{D}^{(n)}
\end{array}\right)=\left(\begin{array}{cccc}
1_{n-r} & 0 & 0 & 0 \\
0 & A^{(r)} & 0 & B^{(r)} \\
0 & 0 & 1_{n-r} & 0 \\
0 & C^{(r)} & 0 & D^{(r)}
\end{array}\right) \in \Gamma^{n} \right\rvert\,\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \Gamma^{r}\right\}
$$

and for $T \in \boldsymbol{T}^{(r)}$,

$$
\Gamma^{r}(T):=\left\{g \in \Gamma^{r} \left\lvert\,\left(\begin{array}{cc}
0 & T^{-1} \\
T & 0
\end{array}\right) g\left(\begin{array}{cc}
0 & T^{-1} \\
T & 0
\end{array}\right) \in \Gamma^{r}\right.\right\}
$$

Now we prove the following (cf. Böcherer [4, Satz 9], [5, Satz 3]) :
Proposition 2. Let k be an even integer, n an odd integer and s a complex number such that $k+2 \operatorname{Re}(s)>2 n+1$. Suppose that $2 k \geq n>2$. For $3=\left(\begin{array}{c}Z^{(n)} \\ U^{(n)}\end{array}\right.$

$$
\begin{aligned}
& \left.U^{U^{(n)}} \begin{array}{l}
W^{(n)}
\end{array}\right) \in \mathfrak{F}_{2 n,}, \mathfrak{B}_{0}=\left(\begin{array}{cc}
Z^{(n)} & 0 \\
0 & W^{(n)}
\end{array}\right) \in \mathfrak{F}_{2 n,} \text { we get } \\
& \\
& \left(\mathscr{D} E_{k}^{2 n}\right)(3, s) \\
& \quad=\frac{\Gamma(2 k+2 s+1)}{\Gamma(2 k+2 s-n+2)} \sum_{T \in T^{(n)}}\left(\mathcal{P}(Z, W, s) \left\lvert\,\left(\begin{array}{cc}
\left.\left.\Gamma^{n}\left(\begin{array}{cc}
T & 0 \\
0 & T^{-1}
\end{array}\right) \Gamma^{n}\right)_{W}\right) \operatorname{det}(T)^{-k-2 s}
\end{array}\right.\right.\right.
\end{aligned}
$$

$$
+\frac{\Gamma(2 k+2 s+1)}{\Gamma(2 k+2 s-n+2)} \mathscr{R}(Z, W, s)
$$

where

$$
\begin{aligned}
& \rho(Z, W, s) \\
:= & \sum_{g \in \Gamma^{n}}\left\{\operatorname{det}(\operatorname{Im}(Z))^{s} \operatorname{det}(\operatorname{Im}(W))^{s}|\operatorname{det}(W+Z)|^{-2 s} \rho\left((W+Z)^{-1}\right)\left(\boldsymbol{t}_{1}{ }^{t} \boldsymbol{t}_{2}\right)\right\} \mid(g)_{z},
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathscr{R}(Z, W, s):=\sum_{T \in T^{n-1)}} \sum_{g_{2} \in P_{n, n-1} \mid \Gamma^{n}} \sum_{g_{2}^{\prime} \in P_{n, n-1} \mid \Gamma^{n}} \sum_{g_{1} \in G_{n, n-1}} \sum_{\bar{g}_{1}^{\prime} \in \Gamma^{n-1}(T) \backslash G_{n, n-1}} \\
& \cdot\left\{\operatorname{det}(\operatorname{Im}(Z))^{s} \operatorname{det}(\operatorname{Im}(W))^{s}\left|\operatorname{det}\left(1_{n}-\hat{T} W \hat{T} Z\right)\right|^{-2 s}\right. \\
& \left.\cdot \rho\left(\left(1_{n}-\hat{T} W \hat{T} Z\right)^{-1}\right)\left(\boldsymbol{t}_{1} \widehat{\widehat{T}}^{t} \boldsymbol{t}_{2}\right)\right\}\left|\left(\widehat{g}^{\prime}{ }_{1}\right)_{W}\right|\left(\widehat{g}_{1}\right)_{z}\left|\left(g^{\prime}\right)_{W}\right|\left(g_{2}\right)_{z} .
\end{aligned}
$$

Proof. It follows from Proposition 1 and Lemma 1 that

$$
\begin{aligned}
& \left\{\mathscr{D}\left(\left.\operatorname{det}(\operatorname{Im} 3)^{s}\right|_{k} g_{\bar{T}}\right)\right\}\left|\left(\widehat{g}^{\prime}{ }_{1}\right)_{W}\right|\left(\widehat{g}_{1}\right)_{z}\left|\left(g^{\prime}\right)_{W}\right|\left(g_{2}\right)_{z} .
\end{aligned}
$$

If for each \hat{T} we put $g_{\hat{T}}=\left(\begin{array}{cc}* & * \\ \mathfrak{C}^{(2 n)} & \mathfrak{D}^{(2 n)}\end{array}\right)$, we get

$$
\mathscr{D}\left(\left.\operatorname{det}(\operatorname{Im} \mathfrak{Z})^{s}\right|_{k} g_{\bar{T}}\right)=\operatorname{det}\left(\subseteq \overline{3_{0}}+\mathfrak{D}\right)^{-s} \mathscr{D}\left(\operatorname{det}(\mathfrak{C} \mathfrak{Z}+\mathfrak{D})^{-k-s} \operatorname{det}(\operatorname{Im}(\mathfrak{Y}))^{s}\right),
$$

by the form of \mathscr{D} and that of $\operatorname{det}(\operatorname{Im}(3))$,

$$
=\operatorname{det}\left(\mathfrak{C} \overline{\mathfrak{Z}_{0}}+\mathfrak{D}\right)^{-s} \operatorname{det}\left(\operatorname{Im}\left(\mathcal{B}_{0}\right)\right)^{s} \mathscr{D}\left(\operatorname{det}(\mathfrak{C} 3+\mathfrak{D})^{-k-s}\right) .
$$

As an example, we compute

$$
d^{*} \frac{\widetilde{\partial}}{\partial u_{n n}}\left(\operatorname{det}(\mathfrak{C} 3+\mathfrak{D})^{-k-s}\right) .
$$

Let \mathbb{S}_{m} be the symmetric group of degree m. We put

$$
\delta:=\operatorname{det}(\mathfrak{C} \mathfrak{Z}+\mathfrak{D}), \delta_{0}:=\operatorname{det}\left(\mathfrak{C} \mathcal{Z}_{0}+\mathfrak{D}\right), \partial_{j h}:=\frac{\partial}{\partial u_{j h}}(1 \leq j, h \leq n)
$$

and, for $m, q \in \boldsymbol{Z}, 0<m$ and $0 \leq q<m$,

$$
L_{m}^{q}:=\left\{\left(l_{1}, \cdots, l_{m}\right) \in \boldsymbol{Z}^{m} \mid l_{\nu} \geq 0(1 \leq \nu \leq m), \sum_{\nu=1}^{m} l_{\nu}=m-q, \sum_{\nu=1}^{m} \nu l_{\nu}=m\right\} .
$$

For $\left(l_{1}, \cdots, l_{m}\right) \in L_{m}^{q}$, let $\Lambda\left(l_{1}, \cdots, l_{m}\right)$ be the set consisting of $J \in \mathbb{S}_{m}$ such that, if l_{γ} $\neq 0(1 \leq \gamma \leq m)$,

$$
1 \leq J\left(\sum_{\nu=0}^{\gamma-1} \nu l_{\nu}+\gamma \lambda+1\right)<\cdots<J\left(\sum_{\nu=0}^{\gamma-1} \nu l_{\nu}+\gamma \lambda+\gamma\right) \leq m \quad\left(0 \leq \lambda<l_{r}\right)
$$

and

$$
1 \leq J\left(\sum_{\nu=0}^{\gamma-1} \nu l_{\nu}+1\right)<J\left(\sum_{\nu=0}^{\gamma-1} \nu l_{\nu}+\gamma+1\right)<\cdots<J\left(\sum_{\nu=0}^{\gamma-1} \nu l_{\nu}+\gamma\left(l_{\gamma}-1\right)+1\right) \leq m .
$$

Then we get

$$
\begin{aligned}
d^{*} \widetilde{\partial_{n n}}\left(\delta^{-k-s}\right)= & d^{*}\left(\sum_{\tau \in \mathscr{E}_{n-1}} \operatorname{sgn}(\tau) \partial_{1 \tau(1)} \cdots \partial_{n-1 \tau(n-1)}\right)\left(\delta^{-k-s}\right) \\
= & \sum_{q=0}^{n-2}\left\{\left(\prod_{\mu=0}^{n-2-q}(-k-s-\mu)\right) \delta_{0}^{-k-s-(n-1-q)}\right. \\
& \left.\times d^{*} \sum_{\tau \in \mathbb{E}_{n-1}\left(l_{1}, \cdots, l_{n-1}\right) \in L_{n-1}^{d}} \sum_{j \in \Lambda} \operatorname{sgn}(\tau) \partial_{\tau}^{J}\left(q ;\left(l_{1}, \cdots, l_{n-1}\right)\right)(\delta)\right\},
\end{aligned}
$$

where $\Lambda=\Lambda\left(l_{1}, \cdots, l_{n-1}\right)$ and

$$
\begin{aligned}
\partial_{\tau}^{J}\left(q ;\left(l_{1}, \cdots, l_{n-1}\right)\right)(\delta)= & \prod_{\gamma=1}^{n-1}\left\{\left(\partial_{\tau\left(J\left(a^{\gamma}+1\right)\right)} \cdots \partial_{\tau\left(J\left(a^{\gamma}+\gamma\right)\right)}\right)(\delta)\right. \\
& \times \cdots \\
& \left.\times\left(\partial_{\tau\left(J\left(a^{\gamma}+\gamma\left(l_{r}-1\right)+1\right)\right)} \cdots \partial_{\tau\left(J\left(a^{\gamma+1}\right)\right)}\right)(\delta)\right\}
\end{aligned}
$$

with $\alpha^{\gamma}:=\sum_{\nu=0}^{\gamma-1} \nu l_{\nu}, \partial_{\tau(J(\cdot))}:=\partial_{J(\cdot) \tau(J(\cdot))}$.
For each $q(0 \leq q \leq n-2),\left(l_{1}, \cdots, l_{n-1}\right) \in L_{n-1}^{q}, \tau \in \mathbb{S}_{n-1}$ and $J \in \Lambda$, we define

$$
\left(\partial_{J(j) \tau(J(h))}\right):=\left(\begin{array}{cc}
\left(\left(A_{\tau}^{J}\right)_{\xi \eta}\right)^{(n-1-q)} & * \\
* & \partial_{n n}
\end{array}\right)
$$

where, for $\sum_{\nu=1}^{\gamma-1} l_{\nu}+1 \leq \xi \leq \sum_{\nu=1}^{\gamma} l_{\nu}$ and $\sum_{\nu=1}^{\gamma^{\prime}=1} l_{\nu}+1 \leq \eta \leq \sum_{\nu=1}^{\gamma^{\prime}} l_{\nu},\left(A_{\tau}^{\gamma}\right)_{\xi \eta}$ is a $\gamma \times$ γ^{\prime} matrix. In the same way, we define

$$
\left(b_{J(j) \tau(J(h))}\right):=\left(\begin{array}{cc}
\left(\left(B_{\tau}^{J}\right)_{\xi \eta}\right)^{(n-1-q)} & * \\
* & b_{n n}
\end{array}\right)
$$

where $\left(\mathscr{C} \mathcal{B}_{0}+\mathscr{D}\right)^{-1} \mathfrak{C}=\left(\begin{array}{cc}* & \mathcal{B}^{(n)} \\ * & *\end{array}\right)$ and $\mathscr{B}=\left(b_{j h}\right)$.
Then we have

$$
\begin{aligned}
& d^{*} \sum_{\tau \in \tilde{ভ}_{n-1}} \operatorname{sgn}(\tau) \partial_{\tau}^{\mathcal{T}}\left(q ;\left(l_{1}, \cdots, l_{n-1}\right)\right)(\delta) \\
& =\sum_{\sigma \in \mathbb{C}_{n-1} / \prod_{n=1}^{n-1} \Theta_{\tau}^{\prime}}\left\{\operatorname{sgn}(\sigma) \prod_{\xi=1}^{n-1-q} d^{*} \operatorname{det}\left(\left(A_{\sigma}^{J}\right)_{\xi \xi}\right)(\delta)\right\},
\end{aligned}
$$

by $d^{*} \operatorname{det}\left(\left(A_{\sigma}^{J}\right)_{\epsilon \epsilon}\right)(\delta)=(\gamma+1)!\delta_{0} \operatorname{det}\left(\left(B_{\sigma}^{J}\right)_{\xi \epsilon}\right) \quad\left(\sum_{\nu=1}^{\gamma-1} l_{\nu}+1 \leq \xi \leq \sum_{\nu=1}^{\gamma} l_{\nu}\right)$,

$$
\begin{aligned}
& =\delta_{0}^{n-1-q} \prod_{\gamma=1}^{n-1}\{(\gamma+1)!\}^{l_{\gamma}} \sum_{\sigma \in \mathbb{S}_{n-1} / \prod_{\gamma=-1}^{n-1} \mathcal{E}_{\gamma}^{\prime}}\left\{\operatorname{sgn}(\sigma) \prod_{\xi=1}^{n-1-q} \operatorname{det}\left(\left(B_{\sigma}^{J}\right)_{\xi \xi}\right)\right\} \\
& =\delta_{0}^{n-1-q} \widetilde{b_{n n}} \prod_{\gamma=1}^{n-1}\{(\gamma+1)!\}^{l_{\gamma}} .
\end{aligned}
$$

Since the number of elements of Λ is $\left(\prod_{\gamma=1}^{n-1} \frac{1}{l_{r}!}\right) \frac{(n-1)!}{(1!)^{l_{1} \cdots((n-1)!)^{l_{n-1}}}}$, we obtain

$$
\begin{equation*}
d^{*} \widetilde{\partial_{n n}}\left(\delta^{-k-s}\right)=(-1)^{n-1} \sum_{q=0}^{n-2}\left\{a_{n-1}(q) \prod_{\mu=0}^{n-2-q}(2 s+2 k+2 \mu)\right\} \delta_{0}^{-k-s} \widetilde{b_{n n}} \tag{3.1}
\end{equation*}
$$

where

$$
a_{m}(q)=(-1)^{q} 2^{-(m-q)} m!\quad \sum_{\left(h, \cdots, l_{m}\right) \in L_{m}^{\circ}}\left(\prod_{\gamma=1}^{m} \frac{(\gamma+1)^{l_{\gamma}}}{l_{\gamma}!}\right) \quad(0<m, 0 \leq q<m) .
$$

In the same way, we have

$$
\begin{aligned}
& \mathscr{D}\left(\operatorname{det}(\mathfrak{C} B+\mathfrak{D})^{-k-s}\right) \\
& =(-1)^{n-1} \sum_{q=0}^{n-2}\left\{a_{n-1}(q)^{n-2-q} \prod_{\mu=0}^{n}(2 s+2 k+2 \mu)\right\} \operatorname{det}\left(\mathfrak{C} Z_{0}+\mathfrak{D}\right)^{-k-s}\left(\boldsymbol{t}_{1} \widetilde{\mathcal{B}}^{t} \boldsymbol{t}_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left.\left.\mathscr{D}(\operatorname{det}(\operatorname{Im}\})^{s}\right|_{k} g_{\hat{\tau}}\right)=(-1)^{n-1} \sum_{q=0}^{n-2}\left\{a_{n-1}(q)^{n-2-q} \prod_{\mu=0}(2 s+2 k+2 \mu)\right\} \\
& \times \operatorname{det}\left(\mathfrak{C} \mathfrak{B}_{0}+\mathfrak{D}\right)^{-k} \operatorname{det}\left(\operatorname{Im}\left(g_{\hat{T}}\left\langle\mathcal{Z}_{0}\right\rangle\right)\right)^{s}\left(\boldsymbol{t}_{1} \widetilde{\mathcal{B}}^{\boldsymbol{t}} \boldsymbol{t}_{2}\right) .
\end{aligned}
$$

On the other hand, we obtain

$$
\begin{aligned}
& \operatorname{det}\left(\mathfrak{C} \mathcal{B}_{0}+\mathfrak{D}\right)^{-k} \operatorname{det}\left(\operatorname{Im}\left(g_{\tilde{T}}\left\langle\mathcal{B}_{0}\right\rangle\right)\right)^{s}\left(\boldsymbol{t}_{1} \widetilde{\mathcal{B}}^{t} \boldsymbol{t}_{2}\right) \\
& =\operatorname{det}(\operatorname{Im}(Z))^{s} \operatorname{det}(\operatorname{Im}(W))^{s}\left|\operatorname{det}\left(1_{n}-\widehat{T} W \hat{T} Z\right)\right|^{-2 s} \rho\left(\left(1_{n}-\widehat{T} W \hat{T} Z\right)^{-1}\right)\left(\boldsymbol{t}_{1} \widetilde{T}^{t} \boldsymbol{t}_{2}\right) .
\end{aligned}
$$

Therefore we have only to prove

$$
\sum_{q=0}^{n-2}\left\{a_{n-1}(q) \prod_{\mu=0}^{n-2-q}(2 s+2 k+2 \mu)\right\}=\prod_{\mu=0}^{n-2}(2 s+2 k-\mu) .
$$

To prove the formula above, we put $x=2 s+2 k$ and $m=n-1$. Then we have to prove

$$
\begin{equation*}
\sum_{q=0}^{m-1}\left\{a_{m}(q) \prod_{\mu=0}^{m-1-q}(x+2 \mu)\right\}=\prod_{\mu=0}^{m-1}(x-\mu) \tag{3.2}
\end{equation*}
$$

We put $a_{m}(q)=0$ if $q \geq m, 0>q$ or $0 \geq m$. We use induction on m. If $m=1$, the assertion is trivial. We suppose

$$
\sum_{q=0}^{m^{\prime}-1}\left\{a_{m^{\prime}}(q) \prod_{\mu=0}^{m^{\prime}-1-q}(x+2 \mu)\right\}=\prod_{\mu=0}^{m^{\prime}-1}(x-\mu)
$$

for any $m^{\prime}<m$. Then we have

$$
\begin{aligned}
\prod_{\mu=0}^{m-1}(x-\mu)= & \left\{\prod_{\mu=0}^{m-2}(x-\mu)\right\}(x-m+1) \\
= & \left\{\sum_{q=0}^{m-2}\left\{a_{m-1}(q) \prod_{\mu=0}^{m-2-q}(x+2 \mu)\right\}(x+(2 m-2-2 q)-(3 m-3-2 q))\right. \\
= & \sum_{q=0}^{m-2}\left\{a_{m-1}(q) \prod_{\mu=0}^{m-1-q}(x+2 \mu)\right\} \\
& -\sum_{q=1}^{m-1}\left\{(3 m-2 q-1) a_{m-1}(q-1) \prod_{\mu=0}^{m-1-q}(x+2 \mu)\right\}
\end{aligned}
$$

$$
=\sum_{q=0}^{m-1}\left\{\left(a_{m-1}(q)-(3 m-2 q-1) a_{m-1}(q-1)\right) \prod_{\mu=0}^{m-1-q}(x+2 \mu)\right\} .
$$

If we note $3 l_{1}+\cdots+(m+1) l_{m-1}=3 m-2 q-1$ in L_{m-1}^{q-1}, we have

$$
\begin{aligned}
& a_{m-1}(q)-(3 m-2 q-1) a_{m-1}(q-1) \\
& =\frac{1}{m}(-1)^{q} 2^{-(m-q)} m!\sum_{L_{m-1}}\left\{\left(l_{1}+1\right) \frac{2^{l_{1}+1}}{\left(l_{1}+1\right)!}\left(\prod_{\gamma=2}^{m-1} \frac{(\gamma+1)^{l_{\gamma}}}{l_{\gamma}!}\right)\right\} \\
& +\frac{1}{m}(-1)^{q} 2^{-(m-q)} m!\sum_{L_{m=1}^{m}=1}\left\{\left(\prod_{\gamma=1}^{m-1} \frac{(\gamma+1)^{l_{\gamma}}}{l_{\gamma}!}\right)\left(\sum_{\gamma=1}^{m-1}(\gamma+1)\left(l_{\gamma+1}+1\right) \frac{\gamma+2}{l_{\gamma+1}+1} \frac{l_{\gamma}}{\gamma+1}\right)\right\} \\
& =(-1)^{q} 2^{-(m-q)} m!\sum_{L_{m}^{\prime}}\left\{\left(\prod_{\gamma=1}^{m} \frac{(\gamma+1)^{l_{\gamma}}}{l_{\gamma}!}\right) \frac{1}{m} \sum_{\gamma=1}^{m} \gamma l_{\gamma}\right\} \\
& =a_{m}(q) \text {. }
\end{aligned}
$$

Thus we get (3.2).
Remark. Under the notation above, we note that the formula

$$
d^{*} \tilde{\partial_{j h}}\left(\delta^{-k-s}\right)=(-1)^{n-1} \prod_{\mu=0}^{n-2}(2 s+2 k-\mu) \delta_{0}^{-k-s} \widetilde{b_{j h}}
$$

which is obtained from (3.1) and (3.2), and the formula

$$
d^{*}\left(\operatorname{det}\left(\frac{\partial}{\partial U}\right)\right)\left(\delta^{-k-s}\right)=(-1)^{n} \prod_{\mu=0}^{n-1}(2 s+2 k-\mu) \delta_{0}^{-k-s-1} \operatorname{det}(\widehat{T})
$$

in [4, Satz 9], [5, Satz 3] have the same meaning.
For $\sum_{j=1}^{n} a_{j} t_{n+j}, \sum_{j=1}^{n} b_{j} t_{n+j} \in \operatorname{alt}^{n-1}\left(V_{2}\right)$, we define the inner product of them by

$$
\left\langle\sum_{j=1}^{n} a_{j} t_{n+j}, \sum_{j=1}^{n} b_{j} t_{n+j}\right\rangle:=\sum_{j=1}^{n} a_{j} \bar{b}_{j} .
$$

Suppose $f, g \in M_{k}^{n}\left(\operatorname{alt}^{n-1}\left(V_{2}\right)\right)^{\infty}$. The Petersson inner product of f and g is defined by

$$
(f, g):=\int_{r^{n} \mid \oint_{n}}\left\langle\rho^{\prime}(\sqrt{\operatorname{Im}(W)}) f(W), \rho^{\prime}(\sqrt{\operatorname{Im}(W)}) g(W)\right\rangle \operatorname{det}(\operatorname{Im}(W))^{-n-1} d X d Y
$$

if the right-hand side is convergent. Here $W=X+i Y$ with real matrices $X=\left(x_{j h}\right)$ and $Y=\left(y_{j h}\right)$;

$$
d X:=\prod_{j \leq h} d x_{j h}, d Y:=\prod_{j \leq h} d y_{j h}
$$

the integral is taken over a fundamental domain of $\Gamma^{n} \backslash \mathfrak{S}_{n}$. We write $d W=d X d Y$ when there is no fear of confudion.

Theorem 5. Let k be an even integer, n an odd integer and $2 k \geq n>2$. If
$f \in S_{k}^{n}\left(\operatorname{alt}^{n-1}\left(V_{2}\right)\right)$ is an eigenform,

$$
\begin{gathered}
\left(f,\left(\mathscr{D} \boldsymbol{E}_{k}^{2 n}\right)\left(\left(\begin{array}{cc}
-\bar{Z}^{(n)} & 0 \\
0 & *
\end{array}\right), \frac{\bar{s}+n}{2}\right)\right) \\
=2 \pi^{n k-\frac{1}{2}(n-1)^{2}} i^{n k+n-1} \gamma(s) \Lambda(s, f, \underline{\operatorname{St}})\left(\iota^{-1}(f)\right)(Z) .
\end{gathered}
$$

If Theorem 5 is proved, the functional equation of $\Lambda(s, f, \underline{\mathrm{St}})$ is obtained from that of $\boldsymbol{E}_{k}^{2 n}(3, s)$. Since it follows from Theorem 3 that the location of poles of $E_{k}^{2 n}(3, s)$ is invariant under the operation of \mathscr{D}, its holomorphy is proved in the same way as that by Mizumoto [19, Theorem 1] (cf. Weissauer [24]). Thus we get Theorem 1.

Proof of Theorem 5. It follows from Theorem 3 that $\left(f,\left(\mathscr{D} E_{k}^{2 n}\right)\left(\left(\begin{array}{cc}-\bar{Z} & 0 \\ 0 & *\end{array}\right), \bar{s}\right)\right)$ converges absolutely and locally uniformly for $k+2 \operatorname{Re}(s)>2 n+1$. We note that $\mathscr{R}(Z, W, s)$ is orthogonal to $S_{k}^{n}\left(\operatorname{alt}^{n-1}\left(V_{2}\right)\right)$ in the variable W by the same reason as that in Klingen [15, Satz 2]. Since the Hecke operators are Hermitian operators and f is an eigenform, we have

$$
\begin{aligned}
& \left(f,\left(\mathscr{D} E_{k}^{2 n}\right)\left(\left(\begin{array}{cc}
-\bar{Z} & 0 \\
0 & *
\end{array}\right), \bar{s}\right)\right) \\
& \quad=\frac{\Gamma(2 k+2 s+1)}{\Gamma(2 k+2 s-n+2)} D(k+2 s, f)(f, \mathscr{P}(-\bar{Z}, *, \bar{s}))
\end{aligned}
$$

by the definition (1.2). If we compute the integral $(f, \mathscr{P}(-\bar{Z}, *, \bar{s}))$ according to Klingen [14, § 1] (see also [5], [7], [23]), we obtain

$$
(f, \mathscr{P}(-\bar{Z}, *, \bar{s}))=2^{n(n-2 s-k)+2} i^{n k+n-1} \psi\left(\iota^{-1}(f)\right)(Z)
$$

and

$$
\psi=\int_{S^{n}} \operatorname{det}\left(1_{n}-S \bar{S}\right)^{k+s-n-1}\left(\left(\widetilde{1_{n}-S \bar{S}}\right)\left[\boldsymbol{p}_{n}\right]\right) d S
$$

where $\boldsymbol{p}_{n}^{(1, n)}:=(0, \cdots, 0,1)$ and $\boldsymbol{S}^{n}:=\left\{S \in \boldsymbol{C}^{(n)} \mid S={ }^{t} S, 1_{n}-\bar{S} S>0\right\}$. Moreover, by Hua [10, § 2.3] (see also [5], [7], [14], [23]), we get

$$
\psi=\pi^{\frac{n(n+1)}{2}}\left(\frac{2 k+2 s-n+1}{2}\right) \frac{\Gamma(k+s-n)}{\Gamma(k+s+1)} \prod_{j=1}^{n-1} \frac{\Gamma(2 k+2 s-2 n+1+2 j)}{\Gamma(2 k+2 s-n+1+j)} .
$$

Thus, by (1.3), we obtain

$$
\begin{aligned}
& \left(f,\left(\mathscr{D} E_{k}^{2 n}\right)\left(\left(\begin{array}{cc}
-\bar{Z} & 0 \\
0 & *
\end{array}\right), \frac{\bar{s}+n-k}{2}\right)\right) . \\
& =2^{n(1-s)+2} i^{n k+n-1} \pi^{\frac{n(n+1)}{2}} \zeta(s+n)^{-1} \prod_{j=1}^{n} \zeta(2 s+2 n-2 j)^{-1}
\end{aligned}
$$

$$
\times \frac{\Gamma(s+k)}{\Gamma(s+k-n+1)} \prod_{j=1}^{n} \frac{\Gamma(s+k-n-2+2 j)}{\Gamma(s+k-1+j)} L(s, f, \underline{\mathrm{St}})\left(c^{-1}(f)\right)(Z)
$$

and Theorem 5 is proved.

References

[1] A.N. Andrianov: The multiplicative arithmetic of Siegel modular forms, Russian Math. Surveys 34 (1979), 75-148; English translation.
[2] A.N. Andrianov and V.L. Kalinin: On the analytic properties of standard zeta function of Siegel modular forms, Math. USSR-Sb. 35 (1979), 1-17; English translation.
[3] S.Böcherer: Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen, Math. Z. 183 (1983), 21-46.
[4] : Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreinreihen II, Math. Z. 189 (1985), 81-110.
[5] -: Über die Funktionalgleichung automorpher L-Funktionen zur Siegelschen Modulgruppe, J. Reine Angew. Math. 362 (1985), 146-168.
[6] -: Ein Rationalitätssatz für formale Heckereihen zur Siegelschen Modulgruppe, Abh. Math. Sem. Univ. Hamburg 56 (1986), 35-47.
[7] S. Böcherer, T. Satoh and T. Yamazaki: On the pullback of a differential operator and its application to vector valued Eisenstein Series, Commentarii Math. Univ. St. Pauli. 42 (1992), 1-22.
[8] P. Feit: Poles and residues of Eisenstein series for symplectic and unitary groups, Mem. Amer. Math. Soc. 61 no. 346, Providence, Rhode Island, 1986.
[9] P.B. Garrett : Pullbacks of Eisenstein series ; applications, Automorphic Forms of Several Variables, Progress in Math. 46, 114-137, Birkhäuser, Boston-Basel-Stuttgart, 1984.
[10] L.K. Hua : Harmonic analysis of functions of several complex variables in the classical domains, Trans. Amer. Math. Soc. 6, Providence, Rhode Island, 1963.
[11] T. Ibukiyama: Invariant harmonic polynomials on polysheres and some related differential equations, preprint.
[12] -: On differential operators on automorphic forms and invariant pluri-harmonic polynomials, preprint.
[13] V.L. Kalinin : Eisenstein series on the symplectic group, Math. USSR-Sb. 32 (1977), 449-476; English translation.
[14] H. Kligen: Über Poincaréche Reihen zur Siegelschen Modulgruppe, Math. Ann. 168 (1967), 157170.
[15] -_: Zum Darstellungssatz für Siegelsche Moduformen, Math. Z. 102 (1967), 30-43.
[16] R.P. Langlands : Problems in the theory of automorphic forms : Lecture Notes in Math. 170, 18 -86, Springer, Berlin-Heidelberg-New York, 1970.
[17] -: Euler products, Yale Univ. Press, 1971.
[18] -: On the functional equations satisfied by Eisenstein series, Lecture Notes in Math. 544, Springer, Berlin-Heidelberg-New York, 1976.
[19] S. Mizumoto: Poles and residues of standard L-functions attached to Siegel modular forms, Math. Ann. 289 (1991), 589-612.
[20] -: Eisenstein series for Siegel modular groups, Math. Ann. 297 (1993), 581-625.
[21] I. Piatetski-Shapiro and S. Rallis: L-functions for the classical groups, Lecture Notes in Math. 1254, 1-52, Springer, Berlin-Heidelberg-New York, 1987.
[22] G. Shimura : On Eisenstein series, Duke Math. J. 50 (1983), 417-476.
[23] H. Takayanagi : Vector valued Siegel modular forms and their L-functions; applications of a differential operator, Japan. J. Math. 19 (1993), 251-297.
[24] R. Weissauer : Stabile Modulformen und Eisensteinreihen, Lecture Notes in Math. 1219, Springer, Berlin-Heidelberg-New York, 1986.

Department of Mathematics Keio University
3-14-1 Hiyoshi Kohoku-ku Yokohama, 223 Japan
Current Address
Department of Business Administration
Sakushin Gakuin University
908 Takeshita-machi Utsunomiyacity
Tochigi-pref., 321-32, Japan

