Kutami, M. and Inoue, I. Osaka J. Math. 32 (1995), 501-512

ON REGULAR RINGS WHOSE MAXIMAL RIGHT QUOTIENT RINGS ARE TYPE I_f

MAMORU KUTAMI AND ICHIRO INOUE

(Received July 26, 1993)

Introduction

This paper is written about the property (DF) on regular rings whose maximal right quotient rings are Type I_f . Hereafter regular rings whose maximal right quotient rings are Type I_f are said to satisfy (*). The property (DF) is very important property when we study on regular rings satisfying (*), and it was treated in the paper [5] written by the first author, where (DF) for a ring R is defined as that if the direct sum of any two directly finite projective R-modules is always directly finite. In the above paper, the equivalent condition that a regular ring R of bounded index satisfies (DF) was discovered and called (#). Stillmore, we proved that the condition (DF) is equivalent to (#) for regular rings whose primitive factor rings are artinian in the paper [6]. Then we have the problem that (DF) is equivalent (#) for regular rings satisfying (*) or not, where the condition (*) is weaker than one that primitive factor rings are artinian.

In §2, we shall prove Theorem 2.4. This is important, and using this, Theorem 2.5 (i.e. if R is a regular ring satisfying (*) and k is any positive integer, then kP is directly finite for every directly finite projective R-module P) is proved. Moreover, we shall solve the above problem in Theorem 2.11.

In §3, we shall consider some applications of Theorem 2.11. We prove Theorem 3.3 that if R is a regular ring satisfying (*) whose maximal right quotient ring of R satisfies (DF), then so does R. Though it is clear that a regular rings satisfying (*) which has a nonzero essential socle satisfies (DF), we can prove that, for regular rings satisfying (*), the condition having a nonzero essential socle is not equivalent to (#) in Example 3.4. Next, we shall consider that $(\Pi_1^{\infty} R)/(\oplus R)$ satisfies (DF) or not for a regular ring R satisfying (*). This problem is a generalization of Example 3.4, and we prove that, for a regular ring R of bounded index, $(\Pi_1^{\infty} R)/(\oplus R)$ satisfies (DF) (Theorem 3.9).

Throughout this paper, R is a ring with identity and R-modules are unitary right R-modules.

1. Definitions and notations

DEFINITION 1. A ring R is (Von Neumann) regular provided that for every $x \in R$ there exists $y \in R$ such that xyx = x.

NOTE. Every projective modules over regular rings have the exchange property.

DEFINITION 2. A module M is directly finite provided that M is not isomorphic to a proper direct summand of itself. If M is not directly finite, then M is said to be directly infinite. A ring R is said to be directly finite (resp. directly infinite) if so is R as an R-module.

DEFINITION 3. The *index* of a nilpotent element x in a ring R is the least positive integer such that $x^n = 0$ (In particular, 0 is nilpotent of index 1). The *index* of a two-sided ideal J of R is the supremum of the indices of all nilpotent elements of J.

If this supremum is finite, then J is said to have bounded index. If J does not have bounded index, J is said to be index ∞ .

NOTE. Let R be a regular ring with index ∞ . Then using [3, the proof of Lemma 2], there exists a family $\{A_n\}_{n=1}^{\infty}$ of independent right ideals of R such that A_n contains a direct sum of n nonzero pairwise isomorphic right ideals. Therefore R has a family $\{e_{ij}\}_{i,j=1,2,\dots}$ of idempotents such that

$$e_{21}R \simeq e_{22}R$$
$$e_{31}R \simeq e_{32}R \simeq e_{33}R$$

, where $e_{ij} = 0$ (i < j), and $\{e_{i1}, \dots, e_{ii}\}$ are orthogonal for all i.

DEFINITION 4. A ring R has (DF) if the direct sum of two directly finite projective R-modules is directly finite.

DEFINITION 5. A regular ring R is *abelian* provided all idempotents in R are central.

DEFINITION 6. A ring R satisfies (*) if every nonzero two-sided ideal of R contains a nonzero two-sided ideal of bounded index.

DEFINITION 7. A ring R is unit-regular provided that for each $x \in R$ there is a unit $u \in R$ such that xux = x.

NOTE. Every finitely generated projective module over a unit-regular ring has the cancellation property ([2, Theorem 4.14]).

DEFINITION 8. Let e be an idempotent in a regular ring R. Then e is called an *abelian idempotent* (of R) whenever the ring eRe is abelian.

DEFINITION 9. Let e be an idempotent in a regular right self-injective ring R. Then e is *faithful* (in R) if 0 is the only central idempotent of R which is orthogonal to e. A regular right self-injective ring R is said to be *Type I* provided that it contains a faithful abelian idempotent, and R is *Type I*_f if R is Type I and directly finite.

NOTE. It is well-known from [4, Theorem 2] and [2, Lemma 7.17] that a regular ring R satisfies (*) if and only if the maximal right quotient ring of R is Type I_f .

NOTE. Let R be a regular ring satisfying (*). If P is a finitely generated projective R-module, then $\operatorname{End}_{R}(P)$ is a regular ring satisfying (*).

Proof. Choose a positive integer *n* and an idempotent matrix $e \in M_n(R)$ such that $e(nR_R) \simeq P$. Then $\operatorname{End}_R(P) \simeq eM_n(R)e$. Using [2, Corollary 10.5], we see that $eM_n(Q(R))e \simeq Q(eM_n(R)e)$ is Type I_f , where Q(R) is the maximal right quotient of *R*. Since $eM_n(R)e \leq eQ(eM_n(R)e)$ as an $eM_n(R)e$ -module, we have that $eM_n(R)e$ satisfies (*), and so has $\operatorname{End}_R(P)$.

NOTATIONS. Let A, B and A_i $(i \in I)$ be R-modules, and k be a positive integer. Take $x \in \Pi A_i$. Then we have some notations as following.

A < B; A is a submodule of B. $A \leq B$; B has a submodule isomorphic to A. $A < \oplus B$; A is a direct summand of B. $A \leq \oplus B$; B has a direct summand isomorphic to A. $A < {}_{e}B$; A is an essential submodule of B. $A \leq {}_{e}B$; B has an essential submodule isomorphic to A. kA; the k-copies of A. x(i); the *i*-th component of x. Q(R); the maximal right quotient ring of R.

2. The property (DF) for regular rings satisfying (*)

Lemma 2.1 ([2, Theorem 6.6]). Let R be a regular ring whose primitive factor rings are artinian. Then R satisfies (*).

Lemma 2.2. Let R be a regular ring satisfying (*). Then there exist abelian regular rings $\{S_t\}_{t\in T}$ and orthogonal central idempotents $\{e_t\}_{t\in T}$ of R such that $R_R \leq e[\Pi M_{n(t)}(S_t)]_R$, $\bigoplus M_{n(t)}(S_t) \leq R$ and $e_t R = M_{n(t)}(S_t)$. Therefore $Q(R) \simeq \Pi M_{n(t)}(Q(S_t))$.

Proof. This theorem follows from [2, Lemma 7.17 and the proof of Theorem 7.18].

Lemma 2.3. Let R be a regular ring of bounded index and P be a finitely generated projective R-module. Then P can not contain a family $\{A_1, A_2, \dots\}$ of nonzero finitely generated submodules such that $A_i \ge A_{i+1}$ and $iA_i \le P$ for each $i=1,2,\dots$

Proof. By [2, Corollary 7.13], we see that $\operatorname{End}_{R}(P)$ has bounded index. Note the claim in the proof of [2, Theorem 6.6], and applying [5, Lemma 5] to $\operatorname{End}_{R}(P)$, we see that this lemma holds.

Theorem 2.4. Let R be a regular ring satisfying (*), and P be a projective R-module with a cyclic decomposition $P = \bigoplus_{i \in I} P_i$. Then the following conditions (a)~(d) are equivalent:

- (a) P is directly infinite.
- (b) There exists a nonzero cyclic projective R-module X such that $\aleph_0 X \leq P$.
- (c) There exists a nonzero cyclic projective R-module X such that $X \leq \bigoplus_{i \in I \{i_1, \dots, i_n\}} P_i$ for any finite subset $\{i_1, \dots, i_n\}$ of I.
- (d) There exists a nonzero cyclic projective R-module X such that $\aleph_0 X \leq \bigoplus P$.

Proof. It is clear that (a) \rightarrow (b) and (c) \rightarrow (d) \rightarrow (a) hold, hence we shall prove that (b) \rightarrow (c) holds. We may assume $\bigoplus M_{n(t)}(S_t) < R_R <_e [\Pi M_{n(t)}(S_t)]_R$ for some set of abelian regular rings $\{S_t\}_{t\in T}$ by Lemma 2.2. Now we assume that (b) holds, hence there exists a nonzero principal right ideal X of R such that $\aleph_0 X \leq P$. Let $\{i_1, \dots, i_n\}$ be a subset of I and set $I' = I - \{i_1, \dots, i_n\}$. Since $\bigoplus M_{n(t)}(S_t) < R_R <_e [\Pi M_{n(t)}(S_t)]_R$, there exists $t' \in T$ such that $Y = [(\Pi_{t \neq t'} 0) \times M_{n(t')}(S_t)] \cap X \neq 0$. By the property of regular ring, it is clear that Y is a principal right ideal of R. Then $\aleph_0 Y \leq$ P, hence $Y \leq \bigoplus P$. Thus for each $i \in I$, we have decompositions $P_i = P_i^1 \bigoplus P_i^{(1)}$ and $Y \simeq P_{i_1}^1 \oplus \dots \oplus P_{i_n}^1 \oplus (\bigoplus_{i \in I'} P_i')$. Set $(\Pi_{t \neq t'} 0) \times M_{n(t')}(S_{t'}) = S$, and then there exists a central idempotent e in R such that eR = S.

Note that S is a regular ring of bounded index. It is clear that

$$Y \otimes_R S_S \simeq (P_{i_1}^1 \otimes_R S) \oplus \cdots \oplus (P_{i_n}^1 \otimes_R S) \oplus [\oplus_{i \in I'} (P_i^1 \otimes_R S_s)]$$

and $2Y \otimes_R S_S \leq P \otimes_R S_S$. Since S is unit-regular, $Y \otimes_R S_S$ has the cancellation property. Hence

$$Y \otimes_{R} S_{S} \leq \bigoplus (P_{i_{1}}^{(1)} \otimes_{R} S) \oplus \cdots \oplus (P_{i_{n}}^{(1)} \otimes_{R} S) \oplus [\bigoplus_{i \in I'} (P_{i}^{(1)} \otimes_{R} S_{s})]$$

Thus for each *i*, we obtain that $P_i^{(1)} \otimes_R S_S = \overline{P}_i^2 \oplus \overline{P}_i^{(2)}$ for each $i \in I$ and

$$Y \otimes_R S_S \simeq \bar{P}_{i_i}^2 \oplus \cdots \oplus \bar{P}_{i_n}^2 \oplus (\oplus_{i \in I'} \bar{P}_i^2).$$

Continuing this procedure, we have that $\bar{P}_i^{(m)} = \bar{P}_i^{m+1} \oplus \bar{P}_i^{(m+1)}$ and

$$Y \otimes_{R} S_{S} \simeq \bar{P}_{i_{1}}^{m+1} \oplus \cdots \oplus \bar{P}_{i_{n}}^{m+1} \oplus (\oplus_{i \in I'} \bar{P}_{i}^{m+1})$$

for each $i \in I$ and each positive integer m.

Now we set $A_m = \overline{P}_{i_1}^m \oplus \cdots \oplus \overline{P}_{i_n}^m$, where $A_1 = (P_{i_1}^1 \otimes_R S) \oplus \cdots \oplus (P_{i_n}^1 \otimes_R S)$. Then $A_1 \leq \oplus A_2 \oplus (\bigoplus_{i \in I'} \overline{P}_i^2)$, hence there exist a direct summand B_2 of A_2 and a direct summand Q_i^2 of \overline{P}_i^2 such that $A_1 \simeq B_2 \oplus (\bigoplus_{i \in I'} Q_i^2)$. Continuing this procedure, we obtain a family $\{B_1, B_2, \cdots\}$ $(A_1 = B_1)$ of finitely generated projective S-submodules of $(P_{i_1} \oplus \cdots \oplus P_{i_n}) \otimes_R S$ such that $B_m \gtrsim B_{m+1}$ and $mB_m \leq nS$ for all m. By Lemma 2.3, there exists a positive integer k such that $B_m = 0$ for all $m (\geq k)$. Thus we have that $A_1 \simeq (\bigoplus_{i \in I'} Q_i^2) \oplus \cdots \oplus (\bigoplus_{i \in I'} Q_i^k)$ and $Y \otimes_R S_S \simeq (\bigoplus_{i \in I'} Q_i^1) \oplus \cdots \oplus (\bigoplus_{i \in I'} Q_i^k)$. Noting that $0 \neq Y < S$, we have that $Y_R \lesssim \bigoplus_{i \in I'} P_i$.

Corollary 2.5. Let R be a regular ring satisfying (*). Then R contains no infinite direct sums of nonzero pairwise isomorphic right ideals. Hence R is directly finite.

Proof. From Lemma 2.2, we may assume that, $R_R <_e \Pi M_{n(t)}(S_t)$ for some abelian regular rings $\{S_t\}_{t\in T}$. Set $T = \Pi M_{n(t)}(S_t)$. Now we assume that R contains a direct sum of nonzero pairwise isomophic right ideals, and so there exists a nonzero idempotent e of R such that $0 \neq \aleph_0(eR) \leq R_R$. Then $\aleph_0(eR) \otimes_R T \leq R \otimes_R T$, and so $\aleph_0(eT) \leq T$, which contradicts to Theorem 2.4 because T is a directly finite regular ring satisfying (*).

Theorem 2.6. Let R be a regular ring satisfying (*) and k be a positive integer. If P is a directly finite projective R-module, then so is kP.

Proof. We may assume that $\bigoplus M_{n(t)}(S_t) < R_R <_e [\Pi M_{n(t)}(S_t)]_R$ for some abelian regular rings $\{S_t\}_{t\in T}$, and let $P = \bigoplus_{i\in I} P_i$ be a cyclic decomposition of P. It is sufficient to prove that this theorem holds in case k = 2. Assume that 2P is directly infinite. Then Theorem 2.4 follows that there exists a nonzero principal right ideal X of R such that $X \leq \bigoplus_{i\in I - \{i_1, \dots, i_n\}} 2P_i$ for any finite subset $\{i_1, \dots, i_n\}$ of I. By the proof of Theorem 2.4, we may assume that exists t' of T such that $X < (\prod_{t \neq t'} 0) \times M_{n(t')}(S_{t'}) = S$. For any finite subset $\{i_1, \dots, i_n\}$ of I, we have that $0 \neq X \otimes_R S_S \leq \bigoplus_{i\in I - \{i_1, \dots, i_n\}} 2P_i \otimes_R S$. Since S is a regular ring of bounded index, we see that $2(P \otimes_R S)_S$ is directly infinite by Theorem 2.4 and so $(P \otimes_R S)_S$ is directly infinite by [5, Theorem 4]. Moreover, using Theorem 2.4 again, there exists a nonzero principal right ideal Y of S such that $Y \leq \bigoplus_{i \in I - \{i_1, \dots, i_n\}} (P_i \otimes_R S_S)$ for any finite subset $\{i_1, \dots, i_n\}$ of I. Considering Y as an R-module, $O \neq Y_R \leq \bigoplus_{I - \{i_1, \dots, i_n\}} P_i$. Therefore P is directly infinite, and so this theorem is complete.

Corollary 2.7. Let R be a regular ring satisfying (*). Then every finitely generated projective R-module is directly finite.

Proof. It is clear by Corollary 2.5 and Theorem 2.6.

Corollary 2.8. Let R be a regular ring satisfying (*).

(a) $M_n(R)$ is directly finite for all positive integer n, and so $M_n(R)$ contains no infinite direct sums of nonzero pairwise isomorphic right ideals.

(b) If P and Q are finitely generated projective R-modules, then $P \oplus Q$ is directly finite.

Proof. (a) R is a regular ring satisfying (*), and hence so is $M_n(R)$. Therefore Corollary 2.5 shows that (a) holds. (b) follows from Corollary 2.7.

NOTE. In [1], Chuang and Lee have shown that there exists a regular ring satisfying (*) which is not unit-regular. Our Corollary 2.8 gives a partially solution for open problems 1 and 9 in Goodearl's book ([2]).

DEFINITION. Let R be a regular ring and P be a projective R-module. We call that P satisfies (#) provided that, for each nozero finitely generated submodule I of P and any family $\{A_1, B_1, \dots\}$ of submodules of P with

$$I = A_1 \oplus B_1,$$

$$A_i = A_{2i} \oplus B_{2i},$$

$$B_i = A_{2i+1} \oplus B_{2i+1} \qquad \text{for each } i = 1, 2, \cdots,$$

there exists a nonzero projective *R*-module *X* such that $X \leq \bigoplus_{i=m}^{\infty} A_i$ or $X \leq \bigoplus_{i=m}^{\infty} B$ for any positive integer *m*.

Lemma 2.9 ([5, Lemma 6]). Let P be a nonzero finitely generated projective module over a regular ring R, and set $T = \text{End}_{R}(P)$. Then the following conditions are equivalent:

- (a) P satisfies (#).
- (b) T satisfies (#) as a T-module.

Lemma 2.10 ([5, Lemma 7]). Let P be a nonzero finitely generated projective

module over a regular ring R, and set $T = \text{End}_R(P)$. Then the following conditions are equivalent:

- (a) R satisfies (#) as an R-module.
- (b) All nonzero finitely generated projective R-modules satisfy (#).
- (c) For any positive integer k, kR satisfies (#).
- (d) There exists a positive integer k such that kR satisfies (#).

Theorem 2.11. Let R be a regular ring satisfying (*). Then the following conditions are equivalent:

- (a) R has (DF).
- (b) R satisfies (#) as an R-module.
- (c) For any nonzero finitely generated projective R-module P, $End_{R}(P)$ has (DF).
- (d) For any positive integer k, $M_k(R)$ has (DF).
- (e) There exists a positive integer k such that $M_k(R)$ satisfies (DF).

Proof. Note that $\operatorname{End}_{R}(P)$ is a regular ring with (*). [5, Theorem 8] was proved only using [5, Theorem 2]. Now [5, Theorem 2] holds on a regular ring satisfying (*) by Theorem 2.4. Hence we see that this theorem holds under this condition using the similar proof of [5, Theorem 8] (Note that the unit-regularlity is not needed).

3. Some applications

Lemma 3.1. Let R be a regular ring satisfying (*), and let $\{e_i\}$ be a set of nonzero orthogonal central idempotents of R such that $\bigoplus e_i R_R < {}_e R_R$. Then R has (DF) if and only if $e_i R$ has (DF) for all i.

Proof. Note that $e_i R$ is a ring direct summand of R. It is clear from Theorem 2.11 that "only if" part holds. We shall prove that "if" part holds. Let I be a nonzero direct summand of R, and so $e_i R \cap I \neq 0$ for some i. Setting $J = e_i R \cap I$, J is a principal right ideal of both R and $e_i R$. We consider decompositions

$$I = A_1 \oplus B_1$$

$$A_j = A_{2j} \oplus B_{2j}$$

$$B_j = A_{2j+1} \oplus B_{2j+1}$$
 for each $j = 1, 2, \cdots,$

and so there exist decompositions of J such that

$$J = C_1 \oplus D_1$$
$$C_j = C_{2j} \oplus D_{2j}$$

M. KUTAMI AND I. INOUE

$$D_{j} = C_{2j+1} \oplus D_{2j+1}$$

$$C_{j} \lesssim \oplus A_{j} \text{ and } D_{j} \lesssim \oplus B_{j} \text{ for each } j = 1, 2, \cdots.$$

By the assumption, there exists a nonzero cyclic projective e_iR -module X such that $X \leq \bigoplus_{j=m}^{\infty} C_j$ or $X \leq \bigoplus_{j=m}^{\infty} D_j$ for each positive integer m. Hence $X \otimes_R e_iR \leq \bigoplus_{j=m}^{\infty} (C_j \otimes_R e_iR)$ or $X \otimes_R e_iR \leq \bigoplus_{j=m}^{\infty} (D_j \otimes_R e_iR)$. Note that $\bigoplus_{j=m}^{\infty} (C_j \otimes_R e_iR) \leq \bigoplus_{j=m}^{\infty} A_j$ and $\bigoplus_{j=m}^{\infty} (D_j \otimes_R e_iR) \leq \bigoplus_{j=m}^{\infty} B_j$. Therefore $X \otimes_R e_iR \leq \bigoplus_{j=m}^{\infty} A_j$ or $X \otimes_R e_iR \neq 0$, this lemma has proved by Theorem 2.11.

Lemma 3.2 ([6, Proposition 2.1]). Let R be an abelian regular ring. If Q(R) has (DF), then so has R.

Theorem 3.3. Let R be a regular ring satisfying (*). If Q(R) has (DF), then so does R.

Proof. By Lemma 2.2, we may assume that there exists a set $\{S_t\}$ of abelian regular rings such that $R_R <_e[\Pi M_{n(t)}(S_t)]$. Then $Q(R) = \Pi M_{n(t)}Q(S_t)$. Assume that Q(R) has (DF), then so does $M_{n(t)}(Q(S_t))$ for all t by Lemma 3.1. Moreover, Theorem 2.11 shows that $Q(S_t)$ also has (DF), hence so has S_t by Lemma 3.2. Thus $M_{n(t)}(S_t)$ also has (DF) by Theorem 2.11. There exists the set $\{e_t\}$ of orthogonal central idempotents of R such that $e_t R = M_{n(t)}(S_t) \times [\Pi_{t \neq t} \cdot 0]$ and $\bigoplus e_t R <_e R_R$. Therefore R has (DF) by Lemma 3.1.

Now we shall give an example of a regular ring with a zero socle satisfying (*) which has (DF), as following.

EXAMPLE 3.4. Let F be a field, and set $R = \prod_{i=1}^{\infty} F_i(F_i = F)$ and $\overline{R} = R/\operatorname{soc}(R)$. Then \overline{R} is a regular ring satisfying (*) which has (DF).

Proof. Since it is clear that \overline{R} is a regular ring satisfying (*), we shall prove that \overline{R} has (DF) using Theorem 2.11. Let Ψ be the natural map from R to \overline{R} , and let I be a nonzero direct summand of \overline{R} with following decompositions:

$$I = A_1 \oplus B_1$$

$$A_i = A_{2i} \oplus B_{2i}$$

$$B_i = A_{2i+1} \oplus B_{2i+1} \quad \text{for } i = 1, 2, \cdots.$$

Now assume that there does not exist $\{C_j\}$ $(C_j = A_j \text{ for some } i)$ which is an infinite subset of $\{A_i\}_{i=1}^{\infty}$ such that $C_j > C_{j+1}$ and $C_j \neq 0$ for all j. Let $\{D_p\}$ $(D_p = A_i \text{ for some } i)$ be an infinite decreasing sequence of $\{A_i\}$, and so there exists a positive integer p' such that $D_p = 0$ $(p \leq p')$. Hence $0 = D_{p'} = A_{i_1}$ for some

*i*₁. Thus $B_{i_1} \neq 0$. Next, we take $\{E_q\}$ $(E_q = A_i \text{ for some } i)$ which is an infinite decreasing sequence of $\{A_i\}$, where $E_q < B_{i_1}$ and $B_{k_q} < B_{i_1}$ $(A_{k_q} = E_q)$ for all positive integer q. Similarly, there exists a positive integer q' such that $E_q = 0$ $(q' \leq q)$. Hence there exists a positive integer i_2 $(i_2 > i_1)$ such that $E_{q'} = A_{i_2} = 0$. Therefore $B_{i_2} \neq 0$ and $B_{i_1} > B_{i_2}$. Continuing this procedure, we can get an infinite set $\{B_{i_k}\}$ such that $\{B_i\} \supset \{B_{i_k}\}$ and $B_{i_k} \neq 0$ for all k. From the above, we may assume that there exists an infinite decreasing sequence $\{C_j\}$ such that $\{A_i\} \supset \{C_j\}$, $C_j > C_{j+1}$ and $C_j \neq 0$ for all j.

We have a set $\{e_j\}$ of idempotents of R such that $\Psi(e_jR) = C_j$ and $e_jR \ge e_{j+1}R$ for all j. We take an idempotent $f_1(\in e_1R)$ with $\dim_F(f_1R) = 1$. Next we take an idempotent $f_2(\in e_2R)$ such that $\dim_F(f_2R) = 1$ and $f_1f_2 = 0$. Continuing this procedure, we can take a set $\{f_j\}$ of orthogonal idempotents of R. Set $e = \forall f_j$, and then $\Psi(e) \ne 0$. We have that $eR = J \oplus (eR \cap e_jR)$ and $J < \oplus F_i$ for some right ideal J. Noting that $J \otimes_R \overline{R} = 0$, we have that

$$0 \neq \Psi(e)\bar{R} \simeq eR \otimes_R \bar{R}$$
$$\simeq [J \oplus (eR \cap e_j R)] \otimes_R \bar{R}$$
$$\lesssim e_j R \otimes_R \bar{R}$$
$$\simeq C_j \qquad \text{for all } j.$$

Therefore $0 \neq \Psi(e)\bar{R} \leq \bigoplus_{i=m}^{\infty} A_i$ for any positive integer *m*. Hence \bar{R} has (DF) by Theorem 2.11.

By Example 3.4, we have a problem that, for any regular ring S, $R = (\prod_{1}^{\infty} S)/(\oplus S)$ satisfies (DF) or not. Example 3.5 shows that, even if S satisfies (*), R does not satisfy (*). Therefore we shall give the necessary and sufficient condition for that R satisfies (*), and we solve the above problem under this condition.

EXAMPLE 3.5. Let F be a field and set $S = \prod_{n=1}^{\infty} M_n(F)$, $\overline{S} = S/(\bigoplus M_n(F))$, $T = \prod_{i=1}^{\infty} S_i(S_i = S)$ and $R = T/(\bigoplus S_i)$. Then S satisfies (*), but R does not satisfy (*).

Proof. It is clear that S satisfies (*). Therefore we shall show that R does not satisfy (*). Set a central idempotent $e \ (\in T)$ as following;

$$e(n) = (0, \dots, 0, \begin{bmatrix} 1 \\ & 1 \end{bmatrix}, 0, 0, \dots),$$
$$\lfloor n - 1 \rfloor \lfloor n \rfloor$$

where $e(n) \in S_n$.

Let Φ be the natural map from S to \overline{S} , and ρ be the natural map from T to R. Set $\Psi = \rho|_{eT}$. Noting that $e(n)S_n \simeq M_n(F)$, we have $eT \simeq S$. Hence there exists a ring

isomorphism κ from eT to S. Now, we define a ring homomorphism α from $\Psi(e)R$ to \overline{S} as following; for each $x \in \Psi(e)R$, we take any element y of $\Psi^{-1}(x)$ and set $\alpha(x) = \Phi \kappa(y)$.

$$\Psi(e)R \xrightarrow{\alpha} \bar{S}$$

$$\uparrow^{\psi} \qquad \uparrow^{\Phi}$$

$$eT \xrightarrow{\kappa} S$$

Similarly we define a ring homomorphiism β from \overline{S} to $\Psi(e)R$. Then we have that $\beta \alpha = 1_{\psi(e)R}$ and $\alpha \beta = 1_{\overline{S}}$. Hence α and β are isomorphic. Therefore $\Psi(e)R \simeq \overline{S}$. Let I be a nonzero two-sided ideal of \overline{S} , and so $I = J/(\bigoplus S_i)$ for some nonzero two-sided ideal of S which contains $\bigoplus S_i$. There exists $0 \neq x \in J - (\bigoplus S_i)$ with $x(i) \neq 0$ for almost all *i*. Since $S_i x(i)S_i = M_i(F)$ has index *i*, there exists a nonzero central idempotent e(i) of $M_i(F)$ which $S_i x(i)S_i$ has index *i*. Therefore SxS does not have bounded index, and so does not $J/(\bigoplus S_i)$. Therefore \overline{S} does not satisfy (*), and hence so does not $\Psi(e)R$. Thus *R* does not satisfy (*).

Lemma 3.6. Let R be a ring, and e, f be idempotents of R. Then $eR \simeq fR$ if and only if there exist u and v of R such that vu = e and uv = f.

Lemma 3.7. Let S be a regular ring which has index ∞ , and set $R = (\prod_{i=1}^{\infty} S_i)/(\bigoplus S_i)$ $(S_i = S)$. Then R has an infinite direct sum of nonzero pairwise isomorphic right ideals.

Proof. Let Ψ be the natural map from $\prod_{i=1}^{\infty} S_i$ to R. Since S has index ∞ , there exists a set of idempotents $\{e_{ij}\}_{i,j=1,2,\dots}$ as following:

$$e_{11}S$$

 $e_{21}S \simeq e_{22}S$
 $e_{31}S \simeq e_{32}S \simeq e_{33}S$

, where $e_{ij} = 0$ (i < j) and $\{e_{i1}, \dots, e_{ii}\}$ are nonzero orthogonal for all *i*. For all positive integer *m*, we take idempotents $\{f_m\}$ such that $f_m(k) = e_{km}$ for all positive integer *k*. Since $e_{k1}S \simeq e_{k2}S$ for all *k*, there exist u_k and v_k of *S* such that $u_kv_k = e_{k2}$ and $v_ku_k = e_{k1}$ by Lemma 3.6. Set *u* and *v* of $\prod_{i=1}^{\infty}S_i$ such that $u(k) = u_k$ and $v(k) = v_k$. Then $uv = f_2$ and $vu = f_1 - e$, where *e* is an idempotent with $e(1) = e_{11}$ and e(k) = 0 $(k \neq 1)$. Hence $(f_1 - e)(\Pi S_i) \simeq f_2(\Pi S_i)$ and $(f_1 - e)(\Pi S_i) \cap f_2(\Pi S_i) = 0$. Therefore we see from Lemma 3.6 that $\Psi(f_1 - e)R \simeq \Psi(f_2)R$ and $\Psi(f_1)R \cap \Psi(f_2)R$

=0. Continuing this produce, for all positive integers *i* and *j*, $\Psi(f_i)R \simeq \Psi(f_j)R$ and $\Psi(f_i) \cap \Psi(f_j)R = 0$ ($i \neq j$). Thus *R* has an infinite direct sum of nonzero pairwise isomorphic right ideals.

Theorem 3.8. Let S be a regular ring, and set $R = (\prod_{i=1}^{\infty} S_i)/(\bigoplus S_i)$ $(S_i = S)$. Then the following conditions are equivalent:

- (a) R satisfies (*).
- (b) R is a regular ring whose primitive factor rings are artinian.
- (c) R has bounded index.
- (d) R contains no infinite direct sums of nonzero pairwise isomorphic right ideals.
- (e) S has bounded index.

Proof. It is clear by Lemma 3.7 that $(d) \rightarrow (e) \rightarrow (c) \rightarrow (b) \rightarrow (a)$ hold. $(a) \rightarrow (d)$ follows from Corollary 2.5. Therefore this theorem is complete.

Theorem 3.9. Let S be a regular ring of bounded index. Set $R = (\prod_{n=1}^{\infty} S_n)/(\bigoplus S_n)$ $(S_n = S)$. Then R has (DF).

Proof. Set $\prod_{n=1}^{\infty} S_n = T$, and let Ψ be the natural map from T to R. Let I be a nonzero direct summand of R with following decompositions:

$$I = A_1 \oplus B_1$$

$$A_i = A_{2i} \oplus B_{2i}$$

$$B_i = A_{2i+1} \oplus B_{2i+1}$$
 for $i = 1, 2, \cdots$.

Similarly to the proof of Example 3.4, we may assume that there exists an infinite subset $\{C_j\}$ of $\{A_i\}$ $(C_j = A_i \text{ for some } i)$ such that $C_j > C_{j+1}$ and $C_j \neq 0$ for all positive integer j. We have the set of idempotents $\{e_j\}$ of T such that $\Psi(e_jT) = C_j$ and $e_jT > e_{j+1}T$. Set $J_n = S_n \times (\prod_{i \neq n} 0)$. Then, $J_{n_1} \cap e_1T \neq 0$ for some positive integer n_1 . There exists a nonzero idempotent $f_1 \in T$ such that $f_1T = J_{n_1} \cap e_1T$. Next we have a nonzero idempotent $f_2 \in T$ for some n_2 $(>n_1)$ such that $f_2R = J_{n_2} \cap e_2R$. Continuing this procedure, we have the set $\{f_j\}$ of orthogonal idempotents of T. Now, we set an idempotent g of T as following;

$$g(n_j) = f_j(n_j) = e_j(n_j)$$

 $g(k) = 0 \ (k \notin \{n_j\}).$

Put $K_j = f_1 T \oplus \cdots \oplus f_{j-1} T$ for all j. Then $gT = K_j \oplus (gT \cap e_j T)$. Noting $K_j \otimes_T R = 0$, we have that

M. KUTAMI AND I. INOUE

 $0 \neq \Psi(g)R \simeq gT \otimes_T R$ $\simeq [K_j \oplus (gT \cap e_jT)] \otimes_T R$ $\simeq (gT \cap e_jT) \otimes_T R$ $\lesssim e_jT \otimes_T R$ $\simeq C_i \qquad \text{for all } j.$

From the above, we have that $\Psi(g)R \leq \bigoplus_{i=m}^{\infty} A_i$ for any positive integer *m*. Therefore *R* has (DF) by Theorem 2.11.

References

- [1] C.-L. Chuang and P.-H. Lee: On regular subdirect products of simple artinian ring. Pacific J. Math. 142 (1990), 17-21.
- [2] K.R. Goodearl: Von Neumann regular rings, Kreiger, Florida, 1991.
- [3] K.R. Goodearl and J. Moncasi: Cancellation of finitely generated modules over regular rings, Osaka J. Math. 26 (1989), 679–685.
- [4] H. Kambara and S. Kobayahi: On regular self-injective rings, Osaka J. Math. 22 (1985), 71–79.
- [5] M. Kutami: Projective modules over regular rings of bounded index, Math. J. Okayama Univ. 30 (1988), 53-62.
- [6] M. Kutami and I. Inoue: The property (DF) for regular rings whose primitive factor rings are artinian, Math. J. Okayama Univ. 35 (1993), 169–179

Department of Mathematics Yamaguchi University Yoshida, Yamaguchi 753 Japan