
Milani, A. and Shibata, Y.
Osaka J. Math.
32 (1995), 347-362.

ON COMPATIBLE REGULARIZING DATA FOR
SECOND ORDER HYPERBOLIC

INITIAL-BOUNDARY VALUE PROBLEMS

ALBERT MILANI and YOSHIHIRO SHIBATA

(Received October 19, 1993)

1. Introduction.

It is well known that a necessary condition to solve an initial-boundary value
problem in a proper domain of Rn is that the data of the problem satisfy, at the
boundary of the domain, compatibility conditions of a certain order, which generally
depends on the regularity assumed of the data, and required of the solution. In
many situations, one is led to consider approximations of the solutions, obtained
by solving problems with more regular data; thus, one needs to construct more
regular data that not only approximate the given ones, but also satisfy compatibility
conditions of higher order. A typecal example occurs when, in order to prove

the existence of a solution to the original problem by means of energy methods,

one first establishes the required energy estimates on more regular solutions (which

it is possible to differentiate), and then resorts to a density argument. This is,

for instance, the method followed by Ikawa, [8], and Shibata, [16], for linear

hyperbolic equations of second order with Neumann type boundary conditions,

and by Dan, [6], for a linear coupled hyperbolic-parabolic system, again with

Neumann boundary conditions. A similar situation was considered by Rauch and

Massey, [15], while proving the regularity of solutions to a linear first order

hyperbolic system, under general boundary conditions.

More recently, Beirao DaVeiga ([1,2,3,4,5]) presents and develops a general

method to prove the strong continuous dependence with respect to the data of

solutions to nonlinear hyperbolic problems, including the nonlinear Neumann

problems considered by Shibata-Kikuchi, [18], and Shibata-Nakamura, [19], as

well as several systems of nonlinear fluid dynamics; in particular, the model

nonlinear Neumann problem

utt - div A(Vu) =/(*, 0 in Ω x ]0, Γ[

(1.1) φr,0) = t/0(;t), ιφc90) = ul(x) in Ω

v A(Vu) + b(ύ) = φ(x, t) in dίl x ]0, Γ[
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with Ω c: Rn bounded open domain with smooth boundary dΩ and (small) Γ>0 is
considered in [3], DaVeiga's method is partially based on a regularizing procedure
for the linearized equations, and the required compatible regularizing data are

constructed by adapting the procedure of Rauch and Massey; this essentially
consists in approximating all data in a standard way, and then modifying one of

the regularized initial values so as to satisfy the compatibility conditions (this is
also the method followed by Ikawa and Shibata). As another application of his
method, in [4] DaVeiga shows the strong convergence, under certain conditions,
of solutions of the compressible Euler equations to that of the incompressible ones;
in a similar way, we can consider, as in [11], the convergence of solutions to the
dissipative quasilinear hyperbolic equation

(1.2) εt/,, + wt- Σ aij(u,Vu)didju=f(x,t)
U=ι

to the solution of the corresponding limit parabolic equation

(1-3) ",- Σ aifμ9Vu)d1dju=f(x9t)
U=ι

as εJO: in the case Ω = /?π, weak convergence is proved in [11], and strong
convergence in [12].

All these results on the nonlinear problem are obtained by the usual method
of linearizing, and constructing compatible regularizing data for the linearized
equations; thus, the problem of such construction under minimal regularity
assumptions on the coefficients is of fundamental importance. In this respect, the
mentioned results of Ikawa, Rauch and Massey, Shibata and Dan are not optimal,
in that the regularity of the coefficients makes their results unsuitable for direct
application to the corresponding nonlinear problems; in fact, DaVeiga explicitly
shows in [1] and [5] how the procedure of Rauch and Massey can be suitably
adapted, so as to be applicable to the nonlinear problem.

With these motivations in mind, in this note we present a simple, direct and
selfcontained method to construct compatible regularizing data in the two model
cases of a linear second order hyperbolic equation, with Dirichlet or Neumann
boundary conditions, under the minimal regularity assumptions of the coefficients
that are sufficient for applications to the corresponding nonlinear problems. More
precisely, we consider the problems

w« - Σ aij<x> Widju =/(*» 0 in Ω x ]°> Γ[

(1.4) 4x,0) = w0(x), uj(x90) = ui(x) in Ω

w(jc,0 = 0 in dΩx]0,Γ[
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and

n

"„ - Σ *</(*» W H =f(x, t) in Ω x ]0, Γ[
i.j= 1

(1.5) «(*,())=M0(*), M,(x,0)=M,(x) in Ω

n

X v/iy(x, t)d{u(x91) = <£(*, 0 in dΩ x ]0, Γ[
u=ι

where v is the outward unit normal to δΩ; as an application, we shall show how our

method can be used to give a direct, simplified proof of DaVeiga's result on the

strong well-posedness of the quasilinear Neumann problem (1.1). The Dirichlet
problem could be treated in a similar way (for an alternative, simpler method, see
also [13]). Finally, we would like to remark that our method should be sufficiently
general to also apply to parabolic equations; for instance, following a similar

technique, in [10] we prove the strong well-posedness in the large for Sobolev
solutions of (1.3) with Dirichlet boundary conditions. Although we have not

checked the details, we believe it should also apply to first order systems, as
considered by Rauch and Massey, [15], thereby recovering the improved results
of DaVeiga, [1].

2. Notations and results.

Let Ω c: Rn be a bounded domain, with a smooth boundary 3Ω, whose outward
unit normal we denote by v, and Γ>0; we consider in g = Ωx]0,Γ[ the linear

hyperbolic initial-boundary value problems (1.4) and (1.5) for u = u(x,ί)εRn, with

ut = du/dt and djU = du/dXj. Following the theory developed by Kato in [9], we

consider solutions with values in Sobolev spaces; thus, given m e N, we set H™ = //"'(Ω),

Hrl = Hm<^Hl if m>2, and note || ||m the norm in ΪΓ, || || the norm in
//° = L2. Similarly, we set /Γ = /Γ(dΩ) and note «- »r its norm. We also set

*"•= Π c'([o,r] ίΓ-Λ *l
.7 = 0 j=0

and endow these spaces with their canonical norms, noted ||| |||, <« »>r: that

is, we set

m
2= max £

0 < t < Γ / = 0

M

>* = max £ <
0<ί<Γj=0
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We assume that the coefficents a^eX*, with integer ^>[f] + 2, so that in particular
β); that they are symmetric and strongly elliptic, i.e. aij = aji and

(2.1)
U=ι

In the sequel, we shall assume α=l, and abbreviate

also, whenever it makes sense, we define

(2.2) u2(x) =/(x,0) 4- φ,0)d2w0M.

To describe the compatibility conditions on the data, necessary to solve the
Dirichlet problem (1.4), we introduce the spaces

= {("o, "ι,/)l"o e //i u, E Hi fe Lip([0, Γ] L2)},

and we say that {u&u^f} satisfy the compatibility conditions of order one [two]
if {wQjW^/Je^! \β^\\ note that, indeed, u2€Hl if {uθ9uί9f}e@>2> while if
{uQ,ul9f}e@>ί9 then in general u2eL2 only, so it does not necessarily have a
trace on <5Ω. Analogously, for the Neumann problem (1.5), we say that the data
{MO>W !,/,#} satisfy the first or second order compatibility conditions if they belong
respectively to the spaces

1, /e Lip([0, Γ] L2),

* e Lip([0, T]

, /f € Lip([0, Γ] L2),

where we have abbreviated

U=ι



COMPATIBLE REGULARIZING DATA 351

again, note that if {uθ9ul,f9g}e^2^ then u2εHl and the two conditions at the

boundary make sense in H*9 while if {uθ9uί9f.>g}€Λr

ί, then in general M2eL2(Ω)

only, and only the first condition makes sense in ffi.
It is well known then that, under the stated assumptions on the coefficients,

to solve the Dirichlet and Neumann problems (1.4) and (1.5) it is necessary and
sufficient that the data satisfy the compatibility conditions; in fact, setting

}, we have the following theorem.

Theorem 1. Let i= 1,2. Given any {uθ9uί9f} e 2i9 there exists a unique ueXί+l,
solution 0/(1.4). Moreover, there exists M >0, depending on T and \\\a\\\s, such that

We [0,7]

(2.3) - Γll/,112}.
Jo

Proof. See e.g. Kato, [9] (II, 10.1), and Ikawa, [7] (Prop. 2.6).

Theorem 2. Let i=l,2. Given any {uθ9uί9f9g}e^V \ , there exists a unique
ueXi+i, solution of (1.5). Moreover, there exists M >0, depending on T and \\\a\\\s,
such that We[0,Γ]

(2.4) \\D2u(t)\\2<M{\\D2u(0)\\2 + \\f(.M2 +
Jo

Proof. See Shibata, [16](sct. 4). We recall that the second order estimate
(2.4) is a consequence of the first order estimate

(2.5) \\U(t)\\2+\\Du(t)\\2+
o

« 0 | | ϊ+ll"ιll2+ Γ
Jo

where D = {di9dt}9 estimate (2.5) was first established for solutions of (1.5) by

Miyatake in [14]; (2.4) follows then by regularization, differentiation in f, and

ellipticity. Π

We now address the following question for the Dirichlet problem: given

{wo>Mi5/)e®ι> construct a sequence {uλ&u\Jλ}tQ)2 such that, as Λ,|0,

(2.6) Ik-WilU-i^O, ί =0,1,2

(2.7)
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and, calling uλ the solution to (1.4) corresponding to {uQ9u
λ

l9f
λ} (so that uλεX3),

(2.8) lll«Λ-t/lll->0.

Similarly, for the Neumann problem, given {uθ9ul9f9g}e^Vί9 we want to construct
a sequence of data {(uQ9u

λ

l9f
λ

9g
λ}e^2 such that, as Λ j O , (2.6) and (2.7) hold,

together with

(2.9) (,0)-g(.,0)»i->0, I «*?-
Jo

and, with the analogous meaning of uλ e X3

9 (2.8) as well.
Our goal is to show that the stated assumptions on the coefficients a{j are

sufficient to construct such compatible regularizing data; in fact, we claim:

Theorem 3. Given any {uQ9uί9f}e@ί9 there exists a sequence [uQ9u^9f
λ}e^2^

such that (2.6), (2.7) and (2.8) hold.

Theorem 4. Given any {uθ9uί9f9g}e^ί9 there exists a sequence {uQ9u\9f
λ

9g
λ} e

Λ*29 such that (2.6), (2.7), (2.8) and (2.9) hold.

As we mentioned, the regularity atj e Xs assumed of the coefficients is precisely the
minimal one sufficient for applications to nonlinear problems; actually, since we
only need that a^e Cl(Q) (while Ikawa, [8], and Shibata,[16], assumed atj€ C2(Q))9 it
would be sufficient to assume that Λ yeC° ([0,Γ];/O^C'1([0,71;/P"1). As an
application, we shall indicate how to merge our method with DaVeiga's one to
prove the strong well-posedness of the nonlinear Neumann problem (1.1) (with,
for simplicity, b = 0); thus, under the usual assumptions on A, which we shall
recall in section 5, we claim (compare to [3], Theorem 1.1):

Theorem 5. Let f,gεZs(T)±X*-1 nCs(\Q9T]\L2l φψ€Zs(T)±Xs_^Cs(\Q9

Γ]; /?*); uθ9Ό0eIΓ+1; uί9υίeHs be such that {uθ9uί9f9φ} and {vθ9vl9g,ψ} satisfy the
compatibility conditions of order s (to be recalled explicitly in section 5). Let
u9veXs+i(T') (Γ'e]0,Γ]) be the local solutions to (1.1), corresponding to such
data. Then, given any ε>0, there exists <5>0 such that, if\\\f—g\\\l + «<</> — Ά>»s-i

+ K-»oll.2+ι + K-M?^2» then lllw-*+ι^ε

(We recall that local in time solvability in Xs+i for (1.1) under the stated
assumptions on the data is established by Shibata- Kikuchi in [18]; see section 5).
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3. Peoof of Theorem 3.

We start with the following technical result:

Lemma 1. //°°n//J is dense in H\.

Proof. Given we//*, let {vδ} be a sequence from //°°, such that

(3.1) ||^_M||2^0.

To correct vδ at δΩ so that its trace is zero, we define wδ to be the solution of the elliptic
problem

0 in Ω,

wδ = vδ on dΩ.

Indeed, (3.2) has, for sufficiently large λ>Q (which can be chosen independently

of δ), a unique solution wθe//°°. Then w* = z;*-w<5e//00n//J; and since uδ-u

solves the problem

- Δ(M* - u) + λ(uδ -u)=- Δ(vδ - u) + λ(vδ - u) in Ω,

u-u = on ,

it satisfies the elliptic estimate

(3.4) ||M*_M||2<C{||W*_W|| + ̂

From (3.3), using (3.1), we see that \\uδ — u\\ ->0 as (5|0; thus, from (3.4), using
again (3.1), we deduce that ||tι* — 1*||2-*0. D

Since Co°(Ω) is dense in both L2 and //£, by Lemma 1 we can choose sequences
{«o}5 {"ί} and {uλ

2} from #°°n7/i such that (2.6) holds as Λ j O (again, note that
M2 is defined, by (2.2), in L2). Following Ikawa, [8] (set. 3), by mollification in
t we can also construct a sequence hλ from C^PXΓ];//00) such that

ίVΛ-/(ιιJo
(3.5) I ||A?-/,||2->0

as Λ, JO, holds. Define

(3.6) l\x)=h\x,0)-u\(x)

then, since a(.90)EfΓ and ,s>f+l, lλeHl. Define further
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(3.7) /Λ(x,0=AΛ(*,0-/ΛM = ̂

then fλ e C°°([0, Γ] Hl) and

(3.8) u*(x) =Λ

so [uQ9u
λ

ί9f
λ}eS>2. Since// = Λ*, (3.5) implies the second part of (2.7); moreover,

from (3.8) and (2.2) we have

/Λ(x,0) -/(x,0) = κ&c) - u2(x) - φ,0)

and therefore

whence the first part of (2.7) follows, by means of (2.6). Finally, (2.8) is a consequence
of estimate (2.3), applied to the difference uλ — u, with / replaced by fλ— /, and
(2.6), (2.7). Π

4. Proof of Theorem 4.

We now turn to the Neumann problem (1.5), and follow a similar procedure. At
first, we choose sequences {M£}> {u\} from C00 '([O^ /f00) such that (2.6) and (2.7)
hold, and a sequence {hλ} from C^PXΓ];//00) such that

(.,0)-g(.,0)»i^O, «h}-
Jo

(4.1)

as /l|0, holds. Define, for

then, since α(.,0)e//s and Ojί^OJefP"1, /έ and /ί are in at least if «>2. (If
/ι=l, dΩ reduces to two points, say {x^x2}\ g is in fact a pair of functions
{#(*!> )>g(*2> )}5 and we choose sequences {h\},{h2}eCc°([Q,T~]), approximating
g in the sense that

-g(xiίO)\ - 0, Γ\hΐ(ή-g(xi9t)\2dί -> 0
Jo

as A|0, for ι = l,2). Consider now a function ρeC£(R), such that p(r) = 1 in a
neighborhood of r = 0, and set
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(4.4) ΛΛ=l(l + «/ί»f),

gλ(x, t) = h\x, t) + /£(*) + tp(Rλt)li (x):

then, clearly, g λ e C°°([0, Γ] H\ and

(4.5) gfo, t) = hϊ(x, t) + [p(/?Λ0 + (Rj)p'(Rλfϊ]l{ (*)•

Thus, from (4.2) and (4.3) we have that, since p(0)=l,

(4.6) g\x,Q) = h\x,0) + /έ(x) = α'(x,0)5«έ(x),

(4.7) g,V,0) = Λ,V,0) + 1{ (x) = a*(x,0)8U*(x) + α?(x,0)δκέ(x).

Since {wo.M^/^Je^Ί, we have that g(x,0)=av(x,0)du0(x), and therefore, by (4.6),

thus, the first part of (2.9) follows from (2.6). Next, from (4.5) we have that

gfo, t)-8t(x, 0 = ̂ (x,t) -gt(x, t) + χ(Rλt)l\(x),

where χ(t)=p(t) + tp'(t); thus,

(4.8)
o o

Now, by our choice (4.4) of Rλί

and therefore the second part of (2.9) follows from (4.8) and the first part of
(4.1). Finally, (2.8) follows from (2.6),(2.7) and (2.9), by means of estimate (2.4),
with w, / and g replaced by uλ — u, fλ—f and gλ—g. Π

5. Proof of Theorem 5.

5.1. We assume that A'Λ ^ Rn-+Rn is a smooth function with symmetric

derivatives, that is, setting 0^ = 3 ,̂ aij=aji9 and that (compare to (2.1))

(UE) 3μ>0|Yp e% \/q € Rn,
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To describe the natural compatibility conditions on the data at dΩ for 7 = 0, we
formally compute by recursion from (1.1) the functions

Ϊor0<k<s+l

with their usual interpretation: i.e., for instance,

M*) =Λ(*>0) + div lA'

etc.; note that our assumptions on w0, MJ and / guarantee that ukefΓ+l~k for

Q<k<s+l, and moreover, setting ί ίίo*s+ 1=^*^0 II w * l lβ+ι- fc>

(5.1) »Ms2

+ι<^{ll«olL%ι + llwιL2},

for suitable c>0 depending on ||w0||s+1 and Hi i jH, . Also, we can define on dΩ
the functions, that we formally denote by

in the usual recursive way, that is for instnce

etc.; again, we have that ak

ijefίs~k~^.
Accordingly, we say that the data {w0,Wι,/5 Φ} satisfy the compatibility conditions

of order s if the following conditions hold on dΩ:

k n fk\
Σ Σ V 4 k^-Γ = ̂ (.,

r = l / J = l \r/

5.2. We now sketch the main ideas of the proof of Theorem 5. At first, we
recall from Shibata- Kikuchi, [18], that problem (1.1) has a unique local solution
ueXs+l(T')9 for some Γ'e]0,Γ], corresponding to {u&u^φ} satisfying the
compatibility conditions of order s. Similarly, there is a unique veXs+i(Tf')9

Γ"e]0,Γ], corresponding to {v0,vί9g,\l/} satisfying the same compatibility conditions;
in the sequel, we rename T by min(Γ, Γ', Γ").

We can differentiate (1.1) r times in t, for l<r<s— 1, and find that dr

tueXs+i~r
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is solution of the problem

(dr

tu)tt-a(x,t)d2(dr

tu) = Fr(x9t) in Ω x ]0,Γ[

(5.3) (SίκXx,0) = ιφ), (̂ 4(*,0) = Mr+1(x) in Ω

= Φr(x,t) in 5Ωx]0,Γ[

with α = {α0.} = {βί/VW)}, F = d\f+F,, Φ = d\φ-Φ\, Φ}=0, and

*ϊ = Σ f ;Γ) Σ (#«u)0Γ *W for r > 1,
*=ιWu=ι

ΦΊ = Σ fΓ7 *) Σ vtffajWW for r>2.

We have a similar set of equations satisfied, for 0<r<^— 1, by dr

tveXs+i~r, with

coefficients β = {βij}=={aij{Vv)}, and Gr, ΨΓ defined analogously to F\ Φr; since

u,veX*+i, we have that α,j3eA^ and, as it is not difficult to verify,
Fr,GreCl([Q9T];L2) and Φr,ΨreC1([0,Γ];^) at least.

We now proceed first to establish the Lipschits type estimates for lower order
norms in H™, \<m<s,

(5.4) |||« - »|||i < 7(|||/-g|||s
2 + <«</» - ψ^ + ||u0 - «o

with γ depending on T, |||ι/|||J+1 and |||o|||J+1. The difference d'u—d^v satisfies the
equations

($11 - d'tv)tt - a.d\d'tu - fftυ) = Γ - Gr + (α - β)δ2d'tv,

(5.5.a) (

αv5($κ - %v) = Φr - Ψp + (αv - /

for r>l and

(u-v)tt-

(5.5.0) («

for r=0 where α^ = fo«ι/V(z; + θ(u - v)))dθ, and therefore, by Shibata, [17] (Thm.



358 A. MILANI AND Y. SHIBATA

3.8), it satisfies, for 0<r<s — 2, the elliptic estimate

(5.6)

+ liar 2w-ar 2v\\s.,_2 = A, +

with M depending on |||«|||5+1 via the coefficients {a,-,-} and {α^ }, where dr=l for
r>l and =0 for r = 0. Following again Shibata, [17] (set. 4), by means of
Sobolev's product estimates and classical calculus inequalities we can estimate A2

and A5 in terms of Σs

k=0\\dfU— dfv\\s-k-i9 with quantities that depend at most on

H M I I f f + i and IIMIL+i ί the same is true for A3 and A69 keeping in mind that
δJc»6θ([0,Γ];/p f1"*). Thus, summing all inequalities (5.6) for 0<r<^-l, and
using the interpolation inequality

with α = ̂ fc, and adding the two extra terms for r—s— 1 and r = s, we
deduce the estimate

fc=0 k=0

(5-7) S 2

The last two terms of (5.7) can be estimated by means of the first order energy
estimate (2.5) applied to (5.5) for Q<r<s—l'9 note, however, that when r=s— 1 we
can estimate \\F*~l — G*"1!!, etc., only in terms of ΣJ[=1||d*H — θfy||5_k. Still, we
obtain from (5.7) that

k=0

SΣ
fc=oJo

fc=oo

from which, recalling (5.1),(5.4) follows by Gron wall's inequality.
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5.3. We now consider the highest order norm \\\u — v\\\s+ί. Exactly in the
same way we established (5.7), we obtain from (5.5) for 0<r<s— 1 the estimate

(5.8)

thus, because of the lower order estimates (5.4), to estimate \\\u — v\\\s+ ί it is sufficient to

estimate \\D2w — D2z\\, where w = ds

t~
lu and z = ds

t~^v^X2. This we cannot do

directly, because of the loss of regularity (that is, we cannot consider (5.5) for r=s)\
rather, we remark that from the boundary conditions in (5.3) for r=s— 1 we deduce

that, since us_^eH2 and useHl, setting F=F5~l, φ^φ5'1, we have that

{nβ_1,tιβ,F,Φ}eΛ''1. Thus, we can apply Theorem 4 to (5.3), and construct a
sequence {uj.^u^Fλ

9Φ
λ} from approximating {ua_i9Ug,F9Φ} in *Vi9 and such that

(from (2.8))

(5.9) |||W-W

A|||2-*0

as λ IQ. Applying (2.4) to the difference z — WΛ we obtain

\\D2z(ή-D2w\t)\\2<M{\\D2z(0)-D2w\0)\\2

+ « Ψ(0) - ΦΛ(0) » 1 4- « Bλ(0) »

- 1 «Ψ,-Φ(

Λ»|+ I «sλ

t»ι
Jo Jo

where Bλ=(β-(ήd2wλ and Bλ±(av-βv)d\vλ. We split

(5.11) C1<2M{||D2z(0)-Z)2w(0)||2-f \\D2w(0)-D

and similarly for the terms C2, C4, C6, C8; we note that



360 A. MILANI AND Y. SHIBATA

(512)

Next, we decompose Ft — Gt = ds

t~
ig — ds

t~
lf+dtG

s~'ί~-dtF
s~ί

9 and analogously for
Φ f— Ψ,; carrying out the differentiation and adding and subtracting similar terms,
proceeding as in the estimate of A2 and A5 it is not difficult to obtain the estimate

(5.13) IISiG -'-^-T+MΨi-^Φ^^
fc = 0

Exactly in the same way, we also obtain

||G(0)-/{0)||2 + «Ψ(0)-Φ(0)»f

(5.14) < l l δ

finally, recalling that ||d2wλ( .,t)\\ is uniformly bounded with respect to λ (and t\
we have

(5.15)

(5.16)

Replacing (5.11), ••• (5.16) into (5.10) we obtain

\\D2z(t)-D2w(t)\\2<2\\D2w(t)-D2wλ(t)\\2

+ \\D2w(0) - D2w*(Q)\\ 2 + \\\f-g\\\2

(5.17) + \\F[0)-F\0)\\2

Γ(
Jo *=o

Recalling (5.9), we have that
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D1 + D3 + D6 + DΊ + D8 + D9 < k(λ\

with k(λ)lQ as Λ J O ; thus, from (5.17) we obtain

f<JoJo fc=o

Adding this to (5.8), and recalling the lower order estimates (5.4), we obtain that

where the function r(A) = max0<ί<Γ||δ2v^;l(OII2 is not necessarily bounded as
By (5.4) with m = s, we deduce from (5.18) that

(519)

* ^
therefore, to conclude the proof of Theorem 5, given ε>0 it is sufficient to first

fix λ = 1 so that fc(I)<^ε2, and then to choose (5>0 so that Mb\\ + (1 +r(I))Γ)<^ε2:
from (5.19) with λ = l we deduce that |||w-z>|||s+ι<ε. Π D
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