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0. Introduction

For n>1, let t: SU(n) » SU(n) be the map defined by t(x)=x for
xe€ SU(n), where % is the complex conjugate of a unitary matrix x. The
natural inclusion RcC yields a monomorphism ,: SO(n) - SU(n) of
topological groups. Clearly i,(SO(n))={xe SU(n)|t(x)=x}. So the quo-
tient space SU(n)/i,(SO(n)), which we abbreviate to SU(n)/SO(n), forms
a compact symmetric space. It is denoted by AI (of rank n—1) in E.
Cartan’s notation. In this paper we compute its Chern character

ch: K*(SU(2n)/SO(2n)) - H*(SU(2n)/SO(2n); Q),
while that of SU(2n+1)/SO(2n+1) has been described in [8].
1. K-rings

In this section we collect some results on K-theory of related spaces
needed in the sequel.

Let G be a compact Lie group. Then the complex representation
ring R(G) forms a A-ring. For each integer k>0, let A*: R(G) - R(G)
be the k-th exterior power operation. The following is a known result:
see [4, Chapter 13] or [9, Chapter 4].

Proposition 1. For n>2, put A, =[C" € R(SU(n)) and let A, =A*(4,).
Then

R(SU(")) = 2[111'121""'17#' l]’
where lo=1 and A,=1.
Proposition 2. t*: R(SU(n)) —» R(SU(n)) satisfies

tA)=A,_x Sor k=1, n—1.
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Proof. This follows from [9, Example 2.9 and Proposition 2.12].

Let T' be the group of ‘‘diagonal’’ matrices consisting of n 2x2

diagonal boxes
<cos€i —sin0i>, (0.cR).

sinf;  cos#;

Then T  is a maximal torus of SO(2n). Let ¢: T'—SO(2n) be the
inclusion. There are classes #,--,#, of 1-dimensional 7T"-C-modules such
that

(11) R(T)zz[n1’n1—1"”)’1m’7n—1]/(r’1’11_1_1)""’1n’1n_1_1)

(see [9, Chapter 3, §3] and also (2.1)).
The following is a known result: see [4, Chapter 13] or [9, Chapter 4].

Proposition 3. For n>1, put u,=[R*"®gCle R(SO(2n)) and let
w=A¥(u,). There are two representations u, ,u, of SO(2n) of dimension
(®3™)/2 (where (§) denotes the binomial coefficient) such that

=t + 1y s i’*(ui—u;)=l_ljl(m—'1.-“)
and
R(SOQ2n))=Z[pt1,l2," " sn—15Hn sty 1/ (1),
where Wy, = for k=1,---n—1 and
T =t + ezt Wty + ozt o) = (g 3 +o0)

For n>2 the universal covering group of SO(2n) is the spinor group
Spin(2n). Letp: Spin(2n) —» SO(2n) be the covering map. For simplicity
we write yu; for p*(y;). Then

R(Spin(2n)) = Z[11,H2, st 283D 2],
where A}, A;, are the half-spin representations, each of dimension 2"7!,
and
D'(tn-1) = A2 A= M3 — b5 —
(1.2) D) =AL A~y Mpos—
P ) =D on— Mz —Hp—a—
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(see [4, Chapter 13] or [9, Chapter 4]).

Proposition 4. i,": R(SU(2n)) - R(SO(2n)) satisfies
1A =m=1"Ay,-1) for k=1,--- n—1

i1 (An) =ty + My -
Proof. Since 7,*(4;)=u,, this follows from Proposition 1 and 3.

Let G be a compact Lie group and H a closed subgroup of G. Then
the inclusion i: H —» G induces a fibre sequence

¢ 5o/t BaE BG.

There are two constructions of elements of K'(G/H) (see [6, p.
624]). First, a unitary representation u: H— U(n) induces a map
Bu: BH —» BU(n), which determines an n-dimensional complex vector
bundle over BH and hence an element a(u)e K(BH)=K°(BH). This
correspondence extends to a A-ring homomorphism o: R(H) - K°(BH).
Let &: R(G) —» Z be the augmentation and I(G) its kernel. Then the
composite j*o: R(H) - K°(G/H) factors through the projection

R(H) - R(H)/(I(G)) = RIH)® ()2,

where (I(G)) is the ideal in R(H) generated by the 7*-image of I(G), and
Z is a R(G)-module by pulling back along &. We write a(fl) € K°(G/H) for
the image of u—ne I(H) under j'a: I(H) - K°(G/H). Secondly, suppose
that two representations A,4": G — U(n) (of the same dimension) agree
on H. Then there is a map f: G/H — U(n) defined by

fxH)=A(x)A'(x)~! for xHe G/H.

The composition of f with the canonical injection ¢,: U(n) > U (where
U is the stable unitary group) defines a (base point preserving) homotopy
class B(A—21) in [G/H,U]=K (G/H). When H is the trivial group and
A’ is the trivial representation of dimension n, we have its absolute version
pHe K~ (G).

Since the composite
R(G) S K(BG)S H'(BG; Q)

maps I(G) into H*(BG; Q)=2X,, HY(BG; Q), the composite ch a:
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R(H) - H(BH;Q) induces a homomorphism
R(H)/(I(G)) » H'(BH; Q)/(H"(BG ; Q)),

where (H*(BG; Q)) is the ideal in H'(BH;Q) generated by the Bi*-image
of H*(BG; Q). Since (Bi)j is null-homotopic, j*: H'(BH; Q) - H'(G/H,
Q) induces a homomorphism

H'(BH; Q)/(H*(BG; Q)—- H'(G/H; Q).
Thus there is a commutative diagram
RED/IG) & H'(BH; Q)/(H*(BG; Q))
(1.3) sl i
K°G/H) > H(G/H; Q)

Lemma 5. With the above notation,
2
R(SO(2n))/(I(SU(2n))) = Z[u, 1/ (1 ~( nn>/2)2),

where the velation u; —(*"/2= —(u} —(3"/2) holds.

Proof. By Proposition 4,

2 2 2
(I(SU(Zn)))=(lh—< 1")»“"%—1‘(":11)’“: +“"_*( nn))'

So the lemma follows from Proposition 3.
The K-theory of SU(n)/SO(n) was determined by H. Minami [6].

Theorem 6 ([6, Proposition 8.2]). With the above notation, as a
Z/(2)-graded algebra over Z, K*(SU(Zn)/iO(Zn)) is an exterior algebra
Az(BAy—Azn-1)+ B(An-1 = An+ D)®AZ(a(u,)) generated by elements (4 —
Ayn—1) of degree —1 and a(u,”) of degree 0.

2. Cohomology rings

In this section we collect some results on the cohomology of related
spaces needed in the sequel. We refer the reader to [5] for a more
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complete exposition.
A compact connected Lie group G has a maximal torus 7. If

{oy,-,a,}(where n=dim T) is a simple system of roots of G with respect
to T, then

H(BT) Q)= Q[al)”'aan]y

where o;€ HX(BT; Q). Suppose further that G is simply connected. Let
wy,---,w, be the fundamental weights determined by {a,,---,a,}, i.e.,

2wy, 0)/(aj,0) =0 (1<id,j<n).
Then
H(BT) Z)=Z[(U1,"~,Cl)n],
where w;€ H*(BT; Z). Each w; is expressed as a Q-linear combination
of o;’s.
Let T be the group of diagonal matrices having 2n entries % with

€%...¢%"=1 Then T is a maximal torus of SU(2n), and #,(T") = T.

If {oy,"*+,05,_1} is a simple system of roots of SU(2n) with respect to
T, then

H'(BT; Q)=0Qlay, 05, 1].
Proposition 7. Bt': H'(BT; Q) » H'(BT; Q) satisfies
Bt*(ai)=a2n_i for i=1,"',2n_1.

Proof. This is a restatement of Proposition 2, since 4; is just the
irreducible representation determined by «;, that is, 4, admits a highest
weight w; below.

Let w,,---,w,,_, be the fundamental weights determined by
{al,"',azn_l}. Then

H'(BT; Z)=Z[w,,""*,03,-1]-
The following is also a restatement of Proposition 2.
Corollary 8. Bt': H'(BT; Z) > H'(BT; Z) satisfies

Bt'(w)=w,,_; for i=1,---2n—1.

Let R; denote the reflection relative to «;. If we put
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11 =0,
Lt=R;,_(t;_)==—w;_+w; for i=2,---2n—1,
tan=Ryp—1(tan-1)=— W21,
then
H'(BT; Z)=2Z[t{, - ,t5,)/(t; + -+ t3,)-

In fact, {t;]i=1,---,2n} is the set of weights of 4,: SU(2n) » U(2n).

Corollary 9. Br': H'(BT; Z) » H(BT; Z) satisfies
Bt*(tl)z '—t2n+1—i fOr i=1,“’,2n.

T'=p (T) is a maximal torus of Spin(2n). Since Bp': HX(BT';
Q) -»H?*(BT'; Q) is an isomorphism, we may identify them. If {oy, - 00}
is a simple system of roots of Spin(2n) with respect to 7", then

H'(BT'; Q)=H'(BT'; Q)= Qlo},-,,].
Proposition 10. B:i,*: H*(BT; Q) —» H'(BT'; Q) satisfies
Bi (o) =0o;=Bi*(tp,_1) for i=1,---,n—1
Bi,*(a,)=—ao',_{ + .

Proof. This is a restatement of Proposition 4, since py; is the
irreducible representation determined by o for i=1,---,n—2 and Aj,,A3,,
are the irreducible representations determined by a,,a, _; respectively (see
(1.2) and the next corollary).

Let o}, -,w, be the fundamental weights determined by {a},--,0;}.
Then

H'(BT'; Z)=Z[w, -, w,].
For simplicitly we write i, for the composite i;p: T' — T.
Corollary 11. Bi,*: H'(BT; Z) - H'(BT'; Z) satisfies
Bi*(w;) =w;=Bi"(w,,-;) for i=1,---,n—2
Biy (0, 1) =,y + @, =Bi (0, 1)

Bi*(w,) =2w,.
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Proof. This is also a restatement of Proposition 4. We only prove
that Proposition 10 implies this corollary. (The converse follows
similarly.) We will use implicitly the expression of fundamental weights
in terms of simple roots given in [1]. First, for i=1,.--,n—2,

i—1 2n—1

Bi *(w;) =Bty (—[Z](Zn—l)a + Z i(2n—j)a])

nj=1 j=1

1 i—-1 n—1 )
=—[Y j@n—i)Bi,*(a;))+ Y, i(2n—j)Bi *(;)
211 ji=1 i

ji=1
n—1
+inBi () + Y, ikBiy"(0z0-)]
k=1

1 i-1 _ n-1
=—[Y j2n—io;+ Y i2n—ja;
2n j=1 j=i

n—1

+in(—o,_y +ap)+ Y. tkot]
k=1
1 i- -2
———[Z](Zn Do+ Z i2n—po;+i(n+1)a,_,
n j= j=i
i-1 n—2
—ino,_y +ino+ Y tko+ Y tko+i(n—1)o,_ ]
k=1 k=i

i-1 n-2
= LY. Gn—)+ i+ Y, (@n—p -+,
j=1 j=i

+(@(n+1)—in+i(n—1))a, _ | +ina,]

n—2
———[2n Z]oc +2in Za + inol), _ ; +1ino]
i= j=i
i—-1 n—2
c s ’ 1. ’ 1. ’
=Y j+i Y o4ty +—io,
j=1 =i 2 2
= ;.

Next
2n—1

Bi"(w,-4)= Bll'(-—[ZJ(n+1)ot+ Y. (n=1)(2n—pa;))

j=n—1
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n—2

1
=5k I DBiy () +(n=1)(n+ DBiy' (- 1)

n—1
+(n—1)nBi*(0,)+ ), (n—1)kBi *(a;,-)]
k=1

n—2
=—[ Y jn+ 1o ;+(n—1)(n+ 1), _,
2n j=1

+(n—Dn(—a,_; +o,)

n—2

+ Z (n— 1)k} +(n—1)%a, _,]
k=1

1 n—2
=—[ Y ((n+1)+(n—1)))a

2n ji=1
+n—1)((n+1)—n+n—1)),_,

+(n—1)no,]

1 n—2
=—1{2n Zjoc}+(n— Dno, _, +(n—1)no,]
2n j=1

n—z_ 1 1
= Y j+—(n— 1)y +=(n— 1),
= 2 2

122 1 1
=—) Jjoi+-na, . +—(n—2)o,
2,-; it g1ty (n=2)

+1"i2'a’+1( 2)&’ +1 o
— -+ —(n— _1+-no,
24747y 1ty

=CO;,_1+CU;,.

Finally

. 1t 2n-1
Bi*(w,)=Bi, (a[ Jno;+ Z n(2n—j)a;])
1 j=n

j=

1 n—1 n—1
=—[n Y njBi*(a;)+n*Bi*(0,) +n Y, kBi;*(t3,-1)]
2n j=1 k=1



then

n-2 1 1
= Y it (n—2),_ y +ona,
j=1 2 2
=2w;,,.
If we put
ty= 0wy,
ti=R;_(ti_)=—w;_,+w; for i=2,--- n—2
ti-1 =Ry _5(th-2)=—w, r+w, +w,
th=Ry_((ty-1)=—w,_+w,
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n—1 1 1n—l
=—) jei+-n(—oy,_;+o5)+= ) ko
2,21]’ Pttt ¥k

k=1

niz o+ 1( Dat, L
= . —(n— R (104 _
j=1] J 2 n—1 2 n—1

1 1
+—not, +—(n—1)a, _
2" 2(" ) 1

H'(BT'; Z)=Z[t,,1,]

and the element #; of (1.1) can be chosen so that

2.1)

In fact, {£¢]i=1,---,n} is the set of weights of pu,: SO(2n) - U(2n).

Weyl group W(G)=Ng(T)/T acts on T and hence on H'(BT; Q).

1j
(ch a)n)=exp ()= ¥, " e E(BT'; Q).

jzoJ:

Corollary 12. Bi,*: H*(BT; Z) » H*(BT'; Z) satisfies

Bil*(ti)=t£) for i=1)“')n

Bil*(t2n+1—i)=_t;) fOr i=1,"',n.

931

For a compact connected Lie group G with maximal torus T, the

Let
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H'(BT; Q)"© be the subalgebra of the invariants of W(G) in
H'(BT,; Q). According to the result of Borel [2], under the homomor-
phism H'(BG; Q) » H'(BT; Q) induced by the inclusion 7T — G,
H'(BG; G) is mapped isomorphically onto H*(BT; Q)"©, so we may
identify them. Furthermore, if G has no torsion, this statement holds
over the integers Z as well.

Let o,( ) denote the i-th elementary symmetric function. If
G=SU(2n), then it has no torsion and W(SU(2n)) acts on H*(BT; Z)
as the full permutation group on {¢,,-:-,¢,,}. Thus

H(BSU(Z"), Z)=Z[62)63) "')CZn])

where ¢;=0,(t;,-,t,,) e H*(BSU22n); Z). If G=S0(2n), then it has
2-torsion and W(SO(2n)) acts on H*(BT'; Q) as the group generated by
permutations of the t; and transformations (¢y,-:-,t,)—>(g,¢1,  ,&,t,) With
=11 and ¢;---¢,=1. Thus

(2.2) H(BSO(2n); @)=QIp1,P2," "+ Pn-1,X]

where p=0,(t}%, - t,%) € H¥(BSO(Q2n); Z),x=0,(ty, - t,) € H*(BSO(2n);
Z) and the relation y>=p, holds. Since

2n 2n
. Bi(c)=[1(1+Biy'(t))
j=0 i=1

(1—t*) by Corollary 12

]
M=

i=1

(_ 1)ipi7

]
M=

i=0

we have
Bi*(cp))=(—1)'p; for i=1,--- n—1
(2.3) Bi*(¢3i+1)=0 for i=1,---,n—1
Bil*(CZn)=(_1)nX2'
Lemma 13. With the above notation,
H'(BSO(2n); Q)/(H" (BSU(2n); Q))=Ag(2).

Proof. By (2.3),
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(H*(BSUQ2n); @))=(p1,*+Pn-1,X°)-

So the lemma follows from (2.2).

Consider the principal SU(2n)-bundle

2.4) SU(2n) s SU(2n)/SO(2n) n BSO(2n)
whose classifying map is Bi;. As a Hopf algebra over Z,
H'(SU?2n); Z)=Az(x3,%5,""",X4n—1),

where x,;,,€ H**1(SU(_2n); Z) is primitive and transgresses to c,;e H*
(BSU(2n); Z) in the Serre spectral sequence of the universal SU(2#n)-
bundle. By naturality and (2.2), the transgression H*(SU(2n); Q) -» H**1!
(BSO(2n); Q) sends x4;_; to p; for i=1,---n and x4;,,,; to O for
i=1,---,n—1. Therefore, there exist elements

eqi 1 EHYTH(SURR)/SO2n); Q) (i=1,---,n—1),
e,,€ H*(SU(2n)/SO(2n); Q)
such that m;*(e4; 4 () =%4i+1, J1"(X) =€z, and
H(SUQ2n)/SO(2n); Q)=A~Ag(es,eq," ", €4n-3)@Ag(e2,).
Then, by Lemma 13, the right vertical homomorphism
i*: HY(BSO(2n); Q)/(H*(BSU(2n); Q)) - H'(SU(2n)/SO(2n); Q)
of (1.3) coincides with the injection
Ag(x) = Agles, o, e4n—3)®Agles,)

sending x to e,,.

In view of consequences of the Poincaré duality theorem, we can
choose elements ey, € H* " (SU(2n); Z) (i=1,---,n—1) and e,,€ H*"
(SU(2n)/SO(2n); Z) so that

H'(SU(2n)/SO(2n); Z)/Tor=A~Az(es,eq,  ,e4n—3)DAz(e3,).
For a field k of characteristic #2,

H'(BSO(2n); k)=k[py,p2,""*,Pn-1,X];
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where p;€ H*(BSO(2n); k) and ye H*(BSO(2n); k). According to [5,
Volume I, Chapter 3, Theorem 6.7 (2)], from the same equalities as in
(2.3) for the cohomology with coefhicients in k, it follows that

H(SU(Q2n)/SO(2n); k) =MAy(es, €9, ;€45 3) @ dile2,)

where ¢;€ H(SU(21n)/SO(2n); k), 4, denotes a graded ring over k with a
simple system of generators, 7,%(es;41)=%4;+; for i=1,---n—1 and
00 =ezn
For a field k of characteristic 2,
H'(BSO(2n); k)=k[w,,ws, *,w,,]

where w; € H(BSO(2n); k) and the action of the mod 2 Bockstein operator
Sq¢! on it is given by

Sql(w2i)=w2i+1 for i=1,---,n
Sql(w2i+1)=0 for i=1,---,n—1.

According to [5, Volume I, Chapter 3, Theorem 6.7 (3)], since Bi,*(c;) = w;?,
it follows that

H(SU22n)/SO(2n); k)=A,(e5,e5, "2, 1,€2,),

where e;e H'(SU(2n)/SO(2n); k) and j,*(w;)=e¢; for i=2,---,2n.

Recall from [5, Volume I, Chapter 3, Theorem 5.17] that there exists
a unique element ye H*(BSO(2n); Z) such that Bi*(x)=t\t,--t, and
{=w,, (mod 2).

Proposition 14. 7,*: (SU(2n)/SO(2n); Z) > H'(SU(2n); Z) satisfies
T (e4iv1)=2%4544 for i=1,---n—1
and j*: H'(BSO(2n); Z) » H'(SU(2n)/SO(2n); Z) satisfies
J1 () = ez

Proof. Consider the Serre spectral sequence {E,,d,} for the integral
cohomology of the bundle (2.4). Then the above facts imply the
following: for i=1,---,n, each x,_, e H* 1(SU(2n); Z) transgresses to
a generator of a certain summand Z in H¥(BSO(2n); Z); fori=1,---,;n—1,
each x,;,,€ H**(SU(2n); Z) transgresses to a generator of a certain
summand Z/(2) in HY*2(BSO(2n); Z) and 2x,;,,€ H¥*{(SUQ2n); Z)
survives to E,. This proves the first statement.
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By Lemma 13 and the characterization of the generator e,,e H*"(SU
(2n)/SO(2n); Z), we may set

J1'(ep,) =my for some nonzero meZ

in H*"(BSO(2n); Z). Examining the Serre spectral sequence for the mod
p cohomology of the bundle (2.4), we see that m#0 (mod p) for every prime
p. Hence m=1 up to sign. This proves the second statement, and
completes the proof.

3. Proof of main result

In this section we deduce our main result.

Let ¢: Nx N x N — Z be the function defined by
Kk . .
P(n,k,q)= Z(—l)'_1< .)i"“.
i=1 k—1

It is known that
K*(SU(zn))=Al(ﬂ('11))ﬁ('12))’ﬂ('IZM—I))
Then the following is shown in [7,§2].

Proposition 15. ch: K (SU(2n)) » H*(SU(2n); Q) is given by

2n—1

1
ch(B(A)) = .;1 E¢(2",k,i+1)x2i+1

for k=1,---2n—1.
Now our main result is

Theorem 16. ch: K (SU(2n)/SO(2n)) - H*(SU(2n)/SO(2n); Q) is
given by
n—-1 1 )
ch(Bl—Azn- )= ), —bQ2n,k,2i+1)es4,
i=1 (22)!
for k=1,--- . n—1 and
ch(@(i ))=2""tey.

Proof. Let &,: SU(2n)/SO(2n) - SU(2n) be the map defined by
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£, (xSOR2n)) =xt(x) 1=x'x for xe SUQ2n),

where 'x is the transposed matrix of x. By [3], if xe H'(SU(2n); Q) is
primitive, then n*¢;*(x)=x—1¢(x). It follows from Corollary 9 that
t': iN(BSUQ2n); Z) - H*(BSU(2n); Z) satisfies

(i) =(—1)"1¢;y, for i=1,---2n—1.
Therefore, t*: H'(SU(2n); Z) - H'(SU(2n); Z) satisfies
t'(x5:4 ) =(—=1)"*"x; ., for i=1,---,2n—1.
Hence, for i1=1,---,2n—1,
S i oen
By the first statement of Proposition 14, for i=1,---,2n—1,
0 if 7 isodd
i1 if 7 iseven.

61‘(x2i+1)={
e

On the other hand, since 4;; SU((2n) —» U((¥") is a homomorphism of
topological groups and t*(4,)=4,,_, by Proposition 2, a map representing
the homotopy class &,*(f(4,)) is given by

xSO(zn)H (2n)'1k(xt(x) 1)
= (2n)(/1k(x)/1k(t(x)) D)
= (2n)('1k(x)/12n k(%) l)

which represents the homotopy class f(1;,—A4,,-,). Hence &,*(B(A)=p
(Ag—Azp—p) for k=1,--- . n—1. Then

ch(B(A—A2n-1)) = ch(&1"(B(40)))

=" (Ch(ﬂ(’lk)))
=& Z ¢(2" kyi+1)x5;4 1)

by Proposition 15

2n1

Z d)(2n k,i+1)E " (%i41)-
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Substituting O (resp. e,;,) for &,;*(x,;4,) if i is odd (resp. even), we
obtain the first equality.

In order to prove the second equality, we compute the image of
wr —p, under the upper horizontal homomorphism

cha

R(SO(2n))/(I(SU(2n))) —» H(BSO(2n); Q)/(H(BSU(2n); Q))

of (1.3). To do this, since Bi*: H(BSO(2n); Q) » H'(BT'; Q) is
injective, it suffices to determine the image of 7"*(y, —;1,,—)=I'I§'=1(11i—;1i‘1)
(see Proposition 3) under

cha

R(T")/(I(SU(2n))) » H(BT'; Q)/(H*(BSU(2n); Q)).
Then

n

(ch OC)(_l_—[1(11i—'1f’))= [ (exp(#) —exp(—#)) by (2.1)

i=1

)

t}2)

=114y ——)

i=1 jzo(2j+ 1)

=2"y ﬁ(z ) since lejﬁ

i=1 js0(27+1)! i=1

12j
L

E2nx modulo (Pl)Pz,"'»Pn)
in H*(BT'; Q). Therefore, by the second statement of Proposition 14,
Gi'ch o)y — g ) =2"e,,

in H'(SU(2n)/SO(2n); Q).~By the commutativity of (1.3) and the

T

definitions of a(u, ) and a(y, ),
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ch(e(p,) ) — ch(a(, ) =2"e -

Since Ot(;f:)= —a(;?)eEO(SU(Zn)/SO(2n)) by Lemma 5, the left hand
side is equal to 2ch(a(u,)). Thus we obtain the second equality, and
the proof is completed.

(1]
(2]

(3]
(4]
(5]

(6]
(7]

(8]
(91
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