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0. Introduction

For w>l, let t: SU(n) -• SU(n) be the map defined by t(x) = x for
xeSU(n), where x is the complex conjugate of a unitary matrix x. The
natural inclusion i?czC yields a monomorphism ii: SO(n) -• SU(n) of
topological groups. Clearly i^SOin)) = {xeSU(n)\t(x) = x]. So the quo-
tient space *Sί7(w)Λ'1(5p(w)), which we abbreviate to SU(n)/SO(n)y forms
a compact symmetric space. It is denoted by AI (of rank n — 1) in E.
Cartan's notation. In this paper we compute its Chern character

ch: K*(SU(2n)/SO(2n)) -> H**(SU(2n)/SO(2n); Q),

while that of SU(2n + l)/SO(2n + l) has been described in [8].

1. K-rings

In this section we collect some results on X-theory of related spaces
needed in the sequel.

Let G be a compact Lie group. Then the complex representation
ring R(G) forms a λ-ring. For each integer &>0, let λk: R(G) -> R(G)
be the &-th exterior power operation. The following is a known result:
see [4, Chapter 13] or [9, Chapter 4].

Proposition 1. For n>2y put λi = [Cn]eR(SU(n)) and let λk = λk(λi).
Then

where λ0 = 1 and λn = 1.

Proposition 2. t\ R(SU(n)) -*• R(SU(n)) satisfies

t*(λk) = λn_k for k = ί,-,n-ί.
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Proof. T h i s follows from [9, Example 2.9 and Proposition 2.12].

Let T be the group of "diagonal" matrices consisting of « 2 x 2
diagonal boxes

COsθi - S i n θ \ (θieR).
sin0; cosθi J

Then T is a maximal torus of SO(2n). Let i'\ T->SO{2n) be the
inclusion. There are classes ηly--yηn of 1-dimensional T'-C-modules such
that

(1.1) R(r) = Z[η1)ηi-\'"^ηn~1V(ηiηi~1-h' ',ηnηn~1-^

(see [9, Chapter 3, §3] and also (2.1)).
The following is a known result: see [4, Chapter 13] or [9, Chapter 4].

Proposition 3. For n>\y put μi = [R2n®RC]eR(SO(2n)) and let
μk = λk(μi). There are two representations μπ

+

yμ~ of SO(2n) of dimension
(2")/2 (where (£) denotes the binomial coefficient) such that

and

where μ z n - k ^ V k for k = ly-yn— 1 and

For n>2 the universal covering group of SO(2ή) is the spinor group
Spίn(2ή). Let/>: Spin(2n) ~> SO(2ή) be the covering map. For simplicity
we write μf for p*(μ^). Then

where Δ "̂π, ΔjM are the half-spin representations, each of dimension 2"" 1 ,
and

(1.2)
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(see [4, Chapter 13] or [9, Chapter 4]).

Proposition 4. if: R(SU(2n)) -+ R(SO(2n)) satisfies

h*(^k) = μk = h*(λ2n-k) for £ = 1, ,«-1

Proof. Since i1*(λi) = μi, this follows from Proposition 1 and 3.

Let G be a compact Lie group and H a closed subgroup of G. Then
the inclusion /: H-* G induces a fibre sequence

There are two constructions of elements of K*(G/H) (see [6, p.
624]). First, a unitary representation μ: H^U(n) induces a map
Bμ: BH-• BU(n)> which determines an w-dimensional complex vector
bundle over BH and hence an element a(μ)eK(BH) = K°(BH). This
correspondence extends to a Λ,-ring homomorphism α: R(H) -• K°(BH).
Let ε: R(G) -> Z be the augmentation and I(G) its kernel. Then the
composite / α : R(H) -> K°(G/H) factors through the projection

R(H) -> R(H)/(I(G)) = R(H)®R{G)Zy

where (I(G)) is the ideal in R(H) generated by the Γ-image of /(G), and
Z is a i?(G)-module by pulling back along ε. We write α(μ) 6 K°(G/H) for
the image of μ-nGl(H) under/α: /(iϊ) -+ K°(G/H). Secondly, suppose
that two representations λ,λ'\ G-* U(n) (of the same dimension) agree
on H. Then there is a map /: G/H -* U(n) defined by

f(xH) = λ(x)λ\x)~i for xHeG/H.

The composition of/ with the canonical injection en: U(ή) —• £7 (where
U is the stable unitary group) defines a (base point preserving) homotopy
class β(λ-λ') in [G/H, U]=K~\G/H). When if is the trivial group and
λf is the trivial representation of dimension w, we have its absolute version
β(λ)eK-\G).

Since the composite

R(G) ΛK(BG)*FΓ(BG; Q)

maps I(G) into H+(BG; Q) = Σq>0H"(BG; Q), the composite cΛα:
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R(H) -> H*(BH;Q) induces a homomorphism

> H*(BH; Q)/(H+(BG Q)),

where (H+(BG; Q)) is the ideal in H*(BH;Q) generated by the 5ι*-image
of H+(BG; Q). Since (Bi)j is null-homotopic, / : tΓ(BH; Q) -* H*(G/H;
Q) induces a homomorphism

H*(BH; Q)/(H+(BG; Q)^FΓ(G/H; Q).

Thus there is a commutative diagram

R{H)/(I{G)) c^ FΓ(BH;Q)/(H+(BG;Q))

(1.3) M 1/

K°(G/H) CΛ H*(G/H; Q)

Lemma 5. With the above notation,

R(SO(2n))/(I(SU(2n))) =

where the relation μ~ - ( 2

M

π ) / 2 = - ( μ n

+ -( 2

w

π)/2)

Proof. By Proposition 4,

So the lemma follows from Proposition 3.

The K-theory of SU(n)/SO(n) was determined by H. Minami [6].

Theorem 6 ([6, Proposition 8.2]). With the above notation, as a
Z/{2)-graded algebra over Z, ίC(SU(2n)/SO(2n)) is an exterior algebra
Az(β(λi— λ2n-1), , β(λn-!~ λn + i))®Λz(α(μn

1")) generated by elements β(λk —
λ2n-k) of degree — 1 and α(μπ

+) of degree 0.

2. Cohomology rings

In this section we collect some results on the cohomology of related
spaces needed in the sequel. We refer the reader to [5] for a more
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complete exposition.
A compact connected Lie group G has a maximal torus T. If

{ocly -,ocn}(where n = dimT) is a simple system of roots of G with respect
to T, then

where ctieH2(BT; Q). Suppose further that G is simply connected. Let
ωί, ,ωtt be the fundamental weights determined by {α1(•••,«„}, i.e.,

Then

where ωιEH2(BT; Z). Each ω, is expressed as a Q-linear combination
of α/s.

Let T be the group of diagonal matrices having 2n entries eιθi with
eWί -eiθ2n = \. Then T is a maximal torus of SU(2n), and i^T) c T.
If {«!,••-,̂ 2/1-1} is a simple system of roots of SU(2n) with respect to
T, then

Proposition 7. JBί*: H*(BT; Q)^>H*(BT; Q) satisfies

Bf(ai) = (X2n-i for t = l,- ,2w — 1.

Proof. This is a restatement of Proposition 2, since λf is just the
irreducible representation determined by αf, that is, λt admits a highest
weight ω£ below.

Let ω1, ,ω2w_i be the fundamental weights determined by

{<*l>-,<*2n-l}> T h e n

The following is also a restatement of Proposition 2.

Corollary 8. £ί*: H*(BT; Z) -+ H*(BT; Z) satisfies

Bt*(ωi) = ω2n_i for i=\, -y2n-\.

Let i?f denote the reflection relative to α£. If we put
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ti=ω1

i for f = 2, ,2w-l,

t2n = R2n- Λhn- l) = ""ω2w-l>

then

IΓ(BT; Z) = Z[tu-,t2n\/(ti + - + t2n).

In fact, {ί.|ί=l,---,2w} is the set of weights of Xx: SU(2n)-+ U(2n).

Corollary 9. Bf: ίΓ(BΓ; Z) -» H*(BT; Z) satisfies

Bt*(ti)=-t2H + 1-i for ί = l , . .,2w.

is a maximal torus of Spin{2ή). Since Bp*: H2(BT;
Q) —>H2(BT/; Q) is an isomorphism, we may identify them. If {α ,̂ * ,αj1}
is a simple system of roots of Spin(2n) with respect to T\ then

IΓ(BT; Q) = H*(Bt; Q) = Q[*'iy-Xl

Proposition 10. Bi^\ H*(BT; Q)-*H*{BT\ Q) satisfies

^V(α ί) = α; = ̂ 1 *(α 2 n _ 1 ) for / = 1 , ,«-1

Bi1*(an)=-oc'n_i+oc'n.

Proof. This is a restatement of Proposition 4, since μ{ is the
irreducible representation determined by α for ί = l,••-,« — 2 and Δ^Δ^,,
are the irreducible representations determined by α^αj,.! respectively (see
(1.2) and the next corollary).

Let ωi, ,ωj, be the fundamental weights determined by {αi, ,αj,}.
Then

For simplicitly we write ίj for the composite i^p: T' -* T.

Corollary 11. Bi^: H*(BT; Z)^H*(BT; Z) satisfies

βi1*(ωi) = ω; = βί1*(ω2n_ i) for i = l, ,«-2
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Proof. This is also a restatement of Proposition 4. We only prove
that Proposition 10 implies this corollary. (The converse follows
similarly.) We will use implicitly the expression of fundamental weights
in terms of simple roots given in [1]. First, for ί= 1, —,w — 2,

Biί\ωt) = Bii*d-[ΣΛ2n-i)aJ+ "f
2n j=ι j=i

=τ^[ Σ /(2*-*>B'7(α;) + " l i
In j=ι j = 1

k=ί

2n }=i

n - l

- Σ Ml
k=l

In j= j

i-l n-2

-inoc'n_1+tna'n+
k = l k=i

^ 1 "

- f n + i(n -

i - l w-2
w Σ i α i + 2 ί w Σ

i - l π-2

Next
1 w-2 2w-l

j = n - l
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Finally

In fiΊ

+ («-l)«βι1*(α1I)+ Σ (

1 n-2

w - 2

*i*ώ"Σ> w α ;+ Σ n(2n-j)ocj])
In j=ί j=n
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M) H ^ RMfr

π-2 1 I

Σ>αί+^<"-1K-i-χw

;=i 2 2

j=i 2 2

If we put

t\=ω\,

ί; = J R ; . _ 1 ( ί ; . _ 1 ) = _ ω ; _ 1 + ω ' ί for i=2,-- ,n-2

t'n-1=R'n-2(t'n-2) = -(θ'n-2 + o>n-

t'n = R'n-ι(t'n-1)=-ω'n_1+ω'n>

then

and the element f/f of (1.1) can be chosen so that

(2.1) (ch α)(»fl) = eχp(ίί)= Σ^-eH*(BΓ; Q).
j>oβ

In fact, { ± ί | | ι = l,••-,«} is the set of weights of μt: SO(2n) -> ί7(2w).

Corollary 12. B//: H*(BT; Z)-+H*(BT; Z) satisfies

βιV(ίι) = ίί, for i=\, ,n

-i)=-t'i' for i=\, -,n.

For a compact connected Lie group G with maximal torus T, the
Weyl group W(G) = NG{T)/T acts on T and hence on H*(BT; Q). Let
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H*(BT; Q)w^ be the subalgebra of the invariants of W{G) in
H*(BT; Q). According to the result of Borel [2], under the homomor-
phism H*(BG\ Q)->H*(BT; Q) induced by the inclusion T -> G,
H*(BG; G) is mapped isomorphically onto FΓ(BT; Q)WiG\ so we may
identify them. Furthermore, if G has no torsion, this statement holds
over the integers Z as well.

Let Gι{ ) denote the i-th elementary symmetric function. If
G = SU(2n)y then it has no torsion and W(SU(2n)) acts on H2(BT; Z)
as the full permutation group on {tl9'-9t2n}. Thus

H*(BSU(2n); Z) = Z[c2yc3y -,c2nl

where c—G^t^'-'.t^GH^iBSUiln); Z). If G = SO(2n)y then it has
2-torsion and W(SO(2n)) acts on H2(BT; Q) as the group generated by
permutations of the t\ and transformations (t\y'"9t

r

n)\—>(ειt'i,-~,εnt'n) with
ε£= + 1 and ε1 επ = l. Thus

(2.2) H*(BSO(2n); Q) = Q{p1,p2,-,Pn-l,χ]

where p^σfa2,- -,t'n
2) eHA\BSO{2n); Z),χ = σn(t'ι,-,t'n)eH2n(BSO(2n);

Z) and the relation χ2=pn holds. Since

ΣΛVM=Π(1+βίiφ(ίι))
J=0 i = l

t?) by Corollary 12

we have

(2.3) A'i*(c«+i) = 0 /or ί = l , - , n -

L e m m a 13. WίίA the above notation,

H*(BSO(2n); Q)/(H+(BSU(2n); O)) = Λfl(Z)

Proof. By (2.3),
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So the lemma follows from (2.2).

Consider the principal SU (2n)-bund\e

(2.4) SU{2n) πlSU(2n)/SO(2n) t BSO(2n)

whose classifying map is Bii. As a Hopf algebra over Z,

H*(SU(2n); Z) = Az(x3yx5, . )x4n_1)y

where x2i+i eH2ι + 1(SU(2n); Z) is primitive and transgresses to c2ieH21

(BSU(2n); Z) in the Serre spectral sequence of the universal SU(2n)-
bundle. By naturality and (2.2), the transgression H*(SU(2n); Q) -+ H* + 1

(BSO(2n); Q) sends x^-i to p{ for / = l , ,w and x±i+\ to 0 for
i=ί, -,n—l. Therefore, there exist elements

*i + i(SU(2n)/SO(2n); Q) (ί= l, , n - l ) ,

e2neH2n(SU(2n)/SO(2n), Q)

such that πί*(e4i + i) = xAri + i, jγ\χ) = e2n and

fΓ(SU(2n)/SO(2n); Q) = AQ(e5ye9y -,e4n_3)®AQ(e2n).

Then, by Lemma 13, the right vertical homomorphism

j \ * : H*(BSO(2n); Q)/(H+(BSU(2n); Q)) -> H*(SU(2n)/SO(2n); Q)

of (1.3) coincides with the injection

sending χ to e2n.
In view of consequences of the Poincare duality theorem, we can

choose elements e4i + i eH4i + 1(SU(2n); Z) ( ί = l , . . , n - l ) and e2nεH2n

(SU(2n)/SO(2n); Z) so that

H*(SU(2n)/SO(2n);

For a field k of characteristic φ2y

p2i. - ypn_u χ],
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where pieH4i(BSO(2n); k) and χeH2n(BSO(2n)] k). According to [5,
Volume I, Chapter 3, Theorem 6.7 (2)], from the same equalities as in
(2.3) for the cohomology with coefficients in k, it follows that

where eieΉi{SU{2n)/SO{2ή)\ k)> Δk denotes a graded ring over k with a
simple system of generators, τι1*(e4i + 1) = xAi + 1 for ί = l , ,w—1 and
JΛx) = e2n.

For a field k of characteristic 2,

H*(BSO(2n); k) = k[w2,w3,-,«>2n\

where wieHi{BSO{2n)\ k) and the action of the mod 2 Bockstein operator
Sq1 on it is given by

Sq1{w2i) = w2i + 1

 f o r f = l , ,w

Sq1(w2i + i) = 0 for t = l,•• ,n— 1.

According to [5, Volume I, Chapter 3, Theorem 6.7 (3)], since jB/1*(cί) = «;i

2,
it follows that

where ete Hί(SU(2n)/SO(2n); k) and ji*(wi) = ei for z = 2, ,2w.
Recall from [5, Volume I, Chapter 3, Theorem 5.17] that there exists

a unique element χeH2n(BSO(2n); Z) such that Bi'*(χ) = tf

1t'2 t'n and
X = w2n (mod 2).

Proposition 14. π x*: (St/(2w)ΛSO(2w); Z) -> H*(SU(2n); Z) satisfies

^ΛeM + 1) = 2x4i + ί for i=\,-yn-\

andj\*: FΓ(BSO(2n); Z) -+ H*(SU(2n)/SO(2n); Z) satisfies

Proof. Consider the Serre spectral sequence {Er,dr} for the integral
cohomology of the bundle (2.4). Then the above facts imply the
following: for i—\,- yn> each xAi_ίeHA'ι~ϊ(SU(2n); Z) transgresses to
a generator of a certain summand Z in H4ι(BSO(2n) Z)\ for ί = 1, •••,«— 1,
each # 4 ί + 1 eH4ι + 1(SU(2n); Z) transgresses to a generator of a certain
summand Z/(2) in H4i + 2(BSO(2n); Z) and 2x4i + 1 Giί4 ί + I(6 rί7(2w); Z)
survives to Z?^. This proves the first statement.
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By Lemma 13 and the characterization of the generator elneH2n{SU
(2n)/SO(2n); Z), we may set

j\*(e2n) = mX f° r some nonzero meZ

in H2n(BSO(2ή)\ Z). Examining the Serre spectral sequence for the mod
p cohomology of the bundle (2.4), we see that mφO (mod p) for every prime
p. Hence m — \ up to sign. This proves the second statement, and
completes the proof.

3. Proof of main result

In this section we deduce our main result.
Let φ: NxNxN-* Z be the function defined by

V1.
;1 \k-lj

It is known that

K*(SU(2n)) = Az(β(λi),β(λ2),-,β(λ2n-1)).

Then the following is shown in [7,§2].

Proposition 15. ch: K*(SU(2n)) ^ H**(SU(2n); Q) is given by

ch(β(λk))= £ -φ{2nXi+\)x2i + 1

for k = ί,-',2n — l.

Now our main result is

Theorem 16. ch: K¥(SU(2n)/SO(2n)) -+ IΓ\SU(2n)/SO(2n); Q) is
given by

for k = \ y " y n — l and

Proof. Let ξ^. SU(2n)/SO(2n) -*• SU(2n) be the map defined by
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n)) = xt(xyi=xtx for xeSU(2n)y

where xx is the transposed matrix of x. By [3], if xeH*(SU(2ή)'y Q) is
primitive, then nί*ζ1*(x) = x — t*(x). It follows from Corollary 9 that
f: H*(BSU(2n); Z) -> H*(BSU(2n); Z) satisfies

Therefore, t*: H*(SU(2n); Z) ->H*(SU(2n); Z) satisfies

Hence, for i—\y* ,2w— 1,

0 if i is odd

if i is even.

By the first statement of Proposition 14, for ί = l , ,2w— 1,

0 if ί is odd

?ί + 1 if / is even.

On the other hand, since λk; SU(2n)-+ U((2

k)) is a homomorphism of
topological groups and t*(λk) = λ2n_k by Proposition 2, a map representing
the homotopy class ζι*(β(λk)) is given by

Kk )

which represents the homotopy class β(λk — λ2n-k). Hence ζι*(β(λk)) =
(λk-λ2n_k) for k = ίy"yn-\. T h e n

ch(β(λk-λ2n_k)) = ch(ξi*(β(λk)))

= ξϊ*(ch(β(λk)))

ξi(Σ

by Proposition 15

= "f ^(2«,Λ,» + l)ξ!*(*«+1)
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Substituting 0 (resp. e2i + 1) for ξι*(x2i+i) if i is odd (resp. even), we
obtain the first equality.

In order to prove the second equality, we compute the image of
μ*—μ~ under the upper horizontal homomorphism

choL

R(SO(2n))/(I(SU(2n))) -> H*(BSO(2n); Q)/(H+(BSU(2n); Q))

of (1.3). To do this, since Bi'*: H*(BSO(2n); Q)-* H*(BT; Q) is
injective, it suffices to determine the image of i'*(μ£ —μ~) = TIΊ=1(ηi — ηi~

1)
(see Proposition 3) under

cha

R(T')/(I(SU(2n)))^JFΓ(BΓ; Q)/(H+(BSU(2n); Q)).

Then

i = l j>θ

t'2j

since χ =

= 2nχ modulo (pl9p2,-,Pn)

in H*(BT; Q). Therefore, by the second statement of Proposition 14,

(j1*ch*)(μ:-μ;) = 2»e2n

in EΓ(SU(2n)/SO{2n); Q)._By the commutativity of (1.3) and the

definitions of α(μπ

+) and α(μ~),
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(μZ
ch(

the proof is completed.

Since α(μ~) = -tx(μϊ)6K°(SU(2n)/SO(2n)) by Lemma 5, the left hand

side is equal to 2ch(a(μ*)). Thus we obtain the second equality, and
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