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Introduction

In general, there are many different complex manifolds having the
same underlying topological or differentiable structure. However there
are a few exceptional cases where we can expect that homeomorphy to a
given compact complex manifold implies analytic isomorphism to it, for
instance, an irreducible compact Hermitian symmetric space. Among
irreducible Hermitian symmetric spaces, the complex projective space P
and a smooth hyperquadric Q% in P¢*! seem to be nice exceptions which
we can handle with algebraic methods. In [15] we studied the complex
projective space Pg, while in the present article we study a smooth
hyperquadric QF in P%*! in the same way as in [15]. A goal we have
in mind is the following

Conjecture MQ,. Any Moishezon complex manifold homeomorphic
to Q¢ is isomorphic to Qg.

The conjecture has been solved partially by Brieskorn [3] under the
assumption that the manifold in question is Kadahlerian and odd-
dimensional. In the even-dimensional Kdhlerian case, there still remains
a possibility of manifolds of general type. Recently Kollar [7] and the
author [13] solved Conjecture MQj in the affirmative, each supplementing

the other. Peternell [16][17] also asserts the same consequence. See
[7,5.3.6].

Theorem 1. Any Moishezon threefold homeomorphic to QF is
isomorphic to Q2.

The main purpose of the present article is to give a partial solution
to the above conjecture MQ, in dimension 4. We prove,

Theorem 2. Let X be a Moishezon fourfold homeomorphic to Q¢,



788 1. NAKAMURA

and L a line bundle on X with L*=2. Assume h°(X,04(L))>5. Then
X is isomorphic to Q¢.

Corollary 3. Any global deformation of Q¢ is isomorphic to Q.

It is easy to see that any complex analytic (global) deformation of
Q¢ is Moishezon. However it is possible that there appears a non-projective
or a non-Kdhlerian Moishezon manifold of dimension n>3 as a global
deformation of a projective or a Kdihlerian manifold (Hironaka [6]). This
is one of the reasons why we consider a possibly non-projective or a
possibly non-Kdahlerian Moishezon manifold as in Theorem 1 and Theorem
2. We easily derive Corollary 3 from Theorem 2. In fact, any global
deformation of Q¢ not only in any complex analytic family but also in
any differentiable family is isomorphic to Q¢.

Now we give an outline of our proof of Theorem 2. Let X be a
Moishezon fourfold homeomorphic to Q¢. Then we have a unique line
bundle L on X such that Pic X~ZL, ¢,(X)=4c,(L), and L*=2. Let
m:=h%(X,04(L))—1>4. We consider the rational map h: X — PP
associated to the linear system |L|. Let W be the closure of the image
MX\Bs|L|). Let d=degW. Then d>m+1—dimW. Since Pic X~
ZL, we have dimW>2. Let © be a complete intersection DD’ for
general D and D'e|L|. Then 1 is connected, pure two-dimensional and
Gorenstein.

Assume first dim W=2. 'Then we have reduced irreducible compo-
nents Z; (1<i<d) of 7 outside B:=Bs|L|. We note that d>m—12>3.
Each Z; is nonsingular outside B by Bertini’s theorem. Let v;: Y;— Z;
be the normalization of Z;, f;: S; — Y, the minimal resolution of Y; and
gi:=V;"fi. We see that K =—2g{(L)—A4; for some effective divisor 4;
with supp(A4,) < g '(B). Since gi(L) is effective by m>2, S; ~ P} or S;
is ruled.

If S;~P%, then S;~Y,~Z, gi(L)=A4;€|0p(1)|. If moreover Z;nZ;
#0 for i#j, then d=2, which contradicts d>3. If Z;nZ;=0 for i#j],
then W turns out to be a cone over a smooth variety of minimal degree
by the Del Pezzo-Bertini classification [5]. Any such W has a reducible
or noreduced hyperplane section for d>3, which contradicts Pic X~ZL.
If S; is ruled, then we can derive a contradiction similarly.

Similarly we can disprove dim W=3. Consequently dim W=4.
Bertini’s theorem shows that a scheme-theoretic complete (not necessarily
proper) intersection / of general 3 members of |L| is pure one-dimensional
and irreducible nonsingular outside B. We infer from c¢,(X)=4c(L)
that / has a rational curve C with LC=2 as an irreducible component
outside B. Then applying (in sections 3 an 4) the same argument as,
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in fact simpler than, in [15], we can study the morphism 4 in
detail. Subsequently we see that /°(X,L)=6 and that % is an isomorphism
of X onto a smooth hyperquadric Q¢ in P}.

The article is organized as follows. In sections one and two, we
study a scheme-theoretic complete intersection [, of general (n—1)-
members in |L| along reduced curve-components.

In sections 3 and 4, we study Moishezon manifolds of dimension n
with the second Betti number b,(X) equal to one, and with ¢,(X)=nc,(L)
for some line bundle L on X. In section 5, we prove Theorem 2 by
applying the results in the previous sections.

NoraTtioN. The notation is indexed at the end of the article.

ACKNOWLEDGEMENT. The author would like to express his hearty
gratitude to A. Fujiki, F. Hidaka and I. Shimada for their advices during
the preparation of the article. Fujiki kindly showed simpler proofs for
some of our proofs in the first version of the article.

1. A complete intersection [, (1) —local structure—

(1.1) Basic AssumptioNs. Let X be a complete nonsingular
algebraic variety of dimension n, L a line bundle on X. We assume

(1.1.1) ¢ (X)=dc,(L) for some integer d,
(1.1.2) ho(X,L)y>n.

Let V' be an (n—1)-dimensional subspace of H®(X,L), L=1I, a
scheme-theoretic complete intersection associated with 7. This means
that the ideal I, of Oy defining [/ is defined by I,=%,sOy.

We say that C is a reduced curve-component of | if C is an irreducible
one-dimensional component of [ along which [ is reduced generically. We
assume that

(1.1.3) ! has a reduced curve-component outside B (:=Bs|L|).

(1.2) TorsioN SHEAVES Qg, Q¢ AND Q"c. Let C a reduced
curve-component of I,, and I, the ideal sheaf of Oy defining C with

\/TC=IC. Let v: C— C be the normalization of C. Then we have a

natural exact sequence

(1.2.1) 0 [/THR®0~0g(—v'L)®"~ V) % [/TH)®0¢] = Qc— 0
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where Q.:=Coker ¢, and [J]:=J/Og-torsions for an Og-module J. We
also have a natural exact sequence

(1.2.2) 0—Q'c—>QL®0z 5 Qk > Q' -0

where Q'c=Cokern, Q"c=Kern.

We define /(F): =dim¢ F for a torsion Og-module F and I(F,p):=U(F,)
for a stalk F, of F at p. See (1.10) and Theorem 1.11. Then by [15,
§1 and 2], we have,

Lemma 1.3. Under the notation and assumptions in (1.1), let C be
a reduced curve-component of I,. Let QP:=Qc, OP:=Q'c and QP:=Q’.
Then,
(1.3.1) (d—n+1)LC+¢c;(QH +UQc) +UQ"c)—UQ'c)=0.
(1.3.2)  UQP)=Z,U0L,p) (v=0,1,2).
(1.3.3) (OP,p)=0, UQ"c,p) =UQ'c,p) for any peC.
(1.3.4) I(Qc,p)=0 if and only if (C,p)~(l,p).

(1.3.5) (Q"c,p)=UQ'¢c,p) for any peC, where equality holds if and
only if (C,p) is irreducible nonsingular.  If (C,p) is nonsingular, then

Z(Q”C)p)=l(QIC)P)=O'

(1.3.6) If (C,p) is irreducible and singular, then I(Q"¢,p)=UQ'c,p)+2.
(1.3.7) Assume that (C,p) is reducible. Let (C,,p) (A€A) be all the
irreducible components of (C,p), and A, (resp. A,) the subset of A consisting

of all A with (C,,p) nonsingular (resp. singular). Then I(Q"¢,p)=UQ ¢, p)+
28(A,) + #(A,y)-

The proof of (1.3.5)—(1.3.7) is partially based on the following Lemma
1.4. See [15, §2] for the details.

Lemma 1.4. Assume that (C,p) is irreducible and singular. Let
Xy,+,%x, be a local coordinate system of (X,p). We (may) assume that the
normalization v: C - C (< X) is locally given by

xl = tm
xj=fi(t)=t"git), g{(0)#0 (2<j<s)



MoisHEzoN FourroLDs HOMEOMORPHIC TO Q: 791

for some fj,gje ij where 2<m<m<my<my<--- <mg, none of m; and none
of m;—my is an integral multiple of m, while s is the embedding dimension

of (C,p). Let q be the unique positive integer such that m <qm<m, <(q+1)m.
Then

(1.4.1) (Q'c,p)=m—1.
(1.4.2) Q" c,p) =min(2gm,m3)+m—my>m+1.

Proof. See [15, (2.3)] for the details. We recall the proof only for

the later use. By the prrof of [15, (2.3)], l(Q’C,p)=l(Qé,ﬁ/Q}:,p®05,§)=
m—1. Let

e;=dx;®1€Qy®0;,  &=dx;®1eQL®O¢.

Then the element aj=(f’j(t)/mt'”'1)él—éj is contained in Q"c.
Since Q" is a torsion sheaf, we (can) choose the minimal integer
N>0 such that tNo,=0. By definition I(Q"c,p)>N. The condition

tNo, =0 means that there exist some F;e C[[t]] and ¢,el. (1<i<I) such
that

s ]
(1.4.3) tN((f 5 () /mt™ Ve, —e,) = ‘Zl(‘le,.(t)v*(a%/ax De;.
j=1i=

The coefficient of e, in the right hand side of (1.4.3) is equal to
Tl F{t)'(09,/0x,). Take any element g€ IcNC[[x,, -,x,]] (= ml) with
its expansion given by

- i1, gl
o= Y a.xtey
iyt tig>2

Then @ € I , implies that a;,.., =0 (1 <j<29), a16..0=0(1 <j<g). Hence
0¢/0x; =(2q+ 1)ax3?+ (¢ + D)bx{x, + cx34dxy+ -
deg v*(0¢p/0x,) = min(2gm,qm+m,, 2m,,m3) = min(2qm,ms)

for some constants a, b, c and d. Hence deg t" ~™*!f',(t) > min(2gm,m3) >
m,+1, which completes the proof of (1.4.2). q.e.d.

(1.5) Turee Casgs. Let C be a reduced curve-component of /,p a
point of C. Assume d=n, LC>0 and that (C,p) is singular. Then by
(1.3.1) we have,
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UQ)+UQ")—UQ )< —cy(Qh) 2.

If (C,p) is irreducible, then [(Qc)=0, and UQ")—UQ')=2. If (C,p) is
reducible, (C,p) has by (1.3.7) exactly two irreducble components, and
any irreducible component of it is nonsingular. Thus we have only to
consider the following three cases:

Case A. l(Qc,P)= 1; l(Q”C,p)=l(Q’C’P)=O'
Case B. (Qc:p)=0,  UQ"c,p)—UQ c,p)=2.
Cask C. (Qc,p)=2, UQ"c,p)=UQ'c,p)=0.

Lemma 1.6 (Case A). Assume that I(Qc,p)=1, U(Q"c,p)=UQ c,p)
=0. Then (I,p) has two irreducible components (C,p) and (C',p), and there
exists a local parameter system x,---,x, such that

II,P=(x1’“"xn—z’xn—lxn)r
IC,p=(x1"")xn—1)» IC’.p=(x1>"':xn—2’xn)'

Proof. By (1.3.5), the germ (C,p) is nonsingular, so that we can
choose local parameters x,,-:-,x,_, such that I. ,=(x{,---,x,_{). The
condition (Qc,p)=1 implies that we may assume x;€/l,, (1<i<n—2).
Moreover we can choose an (n—1)-th generator f,_, of I, , such that
f,—;mod I% has a single zero at p as a local section of I/I¢. Therefore
by choosing an n-th local coordinate x, at p suitably, we may assume
I ,=(xy,"",%y_2,%,-1%,). It follows that [ has another irreducible
component (C’,p) as above. q.e.d.

Lemma 1.7 (Case B). Assume that I(Qc,p)=0, I(Q"c,p)=U0O'c,p)
+2. Then there exists a local parameter system x,,---,x, such that one of
the following is true.

(1'71) Il,p=IC,p=(x1)"')xn—zyxp?—l_xf)y
(17-2) Il,p=IC,p=(x1,"')xn—Z)xn—lxn)'

Proof. By UQc,p)=0, we have I,,+I¢,=I., By Nakayama’s
lemma we see I, ,=I¢,, whence (I,p)~(C,p). There are two subcases
Case B-1 and Casg B-2 according as (C,p) is irreducible or not.

Case B-1. Assume that (C,p) is irreducible. We use the same
notation as in Lemma 1.4. Then by the proof of Lemma 1.4

(Q'c,p)=m—1, Q" c,p)>N>m+1.
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Consequently we have
(1.7.3) N=lQ"c,p)=m+1=>3.

Moreover by the proof of Lemma 1.4, we see that there exists €1,
such that

(1.7.4) N—m+m,=deg v (0p/0x,) =min(2gm,m3).

Case B-1-1. First we consider the case where 2gm<m;. Then
N—m+m,=2gm. Since N=m+1 and gm<m,<(q+1)m, we have g=1,
my=2m—1, and m;>2m+1. In view of the proof of Lemma 1.4 the
expansions of ¢ and 0¢/0x; are given by

2
@ =ax}+bxix,+cx x5 +dxxy+exi+ o,

0@/0xy =3ax? +2bx x,+cx3+dxs+ .

Since m;>2m+1, v'x} is the unique monomial term of degree 2m in the
right hand side of 0¢/0x,. Since degv'0p/0x, =2gm=2m by (1.7.4), we
have a#0. On the other hand since v*¢ =0, there is another nontrivial
term of degree 3m besides x3 in the right hand side of ¢, which is just
ex? by the choice of m; in Lemma 1.4. Therefore e#0. Hence we have
@ =x3—x3+--- by modifying x, and x5 by constant multiples. Therefore
3m=2m,=4m—2, m=2 and m,=3. It follows that the normalization v:
C - C is given by

xy =17, Xy =12g,(t)

for some holomorphic g,(¢) with g,(0)=1. Then there exist g,,(x;) and
g22(%y)€m, such that

Vi, =1+, (12 + 138,512 =3(1 +V'g,55(x1)) + Vg1 (%))
By taking &, = (%, —g,,(x,))(1 +g,,(x;)) "' instead of x,, the normalization
v: C— C is given by

x1=t2, x2=t3.
Since any monomial " (n>4) is a product of ¢* and >, we may assume
x;=0 (=3), so that the embedding dimension of (C,p) is equal to

2. Thus we see that

3 2
Il,p:IC,p=(x1 —X3,X3,X4," ", %),
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UQ"c,p)=3, (Q¢cp)=1.

Case B-1-2. Next we consider the case where 2gm>m;. By (1.7.3)
and (1.7.4), we see N=m+1, my=m,+1. Moreover there exists
@pelc ,nm? such that degv'(0¢p/0x;)=m;. Since ¢ €Ic, has at least two
monomial terms of minimum degree in ¢ by the condition v*¢ =0, we see

@ =ax;x3+bxj+--,

where a#0, b+#0, and m+m3=2m, by the choice of m; in Lemma 1.4. It
follows that m,=m+1, my=m+2. Hence ¢ has exactly two monomial
terms x,x; and x5 of minimum degree. We may assume ¢=x,x;— x>
+ (higher terms) by choosing x,, x; suitably. Since ¢;el;, (1<5<I) in
the right hand side of (1.4.3), by the above argument we can write
@;=cjp+@; where ¢; is a constant and ¢} has no monomial terms x,x;

and x3. Let c=X!_,¢;Fi(0). Then we have
deg v'(09}/0x1)=>m3+1>m+3, degv' (09} 0x3) >min(2m,my)>m+1.

It follows from (1.7.3) that the coeflicient of e; (resp. e;) in the right
hand side of (1.4.3) starts with ct™*? (resp. —ct™), where N=m+1
implies that ¢#0. However the coefficient of e; in the left hand side of
(1.4.3) is equal to 0, which implies ¢=0, a contradiction.

Case B-2. Assume that (C,p) is reducible. Let (C;,p) (A€ A) be all
the irreducible components of (C,p). In view of (1.3.7), A=A,
#(A)=2. Let A={0,1}. Then for A=0,1, we have

(1.7.5) I(Ker(QLQO0,, —» QL ) =1

by the proof of (1.3.7) [15, §2]. We choose a local coordinate system
%y,:+,X, at p such that I, ,=(x;,"--,%,_;). The normalization v: Cq — C,
is clearly given by

x;=0 (1<i<n-—-1), X, =1

i

0
Let S:=0¢,{do;pel, v‘a£=0}. Then we have
x

(1.7.6)  Ker(Q:®O0c, » QL) ~O0c dx, + - +Oc,dx,_/S.

By (1.7.5) we may assume that x;€l, (1<i<n—2) and that the
right hand side of (1.7.6) is generated by dx,_,. Moreover there exists
@€l , such that
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V'(0p/0x,_,)=t, V'(0p/0x)=0 (1<i<n—2 or i=n).

It follows that ¢ =x,_x, mod (x,---,x,_,)>. Therefore by choosing
pelc, mod(xy,--,x,_,) and x, mod(x,,---,x,_,) suitably we may assume
¢=x,_1x,€Ilc,. Then we have

IC,p=(xly"')xn—Z)xn—lxn)-

In fact, let J=(xy,":*,%,_2,%,—1%,) and Oc:=0y ,/J. Then (C,p)
is a reduced subvariety of (X,p) with two irreducible components C,
and C,; at p, so that supp(C')=supp(C). Hence l(IC,p/J) is finite.
Therefore Ic , 2 J=./J=/I¢, 2 I, whence J=1I¢,and (C,p)~(C’,p).
Thus (C,p) has two irreducible components C, and C, defined by

ICo,p=(x1) "')xn—z’xn—l)) Icl,pz(xlx “‘,xn—z,xn)-
q.e.d.

(1.8) ExampLE. Let s be an integer>1. Consider a germ (C,p)
defined by

— 2 st+2 S 2s+3 2s+1
Ic,p—(x1x3—x2sx1 —X2X3,X] —x5°" 7).

The normalization v: (C,p) = (C,p) is given by

2s+1 2s+3
, .

— o 32s5+2 —_
xy=t Xy=t R xX3=t

Let ¢;:=dx;®1€Q"c,. The torsion sheaf Q"¢ , is generated by two
elements

o =t2e| —2te} + €5, 0,:=(2s+2)te] — (25 +1)e}

where t%°0,=0, t***30,=0. Thus we have I(Q’"c,p)=25s>+5s and
(Q'c,p)=2s. Compare the proof of Lemma 1.7 Case B-1-2.

Lemma 1.9 (Generic Case IN Casg C). Assume that (I,p) is
sufficiently general and that (l,p) is reduced, nonsingular and pure
one-dimensional outside B:=Bs|L|. Let C be a movable reduced curve-

component of I. If (Qc,p)=2, UQ"c,p)=UQc,p)=0, then there exists a
local coordinate system xi,---,x, at p such that

IC,p=(xl’“"xn—1)’

and that one of the following is true.
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= 2 —
(1.9.1) I = (y, Xy 3, %y — 5, % 1 X7), Ip ,=(%y, %, 3,%,_5,x7).
2
(192) Il,p=(x11"')xn—3yxn—2)('xn _xfl—l)xn—l))
IB.p=(xl’""xn—3’xn—2’x3—x;—1) (322)
(1.9.3) I =%y, X 3, X — 2 Xy Xy 1 X,,), I = (1, %0 —3,%,).

(1.9.4) Iy =2y, %y 3, %y - 2%, (X, + a(x))x, _ {)

for some a(x) (#0)eC[[x,_;,x,_]]nm,. The germ (I,p) has at least 3
irreducible components. Among them, there are at most 4 movable components

of (L,p).

(1.9.4.1) If (I,p) has exactly 3 irreducible components, then a(x,_,,x,_,)=
Xy Fxgt for some e,_ >0, e,_1>0 with e,_,+e,_;>1.

(1.9.4.2) If (I,p) has exactly 4 movable components (C;,p) (0<5<3) with
Co=C, then a(x,_,,X,_1)=%,_,+X,_ so that (I,p) has no fixed components,
and IB,p=(x1y""xn—3’xn—2’xn—1)xn)'

Proof. Since (C,p) is nonsingular by (1.3.5), we can choose a local
coordinate system x,,---,x, at p such that

IC,p=(x1)"')xn—1)) Il,p=(x1)'“)xn—3)(pn—2)q)n—1)

for some ¢;el,,. Since (Qc,p)=2, we may assume by choosing ¢,_,
and @,_, suitably that one of the following is true;

Case C-1. Pp—2=Xp-2, 90,,_1=x3x,,_1
Case C-2. Pp—2=Xp-2, ¢n—1=(x3_xi—1)xn—l (522)
Case C-3. Pn—2=XpXp—2, Pn—1=XyXp—1

Case C-4. Pn—2=XpXp-2, qon—l=(xn+w(xn—2)xn—l)xn))xn—l
where l// (#O)EC[[xn—Z’xn—hxn]]nmp'

Case C-1. Since any nonreduced component of (/,p) is contained
in B,.q, B,.q passes through p and (1.9.1) follows.

Case C-2. If s (=3) is odd, then xZ—x5_, is irreducible. Hence
(I,p) has an irreducible component (C’,p) besides (C,p) defined by

— 2 S
IC,p—(xly"')xn—Z)xn _xn—l)'

Since (C',p) is singular, (C',p) does not belong to the same algebraic
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family as a movable (C,p), whence (C',p) is contained in B,,4. Thus
(1.9.2) for s odd follows.

If s=2g9 (=4) is even, then we have, in addition to (C,p), two
irreducible components (C',p) and (C”,p) of (I,p). Although (C,p) and
(C',p) (or (C",p)) intersect transversally, (C',p) and (C”,p) have a contact.
That is, I¢ ,+Ic ,#m,, where m, is the maximal ideal of Oy ,. Hence
none of (C',p) and (C”,p) belongs to the same algebraic family as (C,p),
whence both (C',p) and (C”,p) are contained in B,.y. Therefore (1.9.2)
follows.

Case C-3. In this case, B,.4 passes through p and (B,p) is a surface
defined by Ip ,=(xy,"'*,x,-3,%,). Therefore (1.9.3) follows.

Case C-4. By modifying x, by a suitable unit, and by deleting some
multiples of x,---,x,_3 from @;, we may assume
Pp—2=XpyXy—2, (pn—l=(xn+a(xn-2axn—1))xn—l

for some a(x,_,,%,-1) € C[[x,-2,%,—]]nm,. We have 3 components C;

(0<j<2), Cy=C and the rest C' defined by
ICo,pz(xl)""xn—3)xn—2)xn—l)
ICl.P=(x1’""xn—3’xn—2’xn+a(01xn—1))
ICz,p=(x1:'“)xn—3axmxn——1)
IC’,pz(xl’"')xn—3’xma(xn—2’xn—1))-

where C’ can be reducible or nonreduced, and it may contain C; and C,.

Let C'4g=C3+---+C,, and let C"=C;3+---+C,; (d<m) be the union
of movable components of C’. Any movable component of (I,p) is
algebraically equivalent to (C,p), any (C,,p) (3<i¢<d) is nonsingular, so
that there exists (a;,b;)€ C*\(0,0) such that

Ic, ,=(xq, %y _3,%,, 0%y > +b;x,_{ + (higher terms)).

We see Cj¢C1’C2 for 3S]_<_d and that emb.dim(C2+Cl+Ck)=2
for 3<j<k<m.

Claim 1.9.5. Let C; be an irreducible component of C'. Then

(1.9.5.1) emb.dim(Co+C,+C))=2 if and only if C;=C.
(1.9.5.2) emb.dim(Cy+C,+C))=2 if and only if C;=C,.
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Proof. We may assume n=3 without loss of generality. We let
Iz=I¢, and xi=x, y=x,, 2=x3. We let

IO=(x)y)> I1=(xa2+a(x,y)), 12=(y)z)a I,=(Z,h(X,y))

where a(x,y) is divisible by A(x,y) in Oy ,.

First we prove (1.9.5.1). letu:==z+a(x,y). Then we have I, =(x,u),
Ij=(u,h) and IonI;=(x,yu). Therefore emb.dim(Cy+C;+C;)=2 im-
plies the existence of an element be Oy , such that x+byuel;, Hence
x is divisible by 4 in Oy ,, so that A=x up to a unit multiple. Therefore
I,=1I;, The converse is obviously true.

(1.9.5.2) is proved similarly. In fact, I,nI,=(y,xz). Hence
emb.dim(Cy+ C, +C;) =2 implies that y is divisible by % in Oy ,, so that
I,=1, q.e.d.

Now we go back to the proof of Lemma 1.9 Casg C-4.

Case C-4-1. We consider the case where C, is a movable component
of I. Assume d>3 and m>4. Any movable component of [ belongs to
one and the same algebraic family, whence emb.dim(C,+C;+C,)=
emb.dim(Cy+C,+C,)=3 by (1.9.5.2), a contradiction. Hence d<3.
Moreover if d=3, then m=3 and C'=C"=C,;.

Assumed=3. Weleta(x,_,,%,_{)=as3x,_,+bsx,_;+ (higher terms).
If a;=0, then C, and C; have a contact, while if b3=0, then C; and
C; have a contact, which contradicts transversal intersection of C,,
C, and C, in either case. Hence a3#0, b3 #0. We may choose a;=b;=1
and a(x)=x,_,+x,_,; by multiplying x,_, and x,_, by some units. This
proves (1.9.4.2) in this case.

Case C-4-2. We consider the case where C, is fixed. If d>4, then
emb.dim(C,+ C3+C,)=emb.dim(Cy+C,+C3)=3 by Claim 1.9.5, a
contradiction. Hence we have d<3. Therefore [ has at most 3 movable
irreducible components.

The remaining assertions of (1.9.4) are easy to prove. q.e.d.

Appendix. Local invariants ¢(QY, By)

(1.10) NotaTioN. Let C be an irreducible curve, v: C— C the
normalization, F a torsion Og-module, p (resp. q) a point of C (resp.
C). Then we define e(F,q), I(F,p) and I(F) as follows,

e(F,q)=UF)=dimcF,,  UF.p)= Y UF,).

gabove p
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Then we recall
Theorem 1.11 [15, (2.6)].

(111.1) UQep) =) gavover €0, @) LOED) = gabove p €D q) for any pe C.

(1.11.2)  If (C,p) is irreducible, then e(Q¢,q)=>e(Qr,q) for a unique point
q above p. Equality holds if and only if (C,p) is nonsingular. If (C,p) is
singular, then e(Q¢,q)=>e(Qc,q) +2.

(1.11.3) Under the same notation and assumptions in (1.3.7), let q be a
unique point of the normalization C, of C, above p. Then

(1.11.3.1) (O =1, e(Qc,q)=0 for AeA,,
(1.11.3.2) e(Q¢,9) = e(Q7,9) = e(Qc,q) +2 for e A,

(1.12) ‘TorsioN SHEAVES Q) AND Q. Let Z be an irreducible
reduced algebraic variety, v: Y — Z the normalization. Let U= Y\Sing
Y,V'=v(U). Then we have an exact sequence

(1.12.1) 0—»Q;—»v*9§®ou¥¢>ﬂb—>9’y—>0

where Q) :=Ker ¢ and Q) :=Coker ¢. Now take an arbitrary prime
Weil divisor B of Y (resp. B of Z) with v(B)=B. We define e(F,B)
(resp. e(F,B)) to be the length of a torsion sheaf F at a generic point of
B (resp. B) as a k(B)-module (resp. as a k(BB)-module).

Let By:=BnU and B,:=BnV. Then we have

(1.12.2)  e(Qy,By) =inf e(Q¢,9), e(Q'{/,Bu)=iCnf e(Qc:9)

C.q

where p ranges over By, C is a local curve of I intersecting By, transversally
at p, and ¢ is a point of By above p.
By Theorem 1.11 we have

(1.12.3) e(Q}, By) = e(Qy, By).

(1.13) A TorsioN SHEAF Q). Let X be a smooth algebraic variety
of dimension n, D; a reduced irreducible divisor of X (1<i<m). Assume
that the scheme-theoretic complete intersection t=D;N---NnD,, has an
irreducible component Z=Z_, of dimension n—m along which 7 is
reduced generically. Letv: Y — Z be the normalization of Z, U= Y\Sing
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Y, and V:=v(U). Let I}, (resp. I) be the ideal sheaf of Ox defining D,
(resp. Z) and let I,=I, +--+1I, . So we note /Iy =1Ip and \/I=1I.
Then we have an exact sequence

(1131) 0 @ Oy(—v'D,) - [V(I/I)®O0y] = Oy — 0

i=1

where [F®Oy]:=F/Oy-torsions in F. If Z intersects one of the
irreducible components of t other than Z along a prime Weil divisor B
of V, then

(1.13.2) e(Qy,By)>1

for any prime Weil divisor B above B.
Moreover by (1.12.1) and (1.13.1), we have

Theorem 1.14 [15, (2.A)]. Under the notation in (1.12) and (1.13),let
i: U>Y be the inclusion map, and let A:=Y (e(Qy,By)+e(Qy,By)—
B
e(Qy,By))B. Then A is an effective divisor of Y and we have

Ky:=i(Ky)~Vv'Ky+ Y v'C;—A.

i=1

(1.15) Remark. If Z is singular along a prime Weil divisor B,
then by Theorem 1.11 ¢(Qy, By) = e(Qy,By) + 1 for any prime Weil divisor
B of Y lying over B. If Z intersects one of the irreducible components
of T other than Z along a prome Weil divisor B, then by the definition
e(Qy,By)> 1 for any prime Weil divisor B lying over B. Thus we see
that supp (v,A) is the union of all the Weil divisors of Z whose supports
are contained in either Sing Z or one of the irreducible components of
T other than Z. See [15, (2.A)] for the detail.

2. A complete intersection /,, (2) —global structure—

Lemma 2.1. Assume d=n, and h°(X,L)>n. Let | be a scheme-
theoretic complete intersection of (n—1)-members of |L| and B:=Bs
|L|. Assume that | has a reduced curve-component C outside B with
LC>1. Then one of the following cases occurs.

(2.1.1) LC=2,C~P' N x~0(2)®""V, Cis a connected component of I,
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(2._1.2) LC=1, C~P!, Neix~O0c@O0:(1)%"" 2, and C intersects B at a
point p transversally, where

Il,p=(x1»"')xn—2)xn—lxn))

IC,p=(x1)”')xn—2’xn—-1))

IB,pz(xI)”"xn—Z)xn)
by choosing a suitable local coordinate x,,---,x, at p.
(2.1.3)  There is another component C, of such that C;~P', C=C,, LC;=1,
Neyx=0c,®0(1)8""? (1=0,1). The components C, and C, intersect
transversally at a point p where

Il,p=(xl)'”’xn—2’xn—l'xn)»

ICo,p=(x1>""xn—2>xn—l)>

IC;,p=(x1""’xn—2)xn)»

IB,pz(xl)""xn—Z’xn—l)xn)
tn terms of suitable coordinates at p.

(2.1.4) There is a chain of m+1 (=2) smooth rational curves C; (0<i<m)
such that

C=C, LCy=LC,=1, LC;=0 (1<i<m—1)

N{ Oc B0 (1)®"™?  (i=0,m)
L 0c(—@OE"? or O (-1)22@0Z""> (1<i<m—1).

The curves C; and C; (j<i) intersect nowhere unless j=i—1, while C,_,
and C; intersect transversally at a point p; where
Il,p,-=(xl!""xn-2’xn—lxn))
ICi_1,pi=(xl)""xn—2)xn—1))
Ie, p =1, ", %y~ 2,%p)
in terms of suitable local coordinates at p;. Moreover Cy+---+C, is a

connected component of | with C;N\B,q=¢ (1<i<m—1).

Note. (2.1.1)-(2.1.3) are known to exist for (not necessarily
complete) general linear systems. However there are no examples of
(2.1.4) except for m=1 or 2, n>3. We also note that (2.1.3) and (2.1.4)
with m=1 are distinguished by the condition that ConC| is a base point
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or not.

Proof. By (1.3.6), we have ((Q¢)=UQ¢) or (Q¢)>UQ¢)+2. Hence
there are two cases by (1.3.1).

Case 1. LC=2, Cx~P', (Q)=UQ¢)=UQL)=0.
Case 2. LC =1, C=P', l(Qc)=1, Q) =UQL)=0.

Case 1. In this case C is nonsingular by (1.3.5). ¢, in (1.2.1) is
an isomorphism by QO =0, so that I.=1I, along C by Nakayama’s
lemma. This implies that C is a connected component of . It is clear

that N¢x=(c/13)" ~0(2)®" 1,

Case 2. In this case C is nonsingular by (1.3.5). Consider the
homomorphism ¢,

éc 3Oc(_L)®("_ 1)( :(I,/If)@OC) - IC/I(ZZ'

In view of I(Qc)=1, there is a unique point p of C such that /(Coker
¢cp)=1. By Lemma 1.6, we can choose a local coordinate system x,,--+,x,
of X at p such that

Il,p=(x1"")xn—2’xn—lxn)) IC,p=(x1>"'axn—l)'

It is easy to see NC/XZOC(-DOC(l)@("'z). Therefore we have another
irreducible component C; of [ whose defining ideal I, , is given by

ICl,p=(xl)'“’xn—2’xn)'

In particular, [ is generically reduced along C;. Then there are two

subcases C, c B, 4 or C{ & B, 4.
Case 2-1. If C, c B,,, then (2.1.2) is true.

Case 2-2. If C; & By, then LC;>0. If LC,>2, then by Casg 1
above, we see that LC; =2 and C, is a connected component of /, which
is absurd. If LC,;=1, then C;~P"' and by the same argument as above,
p is a unique point of C; such that Coker ¢, ,#0. The union of C and
C, is a connected component of /.

If LC;=0, then C;~P!, C; N B, ,4=0 and (Q¢,)=2, (Q"c)=UQ'c)=0
by (1.3.6). Hence there is another point p, of C; (p,#p) such that
Coker ¢¢, ,,#0. In fact, by (1.3.1) we have UQc, ,)=UQOc,)=1.
Therefore by Lemma 1.6, we can choose a local coordinate system y, -+, ¥,
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at p, such that

Il,p2=(yl’""yn—Z’yn—lyn)> Ic,,pz=(y1,---,y,,_2,y,,_1)

Hence we have the third reduced curve-component C, of [ with
Ic,,,=W1,",¥n-2,¥n). Since C{#B,4, we see C,#ZB,. . As before
C,~P' and LC,=0 or 1. If LC,=1, then C, (:=0)+Cy+C, is a
connected component of /.

If LC,=0, then by repeating the same argument, we eventually
obtain a chain of rational curves Cy,Cy,:-,C,, with LCq=LC,,=1, LC;=0
(1<i<m—1) such that C;_; and C; intersect transversally at a point p;
(1<i<m), py:=p and Cy+C;+:--+C,, is a connected component of [
with C;nB,.4=0 (1<i<m—1). We also see that

Neyx=0c,®0c,(1)%"~2 (=0,m)
Neyx=0c(=2)@O0E"™? or Oc(~D®?®OE"™>  (1<i<m-1).
q.e.d.

Proposition 2.2. Assume h°(X,L)>n and let | be a scheme-theoretic
complete intersection of geneval (n—1)-members of |L|. Assume moreover
that | has a reduced curve-component C not contained in B, with
LC=0. Then C is a nonsingular elliptic curve with C B, 4=0.

Proof. If CNn B, 4#0, then C is contained in B,,4 by LC=0, which
is absurd. If [ is general enough, then by Bertini’s theorem, Sing [ is
contained in B,4. Hence [ is nonsingular along C, whence C 1is
nonsingular and it is a connected component of /. q.e.d.

3. Moishezon manifolds with ¢,(X)=nc (L) and b,=1 (1)

The purpose of this and the next sections is to prove:

Proposition 3.1. Let X be a Moishezon manifold of dimension n
(=3) with by=1, and L a line bundle on X. Assume that c¢,(X)=nc,(L)
and h°(X,LY>n+1. If a scheme-theoretic complete intersection | of general
(n—1)-members of |L| has an irreducible curve-component C with LC>2
outside Bs|L|, then X~ Q".

In this section we prove Proposition 3.1 assuming h%(X,L)>n+2.
Our proof of Proposition 3.1 in this section is completed in (3.8). In
the next section we disprove h°(X,L)=n+1.
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Lemma 3.2. Let m=h°X,L)—1 (>n+1), and let B:=Bs|L| be the
scheme-theoretic base locus of |L|, and h: X — P™ the rational map associated

with |L|. Then m=n+1 and h is a birational map of X onto a hyperquadric
W in P"*1,

Proof. Step 1. Let W be the closure of A(X\B), and d=deg W.
Then d>m+1—dimW. By the assumption dim W>n—1. Hence by
choosing general (n—2)-members D;e|L| (1 <i<n—2), we have reduced
irreducible components Z; (1<i<e) of ©:=D;n---nD,_, outside
B. Each Z; is nonsingular outside B by Bertini’s theorem. Let v;
Y; > Z; be the normalization of Z;, f;: S;— Y, the minimal resolution of
Y,gi=vi'f., LetZ=Z, Y=Y, S=8S,, f=f;,v=v, and g=g,. Then
there exist by Theorem 1.14 an effective Weil divisor A on Y, effective
Cartier divisors E and G on S with no components in common such
that the canonical sheaves K, and K are given by

Ky=0y(V(Kx+(n=2)L)—A),  Ks=045((Kx+(n—-2)L)—E-G)

where f(E)= A, f.(G)=0 and E is finite over A. Let Z:=f"1(A)ug™!
(Sing Z). 'Then X contains supp(E + G) and g|55 is an isomorphism. We
also note that the base locus Bsg'|L| contains supp(E+G) if D;’s are
sufficiently general. Since h°(X,L)>#n and Z¢ B, g*L is effective. Since
c,(S)=2¢c,(g'L)+c,(E+G) and S is projective, we have P,(S)=0.
Therefore S~P? or S is ruled, that is, .S has a morphism onto an
algebraic curve with general fiber ~P!. Since any Z; is algebraically
equivalent to each other, S;~P? for any i or S; is reled for any i.

Step 2. Assume S~P2?. Then we have G=0 and S~Y. Let
Heg'|L|. Then Kg=—2H—E. Since Kp: is indivisible by 2, we have
E#0 and H=Ee€|Op:(1)| in view of E,4< H,4 This shows that
(Dyn--ND,_{)iea < B for any D,_,, which contradicts the assumption
that general [ contains a curve-component outside B.

Step 3. By StEP 2, S has a morphism n: S — T onto an algebraic
curve T with F (~P!) a general fiber of n. Let Heg'|L|, and let M
(resp. N) be the movable part (resp. the fixed part) of H in g*|L|. Since
F~P', we have

—2=K F+F*=K{F=—2HF—(E+G)F.

Since E g4+ G,oq < H,eq, we have HF =1, EF=GF=0. Therefore there
exists a unique irreducible component I' of H with I'F=1 and
I'¢ E4+G. If ' N, then MF=0, whence M is a sum of general
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fibers. Choose D,_, €|L| such that H=g'D,_,. Then g(F) is a general
movable component of :=D;n---NnD,_, with (Lg,(F))xy=(g"'LF)s=1.
This contradicts the assumption that there exists a component C of [
with LC>2. Hence I' « M. Consequently I'?>0, and M=I", NF=
HF—-MF=0.

STeP 4. Assume dim W=n—1. Then 7 is smooth and irreducible
outside B for general D; by Bertini’s theorem. Since M is irreducible,
we have deg W=d=1>m—n+2>3, a contradiction. Hence dim W =n.
Moreover I'?>0. In fact, if T?=0, then we have I'nI"=0 for any
general I"€[l'|, whence Z\B is mapped onto a curve by A. Hence
dim W=n—1, a contradiction.

We also have,

KJ+I?=—-T?-Q2N+E+GI'< —1.

Therefore the inclusion E, 4+ G,.q < N,.q shows that '~P! T2=2,
KJI'=—4, NI'=ET=GI'=0 and g'(L)If =HT' ="+ N)['=2.

Since dim W=n, C:=g(I') is an irreducible component of a general
complete intersection l:=D;n---NnD,_, outside B. Clearly (LC)yx=
(g"(L)YN)g=2, while we have an obvious relation

(g"(L))s=deg(h"g)rdeg W +deg Bs g*|L|r.

Since g'(L)'>d>m—n+1>2 by the assumption m>n+1, we have
d=deg W=2, deg(h-g)r=1, m=n+1 and Bsg'|L|r=0.

Step 5. StTEP 4 shows that C (=g(I')) is the unique irreducible
component of [ outside B. A(C) is an irreducible plane conic. Therefore
h(C)~P', C~P!, degh(C)=2 and |L|.=|L.|. Moreover deg(h)c)=1 and
Bs|L|.=0 are clear from STer 4. For D, general, we have deg h=deg(hc) =
1. This completes the proof of Lemma 3.2. q.e.d.

Lemma 3.3. PicX=~ZL.

Proof. First we prove H(X,04)=0. Assume the contrary. Then
since X is Moishezon, we have a nontrivial Albanese map alb: X — AIb(X)
where AIb(X) is projective. Since b, =1, some multiple of L is a multiple
of the pull back of an ample line bundle on Alb(X). Therefore the
morphism alb is generically finite, whence we have a nontrivial holomorphic
two form on X. This contradicts b,=1.

Now we consider an exact sequence
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0 - H'(X,04)(=0) » H'(X,0%) > HX(X, Z) » H(X,0y).

Since b,=1, Cokerc, is finite. As H?*(X,0y) is a C-vector space, it
has no torsions. Hence Cokerc;=0. Therefore Pic X:=H'(X,0%)~
H*(X,Z).

Next we prove Tor H*(X,Z)=0. Assume the contrary. Then we
have an unramified covering p: X — X such that deg p=#Tor H*(X,Z)>2
and p*Tor H¥(X,Z)=0. Letting L:=p'L, we have ¢,(X)=nc,(L), and
h°(X,L)>n+2. By Lemma 3.2, we have dim W=n, deg W=2, degh=1
and h°(X,L)=n+2. Its proof makes no use of b,=1, whence we have
the same conclusion for X. Let / be the rational map associated with
||, B:=p~!(B), and W the closure of A(X\B). Then we have dim W=n,
degW=2, degh=1, and h°(X,L)=n+2. It follows that (X, L=
Ko(X,L), h=h-p, W~W and degp=1, This is a contradiction. Hence
Tor H*(X,Z)=0, and Pic X~H*(X,Z)~Z.

Finally we prove PicX~ZL. Choose a generator L, of Pic X so
that L =al, for some integer a>1. Now we recall the proof of Lemma
3.2. Under the same notation as in Lemma 3.2, the surface S is ruled
with F a fiber. Then (¢'LF)g=(HF)s=1. We have (¢'LF)g=a(g’LF)s,
whence a=1 and Pic X~ZL. q.e.d.

Corollary 3.4. Let W be the closure of (X\B). Then W is a normal
hyperquadric with Hessian-rank>5.

Proof. If Hessian-rank W <4, then W has a reducible or nonreduced
hyperplane section, which contradicts Lemma 3.3. q.e.d.

(3.5) NoTtaTioN. Let X be the normalization of the closure in X x W
of the graph of A, A: X > W and ¢:X — X the natural morphisms. Let
B=¢ " '(B) and B’ be the minimal subvariety of X containing B such
that / is unramified on X\B*. Let B*=@(B") and R*=h(B*). We note
that X\B~X\B, X\B*~X\B*'~W\R* and therefore B'=¢ '(B")=
h™Y(RY.

Lemma 3.6. B*=/"'(Sing W)UB.

Proof. Let #=H°%X,L). It is clear from X\B'~W\R' that
Sing W < R* and A~ !(Sing W) = B*. Assume that there exists a point
peB\(A~(Sing W)uB). Then q:=Ah(p) is a smooth point of W and
i~ 1(q) is a connected subset of X with dim/%~(¢q)>0. Letp:=¢(p)e B"\B.
Then it follows that g=~A(p)=h(p). We infer from X\B~X\B that
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dimA~'(g)>0 and that there exists a subset B’ of B such that
e(h~Y(q))=h ' (¢)UB’. Since h~1(q) is connected, so is o(h™ ().
Since g is a smooth point of W, we can choose a smooth conic *
on W which is not contained in R* and passes through ¢q. Let
V=V(I")e Grass(n—1,5) be a linear subspace of # corresponding to I
with dim V=n—1. Let [, be the subvariety of X defined by
I,,=%,,sOx. Then [, passes through p, and it is one-dimensional and
nonsingular outside B*. Let C be the unique irreducible component of
1, outside B such that A(C\B)=[*. Since LC= deg(h,c)deg W +deg Bs |L|,
we have LC>2, whence by Lemma 2.1 C~P!, LC=2 and that C is a
connected component of I,. Let C be the proper transform of C by
@~ !. Then since " passes through g and since A~ '(g) is connected, the
union CuUh™'(q) is a connected subset of X, whence the union
e(C)uph~Y(g)=Cuh~Y(g)UB’ is a connected subset of I,. This
contradicts that C is a connected component of I,. q.e.d.

Lemma3.7. B*=h (Sing W), R*=Sing W, B=0, B=0and X~ X.

Proof. Assume B'#/A '(SingW). Then R*#Sing W. Then we
can choose a smooth conic I* on W which is not contained in R* and
meets R*\Sing W. Hence we can choose "€ Grass(n—1,5) such that
ly. is pure one dimensional and irreducible nonsingular outside B* and
h(l,\B*)=I". Letqbe apoint of (" R*)\Sing W, C the unique irreducible
component of I, with A(C\B*)=F. Note that 1 '(g) c B by Lemma
3.6, whence @(h '(q)) = B. Let C be the proper transform of C by
@~ '. Then Cuk™!(q) is a connected subset of X, whence CuU@(%™(g))
is a connected subset of Il,. Since @(h !(q)) = B, this shows that
BN C#0. Since h(C\B*)=I', we have LC>2. By Lemma 2.1, we have
LC=2, and BNC=Bs|L|-=0, which is a contradiction. Hence B'=
h~Y(SingW) > B and R*=Sing W.

Next we prove B=0. Let peB, and ¢=Hh(p). Since Bc
h~1(Sing W), q is a singular point of W. A general (singular) conic I* on
W passing through ¢ is a union of two lines. As before we choose
VeGrass(n—1,#) with h(l,\B)=F. Let 6:=Cy+C,, be a minimal
subcurve of I, with h(6\B*)=I'. We notice that Lemma 2.1 is true if
we only assume that C is a reduced curve-component of  with LC>1. We
have LC;=1and C;n B=0fori=0,m. Hence only (2.1.4) is possible. By
(2.1.4), the connected component of [, containing C, is a reducible curve
Co+--+C,, disjoint from B with LC;=0 (1<i<m—1). In the same
manner as above we see that cuU@(h™!(g)) is a connected subset of [,
intersecting B, which contradicts that Cy+---+C, is a connected
component of I, disjoint from B. Hence B=0, B=0 and X~X. q.e.d.
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(3.8) ProoF ofF PROPOSITION 3.1 UNDER THE AssumpTION h%(X,L)>
n+2. The birational map % is defined everywhere by Lemma 3.7. It
is easy to see by using ¢,(X)=mnc,(L) that X~W if W is smooth. So
we consider the case where W is singular. We prove that this case is
impossible. We recall Hessian-rank W>5. We note that a complete
intersection of general (n—2) hyperplane sections of W passing through
a singular point of W is a singular quadric surface Q (~F,:=
P(Op1@0p1(2)) with (—2)-curve contracted).

Let ge W be a singular point of W. Let m, be the maximal ideal
of Oy defining q, A:=h"m,Oy(1)|, and let D;e A (1<i<n—1) be general
members. Let t=D;n---NnD,_, be a scheme-theoretic intersection of
D;, Z the unique irreducible component of t mapped onto a singular
quadric surface Q passing through ¢, where ¢ is the unique singular point
of Q. Keeping the same notation S, Y,g,E and G as in Lemma 3.2, we
let H=g*(D,_,), and M (resp. N) the movable part (resp. the fixed part)
of H for D,_;eA. We see S+ P? as in Lemma 3.2 Case 1. We note
that dim/4~(¢g)>1.

Hence S is a ruled surface with F a general fiber of the ruling n. It
follows that

2= —KF=(H+E+G)F,

Since E, .4+ G,eq © H,eq, We see that HF =1, EF=GF =0 and that there is
a unique irreducible component I' of H with 'F=1. Assume that
I'ceM. Then M=T for general D,_, because MF=TF=1. However
g(M) is by Lemma 3.7 a complete intersection of (n—1)-hyperplane
sections of W passing through the point q. Hence it is a singular conic,
that is, a union of two lines, which contradicts the irreducibility of
M. Hence I'c N. Since B=0,l:=D;n---nD,_; has by Lemma 2.1
a connected component Cy+---+ C,, of type (2.1.4) for general D;, where
g(C)) (i=0,m) is a line passing through q. Note that Lemma 2.1 is true
only if C (C, or C,, in this case) is a reduced curve component of / but
even if D; is not general. Since g(C,) and g(C,,) are algebraically equivalent
as lines on W passing through ¢, C, and C,, intersect the same irreducible
component, say C,, of [ for general D,_,. Hence m=2. Since B=0 and
h is birational, [ is connected so that [,.y=Co+ Cy+h " 1(@)ea- As h(Cy)=¢q
and 2~ 1(¢g) is a connected subset of I, we have

I~Co+C+C;, Co+Cy=M, h™Y(g)req~Cy~T'~P.

In particular, A~ !(¢q) = Z. Since 1=k~ !(q)UZ by the choice of Q, this
shows that 7 is irreducible and pure two-dimensional, hence Gorenstein.
Since it is generically reduced, it is reduced everywhere, whence Z~1.
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Moreover by (2.1.4) we have I; ,=(x,"::,x,_,,%,_,x,) at any point
p of Cy, whence we may assume I, ,=(x,,--,x,_,). Hence t is smooth
everywhere along k£~ !(q). Since t\h'l(q)zQ\{q}, we have Singt <
h™'(g). Thus t is smooth everywhere, so that S~Y~Z~1 and
E=G=0. Hence we have HI =g*(L)['=0, K;I'=0 and I'’=—2. We
also have HF =1, (HZ)S=(L§)Z=((h'OW(1))")X=2. Since Kg=—2H and
H?*=2, S is relatively minimal. Hence I'?= —2 implies that .S~ P(n,H) ~
F,. We also see that A~ !(Sing W) is a P!'-bundle over Sing W. We
note that dim Sing W=n+1—Hessian-rank W<n—4.

Let C=h"!(q) for some geSing W. Then by (2.1.4) we have

This shows that there exists an (at least) (n— 3)-dimensional family of
displacements C(¢) of C in X [9, Proposition 3]. Since LC(t)=LC=0,
h(C(t)) is a point, so that any general C(¢) is not contained in
h~!(Sing W). However by Lemma 3.7 k is an isomorphism outside
h~1(Sing W), a contradiction. Thus it is impossible that W is
singular. q.e.d.

4. Moishezon manifolds with ¢ (X)=nc,(L) and b,=1 (2)

The purpose of this section is to complete our proof of Proposition
3.1. In this section, we disprove the possibility of A°(X,L)=n+1.

(4.1) NotaTioN. In this section we always assume h°(X,L)=n+1.
We let B:=Bs|L| (resp. Bs|L|;) be the scheme-theoretic base locus of |L|
(resp. that of the restriction |L|c of |L| to C), and h: X — P" the rational
map associated with |L|, W the closure of A(X\B). We notice that the
same argument as in Lemma 3.2 shows dim W=n, that is, W~P". We
define X, h: X->W, ¢o: X-»X, B=¢ '(B), B'c X, B*=¢(B*) and
R'=h(B*) in the same manner as in Lemma 3.6. Then we have
B'=¢p '(BY=h"'(R"), X\B~X\B and X\B'~X\B'~W\R".

Let I* be a line on W not contained in R*, I(I"):=A" ("), C(I") an
irreducible component of A7 !(/) mapped onto U, C(I": = o(C(I")),
o(I):=@(h~1(I"). Let I(I") be a complete intersection of (n—1)-members
of |L| corresponding to I*.  We keep the same notation in Lemmas 4.2-4.3.

Lemma 4.2. Under the notation in (4.1), we have W=~P" and
C("~P*.

(4.2.1)  I(I*) is irreducible outside B for general I'.
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(4.2.2) C:=C(I') is the unique irreducible component of I(I*) outside B for
general I'.  Then one of the following is true.

(4.2.2.1)  deg(hc)=1, LC=2, degBs|L|c=1.
(4.2.2.2)  deg(hc)=2, LC=2, degBs|L|-=0.

(4.2.3) Let C’ be an irreducible component of I(I*) outside B. If LC'= 1,
then Bs|L|c..=0 (and I' is not general).

Proof. We note that C(I')~P! by Lemma 2.1. (4.2.1) is clear from
Bertini’s theorem. Next we prove (4.2.2). Let C:=C("). The first
assertion is clear. We prove LC=2. If LC=1, then by the equality

LC=deg(h,c)deg W+degBs|L|c,

we have deg(hc)=1 and Bs|L|c=0. The complete intersection I(I') is
therefore smooth along C, so that I[(I*)~C along C, which contradicts
Lemma 2.1. Hence LC=2. It follows that 2=deg(hc)+degBs|L|.
The rest is clear. q.e.d.

In view of (4.2.2), we have degh=deg(h/~) for general I'' We
disprove both the possibilities degh=1 and 2 respectively in Lemma 4.3
and Lemma 4.4.

Lemma 4.3. degh=1 is impossible.

We prove Lemma 4.3 in Claims 4.3.1-4.3.7 and (4.3.8).
Assume degh=1. Keeping the notation in (4.1), we first prove

Claim 4.3.1. R’ is a hyperplane of W (~P").

Proof. We keep the notation in (4.1) and Lemma 4.2. Assume
first dimR*<n—2. Then there is a general line I* on W such that
FAR'=0 by Lemma 4.2. Let C=C(l"). Hence A~ (I")nB*=0, whence
BN C=0. However we have degBs|L|.=LC —degh=1, a contradiction.
Hence there is an irreducible component of R* of dimensionn—1. Assume
that R* is not a hyperplane. Then R* has another irreducible component
or R* is a hypersurface of degree greater than one. Therefore there is
a line I* of W such that I R* contains two points ¢; (:=1,2). Then
since A~ 1(I) is a connected set containing C(I*), @(A~1(I")) is a connected
subset of I(I*) containing C. Since C is a connected component of [(I")
by Lemma 2.1, we have C=¢(h '(I")). Hence p;:=¢@(h (g;) is a point
of C. If p;¢B, then h~1(g)nB=0 so that A~ '(g;) is a point $; of X by
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the isomorphism X\B~X\B. Since % is birational, /% is unramified at
pi;, whence p,¢B* and ¢;¢ R*, a contradiction. Hence p;eB (1=1,2).
However since deg(ﬁ|é)=deg(h|c)=1, we have p; #p,, which contradicts
degBs|L|c=1. Consequently R* is a hyperplane. q.e.d.

_ Claim 4.3.2. There exists a point poeX such that B={p,},
X~Q,(X) and B=¢~(py)~R'.

Proof. We first take and fix a point ¢, of W\R*. Letp :=h"!(q,)
and ﬁw:=ﬁ"l(qw). For any point g€ R* there exists a unique line [ of
W connecting g, and g. Let l:=Il), L:=h"'(}), Cp=C(;) and
0,:=¢(l,). Since o, is a connected subset of /,, we have by Lemma 2.1
(fq=quP1 for general ge R*. 'Take a general point g, of R*. Then by
(4.2.1) and by the same argument as in Claim 4.3.1 py:=@(h 1(g,)) is a
point of C, with {po}=Bs|L|c,, scheme-theoretically. Since C,, is a
connected component of [, by (2.1.1), p, is an isolated point of B so
that pyea, for any g, and {po}=Bs|L|c, for general ge R".

Next we prove that ¢, is smooth at p, for any geR*. In fact, o,
has a reduced curve component C,. If LC,=2, then o,~[ ~C, along
C, by Lemma 2.1, whence o, is smooth at p,. If LC,=1, then BnC,=0
by (4.2.3), whence [, along C, is of type (2.1.4). Hence there exists a
unique irreducible component C’; of 6, with LC’'; =1 containing p,, where
6, is smooth. Thus it turns out that ¢, is of type either (2.1.1) or (2.1.4)
for any geR*. We also see that o, is a connected component of I,
containing C,. Moreover ,nB'=0 for any ge R* where B':=B\{p,}.

Since Bs |L|C4={p0} for general ¢, there exist (general) n-members
D,,---,D, of |L| and a closed subset 4 of X such that D;n---NnD,=p,+ 4
and po¢ A. Hence n equations defining D; form a local coordinate at p,
so that after blowing up X at p, we have a rational map of O, (X) onto
W induced from h, which is a morphism near the exceptional set
E: =on(p0)zP"'1. It follows that X~ 0po(X) near E.  In what follows
we view E as a divisor of X by the above isomorphism. Then E=¢ ~!(p,).

Next we prove that EIE,, is an isomorphism of E onto R'. In fact,
since 0, is smooth at p,, [, intersects E at a unique point f(q) with
o(p(q))=p,- Since R’ is normal, this defines a morphism p: R* — E such
that A-p=idg.. This showsAthat ﬁlE is an isomorphism.

Finally we prove that B=E. Assume the contrary. We define a
closed subset B’ of X by B:=¢ Y(B)). As h(B*)=R*, h(B') is a subset
of R*, from which we choose a point gq. Since /4 is birational, l:l is a
connected subset of X intersecting B'. Therefore oqﬁB'#(Z)A, a contra-
diction. Hence B=E, whence B={p,}. Consequently X~Q, (X).

q.e.d.
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Claim 4.3.3. Let Pbea general plane of W passing through the point
4o tn Claim 4.3.2, and Z(P):=@(h~'(P)). Then Z(P)~F, or F,.

Proof. Let Z=Z(P). First we note that Z\{p,} is smooth by
Bertini’s theorem. As was shown in the proof of Claim 4.3.2, there exist
general n-members D,---,D, of [L| such that D;n---NnD,=p,+ A4, po¢ A
so that Dy n---nD,_, is smooth at p,. This proves that Z is smooth
at po. Since aq’:Cq:Pl is a member of |L,| for general g, we have
(03) =(Lo))=(LC))x=2. Aswehave K;~—2L,, Z is a smooth relatively
minimal rational ruled surface, isomorphic to either F, or F,. q.e.d.

Claim 4.3.4. Under the notation in Claim 4.3.2,

(4.3.4.1) o0, is reduced for any qeR".

(4.3.4.2) Let A:={qeR}; o, is reducible}. If a general Z~F, (resp. F,),
then A is a hypersurface of R* with deg A\ =2 (resp. 1).

Proof. First we prove (4.3.4.1). By the proof of Claim 4.3.2, g,
is of type (2.1.1) or (2.1.4). In either case g, is reduced.

Next we prove (4.3.4.2). Assume that o, is reducible. Then by
the proof of Claim 4.3.2, g, is of type (2.1.4), that is, 6,~C,+C, ; +---+ (',
with LC,;=LC' ;=1 and LC,;=0, where we may assume that p,eC,,
RC\{po})={q} and h(C'))=I,. Since o,€|L,|, we have

(Cg)z = (C'g)z = (LC’q)X —1=0, (Clii)z = (LCq,i)X —2=-2

First we consider the case where Z~F,~P'x P!, We identify p,
=(0,0) and L;=7]0p:(1)®@750p1(1) via the isomorphism where 7; (i=1,2)
is the i-th projection. Note that |L|,=|m,L,|. The linear subsystem
{0,}4ep~r* coincides with |m, m, L,|. Since g, is irreducible for g general,
there are no fibers of m; (i=1,2) containing both p, and p,. Then by
a direct computation we see that o, is reducible for exactly two (distinct)
points of PN R*. Thus A contains a hypersurface A, of degree two in
R*. Similarly if Z~F,, then o, is reducible for a unique point g of the
line PN R, for which ¢, has exactly three components C,, C, , and C,
by the above proofs. Hence A contains a hyperplane A, of R".

Finally we prove that A =/ ,. Assume the contrary. Then choose
a point ¢ € A\A,. Then [:=D;n--nD,_; is of type (2.1.4) with
0y~Cp+Cpy+--+Cy. Let V<« H'(X,L) be an (n—1)-dimensional
subspace defining [,. Then since ¢, has at worst ordinary double
singularities given in (2.1.4), we can choose a general (n— 2)-dimensional
subspace U of IV such that the surface (=: Z) defined as the common
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zeroes of U is smooth. (This is clear from the form of the ideal defining
g, in (2.1.4)). In other words, there exists a plane P of W such that
Z:=Z(P) is a smooth surface containing ¢,. Then by choosing U
sufficiently general, we may assume that the line PN R® intersects A,
transversally. As we have seen above, Z~F, or F,. If deg A,=2 (resp.
deg Ag=1), then o, is reducible for at least three (resp. two) distinvt
points of PN A, a contradiction. Hence A=A, q.e.d.

Claim 4.3.5. Under the notation in Claim 4.3.4,

(4.3.5.1) if deg A =2, then o, has two irreducible components for any
g€ A\Sing A, while 6, has three irreducible components for any g€ Sing /.

(4.3.5.2) Ifdeg A =1, then o, has three irreducible components for any qe A .

Proof. Let [" be a line of R*, P:=P(l') a plane of W spanned by [*
and ¢, and Z:=Z(P)=h"'(P). As we saw in the proof of Claim 4.3.4,
we can choose, for any ge A, a general line I'=1[, passing through ¢ of
R* such that Z=Z(P(l")) is a smooth surface.

Assume deg A =2. For a smooth point g of A, there exists a line
I of R* such that I'n A =q+q for some point ¢ (#gq). Obviously
¢ ¢Sing A. By the proof of Claim 4.3.4, Z~F,, o, and g, are the only
reducible curves in |L|; passing through p,. Hence g, as well as o, has
exactly two irreducible components. This proves the first part of (4.3.5.1).

If ¢ is a singular point of A, then there exists a general plane P
with Pn A ={2¢} such that Z=Z(P) is a smooth surface containing
0, (In fact, this is also clear from the form of the ideal defining ¢, in
(2.1.4).) In the same way as in the proof of Claim 4.3.4, we see that
K;~—2L;, (L});=(Lo)x=2 and 0,=C,+C, +--+C', with (CH,=
(C'?;=0,(C});=—2. We note that g,~C,+C’, is impossible. In fact,
if so, then since Pn A ={2q}, there are no reducible members
in |L|, other than ¢,. However if Z~F,, then there are two reducible
members in |L|,, while if Z~F,, then there is a unique reducible member
in |L|;, which however consists of 3 irreducible components. Hence
0,~C,+C', is impossible. Therefore 0,~C,+C; +--+C',, whence
Z~F,, 6,~C,+C,+C',, which completes the proof of the second part
of (4.3.5.1). (4.3.5.2) is proved similarly. q.e.d.

Lemma 4.3.6. A general Z~F, and /A is a smooth quadric
hypersurface in R".

Proof. First we note that K,~ —2L, for general Z=Z(P). Let F
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be a fiber of the ruling of Z. Then (LF)y=(L,F),=—(K,F),/2=1.
This shows that Pic X/Tor(Pic X)~ZL.

Now we prove that A is an irreducible hypersurface of degree
two. Assume that A contains a hyperplane A’. By Claim 4.3.5,
0,~C;+Cjorg,~C,+C', for any ge A'\Sing A, where we may assume
that poeC,, p,€C’;. Note that A(C\{po})={q}, H(C)=I,. Let

G= |J Cp G:= | C,

qeA’\SingA qeA’\SingA

Then G and G’ are (mutually distinct) divisors of X. In fact, if
C,nC,#{po} for g, se A'\Sing A, then C,=C, by LC,=LC,=1 so that
g=s. Hence dimG=n—1. Similarly dimG'=n—1. Meanwhile if for
general ge A"\Sing A, there exists s€ A"\Sing A such that C,nC';#90,
then C,No, contains at least two points, whence C, = o, by LC,=1.
Hence C,=C,, whence g=s. Therefore GNG' is at most (n—2)-
dimensional. Since L generates Pic X/torsions, we have ¢(G)=ac(L)
and ¢,(G')=d'c,(L) for some positive integers a and a’. However G+ G’
is a subset of D:=u,,0, which is a member of |L|. It follows that
a+a <1, acontradiction. Consequently A is an irreducible hypersurface
of degree two. In particular a general Z~F, by Claim 4.3.4. (There
is another proof of Z~F, due to Fujiki.)

Next we prove that A is smooth. Assume that A is singular. By
(4.3.5.1) we have ¢,~C +C,;+C', with LC, ;=0 for any geSing A.
Conversely, given a rational curve C with LC =0, we have a unique point
g of Sing A such that C=C, ;. In fact, since po¢C, it suffices to set
¢:=h(C). It follows from Claim 4.3.5 that C<g, C=C,, and
geSing A. Therefore C moves on X in an at most (n—4)-dimensional
family. On the other hand x(C,N¢;)=n—3, whence by [9, Proposition
3], there exists an at least (n—3)-dimensional family of displacements
C(t) of C in X, a contradiction. g.e.d.

Claim 4.3.7. X~Q\(W), the monoidal transform of W with smooth
center A.

Proof. By Claim 4.3.5, ¢,~C,+C’, for any ge A, where p,e C, and
pweC' Let C,: =9 1(Cq) A —h l(A)md, M:=¢*L—E and J(h):=

—h*KW Then A =0 ,C, is a unique h-exceptional divisor. Hence
J(R)=rA for a positive integer 7.

First we prove that (ACq)g= —1. Since a general member of |L|
intersects C, (g€ A) tranversally at p,, we have MC =0 and EC =1,
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whence M=#'0y,(1). We also have
J(ﬁ)=¢*Kx+(n—1)E+(n+1)M=M—E=(p'L—2E,

whence /(AC)z=(LC)x—2(EC)3=—1. Hencer=1and(AC)z=—1.

Next we prove that A is smooth. Let ge A. Then we can choose
general (n—2)-hyperplanes Hy,---,H,_, of W such that AnH,n---N
H,_,=q+s for some s (#q). Let P:=H,n---nH,_,. Then Z(P)~F,
and Z(P)nqo(A) C,uC, Let M; be the proper transform of H;. It
follows that Ar\Mlm -AM,_,=C, along Cq\E Since C, is smooth,
so is A along Cq\E for any q. Therefore A\E is smooth. Meanwhile
ANE~A, whence A is smooth along ANE. Hence A is smooth
everywhere Note that ¢(A)e|L|.

Since C‘qm C,=0for g#s(g,s€ A), this shows that X~ Q,(W). q.e.d.

(4.3.8) CompPLETION OF THE PrOOF oF LEMMA 4.3. By Claim 4.3.2
and Claim 4.3.7, X is recovered from W (~P"), R and A as follows. By
Claim 4.3.7, X is the monoidal transform of W with A center. Then
E (~P" ') is a proper transform of R* with Npiz~Og(—1). In fact,

Ngz~Eg~(M—J(h)g
~ (7)) (Ops(1) = A)
~O0g(—1).
Consequently we obtain X from X by blowing down E to a smooth
point p, of X. Obviously X thus obtained is unique up to

isomorphism. Hence we have X=~Q" whence h°(X,L)=n+2, a
contradiction. This completes the proof of Lemma4.3. q.e.d.

Lemma 4.4. degh=2 is impossible.

We prove Lemma 4.4 in Claims 4.4.1-4.4.4. We use the same
notation as in (4.1) and Lemmas 4.2-4.3.
We assume degh=2. We first prave

Claim 4.4.1. Let ' be aline of W (~P") not containedin R*. Then
(4.4.1.1) #('nR)=1 or 2.
(4.4.1.2) II:=h~'(I') is a connected subset of X.
(4.4.1.3) o(I"):=@(I(I')) is a connected subset of X disjoint from B.
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Proof. First we prove (4.4.1.2). Let g, be a connected component
of (/") mapped onto /, and 6,:=¢ (6,). Then g, is of type (2.1.1)
or (2.1.4) by Lemma 4.2.

If I' is general, then o(l*) is irreducible outside B by Lemma 4.2,
whence o, is of type (2.1.1). That is, g, is a rational curve C with
LC=2. Hence by Lemma 4.2 6,nB=0 and 6,n B*=p, + 5, for some
points p; because deg(hc)=degh=2. Note that 6,~0, because 6, B=0.
Let g;:=h(p;). Since degh=2, i '(q;,) is a connected subset of {(I*). Since
I(I=6,Uh™Yq) Uk~ g,), I(I") is connected. Since I(I*) is connected for
general I’; it is connected for any [I*. This proves (4.4.1.2).

Next we prove (4.4.1.3). By (4.4.1.2) o(I*) is connected. Hence
o(l') is of type (2.1.1) or (2.1.4). If o() is of type (2.1.1), then it is a
smooth rational curve C with LC=2. Since deghc=2, we have CnB=0
by Claim 4.2.2. If o(l) is of type (2.1.4), then a(I")~Cy+---+C,, with
LCy=LC,=1, LC;=0 (1<i<m—1). We prove a(l')nB=0. If o(I')nB
#0, then we may assume C,nB#0. Then A(C;) (1<j<m—1) and
h(C,,\B) are one and the same point of W, while k, is unramified on
Co\C, by LCy=1. Since I'¢ R*, this contradicts degh=2. Therefore
o(l"YNnB=0(. This proves (4.4.1.3).

Finally we prove (4.4.1.1). If g, is of type (2.1.1), then I'nR" is
two points by the above proof. If g, is of type (2.1.4), then I'nR" is
one point. q.e.d.

Claim 4.4.2. B=0, B=0 and R is an irreducible hyperquadric of W.

Proof. First we prove B={. Assume B#(, whence B#0. Then
there is a line * not contained in R* such that I()nB#0. Hence
a(I"Yn B#0, which contradicts (4.4.1.3). Hence B=0. Therefore X~ X.

Next we prove that R* is a hypersurface of degree two in W. Choose
a general line [* of W intersecting R*. Then /(') contains a rational
curve C with LC =2 by the assumpion. By LLemma 4.2 we have BN C=9),
dim|L|c=1. It follows that there exist exactly two points p,e C (i=1,2)
such that A is unramified on C\{p;,p,}. Note that p,¢B. Let
gi:=h(;). Then CNnB*'=p,+p, and 'nR*=q,+q,. Hence R contains
a hypersurface R} of degree two in W. If R*#Rj, then there exists a
line ' not contained in R* but intersecting R* at (at least) 3 distinct
points. This contradicts (4.4.1.1).

Finally we prove that R* is irreducible. Assume the contrary. Then
dim Sing R*=n—2. We prove that C:=h"!(g) is a rational curve with
LC=0 for any ge Sing R*. For this purpose we choose a general point
g € W\R" and a line [* connecting ¢, and ¢ with *nR*={2q}. Moreover
we choose a general plane P containing [ so that Z(P) is a smooth
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surface. Choose point p, with ¢, =h(p,). In the same manner as in
the proof of Claim 4.3.5, Z(P)~F,. We have a unique reducible curve
0 in |L,| with h(g)=I" passing through p, whence o(I)=0~Cy+C,+C,
with LC;=1 (:1=0,2), LC;=0. Therefore C;,=C=h"!(q). Let G:=
h~'(Sing R*). Obviously G is a divisor of X with A(G)=0, which
contradicts Pic X/torsions>~ZL. This proves the irreducibility of R".

q.e.d.

Claim 4.4.3. R* is smooth.

Proof. By Claim 4.4.2, we have Hessian-rank R*>3. Assume
4 <Hessian-rank R*<n so that dim Sing R*<n—4. Then by the proof of
Claim 4.4.2, C=h"'(q) (g€ Sing R") is a rational curve with LC =0, whence
X(N¢/x)=n—3>dim Sing R* by Lemma 2.1. Then we derive a contradic-
tion as in the proof of Claim 4.3.4. Therefore R* is smooth or
Hessian-rank R*=3.

Let 7(w)=0 be the equation defining R* in W. A'R* is a divisor
with multiplicity 2 above a generic point of R*. let *R*=2A4 + A’ for some
effective divisors 4 (#0) and A" with A,(A4')=0. Since Pic X/torsions~
ZL~ZKhOyu(1), and I*(R*)€|2L|, we have A€|L| and A'=0. Hence #*(R*)
is a divisor of X with multiplicity 2, whence we have an element
Y(x)e H(X,L) such that (h'r)(x)=y(x)>. Let H be the total space of
the hyperplane bundle Oy (1) on W with fiber coordinate {, Y a
hypersurface of H defined by (*=r(w). 'Then using ¥/(x), we can define
a natural morphism g, compatible with A, of X onto Y by g*'{=y(x). If
Hessian-rank R*=3, Y is isomorphic to a hyperquadric of P"*! with
Hessian-rank Y=4, whence it has a reducible hyperplane section. This
contradicts Pic X/torisons~ZL. Consequently R' is smooth. q.e.d.

(4.4.4) CoMPLETION OF THE PROOFs OF LEMMA 4.4 AND PROPOSITION
3.1. By Claim 4.4.3, R* is a smooth hyperquadric. With the notation
in Claim 4.4.3, Y~Q", whence we have a birational morphism g of X
onto Q". Since Ky~ —nL~ —ng*'n*"Oy(1)~g"(Kgn), g is an isomorphism.
Therefore h°(X,L)=n+2, which contradicts our assumption A%(X,L)=
n+1. Thus we complete the proof of Lemma 4.4, hence of Proposition
3.1. g.e.d.

5. Moishezon fourfolds homeomorphic to Q¢

The purpose of this section is to prove:

Theorem 5.1. Let X be a Moishezon 4-fold homeomorphic to Q*,
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and L a line bundle on X with L*=2. Assume that h°(X,L)>5. Then
X=~Q*4

Our proof of Theorem 5.1 is completed in (5.7).

Lemma 5.2. Under the assumptions in Theorem 5.1, let D and D’

be distinct members of |L|, t the scheme-theoretic complete intersection
DnD'. Then we have

(5.2.1) PicX~ZL, Ky~—A4L,

(5.2.2) HP(X,—qL)=0 (p=0,g>1, or 1<p<3,0<q<4, or p=4,¢q<3)
(5.2.3) HP(D,—qLp)=0 (p=0,q>1, or p=1,2,0<q<3, or p=3,g<2)
(5.2.4) HP(t,—qL)=0 (p=0,q=1,2,0rp=1,0<q<2,0rp=2,9=0,1)
(5.2.5) H°(X,0,)~H°D,0p)~Hz,0,)~C,

(5.2.6) |Llp=|Lp| and |L|,=|L,.

Proof. The proof of (5.2.1) is similar to [15]. The vanishing of
HP(X, —qL) for p#2 is proved in the same way as in [15]. Since X is
homemorphic to Q*, we have

2(X, —qL) = 1(Q*, 09 —9)) =(g— 1)(g—2)*(g—3)/12

for any ¢ in view of (5.2.1). This proves the vanishing of H*(X, —qL)
for 0<g<4. The remaining assertions are easy. q.e.d.

Lemma 5.3. Under the assumptions in Therem 5.1, let B:=Bs|L|
be the scheme-theoretic base locus of |L|, h: X - P™ a rational map associated
with |L|, and W the closure of h(X\B), where m=h°(X,L)—1. Then
dim W>3.

Proof. Letd=degW. Thend>m+1—dimW. Ifdim W=1, then
d=1,m=1by Pic X~ ZL, which contradicts m>2. Therefore we assume
dim W=2 to derive a contradiction. So d=degW>m—1>2.

Then by choosing general D and D’ €|L|, we have reduced irreducible
components Z; (1 <i<dr) of t: =D D’ outside B for some positive interger
r, where r is the number of irreducible components of a genaral fiber of
h. Each Z; is nonsingular outside B by Bertini’s theorem. Let Z=2Z2,,
and let v: Y —> Z be the normalization of Z, f: S— Y the minimal
resolution of Y,g=v-f. Then as in the proof of Lemma 3.2, there exist
effective Cartier divisors E and G on S with no components in common
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such that the canonical sheaf of S is given by Ky=04(—2¢'L—E—G),
where the base locus Bsg’|L| contains supp(E+G) if D and D’ are
sufficiently general. Since h°(X,L)>3 and Z ¢ B, g'L is effective. By
P,(S)=0, S~P? or Sis ruled. The proof of Lemma 5.3 is now divided
into Cases 1-1, 1-2 and Case 2.

Case 1. Assume S~P2?. Then we have G=0 and S~Y. Let
Heg'L|. Then Kg=—2H—E. Since Kp: is indivisible by 2, we have
E+#0 and H=FE€|0p:(1)| in view of E, 4 = H,.y. Hence g"(D") (=H) is
independent of the choice of D"€|L|. Moreover gz, the restriction of g
to E, is generically one to one because (Lg,(E))=(g"(L)E)=1.

Since the coefficient of E in —Kj relevant to Sing1 is equal to 1,
there exists by Theorem 1.14 a Zariski open subset V' of Z with
Env™Y{(I)#0 such that

e(Qy,Ey) +e(Q"y, Ey)—e(Q'y, Ey)=1.

where U:=v~ (V) and E,=EnU. By Theorem 1.11, (1.12) and (1.13),
we have e(Qy,Ey)=1, e(Q"y,Ey)=e(Q'y,Ey)=0. See Appendix to section
one for the detail. Let p be any point of EnU. By Lemma 1.6, there
exists a local parameter system x,y,2 and w at p and another irreducible
component Z* of 7 at p such that

I ,=(xy,2), I; ,=(x,2), I ,=(,2).

Hence Z is smooth along EnU. It follows that Sing Z is finite for
general D and D'.

There are two subcases Z* < B or Z* ¢ B. Let E:=g(E),.,.

Case 1-1. Assume Z' < B. Let I be a line (#E) on S,
C:=g(]),.q- Hence g,(l)=aC for an integer a>1. Then a(LC)x=(g"(L)])g
=1, whence a=1 and [ is mapped generically isomorphically onto C by
g. 'Take a general D"€|L|. For any point ge Zn D", there exists a line
I on S such that geg(l). Therefore any general D" €|L| is smooth along
ZnD" by (D"g,(l))y=1. Hence by choosing D sufficiently general, D is
also smooth along Z. Therefore Z is a Cartier divisor of D, so that Z
is Gorenstein everywhere. Since Sing Z is finite, this implies that Z is
normal. Hence S~Y~Z~P? ZnD'~E~E~P!' and O,(L)~04(FE).

Since £ < B, we have E~BnZ. Hence B is a smooth Cartier
divisor of D along E. 'The surfaces B and Z intersect transversally along E.

Claim 5.3.1. I1;0,~0,(—E) along E.
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Proof. Let If, be the ideal of O, defining E. We may assume
OXzC{x,y,z,_w}, I.=(xy,?), I;=(x,2), Igy=(y,2). Then Ig,;=I50,~
yC{y,w} by E~XBnZ. Thus we see

130, ~yC{x,y,w}/(xy) ~yCly,w} ~ I/~ Ox(— E). q.e.d.
Caste 1-1 (Continued). We also see that
1=(HE)s=(L;B);=(EB);=((Z+ B)BZ)x=(E*)3+(E*);=(E*)p+1,

whence (E?)p=0. Hence the unique irreducible component B, of B
intersecting Z is a (possibly singular) ruled surface with E a general
fiber. Moreover Z intersects the irreducible components of t other than
Z and B, in (at most) finitely many points outside £. This is true for
any Z;. Since 7 is Gorenstein, this implies that Z meets no irreducible
components of 7 other than B,. Therefore for general D and D', we
have Z;~P? Z,nZ;=0 (i#j) and Ez;=Z,nB~P" for 1<i<dr. Hence

we have,

dr dr
H°(IzL,) > @ H(Z;, I5,2,0,(L)~ @ H*(Z;,0),

i=1 i=1

which shows m—1=h%L,)=h°(IzgL))>dr>(m—1)r. Hence r=1, d=
m—1>3. Then by [5, Theorem 1], W is a cone over a smooth variety
of minimal degree. In this case, W is either the Veronese surface in P>
with d=4 or the cone over a normal rational curve of degree m—1 in
P" ! with d=m—1. In either case, there is a reducible or a nonreduced

hyperplane section of W, which contradicts Pic X~ZL. See also [7,
5.3.11].

Case 1-2. Assume Z* ¢ B. We may assume that Z*~ P? by choosing
general D and D'. By the same argument as in Casg 1-1, Z and Z*
intersect transversally along E, where ZnZ'~E~P!.

Let 0 be the sum of all the primary components of T other than Z
and Z*. Then 6N (Z U Z") is finite. This implies that 6=0 and t=Z0U Z"
because 7 is Gorenstein and connected by (5.2.5). Thus we have an
exact sequence of O,-modules,

0-0,-0,0, - O 0.

It follows from the exact sequence that A°(X,L)=h"t,L)+2=6,
B=Bs|L|=0. Thiscontradicts E — B by the general choice of D and D'.
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Case 2. Assume that S is a ruled surface. We let 7: S — T be the
ruling, F (~P') a general fiber of n. Let Heg'|L|, and let M (resp. N)
be the movable part (resp. the fixed part) of H in g*|L|. Since F~P!,
we have

—2=K F+F*=KF=—2HF—(E+G)F.

Since E .4+ G, q<=H,.q, we have HF=1, EF=GF=0. Therefore
there exists a unique irreducible component I' of H with 'F=1 and
I'¢E+G. Since dim W=2, we have M=0 and TcN. Any general
D" e|L| is smooth generically along g(I') (or at g(I') if g(I') is a point) by
(D"g(F))x=(HF)s=1. Assume that g(I') is a curve on X. Then any
irreducible component Z; of 7 contains g(I') because g(I') is a
curve component of B by 'c N. However since I'¢E, 7 is smooth at
a generic point of g(I'). 'This shows d=1, which contradicts d>m—1>2.
Therefore g(I') is a point. We note that this can happen if the connected
component of the g-exceptional set containing I' corresponds to one of
Du Val singularities.

Let p: =g() and q: =f(I).

Claim 5.3.2. q¢f(E).

Proof. Since g(I') is a point, H =(g'L)I'=0 and I'*<0. It follows
that K{I'+T?=I"?—(E+G)['< —1, whence K =EI=GI'=0, I'*= -2,
and I'~P! in view of the minimality of the resolution f. Assume
g€f(E). Then there is a sequence N; (1 <i<s) of irreducible components
of N with ¢=f(;) such that N,I'>0, N;_;N;>0 and N,E>0. Then
since EI’ =GI'=0, N, is not contained in E4+G. Hence KgN,=HN,=
EN,=GN,;=0, N7=—2 in the same manner as for I. 'Therefore s>
2 and N,#¢E+G. Repeating the same arguments as above, we see that
K(N;=HN,=EN;=GN;=0, N?=-2 for any i 'This contradicts
N,E>0. Therefore q¢f(E). q.e.d.

Claim 5.3.3. pé¢g(E).

Proof. Assume the contrary. Let 7 be a sufficiently small open
neighborhood of f7!(g) in S. Note that ' = V. Since f(V)\{q} is
disjoint from f(E), g(V)\{p} is disjoint from g(E). Therefore the germ
(g(V),p) is a locally irreducible component of (t,p) which intersects the
other locally irreducible components at the point p only. This shows
that 7\{p} has at least two local connected components, which contradicts
that 7 is Gorenstein. Hence pé¢g(E). q.e.d.
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(5.3.4) CowmprETION OF THE PRrROOF OF LEMMA 5.3. Claim 5.3.3
shows that the point p (e g(IN) < B) is isolated in B, whence any irreducible
component Z; of t passes through p. Since d>m—12>2, there is another
component Z, of t with peZ,. Since p¢g(F), Sing 1,.4( = B) is isolated
at p, whence Z,NZ, is isolated at p. However since T is Gorenstein,
Z,NZ, has a curve component at p, a contradiction. This completes
the proof of Lemma 5.3. q.e.d.

LemmaS5.4. Ifdim W=23, then W~Q?3, a smooth hyperquadric in P*.

Proof. Since dim W=3,1:=Dn D' is irreducible nonsingular outside
B for general D, D'e|L| by Bertini’s theorem. Let Z be the unique
irreducible component of 7 outside B, g: S — Z the minimal resolution
of the normalization of Z. We see that S P2 In fact, if S~P?, then
g'|L| has no movable components by the same arguments as in the proof
of Lemma 3.2 Casg 1, whence dim W <2, a contradiction. Hence S is
a ruled surface with F~P! a general fiber. Under the same notation as
before, H: =g*(D") e g*|L| has an irreducible component I' with FT'=1. We
see EF=GF=0 and I' ¢ E4+G. If the movable part M of H contains
I', then M =T by HF=TF=1, which shows that d=degW=1>m—2>2,
a contradiction. Therefore the fixed part N of H contains I

Since HF =NF=TF=1, the movable part M satisfies MF =0 so that
M?=0 and that M is a union of general fibers F; of the ruling,
M=F;+--+F;. Let C;=g(F),eq, and M=C;+---+C,. Then g,(F)=
C, and (LC;))=1 for any i by HF;=1. We note that M is the movable
part of the intersection : =D D'nD". The image C;=g(F)) is a rational
curve intersecting g(I') (passing through g(I') if g(I') is a point) with
(LC)x=(HF;s=1, whence both C; and D" are smooth at C;ng(I'). Since
gjs\ 1s an isomorphism, C;\g(I') is smooth. Hence C; is a smooth rational
curve.

Assume that g(I') is a point. Then in the same manner as in the
proofs of Claims 5.3.2 and 5.3.3 we see that (I'*)g=—2 and
p:=g(")¢g(E). Hence p is isolated in B. Therefore (2.1.3) is possible
and d=2. Moreover p is the point where C; and C, intersect. By a
suitable coordinate system at p, we have

Il,p=(x)y)zw)) Ic,p=(x,y,2), IB_p=(x,y,z,w).
Therefore if we choose general t:=DnND’, then we may assume

I, ,=(x+ozw,y+pzw) for some «,feOx , whence by rechoosing x,y
modulo 2w, we may assume I, ,=(x,y). Therefore 7 is smooth at p,
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whence t~Z at p and Z is smooth at p. This contradicts that I is
contracted into a singular point of Y by f. Thus g(I') is a curve.

Then since (LC;)=1, a general D" €|L| is smooth along a sufficiently
small Zariski open subset 17 of g(I'), and C; intersects general D" e|L|
transversally at a point of V. We also see that Z is smooth
along V because I' ¢ E. Moreover 1~Z along V, whence t~Z over a
smooth Zariski open subset U of Z containing both IV and M. Then
we have a natural exact sequence

d d
0 - O‘t - OI(M) - @ OC,(]‘—l)(z @ OC,’) - 0'
i=1

i=1

Since A'(1,0,)=0 in (5.2.4), we infer from the above sequence that
h(t,0,(M))=d+1. Hence we have

m—1=h%t,L)>h(c, M)=d+1>m—2+1.

Hence d=m—2>2. If W is not a smooth hyperquadric Q3 W is
a cone over a smooth variety of minimal degree d with a reducible or

nonreduced hyperplane section [5, Theorem 1]. This contradicts
PicX~ZL. Hence W~Q?3. q.e.d.

Lemma5.5. Any line on Q3 is algebraically equivalent to each other.

Proof. I learned this proof from I. Shimada. Let p be a point
of Q3. Then those lines on Q3 passing through p are parametrized by
a smooth conic in P(Tgs,). Therefore the Hilbert scheme of lines on
Q0?3 is dominated by a smooth conic bundle over Q3 in P(Tys). Hence
it is irreducible. See also [4]. q.e.d.

Lemma 5.6. dim W=4.

Proof. Step 1. Assume dim W=3. Then W~Q? and h°(X,L)=
K°(t,L)+2=5 by Lemma 5.4. Let H be a general member of
|0 (1), D: =F*H and D:=¢,(D)e|L|. Then Sing D < B:=Bs|L| and Sing
D < B:=¢ '(B) by Bertini’s theorem.

Let O,0Q" and Q" be general members of |Oy(1)|. Then the complete
intersection QN Q' N Q" consists of two distinct points p; and p,. Since
Q~P! x P!, we have two lines [; on O with (/;,)o=1, (li)(22=0. There
exist (general) members f;€|0y(l)| such that p;ef; and p;¢f; (i#j). By
choosing new Q' and Q" if necessary, we may assume that 0N Q'Nn Q"=
{p1,0,}, QN Q is an irreducible rational curve (€|0y(l; +1,)) on Q, while
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ONQ"=fi+f,. Let D:=@(h(Q)), D:=¢k"(Q)) and D":=ep(k(Q").
Let :=DnD’" and 6:=DnD".

Step 2. By Bertini’'s theorem we have a unique irreducible
component Z of T outside B. Let g: S— Z be the minimal resolution
of the normalization of Z. By the proof of Lemma 5.4 S is a ruled
surface. Under the same notation as in the proof of Lemma 5.4 there
is an irreducible component I' of the fixed part N of g*|L| with (I'F)g=1
where F' is a general fiber of the ruling of S. By the proof of Lemma
5.4, g(I') is a curve, along which 17~Z and Z is smooth generically.
Moreover the movable part M of g*|L| consists of a pair of smooth rational
curves | and F,. 'The complete intersection :=DnND'N D" is therefore
a union of smooth rational curves C;: =g(F;) (1=1,2) outside B, where C;
intersect g(I') transversally at distinct points as was given in (2.1.2).
Moreover the proof of Lemma 5.4 shows that the linear system |M| on
7, hence |L | separates C; and C,, that is, hi(C\B)#h(C,\B). It follows
that £~ !(w)~P! for any general we W.

Step 3. Let Z;=h '(f), Zi=¢(Z)..qr Then since A '(w) is
irreducible, Z; is an irreducible component of ¢ outside B. Since
Bs IOQ(li)l =0, Z, is smooth outside Sing D, whence smooth outside B. As
X\B~X\B, we have Z\B~Z\B, whence Z; is smooth outside
B. Moreover Z,NZ,\B~Z,nZ,\B~h~'(f,nf,)\B. Hence Z,nZ, is
a smooth rational curve C:=@(A~!(f,nf,)) outside B, along which Z,
and Z, intersect transversally.

Let v Y;— Z; be the normalization of Z;, f;: S; > Y; the minimal
resolution of Y,, g;=v;"f;. Then as in the proof of Lemma 3.2, there
exist effective Cartier divisors E; and G; on S; with no components in
common such that the canonical sheaf of S; is given by K, =Og (—2g;L—
E;—G;). Let A; be a unique smooth rational curve on S; such that
gi(A)=C. Then since Z;nZ,~C generically along C, we have by
Theorem 1.14

Ai < Ei) Ai ¢ E,i: =Ei~Ai) E'i,red+Gi,red < gi‘ 1(JB)red

if f; and f, are sufficiently general. See also the proof of Lemma 5.3.

Let M; (resp. N,;) be the movable part (resp. the fixed part) of
g:D'. Then since ¢*'L~A*0y(1) on X\B, in:(((plzi\g)_l)*ﬁ*OQ(fl +f)=~
Oz(A;) on Z\B. Hence we have A4;e|M;]. It follows that —Kg =
34;4+2N;+E;+G;. Hence S; is either P? or ruled.

Case 1. Assume S;~P?. Since Z; is algebraically equivalent to
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each other by Lemma 5.5, we may assume that S,~P?. Then we have
A;€|05,(1)] and N;=E';=G;=0. Hence S;~Y,. By the argument in
the proof of Lemma 5.3 Cases 1-1 and 1-2, we see DNnD"=2Z,UZ,,
h°(X,L)=6, which contradicts hO(X,L)=5.

Case 2. Assume that S is ruled. By Lemma 5.5, we may assume

that S, is also ruled. Let n;: S; > P! be a ruling of S; with F; a general
fiber. Then we have

2= _KSiF~i=(3Ai+2Ni+E’i+Gi)F~i)

whence A;F;=0. Hence A;e|F)|. There exists a unique irreducible
component I'; of N; such that I';/F;=1 because E'; e+ Girea © N;. Hence
we have E',F;=G,F,=0.

Let C';:=g;(M;). Then since [~enD'~tnD", | has C'; and C’, as
irreducible components outside B. Hence we may assume by STEp 2

that C,=C’, (i=1,2).

STeEP 4. Next we prove that g,(I';)) is a curve (1=1,2). Assume the
contrary. Hence g(I';) is a point, say pe B. By SteP 2 (LC)x=1 where
C=¢(h *(f;nf,)). Hence C passes through a unique point of B, hence
through the point p by (I';4,)s,=(Fy)s,=1. As Z;, and Z, are
algebraically equivalent, g,(I';) is also a point of B, which C passes
through too. Hence g,(I';)=p. It follows that C; and C, intersect at
p, which contradicts that C; and C, intersect g(I') transversally at distinct
points. Hence g(T',) is a curve component of B by I'; = N, c g7 }(B).
Since Z, and Z, are algebraically equivalent, g,(I';) = Z, implies
g,(T,) < Z,, whence g,(I'))cZ,nZ,. By (2.1.2) and by Step 2, C;
intersects a unique curve component g(I') of B, while C; intersects g,(I';)
by (MI;)s,;=1. Hence g(I)=g,(I';))=g,(I';). However since g(I';) =
Z,nZ,, we have I'y cE'| and I'; c E', by Theorem 1.14, which
contradicts I',F;=1, E';F;=0. q.e.d.

(5.7) COMPLETION OF THE PROOF OF THEOREM 5.1. Since dim W =4,
D,nD,Nn D, is irreducible nonsingular outside B for general D; by
Bertini’s theorem. Let C be the unique irreducible component of
D,;nD,nD; outside B. If LC=0, then C is mapped to a point by the
rational map associated with |pL| for any p. Since C sweeps out an open
subset of X, this contradicts that X is Moishezon with ,(X)=1. Hence
LC>1. In view of Lemma 2.1, LC=1 or 2. If LC=1, then (2.1.2) is
possible for D; general. In this case, CnB#0, whence C is mapped to
a point by the rational map h. This shows that dim W <3, which
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contradicts Lemma 5.6. Thus (2.1.1) only is possible, so that
LC=2. Theorem 5.1 now follows from Proposition 3.1. q.e.d.

(5.8) REemaRrk. It is plausible that Theorem 5.1 is true by assuming
only h°(X,L)>3 instead of A°(X,L)>5. We were however unable to
prove even that h%(X, L) =4 is impossible. Here we make some comments.

Assume that X is a Moishezon 4-fold homeomorphic to Q* with
h°(X,L)=4. Then the proof in Lemmas 5.2-5.7 fails only at two points
in the proofs of Lemmas 5.3 and 5.4. The first point is corrected by a
slight modification of the previous proof, while it is difficult to do so for
the second.

In what follows we keep the previous notation. First in the proof
of Lemma 5.3 Case 1-1, m=3, d=m—1=2 and W is a (possibly singular)
quadric surface in P3®. Then W has a reducible hyperplane section,
which contradicts Pic X~ ZL.

The second point is in the proof of Lemma 5.4, where W~P3. In
view of the proof of Lemma 5.4, S is ruled, (M+N)F=1 and
FE=FG=0. Moreover we see that there are two cases.

Case 1. M=TI, TF=1.
Case 2. M=F, TF=1, T «N.

Claim 5.8.1. Case 1 is impossible.
Note. We do not know whether CASE 2 is impossible.

Proof. By the proof of Lemma 5.4, we have Kg= —(2¢"(L)+E+G)=
—(Q2I'+2N+E+G). By Lemma 2.1, the movable component g(I') of
the scheme-theoretic complete intersection [ of 3 general members of |L|
is a smooth rational curve. Therefore I'~g(I')~P! and S is a rational
ruled surface. We also see that any general mamber of |L| as well as a
complete intersection 7 of two general members of |L| is smooth along
g() by Lemma 2.1. We have

2=—(Ks+)'=(T+2N+E+G)T.

Since I' is movable, we have I'2>0, whence 0<I'*<2.
Now we prove [2=0. If =2, then NI =EI'=GI'=0. Therefore
Bng(I')=0. On theother hand, A(g(I")) is one point. However we have

2=(T'+N)Ns=(g"(L)N)s=(Lg.(I))x=deg Bs g'|L|- =0,
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which is a contradiction. Next we assume I'’=1. Then NI =0,
(E4+G)I'=1, which contradicts E, 4+ Geq<N,q. Therefore I'>=0,
NI'=1 and ET' =GI"=0.

Since I'?=0, F>=0 and I'F=1, we have a birational morphism #:
S — P! x P! (< P?) associated with the linear system |+ F|. The surface
S is obtained from P!x P! by repeating blowing-ups. Since Kg=
—@2I'+2N+E+G)andsince E, g+ G, < N,.q, any irreducible component
of 2N+ E+ G has mutilplicity at least two in —Kg. Therefore the
anticanonical divisor —Kpi,p1 is an effective divisor with multiple
components only. That is, —Kpiyp1=—2(1,()+4.(F)) for some fiber
F with 2n,(F)=#,2N+E+G). Since '’>=0, the centers of blowing-ups
are chosen from the outside of n(I') (or its proper transform). Hence
the proper transform of the (—1)-curve arising from (any of) the first
blowing-up appears in 2N + E + G as a component with multiplicity exactly
one. This is a contradiction if S is not isomorphic to P! x P!, It follows
that S~P!xP!, N=F and E=G=0, whence S~Y~P!x P! Since
E=0, S~Z outside a finite set X of Z.

Moreover Z intersects the other irreducible components of 7 in a
subset of X only. Since 7 is Gorenstein and connected by (5.2.5), this
implies that 7,,4~Z. As 7 is Gorenstein and generically reduced along
Z, © is reduced everywhere, so that 1~Z. Therefore Z is Gorenstein
and has isolated singularities only, whence Z is normal. Consequently
1~Z~S~P!'xP'. Hence h°(X,L)=h",L,)+2=6 by (5.2.6), contra-
dicting the assumption A°(X,L)=4. q.e.d.
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NoTATION.
A" Spec Clxy, -+, %,]
B, Bs|L| the scheme-theoretic base locus of |L|
B B, B* (3.5), (4.1)
(E) the total Chern class Zisz ¢i(E) of a vector bundle E
c(E) the i-th Chern class of a vector bundle E
ci(X) the i-th Chern class of X
e(Q(CV),p) (1.10), (1.11), [15, (2.6)]
e(Q‘;), By)  (1.12), (1.13), [15, (2.A)]
F, Proj(Op ()@ Opr)
F, F, with the unique (-2)-curve contracted,

isomorphic to a singular quadric surface in P?
gL {g'D; DelL|}
h(X,F) dim HYX,F) for a coherent sheaf F
iy, 1y 4.1)
Y, p) (1.2), (1.3)
Il T (4.3.2)

q

NC/X the normal bundle of C in X

Oy, O5, 0, the structure sheaf of X, S, Z respectively

Oy the formal completion of Oy
Pic X Hl(X,O;{)

P() (4.3.5)

R (3.5), (4.1)

shvylz 32
(4.3.2)

w.Xhw o (2, @, 5.3
2Ew 65y, @

£5x (3.5), (4.1)
WXF) Y, (~ DUX,F)

(s, ()x the intersection numbers on S, X
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