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1. Introduction

We work in the smooth category, and G will be a finite group in
the present paper. This paper is concerned with free G-actions on
homotopy spheres.

Let us recall Milnor's theorem:

Theorem 1.1 ([6; Corollary 12.13]). Any h-cobordism W between lens
spaces L and L' must be dίffeomorphic to Lx[0,l] if the dimension
of L is greater than or equal to 5.

Let V be a unitary G-representation space of complex dimension
n. When we consider a unit sphere S(V) in V, we call it a linear
G-sphere or we say that it has a linear G-action. In particular, if the
G-action is free, S(V) is called a free linear G-sphere. We see that
Theorem 1.1 is put in another form as follows:

Theorem 1.2. Let S(V) and S(V) be free linear G-spheres of
dimension 2n —1^5. If G is cyclic and W is a G-h-cobordism between
S( V) and S( V), then W must be G-diffeomorphic toS(V)x /, where 1= [0,1].

As a generalization of Theorem 1.2, we proved the following result
and gave some examples in [11].

Proposition 1.3 ([11; Proposition 3.1]). Let G be a finite group such
that SK1(Z[G]) = 0. Then the following hold:

(1) If X is a free G-homotopy sphere of dimension In —1^5, any
G-h-cobordism W between X and itself must be G-dίffeomorphic
to Xxl.

(2) // *S(F) and S(V') are free linear G-spheres of dimension
2n— 1 ̂ 5, any G-h-cobordism W between S(V) and S(V) must be
G-diffeomorphic to S(V)xI.
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The purpose of this paper is to extend this result to a much more
general case. Let Wh(G) be the Whitehead group of G, Ls

m(G) and
Ljj,(G) the Wall groups. Z[G] is the integral group ring with involution
- defined by Σagg = Σagg~i where ageZ and geG. For a matrix (xtj)
with coefficients in Z[G], (xtj) is defined by (#^). Then Wh(G) has the
induced involution also denoted by -. We define a subgroup Άm (G) of
Wh(G) by

Put

Am(G) = Am(G)/{τ 4- ( - 1 )mτ|τ 6 Wh(G)} .

Let c: ^42n + 1(̂ ) "̂  Ls

2n(G) be the map in the Rothenberg exact suquence

and £: ^42πH-ι(^) "* ̂ wί^) the map determining c. Suppose G acts freely
on an odd-dimensional homotopy sphere X. We note that the action of
each element geG preserves the orientation of X. Then we have

Theorem A. Let G be a finite group, and X a free G-homotopy
sphere of dimension 2n — 1 ̂  5. Then the following (1 ) and (2) are equivalent.

(1) Any G-h'Cobordism W between X and itself must be G-
diffeomorphίc to X x /.

(2) ker£ is trivial.

REMARK 1.4. Since G acts freely on Xy we can use the s-cobordism
theorem ([3]), thereby the condition (1) is equivalent to the condition
that any G-Λ-cobordism W between X and itself must be a G-s-cobordism.

Corollary B. Suppose kerc = 0. Let S(V) and S(V) be free linear
G-spheres of dimension 2n— 1^5. Then a G-h-cobordism W between S(V)
and S(V'} must be G-diffeomorphic to S(V)xI.

Proof. Let C be a cyclic subgroup of G. By Theorem 1.2,

ΓescF=rescK as real C- modules. Thus V=V as real G-modules, and

then S(V) is G-diffeomorphic to S(V). Since kerc = 0, the conclusion

now follows from Theorem A. Π
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Let G be a finite group which has periodic cohomology. Sondow
[9; Theorem 3] showed that A2n+i(G) is isomorphic to SK^(Z[G]\

Since SK1(Z[G]) = 0 implies ker£=0, Proposition 1.3 is a special case of
Theorem A and Corollary B. Therefore, it is important to construct an
example of a group G which satisfies the condition (2) of Theorem A,
although SKi(Z[G])^0. Let G3 be a finite group which acts freely and
linearly on 3-dimensional spheres. We note that G3 also acts freely and
linearly on S*N~i(N=2,3, ). Recently, Kwasik and Schultz [4] showed
that the forgetful map L|(G3) -> Lj(G3) is onto, and the involution - acts
trivially on Wh(G3). Hence, we see that J4N+1(G3)^^44N + 1(G3), and
by the Rothenberg exact sequence

we have ker£=0. Then we have the following corollary:

Corollary C. Let G3 be a finite group which can act freely and

linearly on S3. Then any G^-h-cobordίsm W between a free G3-homotopy
sphere X of dimension 4^—1^7 and itself must be G3-diffeomorphic to
Xxl.

EXAMPLE 1.5. Let p be an odd prime, q a prime such that q^. 5. Let

G denote one of the groups Q8 x Zp, T* x Zqy and O* x Zqy where Q8, T*,
and O* denote the quaternionic group, the binary tetrahedral group,
and the binary octahedral group respectively. By [10; Theorem] we see

that SKι(Z[G}) = Z2, and see that G satisfies the condition of Corollary C.

This paper is organized as follows: In Section 2 we prepare some
notations and definitions which are necessary for proving our theorem. In
Section 3, we prove that (1) implies (2) in Theorem A. In Section 4,
we prove that (2) implies (1).

ACKNOWLEDGEMENT. The author was indebted to Professor M. Morimoto
for many useful discussions concerning these ideas. Professors S. Kwasik
and R. Schultz kindly sent him their preprint. He would like to express
his gratitude to all of them.

2. Preliminaries

Let R be a ring with unit, G a finite group. Put GL(R) = \\mGLn(R)
and E(R) = [GL(R)yGL(R)] the commutator subgroup of GL(/?). Then

denotes the quotient group GL(R)/E(R). Let Z be the ring of
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integers and Q the ring of rational numbers. Let Z[G] and Q[G] denote
the group rings of G over Z and Q respectively. The Whitehead group
of G is the quotient group

Wh(G) = Ki(Z[G])/<±g: geG>.

The natural inclusion map /: GL(Z[G]) -> GL(Q[G]) gives rise to a group
homomorphism ί,: K^(Z[G\) -> K^(Q[G\). Then SK^(Z[G\) is defined
by setting

Let F be a free Z[G]-module, and let Λ = {61, ,ik}, <g = {cly •••,<*} be

two different bases for F. Setting £,= ^6^, we obtain a non-singular
i = l

matrix (fl^ ) with coefficients in Z[G]. The corresponding element of
Wh(G) will be denoted by [«>/#] .

Next, we recall the algebraic definitions of Wall's even-dimensional
surgery obstruction groups. (These definitions and notations are based
on Bak's book [1].) For fixed n, put

mtnin = {a-(-\)na\aeZ[G]}y

which is an additive subgroup of Z[G]. Let M be a right Z[G]-
module. A sesquilinear form on M is a biadditive map B\ MX M — > Z[G]
such that B(xa,yb) = aB(x,y)b for a,beZ[G] and x,yeM. A sesquilinear
form B is called a ( — \)n-hermitίan form if B(x,y) = ( — \)nB(y,x) for
x.yeM. A mίn-quadratic module means a triple (M, <,>,#) of a finitely
generated projective right Z[G]-module M, a ( — l)"-hermitian form <,>:
M x M -> Z[G] and a map g: M -* Z[G]/min which satisfies the
following conditions:

(1) q(xa) = dq(x)a (aeZ[G],xeM)
(2) q(x+y) — q(x) — q(y)= <x,y> (modmm, x,
(3) q(x) + (-l)nϊj(xj=<x,x> for any lifting q(x)eZ[G\ of q(x)e

Z[G]/min.

The map q: M -^ Z[G]/mtn above is called a min-quadratic form. A
morphism (M, < , > ,q) -> (Λfr , < , > ',#') of mm-quadratic modules is a
Z[G]-linear map M -* M' which preserves the hermitian and quadratic
forms. We say that two ram-quadratic modules (M, < , > ,g) and (M',
<,>',#') are ίsomorphic if there exists a morphism/: (M , < , > ,#) -> (M' ,
<,>',#') such that/: M -* M' is bijective. We say that (M, <,>,#) is
non-singular if the map M — >• M* = HomZ[G](Λf , Z[G]) defined by x \— > < x, >
is an isomorphism. Here M* is regarded as a right Z[G]-module
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by (f'ά)(x) = a(f(x)) for/eM*, aeZ[G] and xeM. Since M is projective
over Z[G], so is M*. If P is a finitely generated projective right
Z[G]-module, we define the hyperbolic module H(P) = (P0P*, <,>,?),

where <(*,/),(y,g)> =/(y)θ(- 1)"̂ ), and <?((*,/)) = [/(*)] e Z[G]/min.
It is a non-sigular ram-quadratic module. H(Z[G]) is called the hyperbolic
plane. The standard preferred basis for its underlying module
Z[G]0Z[Gf is the set {e = (\,ϋ)J=(Q, identity)}. If H(Z[G]) has the
standard preferred basis, we denote it by H(Z[G])based and call it the
based hyperbolic plane. Let Y be a bar operation invariant subgroup of
Kι(Z[G]) including {±1}. We define the category Q(Z[G],min)based.γ

as follows. The objects are all non-singular ram-quadratic modules (My

<,>,g) such that M is free module with a preferred basis {eι> ,em} such
that the raxra matrix (<ei9βj>) vanishes in K^(Z\G])/Y. When we
emphasize the preferred basis ^ of M, we also denote it by
(M,<g,<>>,q). Let (M,#,<,>,g) and (AT,*", <,>',$') be two objects
of Q(Z[G]ymin)based-γ with rankM=rankM'. Put # = {*ι, •••,£„,} and
< '̂ = {β/

1, ,^In}. A Z[G]-isomorphism /: M^M' and the preferred bases

# and '̂ determine a matrix A by a formula

Then a morphism /: (M,^,<,>,g) -> (ΛΓ,^'^^',^) is an isomorphism
of ram-quadratic modules such that the matrix A given above vanishes

in Ki(Z[G\)/Y. If (M,<,>,g) (resp.(Λf, <,>',?')) has a preferred
basis {eι,-'yem} (resp-le^,---,^}), we define the orthogonal sum (M, <,> ,
q)-L(M',<9>'yq') = (M®M',<,>®<y>',q®q') such that M0M' has the

preferred basis {έ4, ,βw,*Ί, Xm}. It: ίs clear that H(Z[G])5αsede
Q(Z[G],min)based_γ. We define the Grothendieck group under the
orthogonal sum

KQ0(Z[G] , min)based _ y = X0(Q(Z[G] , min)based _ γ.

We also define the Witt group

The even-dimensional surgery obstruction groups are defined by

L"2n(G) = WQQ(Z[G],min)based_Kl(ZlG»,

and
U2n(G)=WQ0(Z[G\,min)hased_[±G}.

Finally, we recall the definition of c: A2n + 1(G)^ Ls

2n(G). For τe Λ2n + 1(G),
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let A = (ai}) be a 2ra x 2m matrix representing τ. Put H(Z[G]m)based =
((Z[G]m)Θ(Z[Gr)*,^,<,>^), where Λ = {«1,-,βmJ1,-1/w} is the stan-
dard preferred basis. By applying ^4 to { ,̂ , «„,/!, - , /w} by (β!,- ••,«„,,/!,
•• ,/m)^4, we get a newly based module ΛΓ with the same underlying
Z[G]-module as H(Z[G]m)based and the basis J" of M is given by

m in m m

Λ» + i 2m}

Since τ + τ = 0, (.M',̂ ?', <,>,#) is a non-singular ram-quadratic module
in Q(Z[G],ram)ftflsed_[±G]. We define £(τ) = [(M',<T, <,>,<?)], where [ ]
denotes the equivalence class of (M',^f,<,> ,<?) in L^G). We
see that this defines a homomorphism c: ^w+iC^) "> Ls

2n(G).

3. Proof of the part (1) implying (2).

Let τ be an element of A2n + ι(G). Then there exist framed
immersions {ί/,-: S""1 x/-> X2n~^ x /} with boundary embedded (l^i^r
for some large r), such that the resulting G-normal map from the
G-h-cobordism W

has the G-surgery obstruction c(τ). As Wall discussed in [12; Proof of
Theorem 5.8], (/;&) is obtained as follows. Suppose a 2rx2r matrix A
represents τ, for sufficiently large r. Let Ή.(Z[G]r)based be the hyperbolic
module whose underlying module is (Z[G]r)φ(Z[G]r)* with the standard
preferred basis

Let Q be the quadratic module H(Z[G]r) with the basis J>= A(^), where
A(£f) means the basis obtained by applying A to if as in the definition
of the map c. Put ^ = {δ1, ,62r} Then the values <bhbj> and
q(bi) are determined. We can choose framed immersions ηt: S

n~ixl— *
X2n~1xl,i=l,~ 9 r , such that the diagram
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commutes, the restrictions r\{\ Sn~γ x {0,1} -» X2""1 x {0,1} are embedd-
ings, and the equi variant intersection numbers and equivariant self-
intersection numbers among ty/s are equal to <bhbj> and q(bι). Further-
more, we may regard that f/ 's are regular homotopies form the trivial
embeddings Ap: Sn~ * x Dn -> X to embeddings h\: Sn~ 1 x Dn -> X. Now
we attach w-handles to Xxl with attaching maps h\x{\}. Let W be
the resulting manifold. Then, W is the trace of G-surgery of id: X— + X
along hi: S"'1 xZ>" -> X. (/: W->XxI and b: T(W) -+fT(XxI} are
simultaneously obtained.) Put Kq(W) = ker[f^. Hq(W) -* Hq(Xx /)] and
Kq(W,dW) = ̂ r[f,: Hq(W,dW} -» Hq(Xx I,Xx {0,1})], then the module
Kn(W) is isomorphic to Kn(W,dW) and Kn(WydW) has the class of the
cores of the attached handles as the preferred basis. We complete these
to w-dimensional spheres St by adjoining the images in Xxl of the ηt,
and the disks in the Z)?""1 spanning the images of the hf, and rounding
the resulting corners. Denote by ^ the basis {*S1, ,*S2r} Then the
quadratic module (Kn(W)^y <,>,#) is isomorphic to the Q given
above. We say that ^ is a basis of Kn(W) which is given by the definition
of the G-surgery obstruction σ(f\b). Thus, the resulting G-normal map

(f b): (W,dW;T(W))^(XxI,Xx{0,l} ,fT(XxΓ))

has the G-surgery obstruction c(τ). Here dW= XUX', f is a degree one
G-map satisfying f(X) c Xx {0} and f(X') c: Xx {!}, and b is a G-vector
bunble isomorphism. Moreover it follows from the construction that
f\x: X— >Xx{Q}=X coincides with the identity map on X, and f\x>:
X'-+Xx{\} is a G-simple homotopy equivalence

Suppose that τ lies in the kernel of c. We denote the isomorphism
above from Q to (Kn(W)^, < ,>,#) by ψ. Now we consider a set {^(^i),
"'yφ(er)y\l/(fi)y"',ιl/(fr)}. This gives another basis of Kn(W), and satisfies
<<A(*/)>ιA(£/)>=0 and g( .̂)) = 0 for !</<r. Then the set {\l/(et)}
determines a subkernel in the category Q(Z[G]9min)bαsed^Kί^Z[G^. Hence
we can perform G-surgery of (f\b) along ^(^)'s and obtain a G-homotopy
equivalence

Cf δ'): (W,dW';T(W'))^(XxIyXx{Qyl}-yf'*T(XxI}).

Then the Whitehead torsion τ(/') o f / : PF'->Jίx/ is computed as
follows. At first, we note that W is obtained from G-surgery along the
embeddings α f: S"'1 xDn + i -> W dual to the ̂ ). The cores of α/s
are the boundaries of the disks which are obtained by removing the open
disks around the embedded spheres (corresponding to) i/K^) from the
embedded spheres(corresponding to) \l/(fΐ). Thus α/s are trivial embedd-
ings and
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is the standard basis of Kn(W) when we construct W by taking the
equivariant connected sum of W with r-copies of G x Sn x Sn: that is, if
GxS"xS"(l^i^r) denote the r-copies of G x Sn x *SW, #0 is represented by

{{l}x{*ι}xSV^l}xK}xS^W^

where {1} x {*J x S? and {1} x S? x {#-} intersect at the point (1, *;,*,-),
and they generate the homology groups Hn(S" x *S") (1^/^r). We note
that #0 is an s-basis of Kn(W). For these two bases ^ and #0 of Kn(W),
the following lemma holds.

Lemma 3.1. Let X be a homotopy sphere, and /': W/" — >XxI a
G-homotopy equivalence. We suppose that we can obtain a G-normal map

(f b): (W,XUX' ,T(W))-+(XxI9Xx{0,l} ,fT(XxI))

with G-surgery kernel Kn(W)^Z[G]2r as a free Z[G\-module when we
construct W by taking the equivariant connected sum of W with r copies
of GxSnxSn. Let #0 be a basis of Kn(W) which is given by

*o = {{l}x{*ι}x^ι> ̂ {^

where {1} x {#J x S" and {1} x S" x {#J intersect at the point (1, *,-,*;), and
they generate the homology groups Hn(SΪ x S") (l^ί^r). Let <β be the
basis of Kn( W) which is given by the definition of the G-surgery obstruction
σ(f\b). Then we have

where [^/^Q] is the element of Wh(G) defined in the previous section.

Proof. Let/,': CJ(W) -+ C*(XxI) be the chain map induced from the
G-homotopy equivalence/': W -* Xx I. CJ(f) denotes the mapping cone
of /,'. Let Ft be the chain complex such that Fn = Z[G]2r with the
standard basis as the preferred basis and Fk~0 for kφn. We put

*. =/IΘO,: Ct(W)®Ft -» C.(X x /)

and denote by Cj(g) the mapping cone of.^. We claim that CJ(g) =
-i as stably-based chain complexes. In fact, Ck(g) = Ck_1(W)

xI) = Ck(f')®Fk_1 and if d „&„<!„ and < denote the
boundary operators of CJ(g),CJ(ft),CJ(Wr)®Fi, and CJiX x 7) respectively ,
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for aeCk_ι(W), beFk_^ and ceCk(Xx Γ). Since the boundary operator
of F+ is the 0-map, the claim is established.

Let/,: CJ(W) — > CJl^X x /) be the chain map induced from the G-normal
map /: W -> X x /. By considering the way to construct W from

W ', g* can be regarded as /„. The module Fπ represents the w-cycles of
the chain complex of r-copies of G x Sn x S" which were attached to
W in the procedure of obtaining W from W '. We can check that /:

W^XxI satisfies Hi(C,(f)) = 0 (ιVw + 1), and Hn + 2(C*(f),L) = 0 for
any Z[G]-module L. Then as in the proof of [5; Theorem 4], we can

choose a stable basis for HH+i(Cj(f)) so that τ(C*(/)) = 0. This de-
fines an equivalence class of preferred bases for Hn+1(C^(f)). By [5; P.

128] ' Hll + 1(Cφ(/))= ^M(WO as finitely generated stably free Z[G>
modules with a preferred equivalence class of basis. Hence this base is <β .

For calculating τ(C*(/)), we consider the following short exact sequence
in the category of chain complexes and chain maps;

Now we see that Hq(C^(f)) = 0 for all q and the homology groups of

C,(g) and F# have preferred bases. Since we can regard Cφ(g) as Cφ(/),
we have Hq(C*(g)) = Q if g ^ w + l , and the preferred basis of Hn

= Hn+i(C*(f)) is .̂ On the other hand, it holds that Hq(FJ = Q if
and the preferred basis of Hn(F+) is ^0 as mentioned above. Then

the exact homology sequence

can be thought of as a free acyclic chain complex 3fP of dimension
6w + 2. Hence the torsion τ(Jlf7) is defined. The calculation of τ(Jtif) is

reduced to the calculation of the torsion of

Since Jf?

3w + 3=//π(F+) and 3tf is acyclic, we have

Hence by [6; Theorem 3.2]
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Since Fk = 0 for k^n, we have τ(F.) = 0. Since ^ is taken to satisfy
τ(C.(f)) = 0, we obtain [<$/<# 0} = (-\}nτ(f). D

= 0,By the definition of c, we have τ = [<g/\l/(&J\. Since
we get τ = (-l)nτ(/')

Lemma 3.2. //"/: W -» -X" x / ί s α G-homotopy equivalence, then

τ(f)=-f.τ(W,X).

Proof. Since IF' is G-homotopic to X x /, PF' is a G-Λ-cobordisrn
between X and -ST'. Let r: W -* X be a strong G-deformation
retract. Then we have a G-homotopy commutative diagram of
G-homotopy equivalences

W

id

x > x,

where p: X x / — » X is the canonical strong G-deformation retract. There-
fore,

Let ί: X->W^ be the canonical inclusion. Clearly t is a G-homotopy
inverse of r. By [6; Lemma 7.6], we have τ(i) — τ(W',X) and by [2;
(22.5)], we have τ(r)= — rφτ(i). Then we have

D

By this lemma, we have τ(Wf

ίX) = (-l)n + if^1(τ). Now we claim
that there exists a G-s-cobordism W" such that PF' is G-cobordant to
W" relative to boundary. In fact, since c(τ) = 0, we can do surgery on
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(/',6') leaving the boundary fixed, thereby we obtain a G-normal map
(/",δ"), where/': (W, dW") -> (Xx I,Xx {0,1}) is a G-simple homotopy
equivalence and b"\ T(W"} —>f"*T(Xx Γ) is a G- vector bundle isomorphism.
Let ί'0: X -* W and i^\ X' -> W77' be the inclusion maps. It is sufficient
to show that τ(/0) = 0. Let c : X-+XxI be the inclusion map into the
0-level. Then we have a G-homotopy commutative diagram of G-
homotopy equivalences

f
W' - > Xxl

id
X - » X.

Since/": W" -*XxI is a G-simple homotopy equivalence,

0=/Γt(i0).

Since/' is a group isomorphism, we have τ(/0) = 0. Similarly, it holds

that !(/!) = 0, thereby W" is a G-s-cobordism between X and X '. Thus
our claim is established. Since G acts freely on X, by the s-cobordism
theorem, W is G-diffeomorphic to Xxl, that is, X' is G-diffeomorphic
to X. Hence W is a G-Λ-cobordism between X and itself with the
Whitehead torsion τ(WίX) = (-l)n + if^i(τ).

The assumption, which says that any G-λ-cobordism must be a
G-s-cobordism, implies τ(W'9X) = 0. Now we get τ = 0, and have
completed the proof of the part: (1)=>(2).

4. Proof of the part (2) implying (1).

In the case |G|^2, since it holds that Wh(G) = Oy the conclusion
follows from the Λ-cobordism theorem. Our proof will be given in the

case |G|^3. Let W be a G-Λ-cobordism between X and itself, with
dimW^=2w^6. To distinguish the inclusions of X to W, we put

dW=XUX', where X is a copy of X.

At first, we show that τ = τ(WyX) lies in A2n + 1(G). We prepare
the following lemma.
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Lemma 4.1. Let G be a finite group of order |G|^3. If G acts
freely on a homotopy sphere X with dimX^.5, any G-self-homotopy
equivalence of X is G-homotopic to the identity map.

Proof. Let φ be a G-self-homotopy equivalence between X and
itself, then degφ=±l. Since G acts freely on X, we have degφ = l
mod|G|. Since |G|^3, we have deg<p = l, thereby φ is homotopic
to the identity map. Now, let [X,X]G denote the set of all G-homotopy
classes of G-maps from X to itself. We see that

where nn(X) is the coefficient bundle with fiber nn(X) derived from the

bundle X x X over X/G. Since the G-action preserves the orientation of
G

X, Z is Z and IΓ(X/G\Z) is isomorphic to Z. We consider [XyX]y the
set of all homotopy classes of maps from X to itself. Then,

[X, X] ^ /Γ μT; nn(X)) ^ H"(X; Z) ̂  Z.

Let tr: H"(X\ Z) -> tF(X/G\ Z) denote the transfer map, and />*:
Hn(X/G\ Z) — » Hn( X\ Z) the homomorphism induced by the canonical
projection. Since it holds that p* ° tr(x) = \G\'X for xεHn(X\Z) and both
tr and p* are homomorphisms from Z to Z, we see that p* is
injective. Thus, φ is G-homotopic to the identity map. Π

Lemma 4.2. For the G-h-cobordism (WyX,X')y it holds that

Proof. Let r be a G-homotopy inverse of /. Let ί: X -* W and /':
X' -» W be the inclusion maps. By Lemma 4.1, we have

On the other hand,

τ(roO = τ(r) + r,τ(0
= -r.τ(i) + rφτ(O
= r.(τ(ί)-τ(ί)).

Thus we have τ(ίv) = τ(ί), which proves the lemma. Π

By the duality theorem ([6; p. 394]), we also get
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τ(W,X')=-τ(W,X).

Hence by these formulae, we see that τ = — τ, that is, τ is an element

ofA2H+1(G).

Lemma 4.3. There exists a G-homotopy equivalence f: W — » X x / such
thatτ(f)=-fcJ(X) aXx {0}J(Xf) c Xx {1},J\X andj\Xf are the identity
maps on X.

Proof. By using a strong G-deformation retract r: W — > X, we can
construct a G-homotopy equivalence /0: W -* Xx I satisfying that/0(X) c:

Xx {0},f0(X') c: X x {l},/olχ and/olj' are G-homotopy equivalences. By
Lemma 4.1, f0\x and fQ\x, are G-homotopic to the identity map. Hence
there exists a G-homotopy equivalence /: W — > X x / such that
f(X) c JΓ x {0}, /(JT) c: Xx {!}, J\χ and /]*, are the identity maps. Now

it follows from Lemma 3.2 that τ(/)= — /φτ. Π

Let g be a G-homotopy inverse of / relative to the boundary such
that dg: 8(XxΓ)-+dW is the identity map. Then the G-vector bundle

g*T(W) over d(XxI) can be identified with T(Xx I)\d(X*I)y and fg*T(W)
is isomorphic to T(W). Thus we can get a G-normal map (/ δ), where
b: T(W)-+fg*T(W) is a G-vector bundle isomorphism such that its
restriction to the boundary is the identity map.

Lemma 4.4. The G-surgery obstruction σ(j\ b) e Ls

2n(G) is(-l)n + ̂ (τ).

Proof. Let F be the free Z[G]-module Z[G]2r of rank 2r, for
sufficiently large r. Taking equivariant connected sum of W with r copies
of GxSnxSn

y we obtain a G-normal map

(/";6"): (^,^U^;T(^))->(^x/,^x{0,l}; f"*g*T(W))

with G-surgery kernel /ίπ(PF") = .F as a Z|G]-module. We can consider
two bases of the G-surgery kernel Kn(W"). One is given by

where {1} x {*J x S? and {1} x S? x {*,-} intersect at the point (1,*;Λ)>
and they generate the homology groups Hn(S" x *S") (1 fg/^r). The other
is ̂  which is given by the definition of the G-surgery obstruction σ(/"; b") as
we mentioned in the previous section. We note that @t is taken to satisfy
τ(Ct(/")) = 0. By Lemma 3.1, we have [Λ/Λ0] = (-l)"τ(/). Since /

satisfies τ(/)=— /ψ(τ) by Lemma 4.3, we have
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Then, we obtain that

Lemma 4.5. The G-surgery obstruction σ(/;6) is obtained as a
G-surgery obstruction of a closed G-manίfold with free action.

Proof. At first, we take a point x0 e X, and consider G x {x0} x / in
Xxl. Since f\dW:dW-* XUX is the identity map, we have

f- 11 ίχ \ — f- 11 iχ \=χ

i
Then, f~1(Gx {x0} x /) is G-difϊeomorphic to G x {x0} x I\J u Ai9 where

AI^ W is a 1-dimensional submanifold of W. By [7; Proposition 1.3],
there exisits a G-map /': W->XxI such that/' is G-homotopic to/, /'
is transverse regular to G x {#0} x /, f~i(G x {ΛΓO} x /) = G x {x0} x /, and
/'[: dW-*Xx {0,1} is the identity map. By the transverse regularity of
/' to G x {x0} x /, if we make a G-tubular neighbourhood G x DXQ x I of
G x {XQ} x / small enough, then we may assume that/'|: f~1(G x Dxo x /) ->
G x Dxo x / is a linear map on each fiber. Since f'\: f~1(Gx {x0} x /) ->
G x {Λ:O} x / is G-homotopic to a G-diffeomorphism relative to G x {#0} x
{0,1}, by using the equivariant homotopy covering property, we may

regard that /' |/ '-I(GXDX

 χ/) ls a G-diίTeomorphism. We note that /'|:
5PF->Xx{0,l} is the° identity map. Put W0 = C\osure(W—f~i(G x
Dx x /)) and (X x /)0 = Closure(X x /— (G x Dxo x /)). Furthermore,
there exists a G-homotopy inverse g': XxI—*W of /' such that

strictly the inverse of /VuXOu/'- ' ίGxD^x/) and £'(C^X Όo) ^ W^o τhus

we get a G-normal map

Cf ft'): (^,XUX';T(tF))->(^:x/,Xx{0,l};/V*

such that the restriction to

is also a G-normal map. Let V=WQ (J (Jίx/)0 be the identification
/ΊβWp

space [PFolI^ x Γ)0/x=f(x) if xedW0]. Since/ΊeίΓo is a diffeomorphism,

F is a smooth G-manifold. Similarly we make V = (XxΓ)0 (J
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CAΓx/)0 and define a degree 1 G-map F: V-*V by F(x)=f(x) if xε W0

and F(x) = id(x) if xe(XxΓ)0. Now we construct a G-normal map

where β is a G-vector bundle isomorphism defined by
and B\T((χxI)o) = id. Then for σ(F\ B) the G-surgery obstruction of (F;
it is easy to see that

This completes the proof. Π

Let P be the 2-Sylow subgroup of G. Since G has periodic
cohomology, the 2-Sylow subgroups of G are cyclic or quaternonic. Hence
by [8; p. 14, Example 2] it holds that SK1(Z[P]) = 0. Thus resp/ is a
P-simple homotopy equivalence because resPτe*SK'1(Z[P]) = 0. This
yields respσ(/;δ) = 0. Since by Lemma 4.5 we can use Wall's transfer
theorem ([13; Theorem 12]), we have σ(/;δ) = 0. By Lemma 4.4, we
have £(/*(τ)) = 0, that is, τ = 0. We have completed the proof of the
part: (2) =>(!).
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