A COCHAIN COMPLEX ASSOCIATED TO THE STEENROD ALGEBRA

In Memory of the late Professor José Adem

Nobuo SHIMADA

(Received November 19, 1992)

0. Introduction

In [8], the author introduced an acyclic, free resolution of the ground ring \boldsymbol{Z} of integers (resp. its localization $\boldsymbol{Z}_{(p)}$ for a prime p) as the trivial module over the Landweber-Novikov algebra S (resp. $S_{(p)}=Z_{(p)} \otimes S$), which is considerably smaller than the bar resolution.

In this paper, the same method of construction is applied to the case of the $\bmod p$ Steenrod algebra A. The resulted resolution $X=A \otimes \bar{X} \xrightarrow{\varepsilon} \boldsymbol{Z} / p$ has inductively defined differential d and contracting homotopy σ, and is naturally embedded in the bar resolution $B(A)$ as a direct-summand subcomplex.

The apparent feature of this resolution is that it seems to be an immediate 'lift' of the May resolution [5], while the latter is a resolution over the associated graded algebra $E^{0} A$ for the augmentation filtration on the Steenrod algebra. In fact, the corresponding filtration on X leads to an equivalent of the May spectral sequence, of which $E^{1} X$ is isomorphic to the May resolution and E^{r}-terms are the same as those of the May spectral sequence for $r \geq 2$.

In the case $p=2$, the chain complex \bar{X} will be given as a polynomial ring P, and the dual cochain complex P^{*} has a non-associative product, which induces the usual associative product in its cohomology $H^{*}(A)=\mathrm{Ext}_{A}^{* *}(\boldsymbol{Z} / 2, \boldsymbol{Z} / 2)$, the E_{2}-term of the Adams spectral sequence [1,2].

May [5] studied extensively his spectral sequence and succeeded to obtain a great deal of information about $H^{*}(A)$ (See also, Tangora [10] and Novikov [7].).

It is hoped that the present work could be useful for calculating the differentials in the May spectral sequence and the ring structure of $H^{*}(A)$.

In this paper we shall restrict ourselves to the case $p=2$. A parallel treatment for the odd prime case will be only suggsted in the last section.

1. Notation and results

Let A_{*} be the dual Hopf algebra ([6],[9]) of the mod 2 Steenrod algebra A. $\quad A_{*}$ is given as the polynomial algebra $\boldsymbol{Z} / 2\left[\xi_{1}, \xi_{2}, \cdots\right]$ over $\boldsymbol{Z} / 2$ on indeterminates $\xi_{i}(\mathrm{i} \geq 1)$ of degree $2^{i}-1$, with comultiplication

$$
\psi \xi_{k}=\sum_{i=0}^{k} \xi_{k-i}^{2^{i}} \otimes \xi_{i} \quad\left(\xi_{0}=1\right)
$$

Let $e_{i, k}=\left(\xi_{i}^{k}\right)^{*}$ denote the dual element of ξ_{i}^{k} with respect to the monomial basis $\left\{\xi_{\omega}=\xi_{1}^{k_{1}} \ldots \xi_{n}^{k_{n}}\right\}$ of A_{*}.

Lemma 1.1. (i) The Steenrod algebra A is multiplicatively generated by the set $\left\{e_{i, 2^{k}} ; i \geq 1, k \geq 0\right\}$, (ii) the set $\left\{1, e_{i_{1}, 2^{k_{1}} \cdots e_{i_{n}, 2^{k_{n}}} ;\left(i_{1}, k_{1}\right)<\left(i_{2}, k_{2}\right)<\cdots \lll<r}\right.$ ($i_{n} k_{n}$) in the lexicographical order $\}$ forms a $\boldsymbol{Z} / 2$-basis of A, of which elements $e_{I}=e_{i_{1}, 2^{k_{1}}} \cdots e_{i_{n}, 2^{k_{n}}}$ are called admissible monomials.

Let L denote the $Z / 2$-submodule of A spanned by the set $\left\{e_{i, 2^{k}}\right.$; $i \geq 1, k \geq 0\}$, and $s L=Z / 2\left\{\left\langle e_{i, 2^{k}}\right\rangle ; i \geq 1, k \geq 0\right\}$, the suspension of L, with bideg $\left\langle e_{i, 2^{k}}\right\rangle=\left(1,2^{k}\left(2^{i}-1\right)\right)$. Denote by $P=P(s L)$ the polynomial algebra (symmetric tensor algebra) on $s L$. We use the notation

$$
\left\langle e_{J}\right\rangle=\left\langle e_{j_{1}, 2^{l_{1}}}, \cdots, e_{j_{s}, 2_{s}}\right\rangle=\left\langle e_{j_{1}, 2_{1}}\right\rangle \otimes \cdots \otimes\left\langle e_{j_{s} 2_{s}}\right\rangle
$$

with the index sequence

$$
J:\left(j_{1}, l_{1}\right) \leq\left(j_{2}, l_{2}\right) \leq \cdots \leq\left(j_{s}, l_{s}\right)
$$

in the lexicographical order and call it a canonical monomial in P.
Theorem 1.2. $X=A \otimes P$, with an inductively defined differential d gives an acyclic A-free resolution of $\boldsymbol{Z} / 2$.

Proposition 1.3. There exist natural A-linear chain maps $f: X \rightarrow B(A)$ and $g: B(A) \rightarrow X$, such that $g \circ f=$ id and $f(P) \subset \bar{B}(A)=Z / 2 \otimes_{A} B(A) \subset B(A)$.

Proposition 1.4. The chain complex P with the induced differential $\bar{d}=\boldsymbol{Z} / 2 \otimes_{A} d$ has a comultiplication $\Delta: P \rightarrow P \otimes P$ such that $(\bar{d} \otimes 1+1 \otimes \bar{d}) \Delta=$ $\Delta \bar{d}$. This is not coassociative in general, but $(\Delta \otimes 1) \Delta$ and $(1 \otimes \Delta) \Delta$ are chain homotopic.

Corollary 1.5. The dual complex P^{*} of P with diffeential $\delta=\bar{d}^{*}$ has a non-associative product, therein δ is a derivation. This product induces the usual product in the cohomology $H^{*}\left(P^{*}, \delta\right)=H^{*}(A)$.

2. Preliminary

The lemma 1.1 may be well-known ([6],[4]), but we will recall its proof, since the resolution (Theorem 1.2) stems from the lemma.

We shall take the dual basis $\left\{\xi_{\omega}^{*}\right\}$ of A (See $\S 1$). By definition the product of basis elements is given by

$$
\xi_{\omega}^{*} \cdot \xi_{\sigma}^{*}=\sum_{\tau}\left(\xi_{\omega}^{*} \otimes \xi_{\sigma}^{*}\right)\left(\psi \xi_{\tau}\right) \cdot \xi_{\tau}^{*}
$$

Define the height of ξ_{ω}^{*} to be Σk_{i}, the sum of exponents in the monomial $\xi_{\omega}=\xi_{1}^{k_{1}} \ldots \xi_{n}^{k_{n}}$. Then we have the equality

$$
\begin{equation*}
\xi_{\omega^{\prime}}^{*} \cdot\left(\xi_{n}^{k_{n}}\right)^{*}=\xi_{\omega}^{*}+\sum_{\sigma} \xi_{\sigma}^{*} \tag{2.1}
\end{equation*}
$$

where $\xi_{\omega^{\prime}}=\xi_{1}^{k_{1}} \ldots \xi_{n-1}^{k_{n-1}}, \xi_{\omega}=\xi_{\omega^{\prime}} \xi_{n}^{k_{n}}$, and the second summand in the right hand sideis a sum of suitable basis elements of height $h\left(\xi_{\sigma}^{*}\right)<h\left(\xi_{\omega}^{*}\right)$. In fact, ξ_{σ} are so chosen that $\psi \xi_{\sigma}$ containt $\xi_{\omega^{\prime}} \otimes \xi_{n}^{k_{n}}$ as a summand, and such a ξ_{σ} must be of the form

$$
\begin{equation*}
\xi_{\sigma}=\xi_{1}^{u_{1}} \cdots \xi_{n+1}^{u_{n}-1} \xi_{n}^{v_{0}} \xi_{n+1}^{v_{1}} \cdots \xi_{2 n-1}^{v_{n-1}} \tag{2.2}
\end{equation*}
$$

with $\sum_{i=0}^{n-1} v_{i}=k_{n}, u_{i}+2^{n} \cdot v_{i}=k_{i}($ for $1 \leq i \leq n-1)$.
Then

$$
h\left(\xi_{\sigma}^{*}\right)=\sum_{i=1}^{n-1} u_{i}+\sum_{i=0}^{n-1} v_{i}=\sum_{i=0}^{n} k_{i}-2^{n} \sum_{i=1}^{n-1} v_{i}<\sum_{i=0}^{n} k_{i}=h\left(\xi_{\omega}^{*}\right) .
$$

Now by induction on height we conclude that any basis element ξ_{ω}^{*} of A can be expressed by a sum of products of $e_{i, k}=\left(\xi_{i}^{k}\right)^{*}$. But we can see easily that $e_{i, k}$ with k, not a power of 2 , is also decomposable into a sum of products of $e_{i, 2^{t}}$. This proves (i) of Lemma 1.1.

Note further that

$$
\begin{equation*}
\left(\xi_{i}^{k}\right)^{*} \cdot\left(\xi_{i}^{l}\right)^{*}=\binom{k+1}{k}\left(\xi_{i}^{k+l}\right)^{*}+\Sigma \text { terms of lower height } \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\left(\xi_{i}^{k}\right)^{*},\left(\xi_{j}^{l}\right)^{*}\right]=\Sigma \text { terms of lower height for } i \neq j \tag{2.4}
\end{equation*}
$$

It follows then (ii) of Lemma 1.1.

Here are a few examples of (2.3) and (2.4):

$$
\begin{aligned}
& {\left[e_{1,1}, e_{1,2}\right]=e_{2,1},\left[e_{1,1}, e_{2,1}\right]=0} \\
& {\left[e_{1,1}, e_{2,2}\right]=e_{3,1}=\left[e_{1,4}, e_{2,1}\right]} \\
& {\left[e_{1,2}, e_{2,2}\right]=e_{1,1} \cdot e_{3,1}} \\
& e_{1,2} \cdot e_{1,2}=e_{1,1} \cdot e_{2,1} \\
& e_{1,4} \cdot e_{1,4}=e_{1,2} \cdot e_{2,2} \\
& e_{1,8} \cdot e_{1,8}=e_{1,4} \cdot e_{2,4}+e_{2,1} \cdot e_{2,2} \cdot e_{3,1} \\
& {\left[e_{1,1}, e_{1,64}\right]=e_{1,62} \cdot e_{2,1}+e_{1,58} \cdot e_{3,1}+e_{1,50} \cdot e_{4,1}+e_{1,34} \cdot e_{5,1}+e_{1,2} \cdot e_{6,1}} \\
& e_{i, 1} \cdot e_{i, 1}=0(i \geq 1), \text { etc. (Cf. [4]) }
\end{aligned}
$$

It will be another interesting problem to give the explicit formulae expressing (2.3) and (2.4) by admissible monomials in the sense of $\S 1$, like the Adem relations [3].

3. Resolution

In this section we shall give a detailed proof of Theorem 1.2, since we had remained in showing only a sketchy proof in [8] for the case of the Landweber-Novikov algebra. Clearly the set of canonical monomials $\left\langle e_{J}\right\rangle$ forms a $Z / 2$-basis of P. Then $P=\sum_{s \geq 0} P_{s}$, where the submodule P_{s} is spanned by $\left\langle e_{J}\right\rangle$ of length $|J|=s$. We call $|J|$ also the homological dimension of $\left\langle e_{J}\right\rangle$.

We shall introduce in $X=A \otimes P$ a boundary operator $d=\left(d_{s}\right)$:

$$
d_{s}: X_{s}=A \otimes P_{s} \rightarrow X_{s-1}
$$

and a contracting homotopy $\sigma=\left(\sigma_{s}\right)$:

$$
\sigma_{s}: X_{s} \rightarrow X_{s+1}
$$

so that X becames an acyclic differential A-module (a chain complex) with augmentation $\varepsilon: X \rightarrow \boldsymbol{Z} / 2$

First define an A-map $d_{1}: X_{1}=A \otimes s L \rightarrow X_{0}=A$ by

$$
\begin{equation*}
d_{1}\left(a\left\langle e_{i, 2^{k}}\right\rangle\right)=a \cdot e_{i, 2^{k}}\left(a\left\langle e_{i, 2^{k}}\right\rangle \text { means } a \otimes\left\langle e_{i, 2^{k}}\right\rangle\right), \tag{3.1}
\end{equation*}
$$

and a $Z / 2$-map $\sigma_{0}: X_{0} \rightarrow X_{1}$ by

$$
\begin{align*}
& \sigma_{0}(1)=0 \tag{3.2}\\
& \sigma_{0}\left(e_{i_{1}, 2^{k_{1}} \cdots e_{i_{n}}, 2^{k_{n}}}\right)=e_{i_{1}, 2^{k_{1}}} e_{i_{n-1}, 2^{k_{n}-1}}\left\langle e_{i_{n}, 2^{k_{n}}}\right\rangle
\end{align*}
$$

for admissible monomials. Thus we have a direct sum decomposition

$$
\begin{align*}
& X_{1}=\operatorname{Im} \sigma_{0} \oplus \operatorname{Ker} d_{1}, \operatorname{Ker} d_{1}=\operatorname{Im}\left(1-\sigma_{0} d_{1}\right) \tag{3.3}\\
& \sigma_{0} \eta=0, \varepsilon d_{1}=0 \text { and } d_{1} \sigma_{0}+\eta \varepsilon=1
\end{align*}
$$

where $\eta: Z / 2 \rightarrow A$ is the unit. Then d_{2} is easily defined by

$$
\begin{equation*}
d_{2}\left\langle e_{j_{1}, 2^{l_{1}}}, e_{j_{2}, 2^{l_{2}}}\right\rangle=\left(1-\sigma_{0} d_{1}\right)\left(e_{j_{2}, 2^{l_{2}}}\left\langle e_{j_{1}, 2^{l_{1}}}\right\rangle\right) \quad\left(\left(j_{1}, l_{1}\right) \leq\left(j_{2}, l_{2}\right)\right) . \tag{3.4}
\end{equation*}
$$

On the other hand, it is laborious to find and formulate a proper candidate of possible contracting homotopy σ_{1}. In order to overcome this difficulty, we begin with a careful observation of the construction X.

Take the set of elements

$$
\begin{equation*}
\left.e_{I}\left\langle e_{J}\right\rangle=e_{i_{1}, 2^{k_{1}} \cdots e_{i_{n}, 2^{k_{n}}}\left\langle e_{j_{1}, 2^{l_{1}}}, \cdots e_{j_{s}, 2_{s}}\right\rangle}\right\rangle \tag{3.5}
\end{equation*}
$$

with the index sequences $I=\left(i_{1}, k_{1}\right)<\cdots<\left(i_{n}, k_{n}\right)$ and $J:\left(j_{1}, l_{1}\right) \leq \cdots \leq\left(j_{s}, l_{s}\right)$ in the lexicographical order, and call it canonical basis of $X=A \otimes P$.

Classify the canonical basis elements (c.b.e.'s) into the following types:

$$
\begin{equation*}
\text { Type 1: } \left.\max I<\max J \quad \text { (i.e. }\left(i_{n}, k_{n}\right)<\left(J_{s}, l_{s}\right)\right) \tag{3.6}
\end{equation*}
$$

and

$$
\text { Type 2: } \max I \geq \max J
$$

Put

$$
\begin{equation*}
C_{1, s}=Z / 2\left\{\text { c.b.e. of Type } 1 \text { in } X_{s}\right\} \tag{3.7}
\end{equation*}
$$

and

$$
C_{2, s}=\boldsymbol{Z} / 2\left\{\text { c.b.e. of Type } 2 \text { in } X_{s}\right\}
$$

Then we have

$$
\begin{equation*}
X_{s}=C_{1, s} \oplus C_{2, s} \tag{3.8}
\end{equation*}
$$

as a $\boldsymbol{Z} / 2$-module, with obvious isomorphisms

$$
C_{1, s} \stackrel{\tau_{s}}{\stackrel{\tau_{s}^{\prime} s-1}{*}} C_{2, s-1}, \sigma_{s-1}^{\prime}=\tau_{s}^{-1},
$$

defined by

$$
\begin{equation*}
\tau_{s}\left(e_{I}\left\langle e_{J}\right\rangle\right)=e_{I+\left(j_{s}, l_{s}\right)}\left\langle e_{J-\left(j_{s}, l_{s}\right)}\right\rangle \text { for } e_{I}\left\langle e_{J}\right\rangle \in C_{1, s} \tag{3.9}
\end{equation*}
$$

$$
\sigma_{s-1}^{\prime}\left(e_{I}\left\langle e_{J}\right\rangle\right)=e_{I-\left(i_{n}, k_{n}\right)}\left\langle e_{J+\left(i_{n}, k_{n}\right)}\right\rangle \text { for } e_{I}\left\langle e_{J}\right\rangle \in C_{2, s-1} .
$$

We shall introduce here a partial order in the set of index sequences J of the same length $|J|=s$ as follows:
$J^{\prime} \leq J$ if $\left(j_{i}^{\prime}, l_{i}^{\prime}\right) \leq\left(j_{i}, l_{i}\right)$ for all i, and $J^{\prime}<J$ if, moreover, $\left(j_{i}^{\prime}, l_{i}^{\prime}\right)<\left(j_{i}, l_{i}\right)$ for at least one i.

Now assume that $\left(d_{i}, \sigma_{i-1}\right)$ are defined for $1 \leq i \leq s-1$ and satisfy the following conditions (for convenience, put $d_{0}=\varepsilon$ and $\sigma_{-1}=\eta$):
(A $\left.\mathrm{A}_{i}\right) \quad \sigma_{i-1} \sigma_{i-2}=0$ and $\operatorname{Im} \sigma_{i-1}=\mathrm{C}_{1, i}$,
(Bi) $\quad X_{i}=\operatorname{Im} \sigma_{i-1} \oplus \operatorname{Ker} d_{i}$,
(C $\left.\mathrm{C}_{i}\right) d_{i} \sigma_{i-1}+\sigma_{i-2} d_{i-1}=1$ and $d_{i-1} d_{i}=0$,
$\left(\mathrm{D}_{i}\right)$ (i) There is a $\boldsymbol{Z} / 2$-isomorphism $\varphi_{i}: C_{2, i} \rightarrow \operatorname{Ker} d_{i}$, defined by $\varphi_{i}\left(e_{I}\left\langle e_{J}\right\rangle\right)=e_{I^{\prime}} \cdot\left(l-\sigma_{i-1} d_{i}\right)\left(e_{i_{n}, 2^{k_{n}}}\left\langle e_{J}\right\rangle\right)$ for $e_{I}\left\langle e_{J}\right\rangle \in C_{2, i}$ and $e_{I}=e_{I^{\prime}} \cdot e_{i_{n}, 2^{k_{n}}}$,
(ii) Further, we have $\varphi_{i}\left(e_{I}\left\langle e_{J}\right\rangle\right)=e_{I}\left\langle e_{J}\right\rangle+\Sigma_{\alpha} e_{I_{\alpha}}\left\langle e_{J_{\alpha}}\right\rangle$, where $e_{I_{\alpha}}\left\langle e_{J_{\alpha}}\right\rangle$ are suitable c.b.e.'s with conditions $\left.J_{\alpha}\right\rangle J$ and $\max J_{\alpha} \geq \max I$ (See (3.10)).

We temporally assume (D_{1}), of which proof is reasonably postponed.
Under this induction hypothesis $(3.11)_{s-1}$ we shall define $\left(d_{s}, \sigma_{s-1}\right)$ as follows.

First define $d_{s}: X_{s} \rightarrow X_{s-1}$, as an A-map, by

$$
\begin{equation*}
d_{s}\left\langle e_{J}\right\rangle=\varphi_{s-1} \cdot \tau_{s}\left\langle e_{J}\right\rangle=\left(1-\sigma_{s-2} d_{s-1}\right) \cdot e_{j_{s}, 2 l_{s}}\left\langle e_{J-\left(j_{s}, l_{s}\right)}\right\rangle \tag{3.12}
\end{equation*}
$$

where $|J|=s$ and $\left(j_{s}, l_{s}\right)=\max J$.
It follows immediately, from (C_{s-1})

$$
d_{s-1} d_{s}=0
$$

Next define

$$
\begin{equation*}
\sigma_{s-1}=0 \text { on } \operatorname{Im} \sigma_{s-2}=C_{1, s-1} . \tag{3.13}
\end{equation*}
$$

To define σ_{s-1} on $\operatorname{Ker} d_{s-1}$, take the set $\left\{\varphi_{s-1}\left(e_{I}\left\langle e_{J}\right\rangle\right) ; e_{I}\left\langle e_{J}\right\rangle\right.$ c.b.e. of Type 2 in $\left.X_{s-1}\right\}$ as a fixed basis of $\operatorname{Ker} d_{s-1}$, by virtue of (D_{s-1}), and put

$$
\begin{equation*}
\sigma_{s-1}\left(\varphi_{s-1}\left(e_{I}\left\langle e_{J}\right\rangle\right)\right)=\sigma_{s-1}^{\prime}\left(\left(e_{I}\left\langle e_{J}\right\rangle\right)=e_{I}\left\langle e_{J+\left(i_{n}, k_{n}\right)}\right\rangle\right. \tag{3.14}
\end{equation*}
$$

where $\left(i_{n}, k_{n}\right)=\max I$ (See (3.9)). Then σ_{s-1} is naturally extended to a $\boldsymbol{Z} / 2$-map and gives an isomorphism

$$
\begin{equation*}
\sigma_{s-1}: \operatorname{Ker} d_{s-1} \stackrel{\simeq}{\rightrightarrows} C_{1, s}=\operatorname{Im} \sigma_{s-1} \tag{3.15}
\end{equation*}
$$

Thus we have

$$
\begin{aligned}
& d_{s}= \begin{cases}\varphi_{s-1} \tau_{s} & \text { on } C_{1, s} \\
0 & \text { on Ker } d_{s}\end{cases} \\
& \sigma_{s-1}= \begin{cases}0 & \text { on } C_{1, s-1} \\
\sigma_{s-1}^{\prime} \varphi_{s-1}^{-1} & \text { on } \operatorname{Ker} d_{s-1}\end{cases} \\
& d_{s} \sigma_{s-1}+\sigma_{s-2} d_{s-1}=1 \text { on } X_{s-1}
\end{aligned} \begin{aligned}
& X_{s}=\operatorname{Im} \sigma_{s-1} \oplus \operatorname{Ker} d_{s}, \operatorname{Ker} d_{s}=\operatorname{Im}\left(1-\sigma_{s-1} d_{s}\right)
\end{aligned}
$$

and verify $\left(\mathrm{A}_{s}\right),\left(\mathrm{B}_{s}\right)$ and $\left(\mathrm{C}_{s}\right)$ for $\left(d_{s}, \sigma_{s-1}\right)$. From (3.11), ($\left.\mathrm{D}_{s-1}\right)$ and (3.14), it follows that

$$
\begin{align*}
& \sigma_{s-1}\left(e_{I}\left\langle e_{J}\right\rangle\right)=e_{I}\left\langle e_{J+\max I}\right\rangle+\sum_{\substack{\left.J_{\alpha}\right\rangle J, \max J_{\alpha} \geq \max I \\
\max I_{\alpha} \geq \max J_{\alpha}}} \sigma_{s-1}\left(e_{I_{\alpha}}\left\langle e_{J_{\alpha}}\right\rangle\right) \tag{3.16}\\
& \text { for } e_{I}\left\langle e_{J}\right\rangle \in C_{2, s-1},
\end{align*}
$$

where the added conditions on the summand come from those of $e_{I_{\alpha}}\left\langle e_{J_{\alpha}}\right\rangle \in C_{2, s-1}$, and as well

$$
\begin{equation*}
d_{s}\left\langle e_{J}\right\rangle=e_{j_{s}, 2_{s} l_{s}}\left\langle e_{J^{\prime}}\right\rangle+\sum_{J_{\gamma}>J^{\prime}, \max J_{\gamma} \geq\left(j_{s}, l_{s}\right)=\max J} e_{I_{\gamma}}\left\langle e_{J_{\gamma}}\right\rangle . \tag{3.17}
\end{equation*}
$$

Lemma 3.18.

$$
\sigma_{s-1}\left(e_{I}\left\langle e_{J}\right\rangle\right)=e_{I}\left\langle e_{J+\max I}\right\rangle+\sum_{\left.J_{\sigma}\right\rangle J+\max I} e_{I_{\alpha}}\left\langle e_{J_{\alpha}}\right\rangle \text { for } e_{I}\left\langle e_{J}\right\rangle \in C_{2, s-1}
$$

or, we write simply

$$
\sigma_{s-1}\left(e_{I}\left\langle e_{J}\right\rangle\right)=e_{I}\left\langle e_{J+\max I}\right\rangle+\Sigma \text { higher terms. }
$$

Proof. In the right hand side of (3.16), using itself again, we have
here $J_{\alpha}>J$ and $\max I_{\alpha} \geq \max J_{\alpha} \geq \max I$ so that $J_{\alpha}+\max I_{\alpha}>J+\max I$. Repeating this process, we obtain Lemma 3.18.

Now $\varphi_{s}: C_{2, s} \rightarrow \operatorname{Ker} d_{s}$ will be defined just as before:

$$
\begin{equation*}
\varphi_{s}\left(e_{I}\left\langle e_{J}\right\rangle\right)=e_{I}\left(1-\sigma_{s-1} d_{s}\right)\left(e_{i_{n}, 2^{k_{n}}}\left\langle e_{J}\right\rangle\right) \tag{3.19}
\end{equation*}
$$

To prove $\left(\mathrm{D}_{s}\right)$, (ii) it is sufficient to consider the special case $|I|=1$:

$$
\varphi_{s}\left(e_{i, 2^{k}}\left\langle e_{J}\right\rangle\right)=\left(1-\sigma_{s-1} d_{s}\right)\left(e_{i, 2^{k}}\left\langle e_{J}\right\rangle\right)((i, k) \geq \max J)
$$

In view of (3.17), we have

$$
\begin{align*}
\varphi_{s}\left(e_{i, 2^{k}}\left\langle e_{J}\right\rangle\right)= & e_{i, 2^{k}}\left\langle e_{J}\right\rangle+\sigma_{s-1}\left(e_{i, 2^{k}} \cdot d_{s}\left\langle e_{J}\right\rangle\right) \tag{3.20}\\
= & e_{i, 2^{k}}\left\langle e_{J}\right\rangle+\sigma_{s-1}\left(e_{i, 2^{k}} e_{j_{s, 2} 2_{s}}\left\langle e_{J}\right\rangle\right) \\
& +\sum_{J_{\gamma}>J^{\prime}, \max J_{\gamma} \geq \max J} \sigma_{s-1}\left(e_{i, 2^{k}} \cdot e_{I_{\gamma}}\left\langle e_{J_{\gamma}}\right\rangle\right)
\end{align*}
$$

Rewriting $e_{i, 2^{k}} e_{j_{s}, 2_{s}}$ and $e_{i, 2^{k}} \cdot e_{I_{\gamma}}$ in the admissible form:

$$
\begin{aligned}
& e_{i, 2^{k}} e_{j_{s}, 2_{s}}=\sum_{\max I_{\varepsilon} \geq(i, k)} e_{I_{\varepsilon}} \\
& e_{i, 2^{k}} \cdot e_{I_{\gamma}}=\sum_{\max I_{\gamma, \delta} \geq(i, k)} e_{I_{\gamma, \delta}}
\end{aligned}
$$

we have, from Lemma 3.18,

$$
\begin{align*}
& \varphi_{s}\left(e_{i, 2^{k}}\left\langle e_{J}\right\rangle\right) \tag{3.21}\\
& =e_{i, 2^{k}}\left\langle e_{J}\right\rangle+\sum_{\max I_{\varepsilon} \geq(i, k)} \sigma_{s-1}\left(e_{I_{\varepsilon}}\left\langle e_{J^{\prime}}\right\rangle\right)+\sum_{\substack{\left.J_{\gamma}\right\rangle \operatorname{mox}^{\prime}, \max J_{\gamma} \geq \max J \\
\max I_{\gamma, \delta} \geq(i, k)}} \sigma_{s-1}\left(e_{I_{\gamma, \delta}}\left\langle e_{J_{\gamma}}\right\rangle\right) \\
& =e_{i, 2^{k}}\left\langle e_{J}\right\rangle+\sum_{\max I_{\varepsilon} \geq(i, k)}\left(e_{I_{\varepsilon}^{\prime}}\left\langle e_{J^{\prime}+\max I_{\varepsilon}}\right\rangle+\Sigma \text { higher terms }\right) \\
& \quad+\sum_{\left.J_{\gamma}+\max I_{\gamma, \delta}\right\rangle J^{\prime}+(i, k) \geq J}\left(e_{I_{\gamma, \delta}^{\prime}}\left\langle e_{\left.J_{\gamma}+\max I_{\gamma, \delta}\right\rangle}\right\rangle+\Sigma \text { higher terms }\right) .
\end{align*}
$$

Then we have in general

$$
\begin{align*}
\varphi_{s}\left(e_{I}\left\langle e_{J}\right\rangle\right) & =e_{I} \cdot \varphi_{s}\left(e_{i_{n}, 2^{k_{n}}}\left\langle e_{J}\right\rangle\right) \tag{3.22}\\
& =e_{I}\left\langle e_{J}\right\rangle+\sum_{\substack{\left.J_{\alpha}\right\rangle J \\
\max J_{\alpha} \geq \max I}} e_{I_{\alpha}}\left\langle e_{J_{\alpha}}\right\rangle \text { for c.b.e. } e_{I}\left\langle e_{J}\right\rangle \in C_{2, s} .
\end{align*}
$$

Thus we have proved (3.11), (D_{s}), (ii).
To show $\left(\mathrm{D}_{s}\right)$, (i), first note that $\varphi_{s}\left(e_{I}\left\langle e_{J}\right\rangle\right) \in \operatorname{Ker} d_{s}$ and the set $\left\{\varphi_{s}\left(e_{I}\left\langle e_{J}\right\rangle\right)\right.$; c.b.e. $\left.e_{I}\left\langle e_{J}\right\rangle \in C_{2, s}\right\}$ are linearly independent in virtue of
(3.22). This means that φ_{s} is injective. To show the surjectivity of φ_{s}, we replace each higher term $e_{I_{\alpha}}\left\langle e_{J_{\alpha}}\right\rangle$ of Type 2 in (3.22) by $\varphi_{s}\left(e_{I_{\alpha}}\left\langle e_{J_{\alpha}}\right\rangle\right)$. Repeating this process, we should finally obtain

$$
\begin{equation*}
\varphi_{s}\left(e_{I}\left\langle e_{J}\right\rangle\right)=e_{I}\left\langle e_{J}\right\rangle+\Sigma \varphi_{s}\left(e_{I_{\beta}}\left\langle e_{J_{\beta}}\right\rangle\right)+u_{I, J}, \tag{3.23}
\end{equation*}
$$

where $u_{I, J} \in C_{1, s}$ and $e_{I}\left\langle e_{J}\right\rangle+u_{I, J} \in \operatorname{Im} \varphi_{s}$.
The difference $\left(1-\sigma_{s-1} d_{s}\right)\left(e_{I}\left\langle e_{J}\right\rangle\right)-\left(e_{I}\left\langle e_{J}\right\rangle+u_{I, J}\right)$ belongs to Ker $d_{s} \cap \mathrm{Im}$ $\sigma_{s-1}=0$. Therefore we have

$$
\begin{equation*}
\left(1-\sigma_{s-1} d_{s}\right)\left(e_{I}\left\langle e_{J}\right\rangle\right)=e_{I}\left\langle e_{J}\right\rangle+u_{I, J} \in \operatorname{Im} \varphi_{s} . \tag{3.24}
\end{equation*}
$$

Since $\left(1-\sigma_{s-1} d_{s}\right)\left(C_{1, s}\right)=0$ and $\left(1-\sigma_{s-1} d_{s}\right)\left(C_{2, s}\right)=\left(1-\sigma_{s-1} d_{s}\right)\left(X_{s}\right)$, we have $\operatorname{Im} \varphi_{s}=\operatorname{Im}\left(1-\sigma_{s-1} d_{s}\right)=\operatorname{Ker} d_{s}$.
This proves (3.11), (D_{s}), (i).
Now, for the remaining case of $n=1$, a proof of $\left(\mathrm{D}_{1}\right)$ can be performed in a literally parallel way as just described, so it will be ommited.
Thus we have completed the induction process and a proof of the theorem 1.2.

Here we shall show some simple examples of boundaries and contracting homotopies:

$$
\begin{align*}
& d\left\langle e_{1,1}, e_{1,1}\right\rangle=e_{1,1}\left\langle e_{1,1}\right\rangle \tag{3.25}\\
& d\left\langle e_{1,1}, e_{1,2}\right\rangle=e_{1,2}\left\langle e_{1,1}\right\rangle+e_{1,1}\left\langle e_{1,2}\right\rangle+\left\langle e_{2,1}\right\rangle \\
& d\left\langle e_{j, 2^{l}}, e_{j, 2^{l}}\right\rangle=e_{j, 2^{2}}\left\langle e_{j, 2^{l}}\right\rangle+\sigma_{0}\left(e_{j, 2^{2}} \cdot e_{j, 2^{l}}\right) \\
& d\left\langle e_{i, 2^{k}}, e_{j, 2^{l}}\right\rangle=e_{j, 2^{2}}\left\langle e_{i, 2^{k}}\right\rangle+e_{i, 2^{k}}\left\langle e_{j, 2^{l}}\right\rangle+\sigma_{0}\left[e_{i, 2^{k}}, e_{j, 2^{2}}\right] \text { for }(i, k)<(j, l),
\end{align*}
$$

where [,] means the commutator.

$$
\begin{aligned}
& d\left\langle e_{1,2}, e_{1,2}, e_{1,2}\right\rangle=e_{1,2}\left\langle e_{1,2}, e_{1,2}\right\rangle+e_{1,1}\left\langle e_{1,2}, e_{2,1}\right\rangle+\left\langle e_{2,1}, e_{2,1}\right\rangle \\
& \sigma\left(e_{i, 2^{k}}\left\langle e_{J}\right\rangle\right)=\left\langle e_{J+(i, k)}\right\rangle \quad \text { for } \quad(i, k) \geq \max J \\
& \sigma\left(e_{2,2} \cdot e_{3,1}\left\langle e_{1,4}\right\rangle\right)=e_{2,2}\left\langle e_{1,4}, e_{3,1}\right\rangle+e_{2,1}\left\langle e_{3,1}, e_{3,1}\right\rangle
\end{aligned}
$$

where the last example shows that $\sigma_{i} \neq \sigma_{i}^{\prime}$ in general.

4. Chain complex P and its dual

The construction P defined in $\S 1$ with the induced differential

$$
\begin{equation*}
\bar{d}=\boldsymbol{Z} / 2 \otimes d: P \rightarrow P \tag{4.1}
\end{equation*}
$$

becomes a chain complex.
Define natural A-linear chain maps $f: X \rightarrow B(A)$ and $g: B(A) \rightarrow X$ in the usual way ([2]), using contracting homotopy σ of $X \operatorname{resp} . S$ of $B(A)$:

$$
\begin{align*}
& f_{0}=\text { id. } \quad: X_{0}=A \rightarrow A=B(A)_{0}, \tag{4.2}\\
& f_{s}\left\langle e_{J}\right\rangle=S f_{s-1} d\left\langle e_{J}\right\rangle \text { for } s \geq 1, \\
& f_{s}\left(e_{I}\left\langle e_{J}\right\rangle\right)=e_{I} \cdot f_{s}\left\langle e_{J}\right\rangle \\
& \text { and similar for } g .
\end{align*}
$$

By induction on dimension, we see easily that

$$
\begin{equation*}
g \circ f=\text { id } \quad \text { on } \quad X \quad \text { and } \quad f_{s}\left\langle e_{J}\right\rangle \in \bar{B}(A) . \tag{4.3}
\end{equation*}
$$

This proves Prop. 1.3.
Similarly define a diagonal $\psi: X \rightarrow X \otimes X$ by

$$
\begin{align*}
& \psi_{0}: X_{0}=A \rightarrow A \otimes A=(X \otimes X)_{0}, \text { the diagonal of } A \tag{4.4}\\
& \left(\text { i.e. } \psi_{0}\left(e_{i, k}\right)=\sum_{j} e_{i, k-j} \otimes e_{i, j}\right), \\
& \psi_{s}\left\langle e_{J}\right\rangle=\tilde{\sigma} \psi_{s-1} d\left\langle e_{J}\right\rangle \text { for } s \geq 1,
\end{align*}
$$

where $\tilde{\sigma}=\sigma \otimes 1+\varepsilon \otimes \sigma$ is the induced contracting homotopy of $X \otimes X$.
This ψ is a chain map, and there is a natural chain homotopy:

$$
\begin{align*}
& (\psi \otimes 1) \psi-(1 \otimes \psi) \psi=d^{(3)} H+H d \tag{4.5}\\
& \text { with } \quad d^{(3)}=d \otimes 1 \otimes 1+1 \otimes d \otimes 1+1 \otimes 1 \otimes d
\end{align*}
$$

where $H: X \rightarrow X \otimes X \otimes X$ is a $Z / 2$-map of degree $(1,0)$.

The following example shows non-coassociativity of ψ.

$$
\begin{align*}
& \psi\left\langle e_{1,4}\right\rangle=\left\langle e_{1,4}\right\rangle \otimes 1+e_{1,1}\left\langle e_{1,2}\right\rangle \otimes e_{1,1}+\left\langle e_{1,2}\right\rangle \otimes e_{1,2}+\left\langle e_{1,1}\right\rangle \otimes e_{1,3} \tag{4.6}\\
& +1 \otimes\left\langle e_{1,4}\right\rangle \\
& ((\psi \otimes 1) \psi-(1 \otimes \psi) \psi)\left\langle e_{1,4}\right\rangle=e_{1,1} \otimes\left\langle e_{1,2}\right\rangle \otimes e_{1,1} .
\end{align*}
$$

The diagonal ψ induces a diagonal $\Delta: P \rightarrow P \otimes P$,

$$
\begin{align*}
& \Delta=(\rho \otimes \rho) \circ \psi, \rho=\varepsilon_{A} \otimes 1_{P}: X \rightarrow P, \quad \text { with } \tag{4.7}\\
& \bar{d}^{(2)} \Delta=\Delta \bar{d} .
\end{align*}
$$

From (4.5), it follows that Δ is also homotopy coassociative.
We shall show a few examples of $\Delta\left\langle e_{J}\right\rangle$:

$$
\begin{aligned}
& \Delta\left\langle e_{i, 2^{k}}\right\rangle=\left\langle e_{i, 2^{k}}\right\rangle \otimes 1+1 \otimes\left\langle e_{i, 2^{k}}\right\rangle \\
& \Delta\left\langle e_{1,2}, e_{1,2}\right\rangle=\left\langle e_{1,2}, e_{1,2}\right\rangle \otimes 1+\left\langle e_{1,2}\right\rangle \otimes\left\langle e_{1,2}\right\rangle+1 \otimes\left\langle e_{1,2}, e_{1,2}\right\rangle \\
& \Delta\left\langle e_{1,1}, e_{1,4}\right\rangle=\left\langle e_{1,1}, e_{1,4}\right\rangle \otimes 1+\left\langle e_{1,1}\right\rangle \otimes\left\langle e_{1,4}\right\rangle+\left\langle e_{1,4}\right\rangle \otimes\left\langle e_{1,1}\right\rangle \\
& \quad+1 \otimes\left\langle e_{1,1}, e_{1,4}\right\rangle+\left\langle e_{1,2}\right\rangle \otimes\left\langle e_{2,1}\right\rangle \\
& \Delta\left\langle e_{1,4}, e_{2,2}, e_{3,1}\right\rangle=\left\langle e_{1,4}, e_{2,2}, e_{3,1}\right\rangle \otimes 1+\left\langle e_{1,4}\right\rangle \otimes\left\langle e_{2,2}, e_{3,1}\right\rangle \\
& \quad+\left\langle e_{2,2}\right\rangle \otimes\left\langle e_{1,4}, e_{3,1}\right\rangle \\
& \quad+\left\langle e_{3,1}\right\rangle \otimes\left\langle e_{1,4}, e_{2,2}\right\rangle+\left\langle e_{2,2}, e_{3,1}\right\rangle \otimes\left\langle e_{1,4}\right\rangle+\left\langle e_{1,4}, e_{3,1}\right\rangle \otimes\left\langle e_{2,2}\right\rangle \\
& \quad+\left\langle e_{1,4}, e_{2,2}\right\rangle \otimes\left\langle e_{3,1}\right\rangle+1 \otimes\left\langle e_{1,4}, e_{2,2}, e_{3,1}\right\rangle+\left\langle e_{2,1}, e_{3,1}\right\rangle \otimes\left\langle e_{3,1}\right\rangle
\end{aligned}
$$

and, in general

$$
\Delta\left\langle e_{J}\right\rangle=\text { shuffle }+\Sigma \text { extra terms }
$$

where an extra term $\left\langle e_{J_{1}}\right\rangle \otimes\left\langle e_{J_{2}}\right\rangle$, with $\left\langle e_{J_{1}}\right\rangle \cdot\left\langle e_{J_{2}}\right\rangle \neq\left\langle e_{J}\right\rangle$, is indicated by the underline.

Now the dual cochain complex P^{*}, with differential $\delta=\bar{d}^{*}$, has a product $\Delta^{*}: P^{*} \otimes P^{*} \rightarrow P^{*}$, which is 'homotopy associative' and δ is a derivation there.

The product Δ^{*} of P^{*} induces the usual associative product in the cohomology $H^{*}\left(P^{*}\right)=\mathrm{Ext}_{A}^{* *}(\boldsymbol{Z} / 2, \boldsymbol{Z} / 2)$ as stated in Corollary 1.5.

A few examples of boundaries are given by
(4.9) $\bar{d}\left\langle e_{1,1}, e_{1,4}, e_{1,4}\right\rangle=\left\langle e_{2,2}, e_{2,1}\right\rangle$
$\bar{d}\left\langle e_{1,2}, e_{1,4}, e_{2,1}\right\rangle=\left\langle e_{3,1}, e_{1,2}\right\rangle+\left\langle e_{2,2}, e_{2,1}\right\rangle$
$\bar{d}\left\langle e_{1,1}, e_{1,2}, e_{2,2}\right\rangle=\left\langle e_{3,1}, e_{1,2}\right\rangle+\left\langle e_{2,2}, e_{2,1}\right\rangle$
$\delta\left\langle e_{2,2}, e_{2,1}\right\rangle^{*}=\left\langle e_{1,1}, e_{1,4}, e_{1,4}\right\rangle^{*}+\left\langle e_{1,2}, e_{1,4}, e_{2,1}\right\rangle^{*}+\left\langle e_{1,1}, e_{1,2}, e_{2,2}\right\rangle^{*}$
$\delta\left\langle e_{3,1}, e_{1,2}\right\rangle^{*}=\left\langle e_{1,2}, e_{1,4}, e_{2,1}\right\rangle^{*}+\left\langle e_{1,1}, e_{1,2}, e_{2,2}\right\rangle^{*}$
$\delta\left(\left\langle e_{2,2}, e_{2,1}\right\rangle^{*}+\left\langle e_{3,1}, e_{1,2}\right\rangle^{*}\right)=\left\langle e_{1,1}, e_{1,4}, e_{1,4}\right\rangle^{*}$
$\bar{d}\left\langle e_{1,1}, e_{1,1}, e_{1,4}\right\rangle=\left\langle e_{2,1}, e_{2,1}\right\rangle$

$$
\begin{aligned}
& \bar{d}\left\langle e_{1,2}, e_{1,2}, e_{1,2}\right\rangle=\left\langle e_{2,1}, e_{2,1}\right\rangle \\
& \bar{d}\left\langle e_{1,1}, e_{1,2}, e_{2,1}\right\rangle=0 \\
& \delta\left\langle e_{2,1}, e_{2,1}\right\rangle^{*}=\left\langle e_{1,1}, e_{1,1}, e_{1,4}\right\rangle^{*}+\left\langle e_{1,2}, e_{1,2} e_{1,2}\right\rangle^{*}, \text { etc. }
\end{aligned}
$$

5. Spectral sequence

We shall define a filtration on X which corresponds to May's filtration on $B(A)$ ([5]). This leads to a spectral sequence, essentially the same as the May spectral sequence.

Define a weight function w on X by

$$
\begin{equation*}
w\left(e_{I}\left\langle e_{J}\right\rangle\right)=\sum_{h=1}^{n} i_{h}+\sum_{m=1}^{s} j_{m}, \text { for a c.b.e. } e_{I}\left\langle e_{J}\right\rangle \tag{5.1}
\end{equation*}
$$

where $I=\left\{\left(i_{1}, k_{1}\right)<\cdots<\left(i_{n}, k_{n}\right)\right\} \quad$ and $J=\left\{\left(j_{1}, l_{1}\right) \leq \cdots \leq\left(j_{s}, l_{s}\right)\right\}$, and put $w(x+y)=\max (w(x), w(y))$.

Define a filtration F_{u} on X, for $u \leq 0$, by

$$
\begin{equation*}
e_{I}\left\langle e_{J}\right\rangle \in F_{u} \text {, if } \quad|J|-w\left(e_{I}\left\langle e_{J}\right\rangle\right) \leq u \tag{5.2}
\end{equation*}
$$

Then we have

$$
X=F_{0} \supset F_{-1} \supset \cdots F_{u} \supset F_{u-1} \supset \cdots
$$

and

$$
d F_{u} \subset F_{u}
$$

Putting $Z_{u}^{r}=\operatorname{Ker}\left(F_{u} \xrightarrow{d} F_{u} \rightarrow F_{u} / F_{u-r}\right)$ for $r \geq 0$, we get a spectral sequence $\left\{E_{u}^{r}\right\}$:

$$
\begin{align*}
& E_{u}^{r}=Z_{u}^{r}+F_{u-1} / d Z_{u+r-1}^{r-1}+F_{u-1} \tag{5.4}\\
& d^{r}: E_{u}^{r} \rightarrow E_{u-r}^{r}, \quad \text { induced by } d .
\end{align*}
$$

It follows that

$$
\begin{align*}
& E^{0} X=\sum_{u \leq 0} F_{u} / F_{u-1} \cong E^{0} A \otimes E^{0} P, \tag{5.5}\\
& d^{0}=0 .
\end{align*}
$$

Here $E^{0} A$ is the primitively generated Hopf algebra, isomorphic to the enveloping algebra $V\left(E^{0} L\right)$ of restricted Lie algebra $E^{0} L$ (in [5] and [10],
$E^{0} L$ is simply denoted by L).
From (5.5), we have

$$
\begin{align*}
& E^{1} X=E^{0} X \quad \text { as } \quad E^{0} A \text {-module, } \tag{5.6}\\
& d^{1}\left\langle e_{J}\right\rangle=\sum_{(j, l)} e_{j, 2}\left\langle e_{J-(j, l)}\right\rangle
\end{align*}
$$

where (j, l) run over the index sequence J without dublication.
Thus we have an isomorphism:

$$
\begin{equation*}
\left(E^{1} P, \bar{d}^{1}=E^{1}(\bar{d})\right) \cong\left(\Gamma\left(s E^{0} L\right), d\right) \tag{5.7}
\end{equation*}
$$

the May complex (being divided polynomial algebra)
as a commutative DGA-coalgebra, in which $\left\langle e_{j, 2^{i}}\right\rangle^{n}=\left\langle e_{\left.j, 2^{l}, \cdots, e_{j, 2^{l}}\right\rangle}\right.$ corresponds to $\gamma_{n}\left(\bar{P}_{j}^{l}\right) \in \Gamma\left(s E^{0} L\right)$. Thus we have $E^{1} X \cong E^{0} A \otimes \Gamma\left(s E^{0} L\right)$, the May resolution.

Dualizing the above things, we shall have a filtration \mathscr{F}_{u} on $X^{*}=A_{*} \otimes P^{*}$ such that

$$
\begin{align*}
& \mathscr{F}_{u}=\left(X / F_{u-1}\right)^{*}, \quad \text { for } \quad u \leq 0, \tag{5.8}\\
& 0=\mathscr{F}_{1} \subset \mathscr{F}_{0} \subset \mathscr{F}_{-1} \subset \cdots \subset \mathscr{F}_{u} \subset \mathscr{F}_{u-1} \subset \cdots \subset \mathscr{F}_{-\infty}=X^{*}, \\
& \delta \mathscr{F}_{u} \subset \mathscr{F}_{u}, \\
& Z_{r}^{u}=\operatorname{Ker}\left(\mathscr{F}_{u} \xrightarrow{\delta}_{\rightarrow}^{\left.\mathscr{F}_{u} \rightarrow \mathscr{F}_{u} / \mathscr{F}_{u+r}\right),}\right. \\
& E_{r}^{u}=Z_{r}^{u}+\mathscr{F}_{u+1} / \delta Z_{r-1}^{u-r+1}+\mathscr{F}_{u+1}, \\
& \delta_{r}: E_{r}^{u} \rightarrow E_{r}^{u+r} .
\end{align*}
$$

Thus we have

$$
\begin{aligned}
& E_{0} X^{*}=E_{0}\left(A_{*}\right) \otimes E_{0}\left(P^{*}\right), \delta_{0}=0, \\
& E_{1} X^{*}=E_{0} X^{*} \text { as a module }
\end{aligned}
$$

(5.9) $\quad E_{1}\left(P^{*}\right) \cong \Gamma\left(s E^{0} L\right)^{*}=\Omega$ as a DGA-polynomial algebra ([5],[10]), $E_{2} X^{*} \cong H^{*}\left(E^{0} A\right)$,
and $E_{r} X^{*}$ coincide with those of the May spectral sequence for $r \geq 2$. Here $\left\langle e_{J}\right\rangle^{*} \in E_{1}\left(P^{*}\right)$ corresponds to $R_{j_{1}}^{l_{1}} \cdots R_{j_{s}}^{l_{s}} \in \Omega$ ([5],[10]).

Returning to the complex P^{*}, we denote $\left\langle e_{j, 2^{2}}\right\rangle^{*}$ by $\varepsilon_{j, 2^{2}}$. Then we have

$$
\begin{align*}
& \delta \varepsilon_{j, 2^{i}}=\sum_{i=1}^{j-1} \varepsilon_{j-i, 2^{i+i}} \cdot \varepsilon_{i, 2^{2}},\left[\varepsilon_{\left.j-i, 2^{i+i}, \varepsilon_{i, 2^{2}}\right]=0,}\right. \\
& \text { and }\left\langle e_{J}\right\rangle^{*}=\varepsilon_{j_{s}, 2^{l_{s}}} \cdot\left\langle e_{J^{\prime}}\right\rangle^{*}, \text { for } J=J^{\prime}+\left(j_{s}, l_{s}\right) \tag{5.10}\\
& \text { and }\left(j_{s}, l_{s}\right)=\max J,
\end{align*}
$$

because $\left\langle e_{j_{s}, 2 l_{s}}\right\rangle \otimes\left\langle e_{J^{\prime}}\right\rangle$ appears, with non-zero coefficient, only in $\Delta\left\langle e_{J}\right\rangle$, and not in $\Delta\left\langle e_{\vec{J}}\right\rangle$ for other \tilde{J}.
P^{*} has no zero-divisor and contains the polynomial ring $\boldsymbol{Z} / 2\left[\varepsilon_{1,2^{i}} ; i \geq 1\right]$.

6. Appendix

Consider the case of the $\bmod p$ Steenrod algebra A for an odd prime p. We shall sketch similar argument as in the preceeding sections.

Lemma 6.1. (i) A is multiplicatively generated by $\left\{e_{i, p^{k}}, f_{j} ; i \geq 1, k \geq 0\right.$ and $j \geq 0\}$, $e_{i, p^{k}}=\left(\xi_{i}^{p^{k}}\right)^{*}$ (resp. $\left.f_{j}=\tau_{j}^{*}\right)$ the dual element $\xi_{i}^{p^{k}}$ (resp. τ_{j}) with respect to the Milnor monomial basis of the dual Hopf algebra A_{*} of A. (ii) The set $\left\{1, e_{I}^{L} \cdot f_{J}=e_{i_{1}, p^{k_{1}}}^{l_{1}} \cdots e_{i_{m}, p^{k_{m}}}^{l_{m}} \cdot f_{j_{1}} \cdots f_{j_{n}}\right.$; with index sequences I : $\left(i_{1}, k_{1}\right)<\cdots<\left(i_{m}, k_{m}\right), L=\left(l_{1}, \cdots, l_{m}\right)$ with $1 \leq l_{i}<p$, and $\left.J: j_{1}<\cdots<j_{n}\right\}$ forms a basis of A.

Put $L^{+}=\boldsymbol{Z} / \boldsymbol{p}\left\{e_{i, p^{k}} ;(i, k) \geq(1,0)\right\}, L^{-}=\boldsymbol{Z} / p\left\{f_{j}\right\}$. Let $s L^{+}=\boldsymbol{Z} / p\left\{\left\langle e_{i, p^{k}}\right\rangle\right\}$, $s L^{-}=\boldsymbol{Z} / p\left\{\left\langle f_{j}\right\rangle\right\}$ be the suspensions with bideg $\left\langle e_{i, p^{k}}\right\rangle=\left(1,2 p^{k}\left(p^{i}-1\right)\right)$, bideg $\left\langle f_{j}\right\rangle=\left(1,2 p^{j}-1\right)$ respectively. And let $s^{2} \pi L^{+}$denote a vector space $\boldsymbol{Z} / p\left\{y_{i, p^{k}} ; \quad(i, k) \geq(1,0)\right\} \quad$ spanned by indeterminates $y_{i, p^{k}}$ of bidegree $\left(2,2 p^{k+1}\left(p^{i}-1\right)\right)$.

Define

$$
\begin{aligned}
& E\left(s L^{+}\right)=\text {the exterior algebra on } s L^{+} \\
& P\left(s L^{-}\right)=\text {the polynomial algebra on } s L^{-}
\end{aligned}
$$

and

$$
P\left(s^{2} \pi L^{+}\right)=\text {the polynomial algebra on } s^{2} \pi L^{+}
$$

Theorem 6.2. The A-module $X=A \otimes E\left(s L^{+}\right) \otimes P\left(s^{2} \pi L^{+}\right) \otimes P\left(s L^{-}\right)$ with an inductively defined differential d gives an acyclic, A-free resolution of $\boldsymbol{Z} / \boldsymbol{p}: \quad X \xrightarrow{\boldsymbol{\varepsilon}} \boldsymbol{Z} / \boldsymbol{p}$.

Corollary 6.3. A suitable filtration on X induces a spectral sequence in which $E^{1} \bar{X} \cong E\left(s E^{0} L^{+}\right) \otimes \Gamma\left(s E^{0} L^{-}\right) \otimes \Gamma\left(s^{2} \pi E^{0} L^{+}\right)$, the May's construction,
as a cocommutative DGA-coalgebra ([5]) and the E^{r}-terms are the same as those of May S.S. ($r \geq 2$).

We can prove this theorem quite similarly as in the mod 2 case, although we need here a more fine classification of the canonical basis elements $e_{I}^{L} \cdot f_{J} \cdot\left\langle e_{G}\right\rangle \cdot y_{M} \cdot\left\langle f_{K}\right\rangle$ as follows.

Introduce first the following notation on the index sequences:

$$
\begin{equation*}
a_{1}(I)=\max I=\left(i_{m}, k_{m}\right) \quad \text { for } \quad I=\left(i_{1}, k_{1}\right)<\cdots<\left(i_{m}, k_{m}\right), \tag{6.4}
\end{equation*}
$$

and $a_{1}(\phi)=(0,0), \phi$ being the empty set.
$b(G)=\max G \quad$ for $\quad G=\left(g_{1}, h_{1}\right)<\cdots<\left(g_{t}, h_{t}\right)$,
and $b(\phi)=(0,0)$,

$$
\begin{aligned}
& c(M)=\max M \quad \text { for } \quad M=\left(m_{1}, q_{1}\right) \leq \cdots \leq\left(m_{u}, q_{u}\right), \\
& \text { and } \quad c(\phi)=(0,0)
\end{aligned}
$$

and

$$
\begin{aligned}
& a_{2}(J)=\max J \text { for } J=\left(j_{1}<\cdots<j_{n}\right), \\
& \text { and } a_{2}(\phi)=-1, \\
& d(K)=\max K \text { for } K=\left(k_{1} \leq \cdots \leq k_{v}\right) \text {, } \\
& \text { and } d(\phi)=-1
\end{aligned}
$$

A c.b.e. $e_{I}^{L} \cdot f_{J} \cdot\left\langle e_{G}\right\rangle \cdot y_{M} \cdot\left\langle f_{K}\right\rangle$ belongs to one of the following types:
Provided that $J=K=\phi$ the empty set,

$$
\begin{array}{ll}
\begin{cases}I_{1}: a_{1} \leq b \geq c \text { and, } \\
\text { if } \quad a_{1}=b, l_{m}<p-1,\end{cases} & I I_{1}: b<a_{1} \geq c, \\
I_{2}: a_{1}<c>b, & I I_{2}: a_{1}=b \geq c, \text { and } l_{m}=p-1,
\end{array}
$$

Otherwise, if J or $K \neq \phi$, put

$$
I_{3}: a_{2}<d, \quad I I_{3}: a_{2} \geq d
$$

Thus we have a direct sum decomposition

$$
\begin{equation*}
X=C_{I} \oplus C_{I I}, C_{I}=C_{I_{1}} \oplus C_{I_{2}} \oplus C_{I_{3}}, C_{I I}=C_{I I_{1}} \oplus C_{I I_{2}} \oplus C_{I I_{3}} \tag{6.6}
\end{equation*}
$$

where
$C_{I_{i}}=Z / p\left\{c . b . e\right.$. of type $\left.I_{i}\right\}$ and $C_{I I_{i}}=Z / p\left\{c\right.$.b.e. of type $\left.I I_{i}\right\}$
for $i=1,2,3$,
with linear isomorphisms

$$
C_{I_{i}, s} \xrightarrow[\sigma_{s-1}^{\prime}]{\tau_{s}} C_{I_{i}, s-1}
$$

defined by

$$
\begin{align*}
\tau_{s}\left(e_{I}^{L}\left\langle e_{G}\right\rangle y_{M}\right)= & (-1)^{|G|-1} e_{I}^{L} \cdot e_{g_{t}, p^{n_{t}}}\left\langle e_{G-\left(g_{t}, h_{t}\right\rangle}\right\rangle y_{M} \tag{6.7}\\
& \text { on } c . b . e . \text { of type } I_{1}\left(\left(g_{t}, h_{t}\right)=\max G\right) \\
\tau_{s}\left(e_{I}^{L}\left\langle e_{G}\right\rangle y_{M}\right)= & e_{I}^{L} \cdot e_{m_{u}, p^{q_{u}}}^{p-1}\left\langle e_{G+\left(m_{u}, q_{u}\right.}\right\rangle y_{M-\left(m_{u}, q_{u}\right)} \\
& \text { on c.b.e. of type } I_{2}\left(\left(m_{u}, q_{u}\right)=\max M\right) \\
\tau_{s}\left(e_{I}^{L} f_{J}\left\langle e_{G}\right\rangle y_{M}\left\langle f_{K}\right\rangle\right)= & (-1)^{|G|+|K|-1} e_{I}^{L} \cdot f_{J} \cdot f_{k_{v}} \cdot\left\langle e_{G}\right\rangle \cdot y_{M}\left\langle f_{K-\left(k_{v}\right)}\right\rangle \\
& \text { on c.b.e. of type } I_{3}\left(k_{v}=\max K\right)
\end{align*}
$$

where $|G|$ denotes the length of the index sequence G and similarly for others, and $s=|G|+2|M|+|K|$ the homology dimension.
The inverse σ_{s-1}^{\prime} of τ_{s} will be defined obviously.
Then, starting from

$$
\begin{aligned}
& d_{1}\left\langle e_{j, p^{1}}\right\rangle=e_{j, p^{l}}, d_{1}\left\langle f_{j}\right\rangle=f_{j}, \\
& \sigma_{0}\left(e_{I}^{L}\right)=\left(e_{I}^{L}\right)^{\prime} \cdot\left\langle e_{i_{m}, p_{m}^{k}}\right\rangle, \text { with }\left(i_{m}, k_{m}\right)=\max I \text { and } \\
& \left(e_{I}^{L}\right)^{\prime}= \begin{cases}e_{i_{1}, p^{k_{1}}}^{l_{1}} \cdots e_{i_{m}, p^{k_{m}}}^{l_{m}} & \text { if } l_{m}>1 \\
e_{i_{1}, p^{k_{1}}}^{l_{1}} \cdots e_{i_{m-1}, p^{k_{m-1}}}^{l_{m}-1} & \text { if } l_{m}=1\end{cases} \\
& \sigma_{0}\left(e_{I}^{L} \cdot f_{J}\right)=e_{I}^{L} \cdot f_{J}\left\langle f_{j_{n}}\right\rangle \quad \text { with } \quad j_{n}=\max J \quad \text { and } J^{\prime}=J-\left\{j_{n}\right\},
\end{aligned}
$$

we could define differential d and contracting homotopy σ inductively in X as before, and as well carry out all the parallel discussion.

References

[1] J.F. Adams: On the structure and applications of the Steenrod algebra, Comment. Math. Helv. 32 (1958), 180-214.
[2] J.F. Adams: On the non-existence of elements of Hopf invariant one, Ann. of Math. 72 (1960), 20-104.
[3] J. Adem: The iteration of the Steenrod squares in algebraic topology, Proc. Nat. Acad. Sci. USA 38 (1952), 720-726.
[4] H.R. Margolis: Spectra and the Steenrod Algebra, North-Holland, 1983.
[5] J.P. May: The cohomology of restricted Lie algebras and of Hopf algebras,

Application to the Steenrod algebra, Dissertation, Princeton Univ. 1964.
[6] J. Milnor: The Steenrod algebra and its dual, Ann. of Math. 67 (1958), 150-171.
[7] S.P. Novikov: On the cohomology of the Steenrod algebra (Russian), Doklady Acad. Nauk, SSSR 131 (1959), 893-895.
[8] N. Shimada: Some resolutions for the Landweber-Novikov algebra, Q. \& A. in General Topology 8•(1990), Special issue, 201-206.
[9] N.E. Steenrod and D.B.A. Epstein: Cohomology operations, Ann. of Math. Studies 50, Princeton, 1962.
[10] M.C. Tangora: On the cohomology of the Steenrod algebra, Math. Z. 116 (1970), 18-64.

Okayama University of Science Ridaicho 1-1, Okayama 700
Japan

