A NECESSARY AND SUFFICIENT CONDITION FOR A 3-MANIFOLD TO HAVE GENUS g HEEGAARD SPLITTING (A PROOF OF HASS-THOMPSON CONJECTURE)

Tsuyoshi KOBAYASHI and Haruko NISHI

(Received July 9, 1992)

1. Introduction

R.H. Bing had shown that a closed 3-manifold M is homeomorphic to S^{3} if and only if every knot in M can be ambient isotoped to lie inside a 3-ball [1]. In [5], J. Hass and A. Thompson generalize this to show that M has a genus one Heegaard splitting if and only if there exists a genus one handlebody V embedded in M such that every knot in M can be ambient isotoped to lie inside V. Moreover, they conjectures that this can be naturally generalized for genus $g(>1)$. The purpose of this paper is to show that this is actually true. Namely we prove:

Main Theorem. Let M be a closed 3-manifold. There exists a genus g handlebody V such that every knot in M can be ambient isotoped to lie inside V if and only if M has genus g Heegaard splitting.

The proof of this goes as follows. First we generalize Myers' construction of hyperbolic knots in 3-manifolds [14] to show that, for each integer $g(\geq 1)$, every closed 3-manifold has a knot whose exterior contains no essential closed surfaces of genus less than or equal to g (Theorem 4.1). Knots with this property will be called g-characteristic knots. Then we show that, for each integer $h(\geq 1)$, there exists a knot K in M such that K cannot be ambient isotoped to a 'simple position' in any gensu h handlebody which gives a Heegaard splitting of of M. This is carried out by using good pencil argument of K. Johannson [9] (, and we note that this also can be proved by using inverse operation of type A isotopy argument of M. Ochiai [15]). By using this very complicated knot in M, we can show that if M contains a genus g handlebody as in Main Theorem, then M admits a Heegaard splitting of genus g.

This paper is organized as follows. In Section 2, we slightly generalize

[^0]results of Johannson in [8], which will be used in Sections 3 and 5. In Section 3, we generalize the concept of prime tangles [13] to 'height g ' tangles, and show that there are many height g tangles. In Section 4, we show that, by using these tangles, there are infinitely many g-characteristic knots in M. In Section 5 , we show that there are non-simple position knots by using these g characterisisc knots. In Section 6, we prove Main Theorem.

The second author would like to express her thanks to Prof. Mitsuyoshi Kato for his constant encouragement.

2. Preliminaries

Throughout this paper, we work in the piecewise linear category. All submanifolds are in general position unless otherwise specified. For a subcomplex H of a complex $K, N(H, K)$ denotes a regular neighborhood of H in K. When K is well understood, we often abbreviate $N(H, K)$ to $N(H)$. Let N be a manifold embedded in a manifold M with $\operatorname{dim} N=\operatorname{dim} M$. Then $\mathrm{Fr}_{M} N$ denotes the frontier of N in M. For the definitions of standard terms in 3dimensional topology, we refer to [6], and [7].

An arc a properly embedded in a 2 -manifold S is inessential if there exists an arc b in ∂S such that $a \cup b$ bounds a disk in S. We say that a is essential if it is not inessential. A surface is a connected 2 -manifold. Let E be a 2 sided surface properly embedded in a 3 -manifold M. We say that E is essential if E is incompressible and not parallel to a subsurface of ∂M. We say that E is ∂-compressible if there is a disk Δ in M such that $\Delta \cap E=\partial \Delta \cap E=\alpha$ is an essential arc in E, and $\Delta \cap \partial M=\partial \Delta \cap \partial M=\beta$ is an arc such that $\alpha \cup \beta=\partial \Delta$. We say that E is ∂-incompressible if it is not ∂-compressilee.

Let F be a closed surface of genus g. A genus g compression body W is a 3manifold obtained from $F \times[0,1]$ by attaching 2 -handles along mutually disjoint simple closed curves in $F \times\{1\}$ and attaching some 3-handles so that $\partial_{-} W=$ $\partial W-\partial_{+} W$ has no 2 -sphere components, where $\partial_{+} W$ is a component of ∂W which corresponds to $F \times\{0\}$. It is known that W is irreducible ($[2$, Lemma 2.3]). We note that W is a handlebody if $\partial_{-} W=\emptyset$.

A complete disk system D for a compression body W is a disjoint union of disks $(D, \partial D) \subset\left(W, \partial_{+} W\right)$ such that W cut along D is homeomorphic to

$$
\begin{cases}\partial_{-} W \times[0,1], & \text { if } \partial_{-} W \neq \emptyset, \\ B^{3}, & \text { if } \partial_{-} W=\emptyset .\end{cases}
$$

Note that for any handle decomposition of W as above, the union of the cores of the 2 -handles extended vertically to $F \times[0,1]$ contains a complete disk system for W.

Let M be a compact 3 -maniifold such that ∂M has no 2 -sphere compon-
ents. A genus g Heegaard splitting of M is a pair (V, W) where V, W are genus g compression bodies such that $V \cup W=M, V \cap W=\partial_{+} V=\partial_{+} W$. Then the purpose of this section is to give a generalization of some results of Johannson [8] to the above Heegaard splittings.

The next lemma can be proved by using the above complete eisk system, and the proof is left to the reader (cf. [2, Lemma 2.3]).

Lemma 2.1. Let S be an incompressible and ∂-incompressible surface properly embedded in a compression body W. Then S is etiher a closed surface parallel to a component of $\partial_{-} W$, disk D with $\partial D \subset \partial_{+} W$, or an annulus A, where one component of ∂A lies in $\partial_{+} W$ and the other in $\partial_{-} W$.

The annulus A as in Lemma 2.1 is called vertical.
Let S be an essential surface in a 3 -manifold M, and $\left(W_{1}, W_{2}\right)$ a Heegaard splitting of M. We say that S is normal with respect to $\left(W_{1}, W_{2}\right)$ if:
(1) each component of $S \cap W_{1}$ is an essential disk or a vertical annulus, and
(2) $S \cap W_{2}$ is an essential surface in W_{2}.

By using the incompressibility of S and Lemma 2.1, we see that if M is irreducible then S is ambient isotopic to a normal surface. Suppose that S is normal. Let $S_{2}=S \cap W_{2}$, and b an arc properly embedded in S_{2}. We say that b is a compression arc (for S_{2}), if b is essential in S_{2}, and there exists a disk Δ in W_{2} such that $\partial \Delta=b \cup b^{\prime}$, where $b^{\prime}=\Delta \cap \partial_{+} W_{2}$ (and, possibly, Int $\Delta \cap S_{2} \neq \emptyset$). Let $M,\left(W_{1}, W_{2}\right)$, and S be as above. Let \mathscr{D} be a complete disk system for W_{2}. We say that S is strictly normal (with respect to \mathscr{D}), if:
(1) S is normal with respect to (W_{1}, W_{2}), and
(2) for each component D_{i} of \mathscr{D}, we have; (i) each component of $S_{2} \cap D_{i}$ (if exists) is an essential arc in S_{2} and (ii) if b is an arc of $S_{2} \cap D_{i}$ such that ∂b is contained in mutually different components C_{1}, C_{2} of ∂S_{2}, and that C_{1} or C_{2} is a boundary of a disk component E of $S \cap W_{1}$, then for each (open arc) component $\partial D_{i}-\partial b$, say a_{1}, a_{2}, we have have $a_{i} \cap \partial E \neq \emptyset$.

Then the next proposition is a generalization of [8, 2.3].
Proposition 2.2. Let $M,\left(W_{1}, W_{2}\right)$ be as above. Let S be an essential surface in M which is normal with respect to $\left(W_{1}, W_{2}\right)$. Then we have either :
(1) S is strictly normal, or
(2) S is ambient isotopic to a surface S^{\prime} in M such that; (i) S^{\prime} is normal with respect to $\left(W_{1}, W_{2}\right)$, and (ii) \#\{ $\left.S^{\prime} \cap W_{1}\right\}<\#\left\{S \cap W_{1}\right\}$.

The proof of this is essentially contained in [8, Sect. 2]. However, for the convenience of the reader, we give the proof here.

Lemma 2.3. Let $M,\left(W_{1}, W_{2}\right)$, and S be as in Proposition 2.2. Let b be a
compression arc for $S \cap W_{2}$, with a disk Δ in W_{2} such that $\partial \Delta=b \cup b^{\prime}$, where $b^{\prime}=\Delta \cap \partial_{+} W_{2}$ and $\partial b=\partial b^{\prime} . \quad$ Suppose that there is a disk compornet E of $S \cap W_{1}$ such that $b^{\prime} \cap E=\partial b^{\prime} \cap \partial E$ consists of a point. Then S is ambient isotopic to a surface S^{\prime} in M such that;
(1) S^{\prime} is normal with respect to $\left(W_{1}, W_{2}\right)$, and
(2) $\#\left\{S^{\prime} \cap W_{1}\right\}=\#\left\{S \cap W_{1}\right\}-1$.

Proof. Note that b joins mutually different components of $S \cap W_{1}$, one of them is E and the other is D, say. Let E_{+}be one of the components of $\mathrm{Fr}_{W_{1}} N\left(E, W_{1}\right)$ which meets b^{\prime}. We note that ∂E_{+}meets b^{\prime} in one point. Let $B=N\left(E_{+}, N\left(E, W_{1}\right)\right) \cup N\left(\Delta, W_{2}\right)$. Then B is a 3-ball in M since $\partial E_{+} \cap \partial \Delta$ is a point. Move W_{1} by an ambient isotopy along B so that the image W_{1}^{\prime} has the following form: $W_{1}^{\prime}=\mathrm{cl}\left(W_{1}-N\left(E_{+}, N\left(E, W_{1}\right)\right)\right) \cup N\left(b, W_{2}\right)$.

Let $W_{2}^{\prime}=\operatorname{cl}\left(M-W_{1}^{\prime}\right)$. Then clearly $\left(W_{1}^{\prime}, W_{2}^{\prime}\right)$ is a Heegaard splitting of M which is ambient isotopic to $\left(W_{1}, W_{2}\right)$. Note that $S \cap W_{1}^{\prime}$ is a system of essential disks and vertical annuli which has the number of components one less than that of $S \cap W_{1}$, because E is connected with D by the band $S \cap N\left(b, W_{2}\right)$. Moreover, $S \cap W_{2}^{\prime}$ is an essential surface since b is essential in S_{2}. It follows that there exists an ambient isotopy of M which push S into S^{\prime} so that S^{\prime} is normal with respects to (W_{1}, W_{2}) and $\#\left\{S^{\prime} \cap W_{1}\right\}=\#\left\{S \cap W_{1}\right\}-1$.

Proof of Proposition 2.2. Let $\mathscr{D}=\cup D_{i}$ be a complete disk system for W_{2}. Suppose that S is not strictly normal. Since S_{2} is incompressible and W_{2} is irreducible, by standard innermost disk argument, we may assume that $S_{2} \cap D_{i}$ has no circle components. If there exists an inessential arc component b of $S_{2} \cap D_{i}$ in S_{2}, then without loss of generality, we may assume that there exists a disk Δ in S_{2} such that $\Delta \cap \mathscr{D}=b$, and $\Delta \cap \partial_{+} W_{2}$ is an arc b^{\prime} such that $\partial b=\partial b^{\prime}$, and $b \cup b^{\prime}=\partial \Delta$. We note that $\mathrm{Fr}_{W_{2}} N\left(D_{i} \cup \Delta, W_{2}\right)$ consists of three disks E_{0}, E_{1}, E_{2} such that E_{0} is parallel to D_{i}. Then it is easy to see that either $\left(\mathscr{D}-D_{i}\right) \cup E_{1}$ or $\left(\mathscr{D}-D_{i}\right) \cup E_{2}$ is a complete disk system for W_{2}. Moreover this complete disk system intersects S_{2} in less number of components. Continuing in this way, we can finally get the complete disk system for W_{2} which intersects S_{2} in all essential arcs.

Therefore, it S is not striclty normal, we may assume that it does not satisfy (ii) of the definition. Then, there exists an arc component b of $\mathscr{D} \cap S_{2}$ such that ∂b is contained in mutually different components C_{1}, C_{2} of ∂S, and one of them, say C_{2}, is a boundary of a disk component E of $S \cap W_{1}$, and for one of open arc components a of $\partial D_{i}-\partial b, a \cap \partial E=\emptyset$. Note that b is a compression arc for S_{2}, and $b \cap E=\partial b \cap \partial E$ is a point. Hence by Lemma 2.3, S can be ambient isotoped to a 2-manifold S^{\prime} which is normal with respects to (W_{2}, W_{1}), and $\#\left\{S^{\prime} \cap W_{1}\right\}<\#\left\{S \cap W_{1}\right\}$.

3. Height \boldsymbol{h} tangles

An n-string tangle is a pair (B, t), where B is a 3-ball, and t is a union of mutually disjoint n arcs properly embedded in B. We note that for each tangle (B, t) there is a (unique) 2-fold branched cover of B with branch set t. We say that a tangle (B, t) has height h if the 2 -fold branched cover of B over t contains no essential surface S with $-\chi(S) \leq h$. We note that 2-string tangles with height -1 are called prime tangles in [13]. We say that a tangle (B, t) has property I if $X=\operatorname{cl}(B-N(t, B))$ is ∂-irreducible, i.e. ∂X is incompressible in X. The purpose of this section is to show that a height h tangle actually exists. Namely we prove:

Proposition 3.1. For each even integer $g(\geq 2)$, and for each integer $m(\geq-1)$. there exists a g-string tangle (B, t) with height m. Moreover if we suppose that $2 g-4>m \geq 0$, then we can take (B, t) to have proprety I.

Figure 3.1

For the proof of Proposition 3.1, we recall some definitions and results from [12]. Let W be a compression body and $l\left(\subset \partial_{+} W\right)$ a simple closed curve. Then the height of l for W, denoted by $h_{W}(l)$, is defined as follows [12].
$h_{W}(l)=\min \{-\chi(S) \mid S$ is an essential surface in W such that $\partial S \cap l=\emptyset\}$.
Let W be a handlebody of genus $g(\geq 2)$, and m_{1}, m_{2}, l simple closed curves on ∂W as in Figure 3.1. Then for a sufficiently large integer q we let f be an automorphism of ∂W such that $f=T_{m_{1}} \circ T_{m_{2}}^{2 q}$, where $T_{m_{i}}$ denotes a right hand Dehn twist along the simple closed curve m_{i}. By sections 2, 3 of [12] we have:

Proposition 3.2. For each $m(\geq-1)$, there exists a constant $N(m)$ such that if $p>N(m)$, then $h_{W}(\bar{l})>m$ for each simple closed curve \bar{l} on ∂W which is disjoint from $f^{p}(l)$ and not contractible in ∂W.

Let N be the 3-manifold obtained from W by attaching a 2-handle along the simple closed curve $f^{N(m)+1}(l)$. By Proposition 3.2 and the handle addition lemma (see, for example [3]), we see that N is irreducible. We note that W admits an orientation preserving involution ϕ as in Figure 3.1. Then we have:

Lemma 3.3. The involution ϕ extends to an involution $\bar{\phi}$ of N. Moreover, the quotient space of N under $\bar{\phi}$ is a 3-ball B, and the singular set t in B consists of a union of g arcs properly embedded in B.

Proof. We note that m_{1}, m_{2}, and l are invariant under ϕ. Hence we may suppose that $f^{N(m)+1}(l)$ is invariant under ϕ. Hence the involution ϕ naturally extends to the 2-handle $D^{2} \times[0,1]$, where the quotient space of $D^{2} \times[0,1]$ is a 3-ball and the singular set in $D^{2} \times[0,1]$ is an arc α properly embedded in $D^{2} \times\{1 / 2\}$. We note that W / ϕ is a 3-ball, the singular set consists of $g+1$ arcs s, and $N\left(f^{N(m)+1}(l), \partial W\right) / \phi$ is a 2 -disk. Moreover it is easy to see that the components of $\partial \alpha$ are contained in mutually different components of s. Hence we see that B is a 3 -ball and t consists of g arcs properly embedded in B.

Let B, t be as above, and we regard (B, t) as a g-string tangle. Then we show that (B, t) is a height m tangle (the first half of Proposition 3.1) by using good pencil argument of Johannson used in [9].

Lemma 3.4. (B, t) has hight m.
Proof. Let $C=N(\partial W, W) \cup($ a 2 -handle $)$. Let E be a disk properly embedded in C, which is obtained by extending the core of the 2 -handle vertically to $N(\partial W, W)(\cong \partial W \times[0,1])$. Then C is a genus g compression body, and E is a complete disk system for C. We regard $\operatorname{cl}(N-C)$ as W. Then we note that (C, W) is a Heegaard splitting of N.

Let $C^{\prime}=\mathrm{cl}(C-N(E, C))$, then C^{\prime} is homeomorphic to $\partial_{-} C \times[0,1]$, where $\partial_{-} C$ corresponds to $\partial_{-} C \times\{0\}$. Let E^{+}, E^{-}be the disks in $\partial_{-} C \times\{1\}$ corresponding to $\mathrm{Fr}_{C} N(E, C)$.

Claim 1. Let D be an essential disk in C which is non-separating in C. Then D is ambient isotopic to E in C.

Proof. Since C is irreducible, by standard innermost disk argument, we may suppose that $D \cap E$ has no circle components. Suppose that $D \cap E=\emptyset$. Then ∂D bounds a disk D^{\prime} in $\partial_{-} C \times\{1\}$ such that D is parallel to D^{\prime}. Since ∂D is essential in $\partial_{+} C$ and non-separating in $\partial_{+} C$, we see that D^{\prime} contains exactly one of E^{+}, E^{-}. Hence D is parallel to E in C. Suppose that $D \cap E \neq \emptyset$. Let Δ be an outermost disk in D, i.e. $\alpha=\Delta \cap E=\partial \Delta \cap E$ an $\operatorname{arc}, \beta=\Delta \cap \partial D$ an arc such that $\alpha \cup \beta=\partial \Delta$ and $\alpha \cap \beta=\partial \alpha=\partial \beta$. Then we see that $\Delta \cap C^{\prime}$ is a properly embedded disk in C^{\prime}. Without loss of generality, we may suppose that $\partial\left(\Delta \cap C^{\prime}\right) \cap E^{-}=\emptyset$. Then there is a disk Δ^{\prime} in $\partial_{-} C \times\{1\}$ such that $\partial \Delta^{\prime}=\partial\left(\Delta \cap C^{\prime}\right)$. If Δ^{\prime} does not contain E^{-}, then by moving D by an ambient isotopy, we can remove α from $D \cap E$. Suppose that Δ^{\prime} contains E^{-}. Then, by tracing $\operatorname{cl}(\partial D-\beta)$ from one endpoint to the other, we see that there exists a subarc β^{\prime} in $\partial D-\beta$ such that $\beta^{\prime} \cap E^{+}=\emptyset, \beta^{\prime} \subset \Delta^{\prime}$, and $\partial \beta^{\prime} \subset \partial E$. Hence, by moving D by an ambient isotopy, we can reduce the number of components of $D \cap E$. Then by the induction on $\#\{D \cap E\}$, we have the conclusion.

Claim 2. Let D be an essential disk in C which is separating in C. Then D can be ambient isotoped so that D is disjoint from E. Moreover, D splits C into a solid tours containing E, and a manifold homeomorphic to $\partial_{-} C \times[0,1]$.

Proof. Since C is irreducible, by standard innermost disk arguement, we may assume that $D \cap E$ has no circle components. Suppose that $D \cap E \neq \emptyset$. Let Δ be an outrmost disk in D such that $\Delta \cap E=\alpha$ and $\beta=\Delta \cap \partial D$. Then $\Delta \cap C^{\prime}$ is a properly embedded disk in C^{\prime}. Without loss of generality, we may assume that $\partial\left(\Delta \cap C^{\prime}\right) \cap E^{-}=\emptyset$. Then there is a disk Δ^{\prime} in $\partial_{-} C \times\{1\}$ such that $\partial \Delta^{\prime}=\partial\left(\Delta \cap C^{\prime}\right)$. If Δ^{\prime} does not contain E^{-}, then by moving D by an ambient isotopy, we can remove α from $D \cap E$. Suppose that Δ^{\prime} contains E^{-}. Then, by tracing $\operatorname{cl}(\partial D-\beta)$ from one endpoint to the other, we see that there exists a subarc β^{\prime} in $\partial D-\beta$ such that $\beta^{\prime} \cap E^{+}=\emptyset, \beta^{\prime} \subset \Delta^{\prime}$, and $\partial \beta^{\prime} \subset \partial E^{-}$. Hence, by moving D by an ambient isotopy, we can reduce the number of components of $D \cap E$. Then by the induction on $\#\{D \cap E\}$, we have the first conclusion of Claim 2. Hence we may assume that $D \cap E=\emptyset$.

Let T be the closure of the component of $C-D$ which contains E, and T^{\prime} the closure of the other componnet. By [2, Corollary B.3], we see that T, T^{\prime} are compression bodies. Since T contains a non-separating disk E, and $\partial_{-} C \subset T^{\prime}$, we see that T is a handlebody. Then, by Claim 1 , we see that
T^{\prime} is a solid torus. This shows that $\partial_{-} T^{\prime}\left(=\partial_{-} C\right)$ is homeomorphic to $\partial_{+} T^{\prime \prime}$, so that T^{\prime} is homeomorphic to $\partial_{-} C \times[0,1]$.

By Claim 2, we immediately have:
Claim 3. Let D_{1}, D_{2} be essential disks in C such that D_{1} and D_{2} are both separating, and mutually disjoint in C. Then D_{1} is parallel to D_{2}.

Next, we show:
Claim 4. Let A be a vertical annulus in C. Then A can be ambient isotoped so that it is disjoint from E.

Proof. Since C is irreducible and A is incompressible in C, by standard innermost disk argument, we may suppose that $E \cap A$ has no circle components. Suppose that $A \cap E \neq \emptyset$. Then each component of $E \cap A$ is an arc whose endpoints are contained in $\partial_{+} C$. Let Δ be an outermost disk in A, such that $\Delta \cap E=\alpha$ an arc and $\beta=\Delta \cap \partial A$ an arc in $\partial A \cap \partial_{+} C$. Then, $\Delta \cap C^{\prime}$ is a properly embedded disk in C^{\prime}. Without loss of generality, we may assume that $\partial\left(\Delta \cap C^{\prime}\right) \cap E^{-}=\emptyset$. Then there is a disk Δ^{\prime} in $\partial_{-} C \times\{1\}$ such that $\partial \Delta^{\prime}=$ $\partial\left(\Delta \cap C^{\prime}\right)$. If Δ^{\prime} does not contain E^{-}, then by moving A by an ambient isotopy, we can remove α from $A \cap E$. Suppose that Δ^{\prime} contains E^{-}. Then, by tracing $\operatorname{cl}\left(\partial A \cap \partial_{+} C-\beta\right)$ from one endpoint to the other, we see that there exists a subarc β^{\prime} in $\left(\partial A \cap \partial_{+} C\right)-\beta$ such that $\beta^{\prime} \cap E^{+}=\emptyset, \beta^{\prime} \subset \Delta^{\prime}$, and $\partial \beta^{\prime} \subset \partial E^{-}$. Hence, by moving A by an ambient isotopy, we can reduce the number of components of $A \cap E$. Then by the induction on $\#\{A \cap E\}$, we have the conclusion.

Let S be an essential surface properly embedded in N and chosen to minimize $-\chi(S)$. In the rest of this proof, we show that $-\chi(S)>m$. By moving S by an ambient isotopy, we may assume that S is normal with respect to (C, W) (Sect. 2). Then $S \cap C \neq \emptyset$, and each component of $S \cap C$ is an essential disk or a vertical annulus in C. Let p be the number of the disk components of $S \cap C$, and suppose that p is minimal among all the essential surfaces \bar{S} such that $-\chi(\bar{S})=-\chi(S)$, and \bar{S} is normal with respect to (C, W). Let $S^{*}=S \cap W$.

Suppose that $S \cap C$ has no disk components. Let A be any annulus component of $S \cap C$. Then, by Claim 4, we may asume that A is disjoint from E. Therefore $\left(S^{*}, \partial S^{*}\right) \subset(W, \partial W-\partial E)=\left(W, \partial W-f^{N(m)+1}(l)\right)$. Since $f^{N(m)+1}(l)$ has height m, we have $-\chi(S)=-\chi\left(S^{*}\right)>m$.

Now suppose that $S \cap C$ has a disk component. By the argument of the proof of Proposition 2.2, there exists a complete disk syst ϵ m \mathscr{D} of W such that each component of $\mathscr{D} \cap S^{*}$ is an essential arc in S^{*}. Let α be an outermost arc component of $\mathscr{D} \cap S^{*}$, i.e. there exists a disk Δ in \mathscr{D} such that $\Delta \cap S^{*}=\partial \Delta \cap S^{*}$
$=\alpha$ an essential arc in S^{*}, and $\Delta \cap \partial W=\partial \Delta \cap \partial W=\beta$ an arc such that $\alpha \cup \beta=$ $\partial \Delta$.

Assume that $\partial \beta$ is contained in mutually different components of ∂S^{*}, and one of which is a boundary of a disk component E^{*} of $S \cap C$. Then S is not strictly normal since $\operatorname{Int} \beta \cap \partial E^{*}=\emptyset$. Hence, by Proposition $2.2, S$ is ambient isotopic to a normal surface S^{\prime} with respect to (C, W), and S^{\prime} intersects W in less number of disk components than that of S, contradicting the minimality of p.

Therefore we have the following four cases.
Case 1. Both endopoints of β are contained in the boundaries of annulus components of $S \cap C$.

By Claims 1, and 2, we may suppose that $\beta \cap \partial E=\emptyset . \quad$ Let $\Delta_{1}=\beta \times[0,1] \subset$ $C^{\prime}\left(\cong \partial_{-} C \times[0,1]\right)$ be a disk in C such that $\beta \times\{1\}$ corresponds to β, and $\partial \beta \times$ $[0,1]=\Delta_{1} \cap(S \cap C)$. Let $\widetilde{\Delta}=\Delta \cup \Delta_{1}$. Let \tilde{S} be the 2 -manifold obtained by ∂ compressing S along $\tilde{\Delta}$. If \tilde{S} is disconnected, choose one essential component of \tilde{S} and we denote it by \tilde{S} again. Then \tilde{S} is an essential surface in N and $-\chi(\tilde{S}) \leq-\chi(S)-1<-\chi(S)$. This contradicts the minimality of $-\chi(S)$.

Case 2. Both endopints of β are contained in the boundary of one nonseparating disk component D of $S \cap C$.

Let S^{\prime} be an essential surface obtained by moving S by an ambient isotopy along Δ. Then $S^{\prime} \cap C$ has an annulus component A^{\prime}, which is obtained from D by attaching a band produced 'along β. Let $\partial A^{\prime}=\left\{\alpha_{1}, \alpha_{2}\right\}$. By Claim 1, we may suppose that $\partial D \cap \partial E=\emptyset$, hence, that $\alpha_{1} \cap E=\emptyset(i=1,2)$. Let $A_{i}=\alpha_{i}$ $\times[0,1] \subset \partial_{-} C \times[0,1]$ be a vertical annulus in C. Let $\tilde{S}=\left(S^{\prime}-A^{\prime}\right) \cup A_{1} \cup A_{2}$. If \tilde{S} is disconnected, choose one essential component, and denote it by \tilde{S} again. Then \tilde{S} is an essential surface in N, and $-\chi(\tilde{S}) \leq-\chi(S)$. Moreover \tilde{S} is normal with respect to (C, W), and the number of the disk components of $\tilde{S} \cap C$ is less than p. This contradicts the minimality of p.

Case 3. Both endpoints of β are contained in the boundary of one separating disk component D of $S \cap C$, and β does not lie in the solid torus T_{0} splitted by D from C.

Let S^{\prime} be as in Case 2. Then there exists an annulus A^{\prime} in $S^{\prime} \cap C$ such as in Case 2. Let $\partial A^{\prime}=\left\{\alpha_{1}, \alpha_{2}\right\}$. Then, by Claim 2, we may assume that D is disjoint from E. Hence $\alpha_{i} \cap E=\emptyset(i=1,2)$. Then, by the same argument as in Case 2, we have a contradiction.

Case 4. Both endpoints of β are contained in the boundary of one separating disk component D of $S \cap C$, and β lies in the solid torus T_{0} splitted by
D from C.
Let S^{\prime}, A^{\prime} be as in Case 2.
Claim 5. A^{\prime} is incompressible in C.
Proof. Assume that A^{\prime} is compressible in C. Since S^{\prime} is incompressible, the core curve of A^{\prime} is contractible in S^{\prime}. Hence there is a planar surface P in S^{*} such that $\partial P=l_{0} \cup l_{1} \cup \cdots \cup l_{r}$, where $r \geq 1, l_{0} \cap D=l_{0} \cap \partial D$ an arc, l_{1}, \cdots, l_{r} are boundary of disk components of $S^{\prime} \cap C$. See Figure 3.2. Since \mathscr{D} is a complete disk system for W, each component of $P-(\mathscr{D} \cap P)$ is simply connected. This shows that there is a component b of $\mathscr{D} \cap P\left(\subset \mathscr{D} \cap S^{*}\right)$ which satisfies the assumption of Lemma 2.3, contradicting the minimality of p.

Figure 3.2
By Claims 1 , and 5 , we see that $S \cap C$ has no non-separating disk component. Let $\left\{D_{1}, D_{2}, \cdots, D_{q}\right\}$ be the system of disk components of $S \cap C$ which lies in this order. Then, by Claim 3, these components are mutually parallel in C. Let A be an annulus in $\partial_{+} C$ such that A contains $\partial D_{1} \cup \cdots \cup \partial D_{q}$, and each ∂D_{i} is ambient isotopic in A to a core of A. We suppose that $\#\left\{\partial \mathscr{D} \cap \partial D_{i}\right\}$ is minimal in the ambient isotopy class of $\partial \mathscr{D}$ in $\partial W\left(=\partial_{+} C\right)$, and hence, $I=\partial \mathscr{D} \cap A$ is a system of essential arcs in A. We lable the points $\partial D_{i} \cap I$ by i, then in each component of I, they lie in this order.

Claim 6. There exists a subsystem P of $\mathscr{D} \cap S^{*}$ such that there exists a component I_{0} of I which satisfies the following.
(1) Every arc of P has one of its endpoints in I_{0}.
(2) Every arc of $\mathscr{D} \cap S^{*}$ which has one of its endpoints in I_{0} belongs to P.
(3) Every arc t of P joins I_{0} with one of components of I which are neighbouring of I_{0} in $\partial \mathscr{D}$, i.e. if s_{1}, s_{2} are subarcs of $\partial \mathscr{D}$ such that (Int $\left.s_{i}\right) \cap I=\emptyset$, and one of its endpoints lies in ∂I_{0} and the other in the boundary of a component I_{i} of I, say, then one of the endpoints of t lies in $I_{1} \cup s_{1} \cup s_{2} \cup I_{2}$ (Figure 3.3).

Proof. Let I_{1} be a component of I. Suppose that I_{1} does not satisfy the conclusions of Claim 6. Then there is an $\operatorname{arc} t_{1}$ of $\mathscr{D} \cap S^{*}$ such that one of its

Figure 3.3
endpoints lies in I_{1} and does not join two neighbouring components of I. Let E_{1} be the closure of a component of $\mathscr{D}-t_{1}$, and I_{2} a component of I contained in ∂E_{1}. If I_{2} does not satisfy the conclusions of Claim 6, then there is an arc t_{2} of $E_{1} \cap S^{*}$ such that one of its endpoints lies in I_{2} and does not join two neighbouring of I. Let E_{2} be the closure of the components of $\mathscr{D}-t_{2}$ such that $E_{2} \subset E_{1}$. By continueing in this way, it is easy to see that we finally obtain a component of I satisfying the conclusion of Claim 6.

Claim 7. For each component of P in Claim 6, both of its endpoints are contained in I, and have the same label.

Proof. Assume that there exists an arc α such that it has one of its endpoints in I_{0} and the other not in I. Then α satisfies the assumption of Lemma 2.3, contradciting the minimality of p. Let a_{1}, a_{2} be the closures of the components of $\partial \mathscr{D}-\partial P$ which contains s_{1}, s_{2} respectively. Since D_{1}, \cdots, D_{q} are mutually parallel separating disks in C, we see that the points ∂a_{i} are contained in either ∂D_{1} or ∂D_{q}. This immediately shows that, for each component α of P, the endpoints of α have the same label (Figure 3.4).

Figure 3.4
Claim 8. $\partial P \subset I_{0} \cup I_{1}$, say (Figure 3.5).

Figure 3.5
Proof. Let α_{i} be the component of P such that one of its endpoints contained in I_{0} is labelled by i. Assume that one endpoint of α_{1} is contained in I_{1}, and that there exists α_{i} such that one endpoint of α_{i} is contained in I_{2}. Then by Claim 7, $\partial \alpha_{q}$ is contained in ∂D_{q}, and one endpoint of α_{q} is contained in I_{2}. Let Δ be a disk in \mathscr{D} which is splitted by α_{q} and does not contain $\alpha_{1} \cup \cdots \cup \alpha_{q-1}$. We may suppose that $\Delta \cap \partial_{+} C$ is not contained in the solid torus splitted by D_{q} from W. Assume that there exists a component α of $\mathscr{D} \cap S^{*}$ in $\Delta-\alpha_{q}$. Then $\partial \alpha$ is contained in annulus components of $S \cap C$. Hence it reduces to Case 1, and we have a contradiction. Therefore $\Delta \cap S^{*}=\alpha_{q}$. Let $\beta_{q}=\Delta \cap \partial \mathscr{D}$. Since β_{q} cannot lie in the solid torus T_{0}, it reduces to Case 3 , a contradiction.

Let $P=\left\{\alpha_{1}, \cdots, \alpha_{q}\right\}$ be as above. Let Δ_{1} be the disk in \mathscr{D} splitted by α_{1} and does not contain $\alpha_{2} \cup \cdots \cup \alpha_{q}$, and $\Delta_{i}(2 \leq i \leq q)$ the closure of the component of $\mathscr{D}-\alpha_{i}$ such that $\Delta_{i} \supset \Delta_{1}$. By moving S by an ambient isotopy along Δ_{i} successively, we obtain a surface $S^{\prime \prime}$ which intersects C in annuli, and in particular, there exist q annuli which are mutually parallel in C. Let \bar{l} be one of the components of ∂A. Then \bar{l} is a simple closed curve in ∂W, and by Claim 2, we may assume that \bar{l} is disjoint from $f^{N(m)+1}(l)(=\partial E)$. Let \tilde{S} be an essential component of $S^{\prime \prime} \cap W$. Then $(\widetilde{S}, \partial \widetilde{S}) \subset(W, \partial W-\bar{l})$. By Proposition 3.2, we see that $-\chi(S) \geq-\chi(\tilde{S})>m$. This completes the proof.

Now we give the proof of the latter half of Proposition 3.1. Let W^{\prime} be a genus g compression body with $\partial_{-} W^{\prime}$ a genus $g-1$ closed surface, $m_{1}^{\prime}, m_{2}^{\prime}, l^{\prime}$ simple closed curves on $\partial_{+} W^{\prime}$ as in Figure 3.1. Then by applying the above argument to W^{\prime} and $f^{\prime}=T_{m_{2}^{\prime}} \circ T_{m_{2}^{2}}^{2 q^{\prime}}$ together with Sect. 6 of [12] we have:

Proposition 3.2'. For each $m(\geq-1)$, there exists a constant $N^{\prime}(m)$ such that if $p>N^{\prime}(m)$, then $h_{W^{\prime}}(\bar{l})>m$ for each simple closed curve \bar{l} on $\partial_{+} W^{\prime}$ which is disjoint from $f^{p}\left(l^{\prime}\right)$ and not contractible in $\partial^{+} W^{\prime}$.

Let ϕ^{\prime} be the involution on W^{\prime} as in Figure 3.6. Let N^{\prime} be a 3-manifold
obtained from W^{\prime} by attaching a 2-handle along $f^{N^{\prime}(m)+1}\left(l^{\prime}\right)$. Then we have:

Figure 3.6
Lemma 3.3'. The involution ϕ^{\prime} extends to the involution $\bar{\phi}^{\prime}$ of N^{\prime}. Moreover, the quotient space of N^{\prime} under $\bar{\phi}^{\prime}$, denoted by B^{\prime}, is homeomorphic to (2-sphere) $\times[0,1]$, and the singular set t^{\prime} in B^{\prime} consists of a union of $2 g$ arcs such that the endpoints of each component of t^{\prime} are contained in pairwise different components of ∂B^{\prime}.

Moreover, by applying the argument of the proof of Lemma 3.4 to N^{\prime}, we have:

Lemma 3.4'. Let S be an essential surface in N^{\prime}. Then we have $-\chi(S)>m$.
The proofs of these are essentially the same as above, and we omit them.
Proof of the latter half of Proposition 3.1. Let (\tilde{B}, \tilde{t}) be a tangle which is obtained from (B, t) by capping off $\left(B^{\prime}, t^{\prime}\right)$ so that ∂t is joined with ∂t^{\prime} in a component of ∂B^{\prime}. Then the 2 -fold branched cover \widetilde{N} of \widetilde{B} branched over \tilde{t} is regarded as a union of N and N^{\prime}. Let $F=N \cap N^{\prime}$, then F is a closed orientable surface of genus $g-1$.

Claim. \tilde{N} is irreducible and F is incompressible in \widetilde{N}.
Proof. Since $h_{W}\left(f^{N(m)+1}(l)\right)>m, \partial_{+} W-f^{N(m)+1}(l)$ is incompressible in W. We note that W is irreducible. Then by the handle addition lemma, we see that N is irreducible and ∂N is incompressible in N. Similarly, N^{\prime} is irreducible and ∂N^{\prime} is incompressible in N^{\prime}. Hence \widetilde{N} is irreducible and F is incompressible in \tilde{N}.

First we show that (\tilde{B}, \tilde{t}) has height m. Let S be an essential surface in \tilde{N}, chosen to minimize $-\chi(S)$. Suppose that $S \cap F=\emptyset$. If S is boundary-parallel in N or N^{\prime}, then $-\chi(S)=2 g-4>m$. If S is not boundary-parallel (hence, essential) in N, then by Lemma 3.4, $-\chi(S)>m$. If S is not boundary-parallel (hence, essential) in N^{\prime}, then by Lemma 3.4', we see that $-\chi(S)>m$.

Suppose that $S \cap F \neq \emptyset$ and $S \cap F$ has the minimal number of the components among all the essential surfaces in \widetilde{N} ambient isotopic to S. Then,
by the irreducibility of N, we see that each component of $S \cap N$ is incompressible in N. Moreover, by using the minimality of $\#\{S \cap F\}$ again, we see that each component of $S \cap N$ is an essential surface in N. Hence we have $-\chi(S \cap N)>m$, by Lemma 3.4. On the other hand, since F is incompressible in $N^{\prime}, S \cap N^{\prime}$ has no disk components. Therefore $\chi\left(S \cap N^{\prime}\right) \leq 0$, and, hence, $-\chi(S)=-\left(\chi(S \cap N)+\chi\left(S \cap N^{\prime}\right)\right) \geq-\chi(S \cap N)>m$.

Next, we show that (\tilde{B}, \tilde{t}) has Property I. Let $\tilde{X}=\operatorname{cl}(\tilde{B}-N(\tilde{t}, \tilde{B}))$ be the tangle space and $X=\tilde{X} \cap B, X^{\prime}=\tilde{X} \cap B^{\prime}$. Let $P=X \cap X^{\prime}$. Then P is a planar surface properly embedded in \tilde{X}. By Propositions 3.2 and 3.2', it is easy to see that P is incompressible in X and X^{\prime}. Suppose that there exists a compressing disk D for $\partial \tilde{X}$, and $\#\{D \cap P\}$ is minimal among all the compressing disks for $\partial \tilde{X}$.

If $D \cap P=\emptyset$, then $D \subset X^{\prime}$ and $\partial D \subset \partial X^{\prime}-P$. Hence by moving D by a rel P ambient isotopy of X^{\prime}, we may suppose that $\partial D \subset \partial X^{\prime} \cap \partial \widetilde{B}$. Since $\partial X^{\prime} \cap \partial \widetilde{B}$ is incompressible in X^{\prime}, we see that ∂D bounds a disk in $\partial X^{\prime} \cap \partial \widetilde{B}$, a contradiction.

Suppose that $D \cap P \neq \emptyset$. Since P is incompressible in \tilde{X}, and \tilde{X} is irreducible, by standard innermost disk argument, we may suppose that $D \cap P$ has no circle components. Moreover, by the minimality of $\#\{D \cap P\}$, we see that $D \cap P$ has no inessential components in P. Let α be an outermost arc component of $D \cap P$ in D, i.e. there exists a disk Δ in D such that $\Delta \cap P=\alpha, \Delta \cap \partial D=\beta$ an arc such that $\partial \Delta=\alpha \cup \beta$ and $\partial \alpha=\partial \beta$. Then Δ is properly embedded in either X or X^{\prime}. The first case contradicts the incompressibility of P in X. Then we consider the second case. Suppose that the endpoints of α are contained in different boundary components of P, say d_{1}, d_{2}. Let $t_{1}^{\prime}, t_{2}^{\prime}$ be the components of t^{\prime} such that $N\left(t_{i}^{\prime}, B^{\prime}\right) \cap P=d_{i}(i=1,2)$. Let $A=\mathrm{Fr}_{X^{\prime}} N\left(N\left(t_{1}^{\prime}, B^{\prime}\right)\right.$ $\left.\cup \Delta \cup N\left(t_{2}^{\prime}, B^{\prime}\right), X^{\prime}\right)$. Recall that $N^{\prime} \rightarrow B^{\prime}$ is the 2 -fold branched cover with $\bar{\phi}^{\prime}$ generating the group of covering translation. Let \tilde{A} be the lift of A in N^{\prime}. Then A consists of two annuli. If A is compressible in N^{\prime}, then by equivariant loop theorem ([10]), there exists a compressing disk \tilde{D} such that $\phi(\widetilde{D}) \cap \tilde{D}=\emptyset$ or $\phi(\widetilde{D})=\widetilde{D}$. The first case contradicts the incompressibility of A. Since ϕ exchanges the components of \tilde{A}, the second case does not occur. Therefore \tilde{A} is incompressible in N^{\prime}. Since \tilde{A} is not boundary parallel, \tilde{A} is essential in N^{\prime} with $\chi(\tilde{A})=0$. This contradicts Lemma 3.4.' Suppose that $\partial \alpha$ lies in one component of ∂P, say α_{0}. Let t_{0}^{\prime} be the component of t^{\prime} such that $N\left(t_{0}^{\prime}, B^{\prime}\right) \cap$ $P=\alpha_{0}$. Let A be the component of $\operatorname{Fr}_{X^{\prime}} N\left(N\left(t_{0}^{\prime}, B^{\prime}\right) \cup \Delta\right)$ such that each component of $P-(A \cap P)$ contains even components of ∂P. Then we have a contradiction as above, completing the proof.

4. Characteristic knots

Let M be a closed 3-manifold throughout this section.

Two knots K_{0} and K_{1} in M are equivalenet if there exists an ambient isotopy $h_{t}(0 \leq t \leq 1)$ of M such that $h_{0}=\mathrm{id}$, and $h_{1}\left(K_{0}\right)=K_{1}$. We say that K_{0} and K_{1} are inequivalent if they are not equivalent. Let g be an inetger such that $g \geq 1$. A knot K in M is a g-characteristic knot if the exterior of K has no 2 -sided closed incompressible surfaces of genus less than or equal to g except for boundary-parallel tori.

In this section, we prove the following theorem. The proof of this is a generalization of a construction of simple knots in [14] (see also [5]).

Theorem 4.1. For each integer $g(\geq 1)$, every closed orientable 3-manifold M contains infinitely many, mutually inequivalent g-characteristic knots.

Remark. We note that if $\operatorname{rank} H_{1}(M ; Q) \geq 2$, then, for each knot K in M, there exists a non-separating closed incompressible surface in $E(K)$.

Proof. First we recall a special handle decomposition of M from [14]. A handle decomposition $\left\{h_{i}^{k}\right\}$ of M is special if;
(1) The intersection of any handle with any other handle is either empty or connected.
(2) Each 0-handle meets exactly four 1-handles and six 2-hanles.
(3) Each 1-handle meets exactly two 0-handles and three 2-handles.
(4) Each pair of 2-handles either
(a) meets no common 0 -handle or 1 -handle, or
(b) meets exactly one common 0 -handle and no common 1 -handle, or
(c) meets exactly one common 1 -handle and two common 0 -handles.
(5) The complement of any 0 -handles in H is connected, where H is the union of the 0 -handles and the 1 -handles.
(6) The union of any 0 -handle with H^{\prime} is a handlebody, where H^{\prime} is the union of the 2-handles and the 3-handles.

Note that every closed orientable 3-manifold has a special handle decomposition [14, Lemma 5.1].

Now we fix a special handle decomposition $\left\{h_{i}^{k}\right\}$ of M. For each 1-handle h_{j}^{1}, we identify h_{j}^{1} with $D \times[0,1]$, where D is a disk and $D \times[0,1]$ meets 0 -handles in $D \times\{0,1\}$. Let g be an integer such that $g \geq 1$. Let α_{j} be a system of $2 g+2$ arcs properly embedded in h_{j}^{1} such that each arc is identified with \{one point\} $\times[0,1]\left(\subset D^{2} \times[0,1]\right)$. Let $\tau_{i}=\left(B_{i}, t_{i}\right)$ be a copy of $(4 g+4)$-string tangle with height $4 g-4$ and Property I (Progosition 3.1). Identify each 0 -handle h_{i}^{0} with B_{i} in a way that ∂t_{i} is joined with the boundary of the $\operatorname{arcs} \alpha_{j_{i}(1)}, \alpha_{j_{i}(2)}, \alpha_{j_{i}(3)}$, $\alpha_{j_{i}(4)}$, where $h_{j_{i}(1)}^{1}, \cdots, h_{j_{i}(4)}^{1}$ are the four 1 -handles which meet the 0 -handle h_{i}^{0}, and $\left(\cup_{i} t_{i}\right) \cup\left(\cup_{j} \alpha_{j}\right)$ becomes a knot K where the unions are taken over all the 0 -handles and 1 -handles of the handle decomposition.

Let $V=\left(\cup_{i} h_{i}^{0}\right) \cup\left(\cup_{j} h_{j}^{1}\right)$ and $V^{\prime}=M$-Int V. Then we note that $\left(V, V^{\prime}\right)$ is a Heegaard splitting of M.

Assertion 1. The above knot K in M is a g-characteristic knot.
Proof. Let $V_{1}=\operatorname{cl}(V-N(K)), V_{2}=V^{\prime}, X_{i}^{0}=V_{1} \cap h_{i}^{0}$, and $X_{i}^{1}=V_{1} \cap h_{i}^{1}$. Then $X_{i}^{1} \cap\left(\cup X_{i}^{1}\right)$ consists of four disk-with-($2 \mathrm{~g}+2$)-holes properly embedded in V_{1}, say $P_{i 1}, P_{i 2}, P_{i 3}, P_{i 4}$.

Claim 1. Each $P_{i j}$ is incompressible in V_{1}, and V_{1} is irreducible.
Proof. Suppose that $X_{k}^{0} \cap X_{l}^{1}=P_{k j}$. Since the height of τ_{i} is greater than -1 , we see that $P_{k_{j}}$ is incompressible in X_{k}^{0}. Since ($X_{l}^{1}, P_{k j}$) is homeomorphic to ($P_{k j} \times[0,1], P_{k j} \times\{0\}$), we see that $P_{k j}$ is incompressible in X_{l}^{1}. From these facts, it is easy to see that each $P_{k j}$ is incompressible in V_{1}. Then the irreducibility of each X_{k}^{0}, X_{l}^{1}, and the incompressibility of each $P_{i j}$ imply that V_{1} is irredicible.

Let $Q_{i}=\partial X_{i}^{0} \cap \partial B_{i} . \quad$ Then Q_{i} is an $(8 g+8)$-punctured sphere properly embedded in $E(K)$.

Claim 2. Each Q_{i} is incompressible in $E(K)$, and $E(K)$ is irreducible.
Proof. Let $W=\operatorname{cl}\left(V-U_{j} X_{j}^{1}\right)$ and $W^{\prime}=V^{\prime} \cup\left(\cup_{j} X_{j}^{1}\right)$ (Figure 4.1). Then we note that W, W^{\prime} are handlebodies.

Figure"4.1
Suppose that there exists a compresing disk D for Q_{i} in $E(K)$. Since $\left(B_{i}, t_{i}\right)$ has height $4 g-4$, we see that Int D is not contained in h_{i}^{0}. Let D^{\prime} be a disk in ∂h_{i}^{0} such that $\partial D^{\prime}=\partial D$. We note that $V^{\prime} \cup h_{i}^{0}$ is a handlebody by the definition of a special handle decomposition (6). Then it is easy to see that $W^{\prime} \cup h_{i}^{0}$ is a
handlebody. Hecne $W^{\prime} \cup h_{i}^{0}$ is irreducible, and the 2 -sphere $D \cup D^{\prime}$ bounds a 3-ball B in $W^{\prime} \cup h_{i}^{0}$. Since $V-h_{i}^{0}$ is connected by the definition of a special handle decomposition (5), we see that $W-h_{i}^{0}$ is connected. Since $\partial D=\partial D^{\prime} \subset Q_{i}$, and $W-h_{i}^{0}$ is not contained in B, this implies that ∂D bounds a disk in Q_{i}. Hence Q_{i} is incompressible. Since $E(K)=W^{\prime} \cup\left(\cup_{i} X_{i}^{0}\right), W^{\prime} \cap X_{i}^{0}=Q_{i}$, by the irreducibility of W^{\prime}, X_{i}^{0}, and the incompressibility of Q_{i}, we see that $E(K)$ is irreducible.

Let S be a closed incompressible surface in the exterior $E(K)$ of K in M which is not a boundary parallel torus in $E(K)$. Then S must intersect V_{1} since V_{2} is a handlebody. We suppose that $\#\left\{S \cap \partial V_{1}\right\}$ is minimal among all surfaces which is ambient isotopic to S in $E(K)$.

Claim 3. $S \cap V_{1}$ is incompressible in V_{1}, and there exists X_{i}^{0} such that $X_{i}^{0} \cap\left(S \cap V_{1}\right) \neq \emptyset$.

Proof. By the irreducibility of $E(K)$ (Claim 2), and the minimality of $\#\left\{S \cap \partial V_{1}\right\}$, we see that $S \cap V_{1}$ is incompressible in V_{1}. Assume that $X_{i}^{0} \cap$ $\left(S \cap V_{1}\right)=\emptyset$ for each i, i.e. $S \cap V_{1} \subset \cup X_{j}^{1}$. Suppose that $X_{j}^{1} \cap\left(S \cap V_{1}\right) \neq \emptyset$. Let $S_{j}=X_{j}^{1} \cap\left(S \cap V_{1}\right)$. Then, by [4, Sect. 8 Lemma], we see that each component of S_{j} is an annulus which is parallel to an annulus in $X_{j}^{1} \cap \partial V_{2}$, contradicting the miniimality of $\#\left\{S \cap \partial V_{1}\right\}$.

Now we suppose that $\#\left\{\left(S \cap V_{1}\right) \cap\left(\cup_{i} Q_{i}\right)\right\}$ is minimal among the ambient isotopy class of $S \cap V_{1}$ in V_{1}. Let X_{i}^{0} be the tangle space in a 0 -handle h_{i}^{0} such that $X_{i}^{0} \cap\left(S \cap V_{1}\right) \neq \emptyset$, and $S_{i}=X_{i}^{0} \cap\left(S \cap V_{1}\right)$. Let $p: N \rightarrow B_{i}$ be the 2-fold branched cover of B_{i} over t_{i} with ϕ generating the group of the covering translation. Let $\widetilde{S}_{i}=p^{-1}\left(S_{i}\right)$. If \widetilde{S}_{i} is compressible in N, there exists a compressing disk D for \widetilde{S}_{i} in N such that either $\phi(D) \cap D=\emptyset$ or $\phi(D)=D[10]$. However the first case contradicts the incompressibility of S_{i}. Hence $\phi(D)=D$ and $p(D)$ is a disk in B_{i} meeting t_{i} in one point. Then compress S_{i} by $p(D)$ (hence, the surface intersects K in two points). By repeating this step finitely many times for all i such that $X_{i}^{0} \cap\left(S \cap V_{1}\right) \neq \emptyset$, we finally get a 2-manifold S^{\prime} in M such that each component of $\tilde{S}_{i}^{\prime}=p^{-1}\left(S_{i}^{\prime}\right)$ is incompressible in N, where $S_{i}^{\prime}=B_{i} \cap$ ($S^{\prime} \cap V_{1}$). Then we have the following two cases.

Case 1. There exists i such that \tilde{S}_{i}^{\prime} has a non-boundary-parallel component.

Then \tilde{S}_{i}^{\prime} has an essential component F in N. Since (B_{i}, t_{i}) has height $4 g-4,-\chi(F)>4 g-4$. Suppose that $p(F)$ does not intersect with the singular set. Then either $p(F)$ is homeomorphic to F, or $p: F \rightarrow p(F)$ is a regular covering, and, hence, we have either $\chi(F)=\chi(p(F))$, or $\chi(p(F))=\chi(F) / 2$. By the minimality of $\#\left\{\left(S \cap V_{1}\right) \cap\left(\cup_{i} Q_{i}\right)\right\}$, incompressibility of Q_{i}, and Claim 2, we see that each component of $\partial p(F)$ is essential in S. Hence we have $-\chi(S) \geq$
$-\chi(F)>2 g-2$, and the genus of S is greater than g. Suppose that F intersects the singular set in $q(\geq 1)$ points. Then we have $\chi(p(F)-K)=(\chi(F)-q) / 2<$ $(\chi(F)) / 2<2-2 g$. By the same reason as above, we see that each component of $\partial p(F)$ is essential in S. Hence we see that $-\chi(S)=-\chi\left(S^{\prime}-K\right) \geq-\chi(p(F)-$ $K)>2 g-2$. Hence the genus of S is greater than g.

Case 2. For every i, each component of \tilde{S}_{i}^{\prime} is boundary-parallel in N.
Move \tilde{S}_{i}^{\prime} by an equivariant ambient isotopy along those parallelisms so that S_{i}^{\prime} is pushed off B_{i}. By Claim 3, we see that S^{\prime} meets K. Let $A_{j}=\partial h_{j}^{1}-$ $\left(U_{i} \partial h_{i}^{0}\right)$. Assume that $S^{\prime} \cap\left(U_{j} A_{j}\right)=\emptyset$. Then $S^{\prime} \subset \operatorname{Int}\left(\cup_{j} h_{j}^{1}\right)$. Then, by [4, Sect. 8 I.emma], we see that each component of S^{\prime} is a 2 -sphere intersecting exactly one component of α_{j} in two points. This implies that S is a boundaryparallel torus, contradicting our assumption. Therefore $S^{\prime} \cap\left(\cup_{j} A_{j}\right) \neq \emptyset$. Since S is incompressible in $E(K)$, and $E(K)$ is irreducible (Claim 2), the minimality of $\#\left\{S \cap \partial V_{1}\right\}$ implies that $S^{\prime} \cap\left(\cup_{j} A_{j}\right)$ has no inessential components in $U_{j} A_{j}$. Hence, by [4, Sect. 8 Lemma], we see that each component of $S^{\prime} \cap h_{j}^{1}$ is a horizontal disk in $h_{i}^{1} \cong D \times[0,1]$. It follows that S^{\prime} meets all the components of α_{j}. Since α_{j} consists of $2 g+2$ arcs, this shows that for each component F^{\prime} of κ^{\prime}, we have $\chi\left(F^{\prime}-K\right) \leq 2-(2 g+2)=-2 g$. Hence $\chi(S)=\chi\left(S^{\prime}-K\right) \leq-2 g$. Then we conclude that the genus of S is greater than g.

Let n be the number of 0 -handles of $\left\{h_{j}^{i}\right\}$. Let $F_{i}(i=1, \cdots, n)$ be a closed surface of genus $4 g+4$ in $E(K)$ obtained by pushing ∂X_{i}^{0} slightly into Int $E(K)$.

Assertion 2. F_{1}, \cdots, F_{n} are incompressible in $E(K)$ and F_{i} is not parallel to F_{j} for each $i \neq j$.

Proof. Assume that there is a compressing disk D for F_{i} in $E(K)$. Since the tangle τ_{i} has Property I, D lies in $\operatorname{cl}\left(E(K)-X_{i}\right)$. Let \mathcal{A} be the union of $4 g+4$ annuli in $\operatorname{cl}\left(E(K)-X_{i}\right)$ such that one boundary component of each annulus is contained in F_{i} and the other boundary component is a union of core curves of the annuli in $\partial E(K)$ corresponding to $\mathrm{Fr}_{B_{i}} N\left(t_{i}, B_{i}\right)$ (Figure 4.2).

If $D \cap \mathcal{A}=\emptyset$, by moving D by an ambient isotopy of $E(K)$, we may assume that ∂D lies in $Q_{i}=\partial B_{i} \cap X_{i}$. This contradicts the incompressibility of Q_{i} in $E(K)$ (Claim 2 in the proof of Theorem 4.1). Hence we have $D \cap \mathcal{A} \neq \emptyset$. Then we suppose that $\#\{D \cap \mathcal{A}\}$ is minimal among all compressing disks for F_{i}. Since $\operatorname{cl}\left(E(K)-X_{i}\right)$ is irreducible, we see that $D \cap \mathcal{A}$ has no circle components, by standard innermost disk argument. Let α be an outermost arc component of $D \cap \mathcal{A}$ in \mathcal{A}, i.e. there exists a disk Δ in \mathcal{A} such that $\Delta \cap D=\alpha, \Delta \cap \partial \mathcal{A}=\beta$ an arc such that $\partial \Delta=\alpha \cup \beta$ and $\partial \alpha=\partial \beta$. Then by compressing D along Δ toward F_{i} we have two disks $D^{\prime}, D^{\prime \prime}$ such that $\partial D^{\prime} \subset F_{i}, \partial D^{\prime \prime} \subset F_{i}$. Since D is a compressing disk for F_{i}, we see that one of $D^{\prime}, D^{\prime \prime}$ is a compressing disk for F_{i}, contradicting the minimality of $\#\{D \cap \mathcal{A}\}$. Hence F_{i} is incompressible in $E(K)$.

Figure 4.2
Next suppose that F_{i} and F_{j} are parallel in $E(K)$ for some $i \neq j$. Then $n=2$, and contradicting the fact that $\left\{h_{i}^{j}\right\}$ is special (cf. [5, Fact 1 of Proposition 3]).

For the proof of Theorem 4.1, we need the following theorm which is due to Haken.

Theorem 4.2. ([4], [6]). Let M be a compact, orientable 3-manifold. There is an integer $n(M)$ such that if $\left\{F_{1}, \cdots, F_{k}\right\}$ is any collection of mutually disjoint incompressible closed surfaces in M, then either $k<n(M)$, or for some $i \neq j, F_{i}$ is parallel to F_{j} in M.

Completion of the Proof of Theorem 4.1. First we note that for every nonnegative integer h, there exists a special handle decomposition of M with more than $h 0$-handles [5, Fact 2 of Proposition 3].

Let $K_{0}=K$ be a g-characteristic knot in M obtained by the above construction (Assertion 1). Let $M_{0}=M$-Int $N\left(K_{0}\right)$. Then we find a special handle decomposition of M with $h 0$-handles, where $h>n\left(M_{0}\right)$. Let K_{1} be a g-characteristic knot constructed as above by using this handle decomposition. Then $M_{1}=M$-Int $N\left(K_{1}\right)$ contains h incompressible, mutually non-parallel closed surfaces (Assertion 2). Then, by Theorem 4.2, we see that M_{1} is not homeomorphic to M_{0}. Hence K_{0} and K_{1} are inequivalent. Continuing in this way, we obtain infinitely many inequivalent g-characteristic knots in M.

5. Existence of a non-simple position knot

Let H be a handlebody, and k a knot in H. We say that k is in a simple
position in H if there exists a disk D properly cmbedded in H such that $D \cap k=\emptyset$, and D splits a solid torus V from H such that $k \subset V$ and k is a core curve of V (Figure 5.1). We note that k is in a simple position in H if and only if $\mathrm{cl}(H-N(k))$ is a compression body.

Figure 5.1
Then the prupose of this section is to prove:
Thoerem 5.1. Suppose that a closed, orientable 3-manifold M admits a Heegaard splitting of genus h. Then for each integer $g \geq 1$, there exists a g characteristic knot K in M such that, for any genus h Heegaard splitting (V, W) of M, K is not ambient isotopic in M to a simple position knot in V.

Proof. Let $\left\{h_{j}^{i}\right\}$ be a special handle decomposition of M with $n 0$-handles, where $n \geq 8(3 h-3)+1$. By applying the argument of Sect. 4 to this handle decomposition, we get a g-characteristic knot K whose complement contains a system of mutually disjoint, non-parallel incompressible closed surfaces of genus $4 g+4$, denoted by $\mathscr{F}=\left\{F_{1}, \cdots, F_{n}\right\}$ (Sect. 4 Assertion 2).

We show that this knot K satisfies the conclusion of Theorem 5.1.
Assume that there is a genus h Heegaard splitting (V, W) of M such that K is in a simple position in V. Let $V_{1}=\mathrm{cl}(V-N(K))$ and $V_{2}=W$. Then V_{1} is a genus h compression body with $\partial_{-} V_{1}$ is a torus. We note that $\left(V_{1}, V_{2}\right)$ is a Heegaard splitting of $E(K)$. Then, by the irreducibility of $E(K), \mathscr{F}$ can be ambient isotoped to be normal with respect to (V_{1}, V_{2}) (see Sect. 2). We suppose that $\#\left\{\mathscr{F} \cap V_{1}\right\}$ is minimal in the ambient isotopy class of \mathscr{F} in $E(K)$.

First we show that there exists a system \mathscr{F}^{\prime} of surfaces which is ambient isotopic to \mathscr{F} in $E(K)$ and $\mathscr{F}^{\prime} \cap V_{1}$ has at least five annulus components A_{1}, \cdots, A_{5} which are mutually parallel in V^{\prime}, and essential in \mathscr{F}^{\prime}.

Let $\mathscr{E}_{i}=\mathscr{F} \cap V_{i}(i=1,2)$. Then we note that since ∂V_{i} can contain at most $3 h-3$ parallel classes of mutually disjoint essential simple closed curves, there exists a system of mutually parallel disk components $\left\{D_{1}, \cdots, D_{q}\right\}$ of \mathscr{F}_{1} which lies in this order in V_{1}, where $q \geq 9$.

By the argument of the proof of Proposition 2.2, there exists a complete disk system \mathscr{D} for V_{2} such that each component of $\mathscr{D} \cap \mathscr{F}_{2}$ is an essential arc in \mathscr{I}_{2}. Let A be an annulus in $\partial_{+} V_{1}$ such that A contains $\partial D_{1} \cup \cdots \cup \partial D_{q}$, and each
∂D_{i} is isotopic to a core of A. We suppose that $\#\left\{\partial \mathscr{D} \cup \partial D_{i}\right\}$ is minimal in the ambient isotopy class of $\partial \mathscr{D}$ in $\partial V_{2}\left(=\partial_{+} V_{1}\right)$, and hence, $I=\partial \mathscr{D} \cap A$ is a system of essential arcs in A. We label the points $\partial D_{i} \cap I$ by i, then, in each component of I, they lie in this order. Let D be a component of \mathscr{D} such that $D \cap A \neq$ \emptyset. Then by applying the argument of Claim 6 of Lemma 3.4, we see that there exists a subsystem P of $D \cap \mathscr{I}_{2}$ such that there exists a component I_{0} of I which satisfies the following.
(1) Every arc of P has one end-point in I_{0}.
(2) Every arc of $D \cap \mathscr{F}_{2}$ which has one end point in I_{0} belongs to P.
(3) Every arc t of P joints I_{0} with one of components of I which are neighbouring of I_{0} in ∂D.

Moreover, by the argument of Claim 7 of Lemma 3.4, for each component of P, both of its endpoints are contained in I. Then, by using Lemma 2.3, we see that the endpoints of each component of P have the same label. Hence P consists of at most two subsystems each of which contains all arcs of P joing two components of I. Therefore by labelling " $1,2, \cdots, q$ " instead of " $q, q-1$, $\cdots, 1 "$ if necessary, we may assume that there exists a subsystem of at least five arcs $\left\{\alpha_{1}, \cdots, \alpha_{p}\right\}(p \geq 5)$ of $D \cap \mathscr{F}_{2}$ such that α_{i} joints two points in I_{0} and I_{1}, say. Let Δ_{1} be the disk in D splitted by α_{1} and does not contain $\alpha_{2} \cup \cdots \cup \alpha_{p}$, and Δ_{i} $(2 \leq i \leq p)$ the closure of the component of $D-\alpha_{i}$ such that $\Delta_{i} \supset \Delta_{1}$. Move \mathscr{F} by an ambient isotopy along Δ_{i} successively, and denote the image by \mathscr{F}^{\prime}. Then we see that $\mathscr{F}^{\prime} \cap V_{1}$ has p mutually parallel annuli $\left\{A_{1}, \cdots, A_{p}\right\}$ in V_{1}. By the argument of the proof of Claim 5 of Lemma 3.4, we see that A_{i} is incompressible, hence essential in V_{1}.

Now in these parallelisms $A_{i} \times[0,1]$ in V_{1} where $A_{i} \times\{0\}=A_{i}, A_{i} \times\{1\}=$ $A_{i+1}(1 \leq i \leq p-1)$, there exist annuli Λ_{i} such that each Λ_{i} corresponds to $C_{i} \times[0,1]$ where C_{i} is a core curve of $A_{i}(i=1, \cdots, p-1)$ (Figure 5.2).

Figure 5.2
Let $E(K)=X_{0} \cup X_{1} \cup \cdots \cup X_{n}$ where X_{j} corresponds to the 'inside' of F_{j}
(hence $X_{0} \cap X_{j}=F_{j}, j=1, \cdots, n$). Then Λ_{i} is an annulus properly embedded in X_{k}, for some k. Assume that there exists a compressing disk D for Λ_{i} in X_{j}. Let Λ be a subannulus in Λ_{i} cobounded by ∂D and C_{i}. Move the disk $D \cup \Lambda$ slightly by an ambient isotopy so that $D \cup \Lambda$ becomes a properly embedded disk in X_{k}. This contradicts the incompressibility of \mathscr{F} in $E(K)$. Hence, Λ_{i} is incompressible in X_{k}. We have either $\Lambda_{1} \subset X_{0}$ or $\Lambda_{2} \subset X_{0}$. If $\Lambda_{1} \subset X_{0}$, then we have $\Lambda_{3} \subset X_{0}$, and if $\Lambda_{2} \subset X_{0}$, then we have $\Lambda_{4} \subset X_{0}$. Now we suppose that $\Delta_{1} \subset X_{0}, \Lambda_{2} \subset X_{1}$, and $\Lambda_{3} \subset X_{0}$. (The case of $\Lambda_{2}, \Lambda_{4} \subset X_{0}$ is essentially the same.)

Claim. We have either one of:
(1) Λ_{1} is boundary-parallel in X_{0}, or
(2) Λ_{2} is boundary-parallel in X_{1}, or
(3) Λ_{3} is boundary-parallel in X_{0}.

Proof. Recall that Q_{i} is a planar surface in ∂X_{i}, which corresponds to $\partial X_{i} \cap \partial B_{i}$ (Sect. 4). Let \mathcal{A} be a disjoint union of annuli properly embedded in X_{0}, which is defined in the proof of Assertion 2 of Sect. 4 (Figure 4.2). We suppose that $\#\left\{\Lambda_{1} \cap \mathcal{A}\right\}$ is minimal among the ambient isotpy class of Λ_{1} in X_{0}. Suppose that $\Lambda_{1} \cap \mathcal{A} \neq \emptyset$. If there are inessential arc components of $\Lambda_{1} \cap \mathcal{A}$ in Λ_{1}, let α be the outermost arc component of $\Lambda_{1} \cap \mathcal{A}$ in Λ_{1}, i.e. there exists a disk Δ in Λ_{1} such that $\Delta \cap \mathcal{A}=\alpha, \Delta \cap \partial \Lambda_{1}=\alpha$ an arc in $\partial \Lambda_{1}$ such that $\partial \Delta=\alpha \cup \beta$ and $\partial \alpha=\partial \beta=\alpha \cap \beta$. Let Δ^{\prime} be the disk in \mathcal{A} such that $\operatorname{Fr}_{\mathcal{A}} \Delta^{\prime}=\alpha$. Then, by moving $\Lambda \cup \Delta^{\prime}$ in a neighborhood of \mathcal{A} by an ambient isotopy of X_{0}, we get a disk properly embedded in X_{0}, whose boundary contained in Q_{1}. Since Q_{1} is incompressible in $E(K)$ and X_{0} is irreducible, we see that this disk is parallel to a disk in Q_{1}, This shows that $\alpha \cap Q_{1}$ is an ineseential arc in Q_{1}. Therefore there is an ambient isotopy which removes α from $\Lambda_{1} \cap \mathcal{A}$, contradicting the minimality of $\#\left\{\Lambda_{1} \cap \mathcal{A}\right\}$. Suppose that every component of $\Lambda_{1} \cap \mathcal{A}$ is an essential arc in Λ_{1}. Let Π be a disk in Λ_{1} which is bounded by two arcs $a_{1} a_{2}$, of $\Lambda_{1} \cap \mathcal{A}$ and two arcs in $\partial \Lambda_{1}$ such that Int $\Pi \cap \mathcal{A}=\emptyset$. Let Δ_{i} be a disk in \mathcal{A} such that a_{i} bounds Δ_{i} with an arc in $\partial \mathcal{A}(i=1,2)$. Assume that one of Λ_{i} is contained in the other. Without loss of generality, we may assume that $\Delta_{1} \subset \Lambda_{2}$. Then by moving $\Pi \cup \Delta_{1}$ by rel a_{2} isotopy, we get a disk Π^{\prime} in X_{0} such that $\Pi^{\prime} \cap \mathcal{A}=a_{2}, \Pi^{\prime} \cap \partial X_{0}=\operatorname{cl}\left(\partial \Pi^{\prime}-a_{2}\right)$, and $\left(\Pi^{\prime} \cap \partial X_{0}\right) \cap Q_{1}=\beta^{\prime}$ an arc. By the above argument, we see that β^{\prime} is an inessential arc in Q_{1} (i.e. there is a disk Δ^{*} in Q_{1} such that $\mathrm{Fr}_{Q_{1}} \Delta^{*}=\beta^{\prime}$). Since Π is reproduced by adding a band to Π^{\prime} along an arc γ such that $\gamma \cap \Delta^{*} \neq \emptyset$, we wee that $\Pi \cap Q_{1}$ consists of two inessential arcs in Q_{1}, contradicting the minimality of $\#\left\{\Lambda_{1} \cap \mathcal{A}\right\}$. Hence $\Delta_{1} \cap \Delta_{2}=\emptyset$. Let $E=\Pi \cup \Delta_{1} \cup \Delta_{2}$. Then, by moving the disk E in a neighborhood of \mathcal{A} by an ambient isotopy of X_{0}, we may assume that E is a disk properly embedded in X_{0} and ∂E in Q_{1}. Then by the above argument we see that E is parallel to a
disk in Q_{1} The same is hold for any pair of neighbouring arcs of $\Lambda_{1} \cap \mathcal{A}$ Then we conclude that Λ_{1} is boundary parallel in X_{0}. Similarly, if every component of $\Lambda_{3} \cap \mathcal{A}$ is an essential arc in Λ_{3}, Λ_{3} is boundary-parallel in X_{0}.

Now suppose that $\partial \Lambda_{i} \cap \partial \mathcal{A}=\emptyset(i=1,3)$ (hence $\Lambda_{i} \cap \mathcal{A}=\emptyset$ or each component of $\Lambda_{i} \cap \mathcal{A}$ is an essential circle in Λ_{i}). Then $\partial \Lambda_{2} \cap \partial \mathcal{A}=\emptyset$. Assume that Λ_{2} is not boundary-parallel in X_{1}. Let $p: N \rightarrow B_{1}$ be the 2-fold branched cover over $t_{1}=K \cap B_{1}$ with ϕ generating the group of covering translation. Let $\tilde{\Lambda}_{2}=p^{-1}\left(\Lambda_{2}\right)$. Since the tangle $\left(B_{1}, t_{1}\right)$ has height $4 g-4, \tilde{\Lambda}_{2}$ is compressible in N. Then there exists a compressing disk \widetilde{D} for $\widetilde{\Lambda}_{2}$ in N such that $\phi(\widetilde{D}) \cap \widetilde{D}=\emptyset$ or $\phi(\tilde{D})=\tilde{D}([10])$. The first case contradicts the incompressibility of Λ_{2} in X_{1}. In the second case, $D=p(\tilde{D})$ meets t_{1} in one point. Let D_{1} and D_{2} be disks obtained by compressing Λ_{2} by D. Since the height of $\left(B_{1}, t_{1}\right)$ is greater than -1 , there is a closure of a component of $B_{1}-D_{i}$, say B^{i}, such that ($B^{i}, B^{i} \cap t_{1}$) is a 1 -string trivial tangle. Then we have either $B^{1} \cap B^{2}=\emptyset$, or one of B^{1}, B^{2} is contained in the other (Figure 5.3). In the first case, we see that Λ_{2} is parallel to an annulus in ∂X_{0} corresponding to a component of $\mathrm{Fr}_{B_{1}} N\left(t_{1}, B_{1}\right)$. In the second case, we see that Λ_{2} is parallel to an annulus in Q_{1}. Hence we have the conclusion (2) of Claim.

Figure 5.3
Now we may assume that Λ_{i} is boundary-parallel in X_{j} for some i and j. By extending the ambient isotopy along this parallelism, we can remove two annuli A_{i} and A_{i+1} from $\mathscr{F}^{\prime} \cap V_{1}$. Denote this image by $\mathscr{F}^{\prime \prime \prime}$. Then moving $\mathscr{F}^{\prime \prime}$ by an ambient isotopy, which corresponds to the reverse that of \mathscr{F} to \mathscr{F}^{\prime}, we obtained a system of surfaces $\mathscr{F}^{\prime \prime \prime}$ which intersects V_{1} in essential disks and the number of the components of $\mathscr{F}^{\prime \prime \prime} \cap V_{1}$ is less than that of $\mathscr{F} \cap V_{1}$. This contradicts the minimality of the number of the components of $\mathscr{F} \cap V_{1}$, completing the proof.

6. Proof of Main Theorem

In this section, we give a proof of Hass-Thompson conjecture. First we prepare the follwing lemma.

Lemma 6.1. ([3]). Let $\left(W_{1}, W_{2}\right)$ be a Heegaard splitting of a 3-manifold M. Let \mathcal{S} be a disjoint union of essential 2 -spheres and disks in M. Ther, there exists a disjoint union of essential 2 -spheres and disks \mathcal{S}^{\prime} in M such that
(1) \mathcal{S}^{\prime} is obtained from \mathcal{S} by ambient 1 -surgery and isotopy,
(2) each component of \mathcal{S}^{\prime} meets $\partial_{+} W_{1}-\partial_{+} W_{2}$ in a curcle,
(3) there exists complete disk systems \mathscr{D}_{i} for W_{i}, such that $\mathscr{D}_{i} \cap \mathcal{S}^{\prime}=\emptyset$ $(\imath=1,2)$.
(4) if M is irreducibli, then \mathcal{S}^{\prime} is actually isotopic to \mathcal{S}.

Let M be a compact, orientable 3-manifold such that ∂M has no 2-sphere components. A Heegaard splitting (V, W) of M is of type T (unnel), if W is a handlebody (hence V is a compression hody with $\partial_{-} V=\partial M$). Then we define the T-Heegaard genus of M, denoted by $g^{T}(M)$, as the minimal genus of the type T Heegaard splittings. Then for the proof of Main Theorem, we first show:

Proposition 6.2. Let M be a connected 3-manifold such that ∂M has no 2-sphere components. Suppose that there exists a compressing disk for ∂M in M. Let \bar{M} be a 3-manifold obtained by cutting M along D. Then

$$
g^{T}(\bar{M})= \begin{cases}g^{T}(M), & \text { if } \bar{M} \text { is disconnected, }, \\ g^{T}(M)-1, & \text { if } \bar{M} \text { connected }\end{cases}
$$

Proof. First we note that the T-Heegaard genus is additive under connected sum [3]. Let S be a system of 2 -spheres which gives a prime decomposition of M. By standard innermost disk argument, we may assume that D is disjoint from S. Therefore we may assume, without loss of generality, that M is irreducible.

Case 1. D is separating in M.
Let $\bar{M}=M_{1} \cup M_{2}$ where $M_{i}(i=1,2)$ is a connected component of \bar{M}. Then M is a boundary connected sum of M_{1} and M_{2}, i.e. $M=M_{1} \nmid M_{2}$. Hence, the fact that $g^{T}(\bar{M})=g^{T}(M)$ follws from Lemma 6.1 (for the detailed argument, see [3]).

Case 2. D is non-separating in M.
Let (V, W) be a minimal genus type T Heegaard splitting of M. Then, by Lemma 6.1, we may assume that D meets ∂W in a circle. Let $\bar{D}=D \cap W$ and $\bar{A}=D \cap V$. Then \bar{D} is an essential disk in W and \bar{A} is an essential annulus in V. Let $\bar{W}=\operatorname{cl}(W-N(\bar{D}, W))$, and N a sufficiently small regular neighborhood of D in M such that $N \cap \bar{W}=\emptyset$. We identity \bar{M} to $\operatorname{cl}(M-N)$, and let $\bar{V}=$ $\operatorname{cl}(\bar{M}-\bar{W})$. Then we see that (\bar{V}, \bar{W}) is a type T Heegaard splitting of \bar{M}. Hence $g^{T}(\bar{M}) \leq g(\partial \bar{W})=g^{T}(M)-1$.

Next suppose that (\bar{V}, \bar{W}) is a type T Heegaard splitting of \bar{M} which realizes T-Heegaard genus of \bar{M}. By considering dual picture, we identify \bar{V} to $\partial_{-} \bar{V} \times I \cup(1$-handles). We identify $N(D, M)$ as $\mathrm{D} \times[0,1]$, then $M=\bar{M} \cup$ $(D \times[0,1])$. Let α be an arc obtained by extendiog the core of $D \times[0,1]$ vertically to $\partial_{-} \bar{V} \times[0,1]$. By general position argument, we may suppose that $\alpha \cap(1$-handles $)=\emptyset$ (hence, α is properly embedded in $\operatorname{cl}(M-\bar{W}))$. Let N^{\prime} be a regular neighborhood of α in $\operatorname{cl}(M-\bar{W}), W=\bar{W} \cup N^{\prime}$, and $V=\operatorname{cl}(M-W)$. Then it is easy to see that W is a handlebody in $\operatorname{Int} M$, and V is a compression body in M. Therefore (V, W) is a type T Heegaard splitting of M. Hence $g^{T}(M) \leq g(\partial W)=g(\partial \bar{W})+1=g^{T}(\bar{M})+1$. Therefore $g^{T}(\bar{M})=g^{T}(M)-1$.

Proof of Main Theorem. The 'if' part of Main Theorem is clear. Hence we give a proof of 'only if' part. Let M, V be as in Main Theorem. Let $E=\mathrm{cl}(M-V)$. If E is a handlebody, then we are done. Hence we suppose that E is not a handlebody. Let \bar{g} be an integer such that V can be extended to a genus \bar{g} Heegaard splitting of $M(\bar{V}, \bar{W})$, i.e. there exists a system of mutually disjoint $\bar{g}-g$ arcs \mathcal{A} properly embedded in E such that $\bar{V}=V \cup N(\mathcal{A}, E), \bar{W}=$ $\operatorname{cl}(M-\bar{V})$ are handlebodies. Let K be a g-characteristic knot in M which is not ambient isotopic to a simple position in any genus \bar{g} handlebody giving Heegaard splittings of M (Theorem 5.1). Then take a handlebody V_{*} in M with the following properties; (i) V_{*} contains K, (ii) V_{*} can be extended to a genus \bar{g} Heegaard splitting, and (iii) the genus of V_{*}, denoted by g_{*}, is minimal among all the handlebodies in M satisfying the above conditions (i), and (ii). We note that V satisfies the above conditions (i), and (ii), and, hence, $g_{*} \leq g$. Let $E_{*}=\operatorname{cl}\left(M-V_{*}\right)$. Then in the rest of this sectoin, we show that E_{*} is a handlebody, which completes the proof of Main Theorem.

Now assume that E_{*} is not a handlebody. Since $E(K)$ is irreducible and $E_{*} \subset E(K), E_{*}$ is irreducible. Hence there exists a maximal compression body W_{*} for ∂E_{*} in E_{*} unique up to ambient isotopy [2]. Since E_{*} is not a handlebody, $\partial_{-} W_{*} \neq \emptyset$. Let $Y=V_{*} \cup W_{*}$, then $\left(V_{*}, W_{*}\right)$ is a Heegaard splitting of Y. We note that $\partial_{-} W_{*}$ lies in $E(K)$, and the sum of the genus of components of $\partial_{-} W_{*}$ is less than or equal to g_{*}. Then, by the property of g characteristic knot K, each component of $\partial_{-} W_{*}$ is a boundary-parallel torus or a compressible closed surface in $E(K)$. Hence we have the following two cases.

Case 1. Each component of $\partial_{-} W_{*}$ is a boundary-parallel torus in $E(K)$.
Assume that $\partial_{-} W_{*}$ has more than one components $T_{1}, \cdots, T_{n}(n \geq 2)$. Let $P_{i}(i=1, \cdots, n)$ be the paralleisms between T_{i} and $\partial E(K)$. By exchanging the suffix if necessary, we may suppose that $P_{i} \subset P_{j}$ if $i<j$. Then we have $P_{1} \supset W_{*}$. On the other hand, we have $\partial W_{*}=\partial V_{*} \cup \partial_{-} W_{*}=\partial V_{*} \cup T_{1} \cup T_{2} \cdots \cup T_{n}$. Hence $P_{1} \supset T_{2}, \cdots, T_{n}$, a contradiction.

Therefore $\partial_{-} W_{*}$ consists of one boundary-parallel torus in $E(K)$. Then
we see that $Y=V_{*} \cup W_{*}$ is a solid torus. Let D be a meridian disk of Y. Since Y is irreducible, by moving D by an ambient isotopy, we may suppose that D meets ∂V_{*} in a circle (Lemma 6.1). By considering dual picture, we identify W_{*} to $\partial_{-} W_{*} \times[0,1] \cup$ (1-handles). Then, by Lemma 6.1 (3), we may suppose that $D \cap W_{*}$ is disjoint from the 1 -handles. Let $\alpha_{1}, \cdots, \alpha_{g_{*}-1}$ be arcs properly embedded in W_{*} obtained by extending the cores of the 1 -handles vertically to $\partial_{-} W_{*} \times[0,1]$ (hence $\partial_{-} W_{*} \cup \alpha_{1} \cup \cdots \cup \alpha_{g_{*}-1}$ is a deformation retract of $\left.W_{*}\right)$. Let $Q=N(Y, M)$. Then, move K by an ambient isotopy in Q so that $K \subset \partial Y, N(K, Q) \cap N\left(\alpha_{i}, Y\right)=\emptyset$, and $K \cap D=K \cap \partial D$ consists of one point. Let $Y^{*}=Y \cup N(K, Q)(\cong Y)$, and identify $\operatorname{cl}\left(Q-Y^{*}\right)$ with the product of a torus $T\left(=\partial Y^{*}\right)$ and an interval $T \times[0,1]$. Then, we may view W_{*}, V_{*} as follows: $W_{*}=(T \times[0,1]) \cup\left(\cup_{i} N\left(\alpha_{i}, Y\right)\right), V_{*}=\operatorname{cl}\left(Y^{*}-\left(\cup_{i} N\left(\alpha_{i}, Y\right)\right)\right.$.

Let $\Delta=\operatorname{Fr}_{Y^{*}}(N(K, Q) \cup N(D, Y))$ be a disk properly embedded in V_{*}. Then Δ splits a solid torus $N(K, Q) \cup N(D, Y)$ from V_{*}, and K lies in it as a core curve. This implies that K is in a simple position in V_{*}. Since V_{*} can be extended to a genus \bar{g} Heegaard splitting, which is ambient isotopic to (\bar{V}, \bar{W}), we see that K is ambient isotopic to a simple position in \bar{V}, a contradiction.

Case 2. There exists a component of $\partial_{-} W_{*}$ which is compressible in $E(K)$.

Let D be a compressing disk for $\partial_{-} W_{*}$. Since W_{*} is a maximal compression body for ∂E_{*} in E_{*}, we see that $D \subset Y$. Let \bar{Y} be the 3-manifold obtained by cutting Y along D. Then, by the proof of Proposition 6.2, there exists a minimal genus Heegaard spltting $\left(V^{*}, W^{*}\right)$ of Y such that $V^{*} \cap D$ is an essential disk in V^{*}. We note that since $D \subset E(K), K$ is disjoint from D. Moreover, by moving K by an ambient isotopy in \bar{Y}, we may suppose that $K \subset V^{*}$ $-\left(D \cap V^{*}\right)$. If $g\left(V^{*}\right)<g_{*}$, attach $g_{*}-g\left(V^{*}\right)$ trivial 1-handles in W^{*} disjoint from D to V^{*}. We denote the new genus g_{*} Heegaard splitting of Y by $\left(V^{*}, W^{*}\right)$, again. Then $\left(V^{*}, W^{*}\right)$ is a genus g_{*} Heegaard splitting of Y such that V^{*} cotains K and there exists an essential disk $D^{*}=V^{*} \cap D$ in V^{*} which is disjoint from K.

Let $E^{*}=\operatorname{cl}(M-Y) \cup W^{*}$. Since W_{*} and W^{*} are compression bodies such that $\partial_{-} W_{*}=\partial_{-} W^{*}=\partial Y$, and $\partial_{+} W_{*} \cong \partial_{+} W^{*}$ a genus g_{*} closed surface, W_{*} is homeomorphic to W^{*}. Hence $E_{*}=\operatorname{cl}\left(M-V_{*}\right)=\operatorname{cl}(M-Y) \cup W_{*} \cong \operatorname{cl}(M-Y)$ $\cup W^{*}=E^{*}$ i.e, E_{*} is homeomorphic to E^{*}.

By the assumption, V_{*} can be extended to a genus \bar{g} Heegaard splitting $\left(\bar{V}_{*}, \bar{W}_{*}\right)$ of M. Let $V_{*}^{\prime}=\operatorname{cl}\left(N\left(\bar{V}_{*}, M\right)-V_{*}\right)$, and $W_{*}^{\prime}=\operatorname{cl}\left(E_{*}-V_{*}^{\prime}\right)$. Then ($V_{*}^{\prime}, W_{*}^{\prime}$) is a genus \bar{g} type T Heegaard splitting of E_{*}. Since E^{*} is homeomorphic to E_{*}, there is a genus \bar{g} type T Heegaard splitting $\left(V^{* \prime}, W^{* \prime}\right)$ of E^{*} corresponding to $\left(V_{*}^{\prime}, W_{*}^{\prime}\right)$. We note that since $\partial V^{* \prime} \cap V^{*}=\partial_{-} V^{* \prime}=\partial V^{*}$,
$V^{* \prime} \cup V^{*}$ is a handlebody in M. Hence ($V^{* \prime} \cup V^{*}, W^{* \prime}$) is a genus \bar{g} Heegaard splitting of M. Let \tilde{V} be a component of $V^{*}-N\left(D^{*}\right)$ which contains K inside. Then \widetilde{V} is a handlebody of genus less than g_{*} and it can be extended to a genus \bar{g} Heegaard splitting $\left(V^{* \prime} \cup V^{*}, W^{* \prime}\right)$ of M. This contradicts the minimality of g_{*}.

This completes the proof of Main Theorem.

Referenes

[1] R.H. Bing: Necessary and sufficient condition that a 3-manifold be S^{3}, Ann. of Math., 68 (1958), 17-37.
[2] F. Bonahon: Cobordism of automorphisms of surfaces, Ann. Sc. Éc. Norm. sup. (4) 16 (1983), 237-270.
[3] A.J. Casson and C.McA Gordon: Reducing Heegaard splittings, Topology Appl. 27 (1987), 275-283.
[4] W. Haken: Some results on surfaces in 3-manifolds, Studies in Modern topology (1968), 34-98, Math. Assos. Amer., Prentice-Hall.
[5] J. Hass and A. Thompson: A necessary and sufficient condition for a 3-manifold to have Heegaard gensus one, Proc. Amer. Math. Soc. 107 (1989), 1107-1110.
[6] J. Hemple: 3-manifolds, Princeton University Press, Princeton N.J., 1976.
[7] W. Jaco: Lectures on three-manifold topology, C.B.M.S., Regional Conf. Ser. in Math., 1980.
[8] K. Johannson: On surfaces and Heegaard surfaces, Trans. Amer. Math. Soc. 325 (1991), 573-591.
[9] K. Johannson: Computations in 3-manifolds, preprint.
[10] P.K. Kim and J.L. Tollefson: Splitting the P.L. involutions of nonprime 3manifolds, Michigan Math. J. 27 (1980), 259-274.
[11] T. Kobayashi: Structures of full Haken manifolds, Osaka J. Math. 24 (1987), 173-215.
[12] T. Kobayashi: Heights of simple loops and pseudo-Anosov homeomorphisms, Contemp. Math. 78 (1988), 327-338.
[13] W.B.R. Lickorish: Prime knots and tangles, Trans. Amer. Math. Soc. 267 (1981), 321-332.
[14] R. Myers: Simple knots in compact, orientable 3-manifolds, Trans. Amer. Math Soc. 273 (1982), 75-91.
[15] M. Ochiai: On Haken's theorem and its extension, Osaka J. Math. 20 (1983), 461468.
[16] F. Waldhausen: On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88.

Tsuyoshi Kobayashi
Department of Mathematics
Nara Women's University
Kitauoya Nishimachi, Nara, 630
Japan

Haruko Nishi
Department of Mathematics Kyushu University 33
Fukuoka 812
Japan

[^0]: This work was supported by Grant-in-Aid for Scientific Research. The Ministry of Education, Science and Culture.

