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0. Introduction

Let Ω be an exterior domain in JR* (n>3) with smooth and compact boun-
dary. We set

A(dx) u = Σ 9x.(aiί Qxj u}, u = *(#!, u2) •••, un),
*,/=! '

where rff/==(0ty/f Iβil;"!;!) are nxn matrices and each aipjq is constant. We con-
sider the elastic wave equation with the Dirichlet or the Neumann boundary
condition

J (Q]-A(dx)) u(t, *) = 0 in ΛxΩ ,

U(0,*)=/ι(*), 8, ιι(0, *)=/,(*) on Ω.

Here the boundary operator is of the form

I aQ, (the Dirichlet condition),

ΐ]ί,/-ι Vi(χ) aij 9*y u\ θα> (the Neumann condition),

where v(x)=t(v1(x), i>2(#), *"> VH(X)) 1B the un^ outer normal to Ω at x^dΩ. The
purpose of this paper is to show that in the case of the even n>4, if there is
any rate of local-energy decay, then we can know the explicit order of the decay
rate.

We assume that

(Δ 9\ V* Ω P ?
^ ' / P J q = l P i q ^

(A.3) A(ξ) = Σ ^ij ζi ζj has d characteristic roots of

constant multiplicity for any ξ e R"\Q ,
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where (8jq) is any n X n symmetric matrix and δ1 is some positive constant inde-
pendent of (ζjq).

Under the assumptions (A.1)~(A.3), Shibata and Soga [13] formulate the
scattering theory which is analogous to the theory of Lax and Phillips [9].
Hence, the same argument as in Lax, Morawetz and Phillips [8] implies that in
the case of the odd n>3, if there is any rate of local-energy decay, then there
is an exponential rate of decay. We can also prove the same statement stated
above by using the argument in Morawetz [11]. Thus, in the odd dimensional
case we can find the explicite order of the decay rate.

In the even dimensional case, however, we can not apply their methods
since the Cauchy problem for the operator d]—A(dx) has Huygens's Principle
if and only if the space dimension n is odd and w>3, and Huygens's Principle is
indispensable to carry out the arguments in [8] and [11]. In the following, our
interest is to investigate the similar problem in the even dimensional case.

For a domain Dc/2Λ, we define the local energy H/IUdo of the data

/='(/ι,Λ) in D as

2 A I f \r-|
H(D) ^Γ\ \ 2j

Shibata and Soga [13] introduce the Hubert space of the data f = * ( f l y f2) defined
as the completion of {f^Co(n)\B(dx)f1=0 on 9Ω} in the norm ||/||/rHI/IU(Ω)
Furthermore, they show that the mapping /!-»'(#(£, ) > d t u ( t , •)) becomes a
group of unitary operators {U(t)}tGR on H.

In the following, we fix a constant p>0 with 9ΩcBp={Λ;eΛn| \x\<p}
and assume that

there exist a function p^C([Q, °o)) and a constant

β>0 satisfying limp(t) = 0 and
(D)

'
for any *>Oand/eίP.

In the above Hp= {/e//|supp/cΩn5P} and ap+p=ΩnBP+p. Then our
main theorem in the present paper is

Theorem 0.1. If we assume (D), then there exists a constant C=C(ρ)>0
such that the following estimates hold :

(0.2) |]tf(ί)/ll«Q,)£C(l+ί)-<-« \\f\\*.

(0-3) llίtWLIU'ωp^CXl+ί)-" 11/11*

where [U(t)f]2 means the second component of U(t)f.
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Next, in the case of the isotropic elastic wave equation (i.e. aipjq=\Sip Sjq

+ μ(δij Spq+Siqδjp)), we give some applications of Theorem 0.1. We assume
that the Lamό constants λ and μ are independent of the variables t and Λ?, and

2
satisfy λ+ — μ>0, μ>0. Note that the assumptions (A.1)~(A.3) hold under

n
these assumptions of λ and μ. We start with the case of the Neumann bounda-
ry condition. In this case, it is well known that there is a wave called the Ray-

leigh surface wave which seems to propagate along the boundary. Hence, we

can not expect that there is a uniform rate of local-energy decay. In fact, we

have the following result as a corollary of Theorem 0.1 in the persent paper and
Theorem 0.2 in Kawashita [7],

Corollary 0.2. In the case of the isotropic elastic wave equation with the

Neumann boundary condition, the problem (0.1) does not have the uniform local-

energy decay property.

In the above, we say the problem (0.1) has the uniform local-energy decay
property when for any bounded domain D and DQdRn there exists a function

/>eC([0, oo)) such that lim />(*)= 0 and \\U(t)f\\H(Q^<p(ί) \\f\\H holds for any

and/ e/f with supp/cΩ n D0.

Note that for the odd n>3 Corollary 0.2 is already obtained as Corollary

0.3 in [7]. In the case of the even n>4 if we assume that (0.1) has the uniform

local-energy decay property, then from Theorem 0.1 it follows that the problem

(0.1) has the uniform local-energy decay property of the strong type (cf. [7]).

In the case of the Neumann boundary condition, however, the above statement

contradicts Theorem 0.2 in [7], which means the correctness of Corollary 0.2.

The second application is to decide the uniform decay rate for the isotropic

elastic wave equation with the Dirichlet condition. In this case, B. V. Kapitonov

[6] shows that we have the uniform decay rate with p(t)=C(\-\-t)~l/2 if the

obstacle Rn\Ω is star-shaped. Combining the result of Kapitonov [6] with

Theorem 0.1, we obtain the following corollary.

Corollary 0.3. In the case of the isotropic elastic wave equation with the

Dirichlet boundary condition, if the obstacle J?n\Ω is star-shaped, then we have

the estimates (0.2) and (0.3).

The proof of Theorem 0.1 is based on some local-energy decay estimates

for the free space solution (cf. §2) and the decay estimate stated in Proposition

4.1 in §4, that is,

(0.4) ιip:>0£t/(*)/ιu»)<;c(i+ί)-'ι/2 II/H,
foranyί>0and/etf p ,
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where E is an extension operator from Ω to R", and Pp

+t0 is the projection oper-

ator into the orthogonal complement of the outgoing subspace in the Hubert

space of the data for the free space problem. Using these estimates we prove

Theorem 0.1 in §5.
R.B. Melrose [10] obtains the estimate (0.4) in the case of the scalar valued

wave equation under the assumption that Ω is non-trapping. In [10], it seems

that he intends to decompose Pp+tQ EU(t)f into the energy escaping part and the

part behaving like free space solution. Using this decomposition he obtains the

estimate of the time Tp>0 satisfying \\Pp^QEU(t)f\\H(R^<2^ \\E\\ \\f\\H for any

t>Tp and/e/fp. On the procedure in [10], the non-trapping condition is used

to show the existense of the energy escaping part. Hence, if we can show the

existence of good decomposition like the above mension we can expect that the

idea getting the estimate of Tp implies the estimate (0.4). However, it does not

seem easy to use the same argument as in [10] since the decomposition of
Pp

+t0EU(t)fin [10] is very complicated. Hence, we introduce a different de-

composition to prove Proposition 4.1.

In §1, we introduce a class of the data VΛ(C) which is indispensable to get

Proposition 4.1, and refer to some propositions in [10] which are used later.

Note that the class VΛ(C) is originally defined by Melrose [10].

In §3, we introduce some operator which reflects the fact that the remaining

energy tends to zero uniformly as ί->oo under the assumptions in Theorem 0.1

(cf. Proposition 3.1 in §3). Proposition 3.1 corresponds to the existence of the

energy escaping part in [10], and the proof of Proposition 3.1 is the main part

of the proof of Proposition 4.1.

In §4 we prove Proposition 4.1 by means of the decay estimates in §2 and

Proposition 3.1. An essential idea is the same as in Melrose [10] stated above.

However, there are some differences between our argument and that of [10].

One difference is the way of the decomposition of Pp

+tQEU(t)f. The form of

the energy escaping part is also different. The differences give us not only
simplicity in the argument to obtain Proposition 4.1 but also the clear reason
why the order of the estimate (0.4) should be —n/2.

Finally, we note a result related with Theorem 0.1. Iwashita and Shibata

[5] and Iwashita [4] show that the estimates (0.2) and (0.3) hold under the as-

sumptions (A.1)~(A.3) and the assumption that Ω is non-trapping in the sense;
for any a>0 with dΩdBa there exists a constant T=T(ay Ω)>0 such that

U(t)f(x)<EΞθ°°([T, oo)χΠα) for any/='(0,/2)eΞ# with supp/cΩn#«. Thus,

they have a sharper result than that of Melrose [10]. To prove the estimates

(0.2) and (0.3) they intend to get an estimate of resolvent. From this estimate

they obtain (0.2) and (0.3) by using the Laplace transformation. Hence, to prove

Theorem 0.1 we can not use the methods in [5] and [4] since it does not seem
easy to deduce the estimate of resolvent under the assumption (D). This is the
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reason why we use the idea in Melrose [10] to prove Theorem 0.1 though the
result in [10] is not better than that in Iwashita and Shibata [5] and Iwashita [4].

1. A class of the data VΛ(C)

In this section, first we review the properties of the translation represen-
tation obtained by Shibata and Soga [13], which are used later. Second, we def-
ine a class of the data VΛ(C) which plays an important role in this paper.

Let H0 be the Hilbert space of the data for the free space problem (i.e. in
the case that Ω=/2Λ). We set {U0(t)}teR is a group of unitary operators on H0

which is a solution operator of the free space problem. By the assumptions
(A.1)~(A.3), we can enumerate the characteristic roots λ/£) O'=l, 2, •••, d) of
A(ξ) in the following way: 0<λ1(f)<λa(5)< -<λXf) for any £eΞΛ"\0. We
set Pj(ξ) as the eigenprojector for the eigenvalue λ/(? ) for each/=l, •••, d. The
free space translation representation TO": HQ-^L\RxSn~1) has the following rep-
resentation :

TSf(*> ω) = g λ/ω)1/* P/ω) (/+ <Ry/) (λXω)1/2 *, »)

for any

where

Λy/(ί, ω) = -λ/ω)1/2 d.fos, ω)+/2(*, ω) (j - 1, 2, -, d) ,

f.(s9 ω) = ί fj(x) dSx (j = 1, 2) (Radon transform),
Jx ω=s

and/+=(-9J)(»/2)-1 λ+(D,) with

(foΓ<r>0),

1* (forσ<0).

For p>0 (stated in §0), we define the outgoing subspace Dp+ as

where Z)i = {/eJy0|Π/(^ω)=0 in j<0} = {/eflo| C7β(ί)/=0 in |*|<Cmlnί>
and Cmin= min inf {λy(ω)1/2} >0. The outgoing subspace Dp+ is the closed

j=l,'",d ωe^-l

subspace in HQ and /ί. We denote by P^0

 and P+ the orthogonal projectors of
the closed subspaces (D^)^ in HQ and H, respectively. By using the method of
Seeley [12] and the estimate

(1.1) M\L
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(cf. [13]), we can construct the linear extension operator E: H~*H0 satisfying
the following conditions:

(1.2) Ef = finΩ, fo

For any integer />0, E: D(Al) -> D(A1

0)
,Λ ~^ is bounded with respect to the graph norms,

where A and AQ are the generators of {U(t)}teR

and {ί/0(ί)}/e=Λ respectively.

There exists a constant p0 (0<p0<p) such that 9ΩcJ5Po

(1.4) and for p'>p0, we have Ef=0 in \x\ <p' for any
satisfying/— 0 in \x\<p'.

(1.5)

for any/e/f.

Furthermore, we have

(1.6) EPp

+ = Pp

+t0E.

Proof of (1.6). We note the fact that g(x)=0 in \x\<ρ for any
From (1.2) and the above fact it follows that ((I-Pp

+t0) E Pp+f,g)Ho=(E Pp+f,

(I-P+,o)g)HQ=(P+f>(I-P+,o)g)H=V> where ( > )*0

 and> ( > )* mean the inner

products of HQ and Hy respectively. Thus, we have (/ — P+tG)E P+=Q. Since
(I-Pp

+)f=Q in |*| <p> by (1.2) and (1.4) we have JE(/-Pί)/=(/-Pί)/in H0,
which implies that Pp

+tQ E(I—PP

+)=Q. This completes the proof of (1.6).
Now, we define a class of the data VΛ(C), which is originally introduced by

Melrose [10].

DEFINITION 1.1. For any α>0 and G>Q,we say thatf^ VΛ(C) if and only
if the element f^H satisfies

(77 EU(i)f) (s, «)eC-((-oo, -C-Up+2)), L^S-1))
for any t>0

and the following estimate

||(θί Tt EU(t)f)(s, .)IU»(ί->)^C |ί|— ' 11/11,

/ = 0, 1, -, -+1 .

REMARK. Our definition of VΛ(C) is slightly different from the one in
Melrose [10].

The following estimate obtained by Melrose [10] is a key result to know
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the uniform decay rate.

Lemma 1.2. For any f^H and t>§, we have

(Tf(EU(t)-UJt)E)f)(*9 )eσ-((-oo, -0

and for any integer />0 there exists a constant C/>0 such that

||(8ί

f
J ~

~C™* I f-J-r I - • • - e r r

anyfZΞH, t>0 and *<-C~Up+2) ,

where Cm^= max sup {λ,(ω)1/2} >0 is the propagation speed of (0.1) and ef(r)
-

χr)=«, (0)/or

We can prove Lemma 1.2 by using the argument in Lemma 4.5 of Melrose
[10]. Hence, we omit the proof of Lemma 1.2.

For a data /eίfp, it follows that supp 51,. £/C(— p, p)x5n-1 and

ll^y -B/llΛΛxs -1)^^-1^ ||/||ff, where C>0 is a fixed constant. Thus, not-
ing that in the region s<— (p+2) the mapping /+ is a convolution operator with
a homogeneous kernel of order — (w+l)/2, we have

\\(diτtu0(t)Ef)(sy.)\\L*(sn-
for any ί>0, *<-C-in(p+2) and

where C/=C/(p)>0 is a fixed constant. Combining (1.7) with Lemma 1.2, we
get the following corollary.

Corollary 1.3.

(1.8) There is a constant C= C(p)>0 such that #PC F(n_1)/2(C).

(1.9) For any β>2 and C0>0, there exists a constant C=C(p, β, C0)>0 such that

where Wβ(C0) = {f^H\ef(t)<C,(l+t)^ \\f\\2

H for any Z>0} .

(1.10) For any constant C0>0, there exists a constant

C = C(p, C0)>0 such that W2(C0) Π#pcFΛ/2(C).

(cf. see Melrose [10]).

2. Uniform decay estimates for the free space solutions

In this section, we give some uniform decay estimates for the free space
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solutions, which are some parts of the basic tools to prove the main theorem.
To start with, we set up a class of mappings to unify treatments for the

deduction of the decay estimates used in the following sections.

DEFINITION 2.1. For any O0>0, a>0 and a subset Gc.H, we say that a
mapping F: G-*HQ belongs to Λ(C0, a\ G) if and only if the following conditions
are satisfied:

(2.1) l|f/lk£CΌ||/||, for

(2.2) (Γ0

+ Ff) (s, .)eC~((-oo, -C-Up+2)), L\S-1))

for any/eG ,

(2.3) ||(8ί TtFf)(*, )llrt5-i)^σβ|ι|— MI/IU

for any/eG,i<-C-}n(p+2) and /= 0, 1, -,y+l

We have the following

Proposition 2.2. For any O0>0, α>l/2 and any subset GdH, there exists
a constant C= C(ρ, a, CθJ G)>0 such that

IIPί.0 U0(t)Ff\\ffo<C(l+tr<«-™ H/IU

holds for any t>0, F<=Λ.(CQί a\ G) andfzΞG.

Proof of Proposition 2.2. Noting that the definition of P+t0 and
\\Tί |̂|i»(,xs-«)=4<2w)-

1 ll^lll. (cf. [13]), we have

Thus, combining the above equality with (2.3), we get

2*)-<-» (t-C^in p)-P--« \\f\\l

for any ί>2C^n(p+l) and

which implies Proposition 2.2 if we note that by the estimate (2.1) ||P+§0 U0(t)
Ff\\ffo<C0 \\f\\ff holds for all *>0 and/eG.

Furthermore, we need the following estimate:

Proposition 2.3. For any GQ>0, a>l/2, ρ">:ρ and any subset Gc/f, there
exists a constant C=C(p', a, CQ, G)>0 such that

(2.4)
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(2.5) ITOOmilΛv^Cίl+ί)-'--™-* ||/||ff
for any ί>0, FeΛ(C0, α; G) and f(=G,

where (U0(t) Ff^ means the first component of U0(t) Ff.

Proof of Proposition 2.3. Noting that for any g^D(Λζ), we have

., Σ λΛω)-/4 P/o,) (8Γ1/? Γί *) (λ,.(ω)-1/2 * ω- ω

, Σ λ/ω)-^ PX») (/? Γί ̂ ) (λ/ω)-1/2 *•»-/, ω)
-l

(cf. Theorem 2.1 of Shibata and Soga [13]). These imply that there is a con-
stant Cι>0 such that

"•""• f-t

ί
oo

φ(s)ds=l. For any
, a\ Crτ), and/ecy, we set

where φ^-θ"1 φ^-1 s). Then, for , <-Ci1

n(p+2)-β and 7=0, 1, -, |-+1,
we have

ΓJ-o

^ Γ »>•(*') IK9' r»+
J-oo

which implies

||(8ί ϊΌ+

Λ)(ί, Oll^tt-
(/.o)

for / = 0, 1, .», -5-+1, ί<-C-}n(P+2)-£ and/eG .
Li

Since J^ό=(iσ)1^ %+(σ), where %+(τ)=T-
1/2 for τ>0, %+(τ)=0 for τ<0 (cf.

§1 in Soga [14]), for *eCS>(/2xS"'-1)/t Λ is represented as

/* k(s, ω) =
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which yields

(2.7) \\J*k(s, .)|L«(5.-i>

for all k^C%(R, L2(Sn^)) by using the density argument.
Now, we take ΦeC Γ(Λ) satisfying 0<Φ<1 in Λ, Φ(s)=l in \s\ <1, and

Φ(ί)=0 in \s\ >2. For any j?>0, we set

where ΦR(s)=Φ(R-1 s). Since Γί^^eCΓίΛ, L^S"*"1)), from (2.6) and (2.7)
we have

IKTί n+Λ.«) (*, OIlΛs -^
π / = (

forallί<-C£!n(p+2)-e and

where M,=(n',z) max | (8'"'2'-1 Φ) (s) \ >0 and

Note that for *<-C-jn(p+2)-£ and /=0, 1, — , n/2,

θ

<2|ί|1/2max

where C2(α, /o)>0 is independent of £>0. Hence, it follows that

* 1 'n-l

-{n p' II/IU
π(ΔCί — 1)

M, R-<*n+'(t-Cύa p'_6)-(-«

, £>0 and

Then, we get (2.4) if we note that C/oWΛ.β ^^oW Λ as Λ^00 in H0, U0(t)g9-
U0(t)Ffas 6->0 in H0 and ||J7β(/)ίI/||ιrβ^Cβ ||/||ff for any Z>0 and/eG.

As for (2.5), we note that

<cί p'c
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for any g^D(A%), where Cί>0 is a fixed constant. From the estimate

(1.1) and the assumption (A.2), we have lim \\gu}\\L2(Ba^=\\g\\L\B^ for any se-
J >*»

quence g('^HQ with lim g(i:)=g in HΌ. Hence, the same argument as for (2.4)
y^ oβ

yields the estimate (2.5), which completes the proof of Proposition 2.3.

Now, we give some applications of Propositions 2.2 and 2.3, which are
used in the following sections.

Corollary 2.4. For any C0>0 and a>\\2y there exists a constant C=C
(p, a, C0)>0 such that

for any ΐ'>Q, t>0 and f<= FΛ(C0) .

Proof of Corollary 2.4. By the definition of FΛ(C0), we have

(2.8) EU(t')GA(Ci,a;V.(Ct)) foranyt'>0,

where Cί=max {C0, \\E\\}. Thus, from Propositions 2.2 and 2.3, we have
Corollary 2.4.

Corollary 2.5. For any C0>0 and a>\β, there exists a constant C=C

(p> <*>> C0)>0 satisfying

( - C/0) (ί) EU(tf)f\\HW<C(l+tr^^-^ \\f\\ff ,
at

-1Λ)-"/ϊ II/IU
αί

for any t'>0, t>2C£Λ(p+\) and f(=VΛ(C0)Γ]D(A) .

Proof of Corollary 2.5. The representation of U0(t)g with^eD(^) yields

<c3

<C3 P

(-1)/2

where C3>0 is independnent of g^D(A^} and ί>0. Hence, noting (2.8), we
obtain Corollary 2.5 by the same argument as for Proposition 2.3.
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3. The operator X(t, t')

In the case of the odd n>3, Lax, Morawetz and Phillips [8] introduce
the semigroup {Z(t)} denned as Z(t)=Pp

+ U(t)PL. In [8], the property
lim ||Z(£)||5(ff ff)=0 derived by the assumption (D) plays a crucial role to show
/->*» '
that there is an exponential rate of the local-energy decay. We can say that the
decaying property of {Z(t)} ensures the existence of the energy escaping part.
In the even dimensional case, however, the operator Z(t) is not connected with
the rate of the local-energy decay. Thus, we have to make another operator
X(t, t') which show the existence of the energy escaping part in the case of the
even w>4. This is the perpose in this section.

First, we fix a constant 0<po<p0

 witn 9ΩCjBp/ and take ψeC°°(ΛΛ) satis-
fying 0<τ/r<l in Rn, ψ— 1 in \x\>p0, ψ=0 in |#|<po, where ρQ>Q is in
(1.4). For any t, t'>0, we define the operator X(t, t1): H->H0 as

X(t, t') = P> )0 EU(t) (U(t')-γU0(t') E) .

Then we have the main result of this section which is a basic tool to prove Theo-
rem 0.1.

Proposition 3.1. Under the assumptions that are in Theorem 0.1, we have

lim \\X(t9 t')\\B(H ffo) = 0 uniformly in t">0 .
/-><*>

To prove Proposition 3.1, we need the following extension operator.

Lemma 3.2. There exists a bounded linear operator E : H-*H0 satisfying

(3.1) Ef=f in |*|>po,

(3.2) there is a constant C:>0 such that

for allf<=H, p'>:p0, where Ωp> =

(3.3) £ : D(Al) -H- D(A'0) is bounded with respect to the graph norm,

(3.4) £P'+ = P>,0£.

Proof of Lemma 3.2. Note that it is sufficient to construct a linear operator
; C%(Π)-»CZ(RH) satisfying

Π 5^ FW 77 ι/ in Irl^>n{J J) & U — U in | Λ J ^ > p 0 ,

(3.6) |J6* E^ u\\ 2( »)<C y] IIQ13^!! 2

for any weCSΓ(Π) and \a\
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(3.7) ll|£(l)«lllv^|||M|||flp,
for any we CΓ(Π), p' >p0 ,

where C>0 is independnet of p'>po and

II2

D = - Σ aifi1dtju9(x)d^φ)
=

Because, employing the extension operator E"(2): C%(Ώ)->C%(R") obtained by

Seeley [12], we define E as Ef^E^f,, E^f2)y and then we can check that E

posesses the properties (3.1)' — '(3.3). The equality (3.4) is guaranteed by the

same argument as for (1.6).

Now, we construct E(1) by the same methods as in Ito [3]. For

we define b{j(u) and afa) as

«ι(«) = τ̂ -7 t («<(*)- Σ *ίX«) ̂ ) Λ ,
|ΩPo| JQPo ^=ι

where | ΩPo | is the volume of ΩPo. Set

(£<« «(*)), = ψ(*) »,(*)+(<!,(«)+ Σ M«) *y) (*' = 1. 2. •". ») .
y=ι

where vi(x)=ui(x)—(aί(u)+^Σ^ιbij(u)xj). Then £(1) is linear, and (3.5) and

(3.6) are obvious.

Noting that bis(u) is skew symmetric and the assumption (A.I), we have

(3.8)

where V—^VD v2ί •••, vn). Hence, the assumption (A.I) implies that

lll^(1) «ll l lp' = ~ t / <€(*)+&(*)> €(*)+&(*)
2 JBp'

where έ?(*)=(έ?<y(*)), ^X*)=ψ(*) (8,,β/(

(*) ̂ , W)/2, and

Since the assumptions (A.I) and (A.2) yield that < , > is an inner product in

the space of the symmetric wXw-matrix, we obtian

(3.9) |pw M||||P/< β(>/ {<<5(x), έ?(*)>+<(*), (*)>} dx

^IIHHLp'+QIHUS^),

where C2=max {Σ?.*.>.«-ι a,M dfj ψ(«) 8,, ψ(«) f , f,|*eJZ", ̂ eC" with |f | =
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1}. Since we have v(x)dx = Q and I {dx.Vj(x)—dXjv{(x)}dx = Q for
JQPo J°Po '

ί,/=l,2, •••,/&, Poincare's inequality, Korn's second inequality, (cf. Ito [3] or
Duvant and Lions [2]) and the assumption (A.2) imply that

Combining the above estimate with (3.9), we have

Thus the estimate (3.7) follows from ||M||QP'=||M||QP' which is guaranteed by
the same reason as for (3.8). This completes the proof of Lemma 3.2.

Next, we give the following estimate which is indispensable to prove Pro-
position 3.1.

(3.10) \\x(t,

for any t>rN/Cmlnί *'>0,/<Ξ#, and Λ/>1 integer, where

V(t9t')=U(t)(U(t')-+UJt')E).

In the above, we set r= 2~l Cmin C~^x p, where p>0 is the same constant as in
the assumption (D).

Proof of (3.10). We denote by H the Hubert space of the data with the

Neumann boundary condition and define an operator M: H-+H as

The operator M is well-defined because H is a closed subspace of H and the

restriction operator //QB/I- >/|Q^/f is well-defined and bounded. Since the
propagation speed is less than Cmax, by the estimate (3.2) we obtain Mf=0 in

for any/e# and

(3.11) I|M/||2<C3 ||/IUΩp+p) for any/<Ξ# .

Now, by induction we start to prove that the estimate (3.10) holds with
the constant C=||JB|| max{C3, C^Q+Ca+l)} >0, where C^O (resp. C3>0)
is the same constant as in (3.2) (resp. (3.11)).

For the case of N~l, we decompose the operator X(t, t r ) in the following
way:
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X(t, t') = P'.o EMV (t—JL-, t )

where we note that E is able to be defined on H and has the same properties

as (1.2), (1.4) and (1.5). Combining the above equality with the estimate (3.11),

we obtain (3.10) for N=l with the constant O= \\E\\ max{C3, C^Q+Ca+l)}.
Next, assuming that (3.10) is true for an integer ΛΓ>1, we show the esti-

mate (3.10) for N+l. First, we decompose EV(t—rN/Cmin, t') as

EV (t~ϊ*-, t'} = EMV (t-r(N+1\ t'}
^ Cmin / \ Cmin /

(3.12)

From the property (3.1) and the estimate (3.2), it follows that

which yields

(3.13)

because of (3.2) and the fact that the propagation speed is less than C
Hence, the estimates (3.11), (3.13) and the decomposition (3.12) imply that

+1 in.o £tfo i

for any t^'^^1', t'>0 and feH.

Combining the above estimate with the assumption of the induction yields

(3.10) for JV+1 with the constant C=\\E\\ max{C3, C1(C1+C3+1)}>0. This

completes the proof of (3.10) for each integer N^l.

Now, we prove Proposition 3.1. First, note that we have the following esti-
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mate.

Lemma 3.3. Under the same assumption that in Propotition 3.1, there is a
function ?eC([0, °o)) such that lim q(i)=Q and

/->•«

\\V(t,t')f\\ff(Qp+~p^q(t)\\f\\ff

for any t,t">Q and f(=H .

We postpone the proof of Lemma 3.3, which will be given in the last part
of this section.

By means of Lemma 3.3 and (3.10), we can get Proposition 3.1 if we show
that there is a constant C>0 such that

(3.14) ||P> ,o EUQ(s) EV(t, t')\\B(Ht

for any t, t',s>0.

Noting that Pl§0 E(I-Pp

+>Q)g=0 for any g*ΞH^ we have PJ §0 EU0(s) EV(t, t')=
Pi.o £P+,o U0(ή EV(t, t'). Thus, by means of Proposition 2.2, to obtain (3.14)
it is sufficient to prove that there exists a constant C0>0 satisfying

(3.15) £F(MθeΛco,~;# foranyM'^O.

First, we write EV(t, £')/as follows:

(3.16) βr(t, t')f= kft, t';f)+k2(t, t' f) ,

where

+ U0(t)(U0(t')-EψU0(t'))Ef

, t' f) = (EU(t+t')-U,(t+f) E)f

Since supp (g— E ψ g) CJ5P for any geH0 and supp ((S— E)g)dBp for any
, the same argument as for the estimate (1.7) implies that

||(8ί Tί k,(t, t' f)) (,,

(3.17) f

Combining the estimate ^/(0=ll^5..o^Z/(0/llέ0^ll^||ΊI/lll with the estimate
in Lemma 1.2, we have

||(8ί Tίk#,t';f))(s, )\\L'(s»-

(3.18) for anyί<-C-}D(p+2), t,t'>0,f(=H, and / = 0, 1,
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From (3.16), (3.17) and (3.18), it follows that

||(8ί Γβ

+ EV(t, O/) (*, )llAs-ι>£C |f I -(-»*-' \\f\\H

for any s<-C£n(p+2)9 ty *'2>0,

a n d / = 0 , l , ,y+l-

Hence, combining the above estimate with the fact that EV(t, *') : H~*H0 are
uniformly bounded with respect to ί, £'>0, we get (3.15). This completes the
proof of Proposition 3.1.

The rest in this section is devoted to proof of Lemma 3.3. To start with, we
decompose V(t, ί')/as

(3.19) V(t,t')f=

By the same reason as for (3.15) with t= 0 and £'>0, it follows that there is a
constant O0>0 such that

(3.20) E(U(tf)-^UQ(tf)E)^A.cΌy',H foranyί '>0.

Thus, Proposition 2.3 implies that

(3.21) ||ψί/0(ί) E(U(t')-^U,,(t') £)/IUP+?)^C(l+ί)-"+2 H/IU
for all t, ί'^0 and

since

(3.22) ll^llsίβpO^Cίll^llrtopO+llftllΛQ^}
for any p'^p and g&H0 .

For any g<=D(A), we set h(t)=(U(t)-ψU0(t) E)g. Note that
(cf. (1.3)). Since Af='(f2, A(9t)f1) forf(=D(A) (cf. §2 of [13]), we have

A h(f) = Ah(t)+QU0(t) Eg for t<=R ,
at

Λ(0) = (/-

where Q: HQ-^H is the bounded operator defined as

(3.23) Qf = '(0, ̂ (8.) (ψ/0-«M(8,) /,) -

Thus DuhameΓs principle and the fact that D(A) is dense in H yield

t U(t-s)QUJs)Egds
JO

for any t^R and
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Hence, we have

(3.24) ||(t/(*)- W) E)gt,\\ff(Qp+?ί)<:\\U(t) (/-

where we set gt,=(U(t')— ψU0(t')E)f. Since supp (/— ι/r£)£ycΩn#P and
ll(^— ψE)gt'\\ff^c \\f\\H for a constant C independent of ί'>0 and/e#, the
assumption (D) implies that

(3.25) \\U(t) (I-

for any ί, *'>0 and

Noting that supp ζ?£CΩ n5P for any g^HQy we obtain

(3.26) ||E7(ί-,) ρC/0(.) ̂ |U(Ωp

for any t>s>0, t'>Q,f<=H ,

by the assumption (D). Since the definition of Q (cf. (3.23)) implies that

(3.27)

Proposition 2.3 and the fact (3.20) yield that there exists a constant O>0 such
that

(3.28) \\QU0(s) Egt,\\H<C(l+s)-<»-v \\f\\H

for any s, t'>:Q and

From the estimates (3.26) and (3.28), it follows that

|| tf (f-*) QUQ(s) Egt,\\H(Ωp+v<Cp(t-s) (l+.)-(-

for any t>s>0, t'>Q and /e H,

which yields

(3.29) || U(ΐ-s) QU0(s) Egt,ds\\H(Qp+v<CJ(t) \\f\\HJo
for any ί, t">0 and

In (3.29), we set J(t)=(* ρ(t-s) (l+ί)-(Λ~2) ds=\~ X(t, ήp(t-s) (l+s)~<n-2> ds,
Jo Jo

where %(t , s) = 1 f or s < t and %(ί , ί) = 0 f or j > t . Noting that n > 4 and lim %(ί , ί)
/->•<»

Xί— s)= 0 for all fixed ί>0, we have lim/(ί)=0 by the Lebesgue convergence
/̂ .oβ

theorem. Hence, from (3.19), (3.21), (3.24), (3.25), and (3.29), it follows that
there exists a function j(ί)eC([0, oo)) satisfying lim q(t)=Q and

-•
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for any ί, ί'>0 and

where q(t) is of the form q(t)==C{(l+t)-<u-*>+p(t)+J(t)}. This completes the
proof of Lemma 3.3.

4. The uniform decay rate of | |PJ t0 EU(t) f\\HQ

Our goal in this section is to prove the following property which plays an
important role in the proof of Theorem 0.1.

Proposition 4.1. Under the same assumption that in Theorem 0.1, there
exists a constant C— C(p)>0 such that

for any ί>0 and f<=Hp .

Proposition 4.1 is a direct consquence from Corollary 1.3 and the follow-
ing proposition.

Proposition 4.2. Under the same assumption that in Theorem 0.1, for any
C0>0 and α>l/2, there exists a constant C=C(p, α, C0)>0 such that

foranyt^Q and f(ΞVΛ(C0) .

In fact, (1.8), Proposition 4.2 and (1.10) imply that #pcFB/2(C$) for some
fixed constant C$=C£(p)>0. Hence, from Proposition 4.2 and (1.9) it follows
that there is a constant C0=C0(p)>0 such that

(4.1)

which yields Proposition 4.1. This procedure is the same as in Melrose [10].

In the following of this section, we prove Proposition 4.2. The original
idea of the proof is given by Melrose [10]. However, his proof is very compli-
cated. Hence, we give the different proof of Proposition 4.2. We set

for any t'>t and /e

for each non-negative integer p. Note that jΓ0>0 exists. By induction we
show that T,>0 exists really for every p>l. Noting that Pp

+ U(t) (I—PP+)=Q
for all £>0, we have

Pi U(t+t'+Tt)f=P>+ U(t) U(t')P"+ U(Tp)f

) E) P> U(Tp)f
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P>+ U(Tp)f

for any *, ί'^0 and

Thus, the property (1.6) implies that

= X(t, On U(Tp)f

(4.2) +PJ.O EU(t) P>+ ψU0(t') P5,β EU(Tp)f

foranyί,*'>0 and/<Ξ#.

Proposition 3.1 yields that there exists a constant Γ>0 such that

\\χ(*> oiUwo)^1/* for any ̂ r and

which imples that

(4.3) \\X(t, n Pi C/(Γ,)/|U0^2-(^2> \\Ef\\ffo

for any ί> Γ, ί'>0 and /e F

In (4.3), we use the definition of Tp and the estimate

>+ U(Tp)f\\ffQ = \\P^,

Noting that ^Pp

+>Qg^(Dp

+)-1- (cf. the argument for (1.6)) and (ψ—l)(/— p^0

^=0 for any^e//o we have

(4.4) P

which yields

(4.5) P> ,

- PJ§β

foranyί,ί'>0 and/e/ί,

where we use the fact that PJ§0 J70(0 (/—Pi.o)=0 for all *>0. Since the opera-
tor Pi§0 £ί7(ί) ψ: H0->H0 is uniformly bounded for any *eΛ, Corollary 2.4 and
(4.5) imply that there is a constant C1=Cl(aJ C0)>0 satisfying

||Pi.β EU(t) P
for any t, ί'>0 and feVa(C0) .

Now, we take t'p as Cx t;-( -W=2-c*+a), that is, ί;=C22
2<ί+2)'<2 '-1> where C2=

— «. Then it follows that

||P> .„ ££/(*) Pi ψϋ,(ί;) Pi>0

for any t^O and /<= Fβ(C0) .



DECAY RATE OF LOCAL ENERGY 833

Combining the above estimate with (4.3) and (4.2), we get

(4.6) ||P> .„ EU(t+t'p+Tt)f\\Ho^2-^ \\Ef\\So

for any t > T and /S Fβ(C0) .

By (4.6), existence of Γί+1 is obvious and furthermore we obtain that Tf+1<!C3

22</>+2)/<2*-i)_μ^ £or any p0sitive integer/), where the constant C3=C2+21 is in-

dependent of p. Now, we define {f^o.v as fp+1= ft+C3 22<*+2>/<2«-1>, f0=0.
ΛW

Then it follows that TP>TP for any ̂ =0, 1, •••, and there exist constants O4>0

and C5>0 satisfying Tp<C42
2p'V*-» and Tp+1<C5Tp for any f=l,2, .

Thus, for any *>0 with fp<t<fp+1 and/>>l, we have

(4.7) \\Pp+.oEU(t)f\\ffQ<2->\\Ef\\Ho

forany/eF.(C0),

where we use 2-'£C?-WTj<Λ-W£(C4Csy -lMTj$Γl/*> and Tj^<rl.
Combining the estimate (4.7) with the fact that ||P^0 EU(t)f\\s^\\E\\ \\f\\a for
any t>0 and/e/ϊ, we obtain Proposition 4.2.

5. Proof of Theorem 0.1

Now, we begin to prove (0.2). To start with, for any ί, *'>0 and
we have

(5.1) \\U(2t)f\\a(Ql,^\\(U(t)-*U0(t) E)

+ \\+U0(t)EU(t)f\\a(Qf).

From Corollary 2.4, (4.1) and the estimate (3.22), it follows that there exists a
constant Cj>0 satisfying

(5.2)
foranyί>0

In the same way as (3.24), we have

(5.3) \\(U(t)-+U&) E) t/(0/l|ff(0p)<

where

!

t/2
U(t-s)QU0(S)EU(t)fdS\\α(Qf),0

I3(t;f) = || U(t-ή QU0(S)
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Since P+g=g in Ωp, from Proposition 4.1, (1.2) and (1.6) it follows that

(5.4) \\u(t}g\\H(^<c2(\+ty»» \\S\\H

for any t>0 and

Noting that Pp+ U(t) (I-PP+)=Q for any t >0 and P^g^^P^ g for a
which is proved by the same argument to deduce (4.4), we have

U(t)f\\H ,

where we use (5.4) and supp (l—ψE)gζ2Bp. Hence, Proposition 4.1 implies

(5.5) /ι(*;/)<o3(i+
foranyί>0

From the estimate (3.27) and the fact that Pp

+tQg=g in J5P, it follows that

o^ιllΛΩp)}> which yields

(5.6) \\QU0(s) EU(t)f\\ff<C4 ||P> ,o U0(s) EU(t)f\\ffo

for any s, t>Q and

if we note the estimate (1.1), Korn's inequality (cf. [3] or [11]) and the assump-
tion (A.2). Since we have P^0 U0(s) (I—Pp

+t0)=0 for all ί>0, Proposition 4.1
implies that

\\QUfc) EU(t)f\\ff<C5(l+t)-»<2 II/IU

for any s, t>G and f<=Hp .

From the above inequality and (5.4), it follows that

\\U(t-s)QUQ(s)EU(t)f\\H(^

for any t>s>0 and

where we use the fact that supp Qgdfi Γ(BP for all g<=H0 (cf. (3.23)). Hence,
we obtain

(5.7)
n — z \ z

for any t>0 and/eίίp.

For /3(*;/), by means of the estimate (3.27), the same argument as for (5.2)
yields that

(5.8) \\QUfc) EU(t)f\\H<Cs(\+sy»* \\f\\ff

for any ί, t>0 and f<ΞHp .
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From the estimates (5.4) and (5.8) it follows that

\\U(t-s)QU0(s)EU(t)f\\ff(Qp,

<C2 C6(l+t-sr^(l+s)^ \\f\\H

for any t>s>0 and

Hence, we have

9Γ Γ I f \-«+ι
(5.9) /^ /^^Wi+lΛ

n — Z \ Z /

for any *^0 and f<=Hp .

From (5.1), (5.2), (5.3), (5.5), (5.7) and (5.9) it follows that

for any *>0 and

which completes the proof of (0.2).

In the last, we prove (0.3). In the argument for (0.2), we replace
l|f/(2ί)/||ff(Qp) by ||[£/(2*)/]2lL2(Ωp) Then from the estimate (0.2) it follows
that the estimate (0.3) holds if we obtain the following estimate:

(5.10) l(

for any t>0 and f&HpΓ\D(A) ,

where

' ή EU(t)f]2 Λ||Λort .
J t / 2

For any data^eZ)(^40), we have

(U(t-ή QU^ήgl = [AU(t-ι

where we note that Qg^D(A) if geD(A0), Since [Qg]ι=0 for any
(cf. (3.23)), the integration by parts yields

(5.11) /(*;/)< [ \\[U(t-t) Q (-f U9) (*) EU(t)f]i\\*a,> *
Jt/2 \as /

By Proposition 4.1 we have
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(5.12) H[^(ί-*)rf1||ΛQP,^σβ(i+<-*)-^ \\g\\H

for any t>s>0 and

where we use the same argument as for (5.6). From Corollary 2.5 and the
estimate (3.27) it follows that

\\Q ϋβ

for any ί>0, i>2C~jn(p+l) and

By the above estimate, (5.12) and (5.11) we have

for any t>4C~Up+l) and

The above estimate, (5.12) and (5.8) imply that

for any ί>4C-}n(p+l) and fεΞH>Γ\D(A) .

Since we have /(*;/)</3(£;/) for any ί>0 and/e#, from the above estimate
and (5.9) it follows that the estimate (5.10) holds. This completes the proof of
Theorem 0.1.
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