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0. Introduction

Let Q be an exterior domain in R" (#>3) with smooth and compact boun-
dary. We set

A(a‘) “ =ié1a‘i(aii 6"} u) y U= t(uh Ugy **°y un) ’

where a;;=(a;,;,|541::s) are nXn matrices and each g4;,;, is constant. We con-
sider the elastic wave equation with the Dirichlet or the Neumann boundary
condition

(03—A(9,)) u(t,x) =0 in RxQ,
(0.1) B(o,)u(t,x) =0 on RX3Q,

u(0, x) = fi(x), 8,u(0, x) = fi(x) on Q.
Here the boundary operator is of the form

%] 20, (the Dirichlet condition),
B(,)u = { .\
%.j=1 (%) @;; 0., 1|oq, (the Neumann condition),
where v(x)="*(vy(x), v,(x), -**, v,(*)) is the unit outer normal to Q at x€9Q. The
purpose of this paper is to show that in the case of the even n>4, if there is
any rate of local-energy decay, then we can know the explicit order of the decay
rate.

We assume that

(A1) Qipia = Upija = %jqip>
n - n 2
(A2) ‘."%ﬂaiﬁe e Cip= 81‘:?:1 [€s]*
(A.3) AE) = > a;; £; E; has d characteristic roots of
i,j=1

constant multiplicity for any £ R"\0,
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where (&;,) is any #Xn symmetric matrix and §, is some positive constant inde-
pendent of (&;,).

Under the assumptions (A.1)~(A.3), Shibata and Soga [13] formulate the
scattering theory which is analogous to the theory of Lax and Phillips [9].
Hence, the same argument as in Lax, Morawetz and Phillips [8] implies that in
the case of the odd #>3, if there is any rate of local-energy decay, then there
is an exponential rate of decay. We can also prove the same statement stated
above by using the argument in Morawetz [11]. Thus, in the odd dimensional
case we can find the explicite order of the decay rate.

In the even dimensional case, however, we can not apply their methods
since the Cauchy problem for the operator 9;—A(9,) has Huygens’s Principle
if and only if the space dimension #z is odd and #>3, and Huygens’s Principle is
indispensable to carry out the arguments in [8] and [11]. In the following, our
interest is to investigate the similar problem in the even dimensional case.

For a domain DC R", we define the local energy ||f||lzp) of the data

f=*(fvf2) in D as
1

”f”?‘I(D) = 5 SD {i,p’;%:laipjp axjflq(x) 6x,~flp(x)+ | fo(%) |} dx .

Shibata and Soga [13] introduce the Hilbert space of the data f=*(f,, f,) defined
as the completion of {f €C7(Q)|B(3,) f;=0 on 8Q} in the norm || fl|z=/|fl|z(q)-
Furthermore, they show that the mapping f—*(u(%, -), 0, u(¢, +)) becomes a
group of unitary operators {U(#)},cg on H.

In the following, we fix a constant p>0 with dQCB,={x€ R"| | x| <p}
and assume that

there exist a function p&C([0, o)) and a constant
p>0 satisfying lim p(¢#) = 0 and
>

U @) fllace< 2(2) I 1l
for any >0 and fEH".

(D)

In the above H*={f<H |supp fCcONB,} and Q,,;=QNB,5. Then our
main theorem in the present paper is

Theorem 0.1. If we assume (D), then there exists a constant C=C(p)>0
such that the following estimates hold :

(0.2) U@ fllaan<C1+)" || fllz,
(0.3) U @) flllz2an <C(1+2)"" || flla
for any t>0 and fEH"®,

where [U(t) f], means the second component of U(2) f.
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Next, in the case of the isotropic elastic wave equation (i.e. a;,;,,=28;, §;,
+u(8;; 854 18;, 8;,)), we give some applications of Theorem 0.1. We assume
that the Lamé constants ) and p are independent of the variables ¢ and x, and

satisfy 7&—}—é #>0, p>0. Note that the assumptions (A.1)~(A.3) hold under
n

these assumptions of A and u. We start with the case of the Neumann bounda-
ry condition. In this case, it is well known that there is a wave called the Ray-
leigh surface wave which seems to propagate along the boundary. Hence, we
can not expect that there is a uniform rate of local-energy decay. In fact, we
have the following result as a corollary of Theorem 0.1 in the persent paper and
Theorem 0.2 in Kawashita [7].

Corollary 0.2. In the case of the isotropic elastic wave equation with the
Neumann boundary condition, the problem (0.1) does not have the uniform local-
energy decay property.

In the above, we say the problem (0.1) has the uniform local-energy decay
property when for any bounded domain D and D,C R" there exists a function
p<C([0, o)) such that lim p(2)=0 and [|U(?) fllzann < p(t) || ]|z holds for any

t>oo

t>0 and f € H with supp f cQ N D,.

Note that for the odd #>3 Corollary 0.2 is already obtained as Corollary
0.31in [7]. In the case of the even n>4 if we assume that (0.1) has the uniform
local-energy decay property, then from Theorem 0.1 it follows that the problem
(0.1) has the uniform local-energy decay property of the strong type (cf. [7]).
In the case of the Neumann boundary condition, however, the above statement
contradicts Theorem 0.2 in [7], which means the correctness of Corollary 0.2.

The second application is to decide the uniform decay rate for the isotropic
elastic wave equation with the Dirichlet condition. In this case, B. V. Kapitonov
[6] shows that we have the uniform decay rate with p(#)=C(1+2)""2 if the
obstacle R"\Q is star-shaped. Combining the result of Kapitonov [6] with
Theorem 0.1, we obtain the following corollary.

Corollary 0.3. In the case of the isotropic elastic wave equation with the
Dirichlet boundary condition, if the obstacle R™\X) is star-shaped, then we have
the estimates (0.2) and (0.3).

The proof of Theorem 0.1 is based on some local-energy decay estimates
for the free space solution (cf. §2) and the decay estimate stated in Proposition
4.1 in 84, that is,

(0.4) IP% 0 EU @) fllay <C (148" || fllx
for any t>0 and fEH*,
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where E is an extension operator from Q to R", and P , is the projection oper-
ator into the orthogonal complement of the outgoing subspace in the Hilbert
space of the data for the free space problem. Using these estimates we prove
Theorem 0.1 in §5.

R.B. Melrose [10] obtains the estimate (0.4) in the case of the scalar valued
wave equation under the assumption that Q is non-trapping. In [10], it seems
that he intends to decompose P% o EU(2) f into the energy escaping part and the
part behaving like free space solution. Using this decomposition he obtains the
estimate of the time T,>0 satisfying [|P% y EU(t) fllacen <27 ||E|| || f||x for any
t>T,and f€H". On the procedure in [10], the non-trapping condition is used
to show the existense of the energy escaping part. Hence, if we can show the
existence of good decomposition like the above mension we can expect that the
idea getting the estimate of T, implies the estimate (0.4). However, it does not
seem easy to use the same argument as in [10] since the decomposition of
P; ,EU(¢)fin [10] is very complicated. Hence, we introduce a different de-
composition to prove Proposition 4.1.

In §1, we introduce a class of the data V,(C) which is indispensable to get
Proposition 4.1, and refer to some propositions in [10] which are used later.
Note that the class V,(C) is originally defined by Melrose [10].

In §3, we introduce some operator which reflects the fact that the remaining
energy tends to zero uniformly as £—co under the assumptions in Theorem 0.1
(cf. Proposition 3.1 in §3). Proposition 3.1 corresponds to the existence of the
energy escaping part in [10], and the proof of Proposition 3.1 is the main part
of the proof of Proposition 4.1.

In §4 we prove Proposition 4.1 by means of the decay estimates in §2 and
Proposition 3.1. An essential idea is the same as in Melrose [10] stated above.
However, there are some differences between our argument and that of [10].
One difference is the way of the decomposition of P% (EU(¢)f. The form of
the energy escaping part is also different. The differences give us not only
simplicity in the argument to obtain Proposition 4.1 but also the clear reason
why the order of the estimate (0.4) should be —=/2.

Finally, we note a result related with Theorem 0.1. Iwashita and Shibata
[5] and Iwashita [4] show that the estimates (0.2) and (0.3) hold under the as-
sumptions (A.1)~(A.3) and the assumption that £ is non-trapping in the sense;
for any a>0 with 0QCB, there exists a constant T'=T(a, 2)>0 such that
U(t) f(x)eC>([T, o) x &,) for any f=*0, f,)€H with supp fCcQNB,. Thus,
they have a sharper result than that of Melrose [10]. To prove the estimates
(0.2) and (0.3) they intend to get an estimate of resolvent. From this estimate
they obtain (0.2) and (0.3) by using the Laplace transformation. Hence, to prove
Theorem 0.1 we can not use the methods in [5] and [4] since it does not seem
easy to deduce the estimate of resolvent under the assumption (D). This is the
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reason why we use the idea in Melrose [10] to prove Theorem 0.1 though the
result in [10] is not better than that in Iwashita and Shibata [5] and Iwashita [4].

1. A class of the data vV (C)

In this section, first we review the properties of the translation represen-
tation obtained by Shibata and Soga [13], which are used later. Second, we def-
ine a class of the data V,(C) which plays an important role in this paper.

Let H, be the Hilbert space of the data for the free space problem (i.e. in
the case that Q=R"). We set {Uy(t)},cg is 2 group of unitary operators on H,
which is a solution operator of the free space problem. By the assumptions
(A.1)~(A.3), we can enumerate the characteristic roots A;(£) (j=1, 2, :-+, d) of
A(E) in the following way: 0<A (&) <Ay(E)<:-*<Ay(E) for any E€ R™\0. We
set P,(£) as the eigenprojector for the eigenvalue A ;(¢) for each j=1, ---,d. The
free space translation representation 7' : Hy—L* R X S*~*) has the following rep-
resentation:

T3 £(5, @) = 3 M(@) Piw) (JsR, 1) (uiw) s, 0)
forany feCy(R"),
where
R f(s, @) = =2 (@) 8, fils, o)+ Fols, ) (j=1,2,,4d),
Fi(s, 0) = S __fi®)dS, (j=1,2) (Radon transform),

and J,=(—9,)"®-1 ) (D,) with

i/%" o (for #=0),

—}/——%ila-lm (for #<0).

For p>0 (stated in §0), we define the outgoing subspace D5 as

(o) =

D = UO(C;:%n P) D‘-)r

where D\ ={feH,|T¢ f(s, w)=0 in s<0} ={f € Hy| Uy(t) f=0 in | x| <Cpn t}
and Cp,= min inf {\;(®)?}>0. The outgoing subspace D’ is the closed

j=1,00,d 0ES"—1
subspace in H, and H. We denote by P , and P’ the orthogonal projectors of
the closed subspaces (D%)* in H, and H, respectively. By using the method of
Seeley [12] and the estimate

(L.1) l19ll2an < Cs Vol 30y for any v& Ci(@)
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(cf. [13]), we can construct the linear extension operator E: H—H, satisfying
the following conditions:

(1.2) Ef=finQ forany fEeH.

For any integer />0, E: D(A') — D(45)

(1.3) is bounded with respect to the graph norms,
where A and A4, are the generators of {U(#)},cr
and {Uy(?)} ,cp respectively.

There exists a constant p, (0<<p,<p) such that 3QCB,,
(1.4) and for p’>p,, we have E f=0in |x| <p’ for any
fEH satisfying f=0in |x| <p'.

(1.5) E fll ey <C {1 fllzcam+11 fill 2cam}
for any feH .

Furthermore, we have
(1.6) EP, =P, E.

Proof of (1.6). We note the fact that g(x)=0 in |x|<p for any g€ D%,
From (1.2) and the above fact it follows that ((I—P% ) E P% f, 8)u,=(E P% f,
(I—P% ) )uy=(P% f, {—P% o) £)»=0, where ( , )y, and ( , )y mean the inner
products of H, and H, respectively. Thus, we have (I—P% () E P{=0. Since
(I—P%)f=01in |x| <p, by (1.2) and (1.4) we have E(I—P%) f=(—P%) f in H,,
which implies that P} ; E(I—P%)=0. This completes the proof of (1.6).

Now, we define a class of the data V(C), which is originally introduced by
Melrose [10].

DerINITION 1.1, For any a>0 and C >0, we say that f €V ,(C) if and only
if the element f € H satisfies

(T3 EU() f) (5, ) €C=((— o0, —Crin(p+2)), L(S8*))
for any t=>0

and the following estimate
1(8s T's EU(2) f) (55 Nlzzs-»<Cls|=*"" || fllu
for any t>0,s<—Cgl(p+2) and 1=0,1, -, %+1 .

ReEMARK. Our definition of V,(C) is slightly different from the one in
Melrose [10].

The following estimate obtained by Melrose [10] is a key result to know
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the uniform decay rate.
Lemma 1.2. For any f€H and t>0, we have
(TS(EU@R)—=Uy®) E)f) (s, -)EC™(— o0, —Crin(p+2)), L(S*Y),
and for any integer 1 >0 there exists a constant C,>0 such that

[1(8: T3 (EU(#)— Us(2) E) f) (s, *)lzzsn-

t—c!
<C, S_-ZC’TI" |t—s—r| ~( D21 o ()42 gy

max

forany fEH, t>0 and s<—Cgz (p+2),

where C,,,= max sup l{x ()%} >0 is the propagation speed of (0.1) and e(r)
i=1,2,,d OSSN~

=||P% o EU(r) f||& for r=0, es(r)=e; (0) for r<O.

We can prove Lemma 1.2 by using the argument in Lemma 4.5 of Melrose
[10]. Hence, we omit the proof of Lemma 1.2.

For a data f€H® it follows that supp R;EfcC(—p, p)XxS*! and
NR; E fll2mxsn-1 < Cp™D2|| f||z, where C>0 is a fixed constant. Thus, not-
ing that in the region s<<—(p+2) the mapping J, is a convolution operator with
a homogeneous kernel of order —(n+1)/2, we have

13 T3 Us(t) Ef) (5, llezsn-n<Cil s—2| =+ || f]l

1.7
(1.7) for any >0, s<—Cpi.(p+2) and f€eH",

where C;=C/(p)>0 is a fixed constant. Combining (1.7) with Lemma 1.2, we
get the following corollary.

Corollary 1.3.
(1.8) There is a constant C=C(p)>0 such that H* CV (,-1,(C).
(1.9) For any 8>2 and C,>0, there exists a constant C=C(p, B, Co)>0 such that

We(Co) NHP TV (i C),
where Wy(Co) = {f €H|e)<C(1+)? IIflly for any 120} .
(1.10)  For any constant Cy>0, there exists a constant
C = C(p, Cy)>0 such that W(Co) NH?CV,,(C) .
(cf. see Melrose [10]).

2. Uniform decay estimates for the free space solutions

In this section, we give some uniform decay estimates for the free space
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solutions, which are some parts of the basic tools to prove the main theorem.
To start with, we set up a class of mappings to unify treatments for the
deduction of the decay estimates used in the following sections.

DrriniTiON 2.1. For any Cy>0, >0 and a subset GC H, we say that a
mapping F: G—H, belongs to A(C,, a; G) if and only if the following conditions
are satisfied:

(2.1) ”Ff”HoSCO 1 fllz for any fEG,
22) (T3 Ff) (5, -)€C((— o0, —Caba(p+2), IAS™)
for any fEG,

2.3)  l@s T5 Ff) (s, Mlezsn-n=<Cols|=*~" || flla
for any fE€G, s<—Crin(p+2) and [ =0, 1, ---, —721——{—1 .
We have the following

Proposition 2.2. For any Cy>0, a>1/2 and any subset G CH, there exists
a constant C=C(p, at, Cy, G)>0 such that

IP% o Us(2) F flla, <C(1+2)~" || flla
holds for any t >0, FEA(Cy, a; G) and fEG.

Proof of Proposition 2.2. Noting that the definition of P4, and
1T gliz2cmxsn-n="27)"" ||gll%, (cf. [13]), we have

[1P% o Us(t) F£lI%,
— 4-1(27)~ D S

Cl-t.llnp-l
TS FF) (s, )xsnen ds

-oo

Thus, combining the above equality with (2.3), we get
2
IP% o Uult) F A Iy <472m) 0 - C0 (6= Cila )= 11
for any t>2C3l,(p+1) and fEG,

which implies Proposition 2.2 if we note that by the estimate (2.1) [|P% o U?)
F fllz,<C, || fllx holds for all >0 and fEG.

Furthermore, we need the following estimate:

Proposition 2.3. For any C,>0, a>1/2, p' > p and any subset GC H, there
exists a constant C=C(p’, at, Cy, G)>0 such that

(2.4) 1Uo(2) F fllaczon < C(14-2)=@=1A=22 | f]| 1,
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(2.5) NLUW®) F fLill 2oy < C(1-2) =D =22 || ]| 4
for any t>0, FEA(C,, @; G) and fE€G,
where [Uy(t) F f1, means the first component of Ut) Ff.
Proof of Proposition 2.3. Noting that for any g€ D(45), we have
[Uo(?) gli(x) = —27"2=)'~"
[ SI00) 1 P (0) (571 T T £) (o)™ 01, @) o,
=
[Un(?) gl(x) = 27'(2=)'~"
[0 S0 P0) (JE T 2) (0o} 00— 1, 0) do

(cf. Theorem 2.1 of Shibata and Soga [13]). These imply that there is a con-
stant C;>0 such that

—1
Cmino'—t

100 gl =< Cs p 0 ([ 7207 ITE T ) 5 ey dop
for any geD(47) .
Take @& C3(R) satisfying supp @C(—1, 1) and S“’ o(s) ds=1. For any
&>0, FEA(C,, ; G), and f G, we set ®
g = (T?)" [eexTs FfleD(AY),

where @,(s)=6"* @(67's). Then, for s<—Cri(p+2)—&and /=0, 1, ..., %—!—1,
we have

195 75 £ 5, e
oo 2
= {S S @o(s') (0L T3 Ff) (s—s', 0) ds’| dew}'?
sn—l -0

SS:ﬂ @) 105 TS F f) (s—', )l zen-n ds”,

which implies

18 T ge) (5, Mzzsn-n<Cy | s+l I flla

(2.6) " B
fori=0,1, ., -2——{—1, s<—Crip+2)—€and fEG.

Since J,(o)=(i0)"? X.(a), where X,(r)=7" for >0, X.(r)=0 for 7<0 (cf.
81 in Soga [14]), for k€ C5(R X S*1) J¥ k is represented as

T* ks, ) = % S: G R) (s—5', ) d”
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which yields
@D RS Nrern<—= 5P B (', llarsrn ds
NERD

for all k& CF(R, L*(S*-")) by using the density argument.
Now, we take @& CF(R) satisfying 0<P<1 in R, ®&(s)=1 in |s| <1, and
®(s)=01in |s] >2. For any R>0, we set

ger = (T3)[Be(s) (T Ff) (s, )| EH,,

where 5R(s)=<I>(R" s). Since T¢ g, =CF(R, LX(S*)), from (2.6) and (2.7)
we have

1T 76 ) 5 Mistorn=-Soc il 35 M4 R4 15

for all s<—Cl.(p+2)—€ and R>0,
where M,=("?) max [(3¢P~! @) (s)| >0 and
se
I(s) = S” s | s—s'g| -1 ds" .
0
Note that for s<—C3i.(p+2)—& and I=0, 1, -+, n/2,

1) =

<2|s|¥? max [s—s’—{—el""-{—j‘ s/ -WD-a-l g
</ <~

oo
-s

g |s—s'+&| ¢! ds'—{-g‘=° s’ | s—s'+-&| "2t ds’
-

0

4o - -
< 1 C , a+1/2 I,
<5y (1+E Cla, p) s+l

where Cy(at, p)>0 is independent of £>0. Hence, it follows that

4C, C, ap’®-V
VvV r(2a—1)

S0, R-om e Cl, p/—g)-co-0
=0

for any t>CLl(p'+p+2)+€ >0 and R>0.

1Us(2) ge,zllarczon < (14+& Cya, p)) V2Crin p’ flla

Then, we get (2.4) if we note that Uy(#) g, z— Uy(t) ge as R—>co in H,, Uy(?) ge—>
Uy(t) F f as &0 in Hy and ||Uy(£) F f|l5, <C, || fll# for any >0 and fEG.
As for (2.5), we note that

N[U®) gl 2501
<cqpevny|

-1/
'min ©

C T TE T 8) (5, s deshi

-1
—'cmin o
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for any geD(A4F), where C{>0 is a fixed constant. From the estimate
(1.1) and the assumption (A.2), we have lim ||g%||;2z,n=|lg||,25,» for any se-
jre
quence g’ € H, with lim g?=g in H,. Hence, the same argument as for (2.4)
jre
yields the estimate (2.5), which completes the proof of Proposition 2.3.

Now, we give some applications of Propositions 2.2 and 2.3, which are
used in the following sections.

Corollary 2.4. For any C,>0 and a>1/2, there exists a constant C=C
(ps &, C)>0 such that

1P5 0 Us(®) EU(#') fllre <C(14-2)= "2 || f]|r,
1Ut) EU) fllap <C(1+2)~ @22 | f]|
LU0 EU (') fllli2ap < C (14-2)~ @M 22 || f]| 1
for any t'>0,t>0 and fEV ,(C,) .
Proof of Corollary 2.4. By the definition of V,(C,), we have
(2.8) EU("YeA(Ch, a; V4, (Cy) forany t'>0,

where C{=max {C,, ||E||}. Thus, from Propositions 2.2 and 2.3, we have
Corollary 2.4.

Corollary 2.5. For any Cy>0 and a>1/2, there exists a constant C=C
(p, e, Co)>0 satisfying

G2 U () BU) fllacan < €)% fll

I U () BUE) fhillinn <C(1+1) 402
for any t' >0, t>2C1(p+1) and fEV (C)ND(A).
Proof of Corollary 2.5. The representation of Uy(t) g with g& D(A7) yields

n(dit Uy (2) gllacan
;:%ap_t

_c-}

min

<G p‘”"’”{s 1(8: J% T4 g) (5, *)llz2csn-ny ds}'’,

o—t

I Uo) (0 gl

Cmin'o_'t
<Cy et [T (T T ) (s e dsp

where C;>0 is independnent of g&D(A47) and £>0. Hence, noting (2.8), we
obtain Corollary 2.5 by the same argument as for Proposition 2.3.
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3. The operator X(t,t")

In the case of the odd #»>3, Lax, Morawetz and Phillips [8] introduce
the semigroup {Z(¢)} defined as Z(¢#)=P% U(t) P2. In [8], the property
lim ||Z(2)|| 5w, y=0 derived by the assumption (D) plays a crucial role to show
1>

that there is an exponential rate of the local-energy decay. We can say that the
decaying property of {Z(¢)} ensures the existence of the energy escaping part.
In the even dimensional case, however, the operator Z(¢) is not connected with
the rate of the local-energy decay. Thus, we have to make another operator
X(¢,t') which show the existence of the energy escaping part in the case of the
even n>4. This is the perpose in this section.

First, we fix a constant 0<p{<p, with 3QC B,; and take & C~(R") satis-
fying 0<+y»<1 in R", =1 in |x|>py =0 in |xl<po, where p,>0 is in
(1.4). For any t,¢t' >0, we define the operator X(¢,¢'): H—H, as

X(1,1') = P4, EUG) (U() — Uyt E).

Then we have the main result of this section which is a basic tool to prove Theo-
rem 0.1.

Proposition 3.1. Under the assumptions that are in Theorem 0.1, we have
1’2’2 Xt t')Wpwuy =0  uniformly int'>0.
To prove Proposition 3.1, we need the following extension operator.
Lemma 3.2. There exists a bounded linear operator E: H—H, satisfying
(3.1) Ef=f in |xI>p,

3.2) there is a constant C,>>0 such that

IIEfIIH(Bp')Scl [1flzcasn
forall f€H, p' >p,, where Qyy = QNB,,

(3.3) E : D(A%) — D(A}) is bounded with respect to the graph norm,
(3.4) Ep,=p; E.

Proof of Lemma 3.2. Note that it is sufficient to construct a linear operator
E®: C3(0)—C5(R") satisfying

3.5) EOy—=y in |x|>p,,
(3.6) 182 E® ul|p2em<C >3 |04 || 12
1<IBI<ial

for any ueCy(Q) and || >1,
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(3.7 NE® ulllzr < C || fuelll g
for any uC3(Q2), p' > po,
where C>0 is independnet of p’>p, and

1 L] -
Mllls = - § 33 @i Bey ) By () i

Because, employing the extension operator E®: C3(Q)—C5(R") obtained by
Seeley [12], we define E as Ef=4E® f,, E®f,), and then we can check that £
posesses the properties (3.1)~(3.3). The equality (3.4) is guaranteed by the
same argument as for (1.6).

Now, we construct E® by the same methods as in Ito [3]. For ueCF(Q),
we define b, ;(#) and a;(u) as

0uf) = 57 L, (O )50
a;(u) = Iﬂlpol [, 04— 33800 %) d,

where |Q, | is the volume of Q,. Set
(E® u(x)); = () o)+ @)+ 330y %) (= 1,2, -, m),
where v;(x)=u;(x)—(a;(u)+>37-1 b;;(u) x;). Then E® is linear, and (3.5) and

(3.6) are obvious.
Noting that b,;(x) is skew symmetric and the assumption (A.1), we have

(3-8) HED ulllzy = lllyrolllze »

where v=*(v,, v,, -+-, v,). Hence, the assumption (A.1) implies that
ED ullfsy = | <E@)+E(x), E@+E@> dx,
where E(x)=(&:(%)), Ei;(¥)= (%) (B, v;(x)+0s, vi(x))[2, E(8)=(E;4()), E;y(x)
=((0x, ) (%) 0;(x)+(Bs ) (%) ©:())/2, and
EE = 3 a&;Cy.

Since the assumptions (A.1) and (A.2) yield that < , > is an inner product in
the space of the symmetric # X #-matrix, we obtian

(3.9) NE® )3, < SB,/ KE®), E®)>+<E(x), E(x)D} dx
< “lvl”?zp"l'cz ”v“Lzz(on) )

where C,=max {33}, ;-1 @ipjp 0x; Y(%) 0z, Y(¥) E, E,| xER", EEC" with |E|=
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1}. Since we have S v(x)dx=0 and S {0, vj(%)—8.; vy(x)} dx=0 for
Qp, Qp,

i,j=1,2, ..., n, Poincare’s inequality, Korn’s second inequality, (cf. Ito [3] or
Duvant and Lions [2]) and the assumption (A.2) imply that

19112200 < Cpo) IV 2 2ll 22209 < C"(po) ll[@]l]ap -
Combining the above estimate with (3.9), we have
NED ][50 <(1+C; C'(po)) lllllly -

Thus the estimate (3.7) follows from ||v|||gs=Il|#|||q,» Which is guaranteed by
the same reason as for (3.8). This completes the proof of Lemma 3.2.

Next, we give the following estimate which is indispensable to prove Pro-
position 3.1.

. .
(3.10) 1X (5 ) Sl <C SV (= 57— ) fllacan
+11P2 o EU( 2 ) BV (2= 2 )l

for any t>7rN/C ., t' >0, fE€H, and N >1 integer, where
Vi, t')=U@)(U@E)—4U(t) E) .

In the above, we set r=2" C ;. CrL, p, where 5>0 is the same constant as in
the assumption (D).

Proof of (3.10). We denote by H the Hilbert space of the data with the

Neumann boundary condition and define an operator M: H—H as

M:U( r )—Uo( r )E

min Cmin

The operator M is well-defined because H is a closed subspace of H and the

restriction operator HyS fi—f|oEH is well-defined and bounded. Since the
propagation speed is less than C,,,, by the estimate (3.2) we obtain M f=0 in
| %] >p+(p/2) for any fEH and

(3.11) IMfllz<Cs||fllzp,w foranyfeH.

Now, by induction we start to prove that the estimate (3.10) holds with
the constant C=||E|| max {C;, Cy(C;+C3+1)} >0, where C,>0 (resp. C;>0)
is the same constant as in (3.2) (resp. (3.11)).

For the case of N=1, we decompose the operator X (¢, ¢') in the following
way:
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X, t’):Pﬁ,oEMV(t— 4 ,t)

1+ P2, EU, (c,:) EV (t—CL, t ) ,

min

where we note that E is able to be defined on H and has the same properties
as (1.2), (1.4) and (1.5). Combining the akove equality with the estimate (3.11),
we obtain (3.10) for N=1 with the constant C=||E|| max {C}, Cy(Cy+Cy+1)}.

Next, assuming that (3.10) is true for an integer N>1, we show the esti-
mate (3.10) for N+-1. First, we decompose EV (t—7N/Cpyn, t') as

Ev (t-C'N , t’) = EMV (t—M, t’)

min min

(3.12) (B, (C’ )—U., (C’ ))Ev(t—’%’_tl), t')

min min min

LU, (C’ )EV (z—’(gn—tl_), ).

min

From the property (3.1) and the estimate (3.2), it follows that

BV, (7)o ( 5" )) Bellag <(Ct- D 1o (5~ ) Eellncnr

C'min min

which yields

(13 IEU ()~ Us(5)) Bella <CUCA1) Nlaansm

because of (3.2) and the fact that the propagation speed is less than C,,,.
Hence, the estimates (3.11), (3.13) and the decomposition (3.12) imply that

P30 U (Z2) B (1= 2, 1) £l

min min

<IEN G, Cot CUCr-DHIY (+="EED, #) fllacan, i)

N+ g7 (,r(N+D
1P EU0<-E;:>EV<t o)l

for any tZM, >0 and feH.

min

Combining the above estimate with the assumption of the induction yields
(3.10) for N+1 with the constant C=||E|| max {C;, Cy(C;+C3+1)}>0. This
completes the proof of (3.10) for each integer N >1.

Now, we prove Proposition 3.1.  First, note that we have the following esti-
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mate.

Lemma 3.3. Under the same assumption that in Propotition 3.1, there is a
function g€ C ([0, o)) such that lim q(t)=0 and
-y

WV (% ') fllacesm<q(®) |l fllx
for any t,t'>0 and fEH .
We postpone the proof of Lemma 3.3, which will be given in the last part

of this section.
By means of Lemma 3.3 and (3.10), we can get Proposition 3.1 if we show

that there is a constant C >0 such that
(3.14) IP%.0 EUYs) EV (2, t')||5a,10 < C (1-+5) =0+
for any ¢, ¢',s>0.
Noting that P% , E(I—P% o) g=0 for any g€ H,, we have P , EUys) EV(t,t")=

» o EP% , Uys) EV(t,t'). Thus, by means of Proposition 2.2, to obtain (3.14)
it is sufficient to prove that there exists a constant C,>>0 satisfying

(3.15) EV(, t’)EA(Co, ";1;H> for any 2, #'>0.
First, we write EV(2, t') f as follows:

(3.16) Ev(,t)f =k, t'; f)+Rt, t'; 1),
where

kyt,t';f) = (E—E) U(t) (U(t")—Uft') E) f
+ U(®) (Ut )—EpUs(2) E f
kt, ¢'3 f) = (BU(t+2)— Ut+1) E) f
—(EU®)—Uy(t) E) wUt) Ef .
Since supp (g—E+rg)CB, for any g€H, and supp (E—E)g)CB, for any
gE H, the same argument as for the estimate (1.7) implies that
1(0: T3 Ru(t, 25 1)) (5, +)lazsn-y<C|s] ~**DE=1 ]| fl|4
(3.17) for any s<—Cl(p+2),¢t'>0,feH,
and /=0, 1, --~,%+1 .

Combining the estimate e/ (2)=||P% o EU(2) f|I%, <IIE|P || f|% with the estimate
in Lemma 1.2, we have

105 T Ro(t, 5 £)) (85 *)lazesn-n<C |s| =D || f]|4
(3.18)  for any s<—Czl(p+2), t,¢'>0,f€H, and [=0,1, -, %+1.
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From (3.16), (3.17) and (3.18), it follows that
@ T EV (2, ) f) (5, *)lzsn-5<C |s| ~=DE=1 || f]| 1
for any s<—Cglu(p+2), 8, t'>0,feH,
and [=0,1, -, %+1 :

Hence, combining the above estimate with the fact that EV(z, t'): H—H, are
uniformly bounded with respect to ¢,#'>0, we get (3.15). This completes the
proof of Proposition 3.1.

The rest in this section is devoted to proof of Lemma 3.3. 'To start with, we
decompose V(t,t') f as
(3.19) Ve, ') f = (U@)—Us) E) (U @)=y Uyt) E)
+US) E(U#)—pUfe) E) f .

By the same reason as for (3.15) with £=0 and #'>0, it follows that there is a
constant C,>>0 such that

(3.20) E(U(t')—«on(t’)E)EA(C‘o,"gl;H) for any #'>0.

Thus, Proposition 2.3 implies that

(3:21) [ U®) E(U@#) =4 Ut') E) fllzcaor » <C(148)"* || fllx
forallt,#">0 and f€EH,

since

(3:22)  Irgllacen <C {18l 2apn+ 1181l 22apn}
for any p'>p and g€H,.

For any geD(A), we set h(t)=(U(t)—U(t) E) g. Note that h(t)e D(4)
(cf. (1.3)). Since 4 f=*(f;, A(3.) f,) for fED(A) (cf. §2 of [13]), we have

fid? h(t) = Ah(t)+QUyt) Eg fortER,
h0) = (I—yE)g,
where Q: Hy—H is the bounded operator defined as
(3.23) Of = 40, A(8:) (v 1) —4(0:) fy) -
Thus Duhamel’s principle and the fact that D(A4) is dense in H yield

(UO—pUS) B) g = U I~y E) g+ || Ult—s) QUsls) B de
for any t€R and g€H.
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Hence, we have
324 IUO—U) B 2ellicarssy<NUE) T—4E) gllscans s
t
HIIf, Ut—s) QUs) Ber dslucarsir »

where we set g =(U(t")—Uyt') E)f. Since supp (I—E)g,cONB, and
H(I—AE) glla<C||fllx for a constant C independent of i'>0 and fEH, the
assumption (D) implies that

(3.25) 1U@#) I—VE) gllucap iy <Cp(2) |l fllx
for any ¢,#'>0 and fEH.
Noting that supp QgcQ N B, for any g€ H,, we obtain
(3.26) U (2—s) QU(s) Egillncap, 5 < p(t—5) [IQUu(s) Egyllx
for any t>s>0,¢'>0, f€H,
by the assumption (D). Since the definition of Q (cf. (3.23)) implies that

(3.27) 102llx<C {llgllaam+1l &1l 2cam}
for any geH,,

Proposition 2.3 and the fact (3.20) yield that there exists a constant C>0 such
that

(3.28) 1QU(s) Egilla < C (1+4-5)="2 || fll«
for any s5,£'>0 and f€H.

From the estimates (3.26) and (3.28), it follows that

1U (t—s) QUq(s) Egllacap. 1< CP(t—3) (14)" "2 I fllx
for any t>s>0,¢'>0 and f€ H,

which yields
t
(329) N Ut—9) QUs) Bgy dsllacansir <CT @) 1l
for any ¢,¢'>0 and feH.
In (3.29), we set ](:):j‘ P(t—s) (14-5)-r- ds=S°° X(t, 5) pt—s) (14+-5)~4=2 ds,
0 0

where X(¢, s)=1 for s<t¢and X(¢, s)=0 for s>¢. Noting that n>4 and lim X(, s5)
Pp(t—s)=0 for all fixed s>0, we have lim J(¢)=0 by the Lebesgue convergence

theorem. Hence, from (3.19), (3.21), (3.24), (3.25), and (3.29), it follows that
there exists a function ¢(¢) & C([0, o)) satisfying lim ¢(¢)=0 and
>
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V@, ) fllzae,»<q(®) ll fllx
for any ¢,¢'>0 and feH,

where ¢(2) is of the form ¢(£)=C {(1+2)=*"?+p(¢)+J(#)}. This completes the
proof of Lemma 3.3.

4. The uniform decay rate of ||P} , EU(t) f||g,
Our goal in this section is to prove the following property which plays an

important role in the proof of Theorem 0.1.

Proposition 4.1. Under the same assumption that in Theorem 0.1, there
exists a constant C=C(p)>0 such that
1P%.0 EU®) flla, <C(1+2)™" || flla
for any t>0 and fEH" .
Proposition 4.1 is a direct consquence from Corollary 1.3 and the follow-
ing proposition.
Proposition 4.2. Under the same assumption that in Theorem 0.1, for any
Cy>0 and a>1(2, there exists a constant C=C(p, at, Co) >0 such that
1P% 0 EU(2) fllre <C(1+2)= 2 || |5
for any t >0 and fEV (C,).
In fact, (1.8), Proposition 4.2 and (1.10) imply that H°CV,,,(C¥{) for some

fixed constant Ci=C7(p)>0. Hence, from Proposition 4.2 and (1.9) it follows
that there is a constant Cy=Cy(p)>0 such that

(4.1) HPCV 112 Co) »
which yields Proposition 4.1. This procedure is the same as in Melrose [10].

In the following of this section, we prove Proposition 4.2. The original
idea of the proof is given by Melrose [10]. However, his proof is very compli-
cated. Hence, we give the different proof of Proposition 4.2. We set

T, = inf {t=0] |P%,0 EU() flla, <27 1E fllx,
for any ¢'>t and fEV,(Cy)},
for each non-negative integer p. Note that 7y>0 exists. By induction we
show that T',>0 exists really for every p>1. Noting that P% U(t) (I—P%)=0
for all >0, we have
PLU@+t'+T)f=PLU@R) U()PLU(T,) f
— P4 U() (U()—yUt) E) P U(T,) f



832 M. KawasHITA
+P5 U(t) P5 yUy(t') EPS, U(T,) f
forany ¢,#'>0 and feH.
Thus, the property (1.6) implies that

SoEU@+t+T) f= X, t")PLU(T,) f
*.2) P30 EU() P% pU(¥') P50 EU(T)) f
for any ¢,¢'>0 and f€H.

Proposition 3.1 yields that there exists a constant 77>0 such that
X, t)|sa,up<1/4 forany:>T and t'>0,
which imples that

(4.3) 1X (2, 2") P& U(Ty) fllag<2~%* ||E f |,
forany ¢t>T,¢'>0 and feV,(C,).

In (4.3), we use the definition of T, and the estimate
1% U(T) flla<IIEP U(T)) flla, = 11P%.0 EU(T)) flla, -

Noting that P o g€ (D5)™ (cf. the argument for (1.6)) and (y»—1) (I—P% o)
g=0 for any g€ H, we have

4.4) Pi(yrg) = P, og foranygeH,,
which yields
(4.5) 2.0 EU(8) P4 wUy(t') P4 o EU(T,)

= PLo BU(2) wP% 0 Uft') EU(T)) f
for any ¢,#'>0 and f€EH,
where we use the fact that P4 o Uy(t) (I—P% ,)=0 for all £2>0. Since the opera-

tor P4, o EU(¢) y»: Hy—H, is uniformly bounded for any & R, Corollary 2.4 and
(4.5) imply that there is a constant C,=Cy(a, C) >0 satisfying

1P 0 EU(2) P4 pUo(t') P50 EU(T)) flla, < Ci(1+2) "2 | |E f||4,
for any ¢,¢'>0 and f€V,(C,) .
Now, we take t; as C;2,~ @ ¥D=2-0+D that is, tj=C, 2°¢*D/Ce-1) where C,=
C3/@=-1)_ Then it follows that

[1P%.0 EU(2) P 4 Uo(#;) P4 o EU(T)) fllay <27%*2 ||E f ||,
for any t>0 and feV,(C,).
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Combining the above estimate with (4.3) and (4.2), we get

(4.6) 12 o EU(t+84+T,) flla, <2-¢* || |,
forany t>T and feV,(C,).
By (4.6), existence of T, is obvious and furthermore we obtain that T',,,;<C;
2x0+0)/Ce-D) L T for any positive integer p, where the constant C,=C,-+T is in-
dependent of p. Now, we define {Tp} p=0,1, S 'f‘;ﬂz ’f"p—}- C, 2%6+2(@a-1) T‘o=0.
Then it follows that T,Z T, for any p=0, 1, ---, and there exist constants C,>0
and C;>0 satisfying T,<C,2%#/¢-D and T,,,<C; T, for any p=1,2, ..
Thus, for any :=>0 with 'f;éts 'f;ﬂ and p>1, we have

4.7) [1P%.0 EU@) fllg,<27? ||E f||a,
S(CLC) @ E| =2 | fllw
for any fEeV ,(C,),
-1

where we use 2-?<CE-V) T5@-1L(C, Cy)@-1» T5@-1m and T3l <t
Combining the estimate (4.7) with the fact that ||P% o EU(2) fl|x, <I|E|| || f]| for
any >0 and f € H, we obtain Proposition 4.2.

5. Proof of Theorem 0.1

Now, we begin to prove (0.2). To start with, for any #,#'>0 and fEeH
we have

(1) U 28) fllzan <IU @)= Us(?) E) U(#) fllam
v Uo(2) EU(2) fllacap -

From Corollary 2.4, (4.1) and the estimate (3.22), it follows that there exists a
constant C;>0 satisfying

(5:2) ll-Uo(®) EU(2) fllaon <Ci(1+2) 7" || fllz
for any t>0 and feH".

In the same way as (3.24), we have

(5.3) U=y Usd) B) U fllacan< 2 I(E )
where

1463) = 1U@) (—E) VO lcan
Lt = I, Ut—5) QU9 EUE) f dillacan

It f) = IIS , U9 QUs) EU (1) f dsllacan -

t
7
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Since P%, g=g in Q,, from Proposition 4.1, (1.2) and (1.6) it follows that

(5.4) U @) gllxan < Co(1+8)™* lIglla
for any t>0 and g€H".

Noting that P U(t) (I—P%)=0 for any t>0 and P (yrg)=+-P% g for any g€ H
which is proved by the same argument to deduce (4.4), we have

I(% ) = IU(#) (1—4E) PL U®) fllzcon
SC(14+8)~* |(1—yE) PL U@ fllw »

where we use (5.4) and supp (1—+E)gCB,. Hence, Proposition 4.1 implies

(5.5) I(t; /)SC (148" I flla
for any t>0 and feH".

From the estimate (3.27) and the fact that P%, ,g=g in B,, it follows that
11081l <C {IIP% 0 gllacap +1[P% 0 £lillz2am} » Which yields
(5.6) 1QU(s) EU(2) flla < C, || P% 0 Ug(s) EU(2) fllm,
for any s,#>0 and fEH",
if we note the estimate (1.1), Korn’s inequality (cf. [3] or [11]) and the assump-

tion (A.2). Since we have P% , Uy(s) (I—P% )=0 for all s>0, Proposition 4.1
implies that

1QUq(s) EU(2) flla<Cs(142)~" || flla
for any s,#>0 and fEH".

From the above inequality and (5.4), it follows that

1T (2—s) QU(s) EU(2) fllacap
<G, Cy(1+1—9)~"1+2)""2|| flla
for any t>s>0 and f€H",
where we use the fact that supp Qgc QN B, for all g H, (cf. (3.23)). Hence,
we obtain
-n+1
(5.7) Lt )< (14-2) 7 Il
n—2 2
for any >0 and feH".
For Iy(t; f), by means of the estimate (3.27), the same argument as for (5.2)
yields that

(5.8) 1QU(s) EU(2) flla <Co(1+5)""* || flla
for any s,¢>0 and feH".
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From the estimates (5.4) and (5.8) it follows that

1T (t—s) QU(s) EU(2) fllzcan
<G, Co(1+2—5)""2(1+5)""* || fllx
for any t>s>0 and fE€H".

Hence, we have

69 KuH<Zal(

~-n+1
1+ e
for any t>0 and feH".
From (5.1), (5.2), (5.3), (5.5), (5.7) and (5.9) it follows that
t -n+1
1@ la<C, (14+-5) ™ il
for any t>0 and fEH",
which completes the proof of (0.2).

In the last, we prove (0.3). In the argument for (0.2), we replace
NU(2t) fllzcasy bY I[U(2%) f1oll2%@py- Then from the estimate (0.2) it follows
that the estimate (0.3) holds if we obtain the following estimate:

610 I@GHC(142) " Il
for any t>0 and feH*ND(4),

where
1659) = 11 [/, [U(t—9) QU(s) EU(®) fTa dellzcan -
For any data g D(4,), we have
[U(t—s) QUIs) gl = [AU(t—5) QUi gl = [ (35 U ) ¢—5) QUie) b

where we note that QgeD(A4) if geD(4,), Since [Qg],=0 for any g€ H,
(cf. (3.23)), the integration by parts yields

G11) 16N U9 0 (L Us) () EUE fhllian de
+irv (%) 0U,(£) EU flillan
for any feH*ND(4).

By Proposition 4.1 we have
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(5.12)  |I[U(2—9) ghll 2w < Ce(1+2—5)""*|Igllx
for any t>s>0 and geH,

where we use the same argument as for (5.6). From Corollary 2.5 and the
estimate (3.27) it follows that

10 (£ Us) ) BU) fla<Cul1+9)* 1/l
for any t>0, s>2C3i.(p+1) and feH’ND(4).
By the above estimate, (5.12) and (5.11) we have
1:0<Z8S (14-2) 7 flly

+||[U( ) 0U(£) EU flllzran
for any t>4Cz1,(p-+1) and fEH? ND(A).
The above estimate, (5.12) and (5.8) imply that
16:0< (20106 ) (142) Il
for any t>4C1 (p-+1) and fEH?ND(A).

Since we have I(¢; f)<Iy(t;f) for any >0 and f € H, from the above estimate
and (5.9) it follows that the estimate (5.10) holds. This completes the proof of
Theorem 0.1.
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