BEHAVIOR OF SOLUTIONS AT THE INITIAL TIME IN NONLINEAR PARABOLIC DIFFERENTIAL EQUATION

Dedicated to Professor Hiroki Tanabe on his 60th birthday

Нıroко OKOCHI

(Received March 6, 1992)

1. Introduction and Results

This note is concerned with the nonlinear parabolic differential equation
$(\mathrm{E} ; \boldsymbol{\varphi})$

$$
\frac{d}{d t} u(t)+\partial \varphi(u(t)) \ni 0, \quad t>0
$$

where φ is a proper lower semi-continuous (l.s.c.) convex functional defined on a real Hilbert space H and $\partial \varphi$ denotes the subdifferential of φ. We call an H valued function u on $(0, \infty)$ a solution of ($\mathrm{E} ; \boldsymbol{\varphi})$ if $u \in W_{\mathrm{loc}}^{1,2}((0, \infty): H)$ and the relations $u(t) \in \mathscr{D}(\partial \varphi)$ and $-(d / d t) u(t) \in \partial \varphi(u(t))$ hold for a.e. $t>0$.

As is well known, the subdifferential $\partial \varphi$ of a proper l.s.c. convex functional φ on a real Hilbert space H is a maximal monotone operator in H. Hence $-\partial \varphi$ generates a possibly nonlinear semigroup $\{\exp (-t \partial \varphi): t \geq 0\}$ on $\overline{\mathscr{D}(\partial \varphi)}$. In other words, for each $x \in \overline{\mathcal{D}(\partial \varphi)}$ the function $\exp (-(\cdot) \partial \varphi) x$ on $[0, \infty)$ is the unique solution of the initial value problem of $(\mathrm{E} ; \varphi)$ and $\mathrm{s}-\lim _{t \downarrow 0} u(t)=u(0)=x$.

In this note, our starting position is being given a solution $u \in$ $W_{\mathrm{loc}}^{1,2}((0, \infty): H)$ of (E; φ), not being given an initial value of $\overline{\mathscr{D}(\partial \varphi)}$, and our purpose is to study the behavior of $u(t)$ as $t \downarrow 0$. Our results are the following.

Theorem 1.1. Suppose that $\operatorname{dim} H=\infty$. Then there is a proper l.s.c. convex functional φ on H and a solution u of $(\mathrm{E} ; \varphi)$ such that $u(t)$ converges weak$l y$, but not strongly, to a point of $\mathscr{D}(\partial \varphi)$ as $t \downarrow 0$.

Remark 1.1. Let $v(\cdot)$ be the solution of ($\mathrm{E} ; \varphi$) in Theorem 1.1. Put $x=\mathrm{w}-\lim _{t \downarrow 0} v(t) \in \mathscr{D}(\partial \varphi)$. If we consider an initial value problem of ($\mathrm{E} ; \boldsymbol{\varphi}$) with a generalized initial condition

$$
\mathrm{w}-\lim _{t \downarrow 0} u(t)=x,
$$

then we have at least two solutions $v(\cdot)$ and $\exp \{-(\cdot) \partial \varphi\} x$, where $\{\exp (-t \partial \varphi)$: $t \geq 0\}$ denotes the nonlinear semigroup generated by $-\partial \varphi$.

Remark 1.2. In the case where $\partial \varphi$ is linear, hence $\partial \varphi$ is a nonnegative selfadjoint operator in H by definition, then for each $-\boldsymbol{\tau}<0$ there is a Hilbert space $X_{-\tau}$ satisfying the dense imbedding $H \subset X$ and a generator $A_{-\tau}$ such that every solution $u \in W_{\mathrm{loc}}^{1,2}((0, \infty): H)$ of ($\mathrm{E} ; \varphi$) can be extended uniquely on $(-\tau, \infty)$ as a solution of $(d / d t) u+\mathcal{A}_{-\tau} u \ni 0, i>-\tau$, in $X_{-\tau}$ (Arisawa [1]). However Theorem 1.1 shows that in nonlinear cases this extension may be impossible. In fact, if the solution v of Theorem 1.1 is extended on $[0, \infty)$ to X continuously in X norm's topology for some space X satisfying the dense imbedding $H \subset X$, then the inclusion $X^{*} \subset H^{*}$ implies that $X-\mathrm{s}-\lim _{t \downarrow 0} v(t)=H-\mathrm{w}-\lim _{t \downarrow 0} v(t) \in \mathscr{D}(\partial \varphi)$. Hence there is no family $\{S(t): t \geq 0\}$ of single valued mappings in X such that $S(t) \supset \exp (-t \partial \varphi)$ for $t \geq 0$ and $X-\mathrm{s}-\lim _{t \downarrow 0} S(t) x=x$ for $x \in \mathscr{D}(\partial \varphi)$.

Theorem 1.2. Suppose that φ satisfies a generalized evenness condition

$$
\begin{equation*}
\varphi(-c x) \leq \varphi(x), \quad x \in \mathscr{D}(\varphi) \tag{1.1}
\end{equation*}
$$

for some positive constant c. Let u be an arbitrary solution of $(\mathrm{E} ; \boldsymbol{\varphi})$ such that the orbit $\{u(t): t \in(0,1]\}$ is bounded. Then u converges strongly as $t \downarrow 0$. In particular, if a solution u of $(\mathrm{E} ; \varphi)$ converges weakly as $t \downarrow$, then the strong convergence $\mathrm{s}-\lim _{t \downarrow 0} u(t) \in H$ holds.

Remark 1.3. In Theorem 1.2, the assumption of the boundedness of the orbit $\{u(t): t \in(0,1]\}$ is essential to get the strong convergence of $u(t)$ in H as $t \downarrow 0$. In fact, there is a functional φ such that (i) the generalized evenness condition (1.1) holds; and (ii) there is a solution u of ($\mathrm{E} ; \varphi$) with the orbit $\{u(t)$: $t \in(0,1]\}$ unbounded (hence, $u(t)$ does not converge strongly as $t \downarrow 0$). To see this, we put, for example, $H=\boldsymbol{R}$ and $\varphi(x)=3^{-1}|x|^{3}, x \in \boldsymbol{R}$. Let $u \in W_{\text {loc }}^{1,2}((0,1] ;$ $\boldsymbol{R})$ be the solution of $(\mathrm{E} ; \boldsymbol{\varphi})$ satisfying $u(1)=1$. Then, one has $u(t) \uparrow+\infty$ as $t \downarrow 0$.

Remark 1.4. The generalized evenness condition (1.1) is known to be sufficient for that all solutions of ($\mathrm{E} ; \boldsymbol{\varphi}$) converge strongly as $t \rightarrow \infty$ (eg. [6]).

2. Proof of Theorem $\mathbf{1 . 1}$

Given an infinite dimentional Hilbert space H with inner product $(\cdot, \cdot \cdot)$ and norm $\|\cdot\|$, let $H=l^{2} \oplus H_{1}$. To define the aimed functional $\varphi: H \rightarrow(-\infty, \infty]$, we first define a function $f_{\lambda}: \boldsymbol{R}^{2} \rightarrow[0, \infty], \lambda>1$, by

$$
f_{\lambda}(\xi, \eta)= \begin{cases}\left(\xi^{2}+\eta^{2}\right)^{1 / 2}\left\{\operatorname{Tan}^{-1}(\eta / \xi)\right\}^{\lambda}, & \text { if } \xi>0, \quad \eta \geq 0 \tag{2.1}\\ \eta\left(2^{-1} \pi\right)^{\lambda}, & \text { if } \xi=0, \quad \eta \geq 0 \\ +\infty, & \text { otherwise }\end{cases}
$$

Then, for each $\lambda>1, f_{\lambda}$ is 1.s.c. and convex on \boldsymbol{R}^{2} (see Baillon [2; Lemma 1]). Fix a number $b>1$ and put

$$
\begin{equation*}
\lambda_{i}=\frac{\pi^{2}}{8} \frac{b}{b-1} b^{i}, \quad i=1,2, \cdots \tag{2.2}
\end{equation*}
$$

For each sequence $\alpha=\left\{\alpha_{i}\right\}$ of positive number, we define a proper l.s.c. convex functional $\varphi_{\alpha}: H \rightarrow[0,+\infty]$ by

$$
\begin{aligned}
& \mathscr{D}\left(\boldsymbol{\varphi}_{\alpha}\right)=\left\{\left(x_{i}\right)_{i=1}^{\infty}+0 \in l^{2} \oplus H_{1}: \sum_{i=1}^{\infty} \alpha_{i} f_{\lambda_{i}}\left(x_{i}, x_{i+1}\right)<\infty\right\} \\
& \varphi_{\alpha}(x)= \begin{cases}\sum_{i=1}^{\infty} \alpha_{i} f_{\lambda_{i}}\left(x_{i}, x_{i+1}\right), & x=\left(x_{i}\right)_{i=1}^{\infty}+0 \in \mathscr{D}\left(\varphi_{\infty}\right) \\
+\infty, & \text { otherwise }\end{cases}
\end{aligned}
$$

Next, let $\left\{a_{n}\right\}$ be a sequence in l^{2} defined by

$$
\begin{align*}
& a_{1}=(1,0,0, \cdots) \\
& a_{2}=\left(0, \exp \left(\frac{\pi^{2}}{8} \frac{1}{\lambda_{1}}\right), 0,0, \cdots\right) \tag{2.3}\\
& a_{n}=\left(0, \cdots, 0, \exp \left[\frac{\pi^{2}}{8}\left(\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\cdots+\frac{1}{\lambda_{n-1}}\right)\right], 0, \cdots\right)
\end{align*}
$$

Then $\left\{a_{n}+0\right\}$ converges to $0 \in H$ weakly as $n \rightarrow \infty$, but does not converge strongly, since $\lim _{n \rightarrow \infty}\left\|a_{n}+0\right\|=\exp (1 / b)<+\infty$ by (2.2).

Let $\varepsilon \in(0,1)$. To prove Theorem 1.1, we have only to see that there is a sequence $\alpha=\left\{\alpha_{i}\right\}$ and a solution $\left.u \in W_{\text {loc }}^{1,2}(0, \infty) ; H\right)$ of $\left(\mathrm{E} ; \varphi_{\alpha}\right)$ such that the estimate

$$
\begin{equation*}
\left\|u\left(\tau_{n}\right)-a_{n}\right\|<\varepsilon^{n}, \quad n=1,2, \cdots \tag{2.4}
\end{equation*}
$$

holds for some sequence $\left\{\tau_{n}\right\}$ with $\tau_{n} \downarrow 0$ as $n \rightarrow \infty$. We verify this in a number of lemmas below.

The first lemma is a direct result of the definition (2.1).

Lemma 2.1.

$$
\begin{align*}
& \frac{\partial f_{\lambda}}{\partial \xi}(\xi, \eta)=\theta^{\lambda-1}(-\lambda \sin \theta+\theta \cos \theta) \tag{i}\\
& \frac{\partial f_{\lambda}}{\partial \eta}(\xi, \eta)=\theta^{\lambda-1}(\lambda \cos \theta+\theta \sin \theta), \quad \xi, \eta>0
\end{align*}
$$

where $\theta=\operatorname{Tan}^{-1}(\eta / \xi)$.

$$
\begin{equation*}
\partial f_{\lambda}(\xi, 0) \ni 0, \quad \xi \geq 0 \tag{ii}
\end{equation*}
$$

We define a family $\left\{F_{n}: n=1,2, \cdots\right\}$ of functionals on H by

$$
\mathscr{D}\left(F_{n}\right)=\left\{\left(x_{i}\right)_{i=1}^{\infty}+0 \in l^{2} \oplus H_{1}: f_{\lambda_{n}}\left(x_{n}, x_{n+1}\right)<\infty\right\}
$$

$$
F_{n}(x)= \begin{cases}f_{\lambda_{n}}\left(x_{n}, x_{n+1}\right), & x=\left(x_{i}\right)^{\infty}=1+0 \in \mathscr{D}\left(F_{n}\right), \\ +\infty, & \text { otherwise }\end{cases}
$$

Then each F_{n} is l.s.c. and convex. Let $\left\{\exp \left(-t \partial \varphi_{a}\right): t \geq 0\right\}$ and $\left\{\exp \left(-t \alpha_{n} \partial F_{n}\right)\right.$: $t \geq 0\}, \alpha_{n}>0$, be the semigroups generated by $-\partial \varphi_{a}$ and $-\alpha_{n} \partial F_{n}$, respectively. We note the following lemma.

Lemma 2.2. (Baillon [2; Lemma 2]) For $\alpha_{n}>0$,

$$
s-\lim _{t \rightarrow \infty} \exp \left(-t \alpha_{n} \partial F_{n}\right) a_{n+1}=a_{n}
$$

Now, for each n, we put

$$
\left|\partial F_{n}\right| \equiv \sup \left\{\left\|\partial F_{n} x\right\|: x=\left(x_{i}\right) \in \mathscr{O}\left(\partial F_{n}\right), \quad x_{n}, x_{n+1}>0\right\}
$$

Then, by Lemma 2.1,

$$
\begin{equation*}
\left|\partial F_{n}\right|=(\pi / 2)^{\lambda_{n}-1}\left\{\lambda_{n}^{2}+(\pi / 2)^{2}\right\}^{1 / 2} \tag{2.5}
\end{equation*}
$$

Lemma 2.3. Let $\alpha=\left\{\alpha_{i}\right\}$ be an arbitrary sequence. Then, for each n,

$$
\left\|\exp \left(-t \partial \varphi_{\alpha}\right) a_{n+1}-\exp \left(-t \alpha_{n} \partial F_{n}\right) a_{n+1}\right\| \leq t \sum_{i=1}^{n-1} \alpha_{i}\left|\partial F_{i}\right|, \quad t \geq 0
$$

Proof. Fix an arbitrary integer n. Put

$$
u_{\alpha}(t)=\exp \left(-t \partial \varphi_{\alpha}\right) a_{n+1}, \quad u_{n}(t)=\exp \left(-t \alpha_{n} \partial F_{n}\right) a_{n+1}, \quad t \geq 0
$$

Since $\left(\partial F_{i}\right) a_{n+1} \ni 0$ for $i \geq n+1$ by Lemma 2.1 (ii), the well-known equation $\left\|(d / d t) u_{\alpha}(t)\right\|=\min \left\{\|x\|: x \in \partial \varphi_{\omega}\left(u_{\infty}(t)\right)\right\}, t>0$, implies that

$$
\begin{aligned}
& u_{\alpha}(t)=\left(u_{\alpha, 1}(t), \cdots, u_{\alpha, n+1}(t), 0, \cdots\right)+0 \in l^{2} \oplus H_{1} \\
& u_{n}(t)=\left(0, \cdots, 0, u_{n, n}(t), u_{n, n+1}(t), 0, \cdots\right)+0 \in l^{2} \oplus H_{1}
\end{aligned}
$$

Hence, one has the estimate

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left\|u_{\alpha}(t)-u_{n}(t)\right\|^{2} \\
& \quad=\alpha_{n}\left(-\partial F_{n}\left(u_{\alpha}(t)\right)+\partial F_{n}\left(u_{n}(t)\right), u_{\alpha}(t)-u_{n}(t)\right)+\sum_{i=1}^{n-1}\left(\alpha_{i} \partial F_{i}\left(u_{\alpha}(t)\right), u_{\alpha}(t)-u_{n}(t)\right) \\
& \quad \leq 0+\sum_{i=1}^{n-1} \alpha_{i}\left|\partial F_{i}\right|\left\|u_{\alpha}(t)-u_{n}(t)\right\|, \quad t>0,
\end{aligned}
$$

or

$$
\frac{d}{d t}\left\|u_{\alpha}(t)-u_{n}(t)\right\| \leq \sum_{i=1}^{n-1} \alpha_{i}\left|\partial F_{i}\right|, \quad t>0
$$

Therefore Lemma 2.3 was proved.

Lemma 2.4. For each $\varepsilon \in(0,1)$, there is a sequence $\alpha=\left\{\alpha_{i}\right\}$ and positive numbers $t_{n}, n=1,2, \cdots$ such that

$$
\begin{array}{ll}
\left\|\exp \left(-t_{n} \partial \varphi_{a}\right) a_{n+1}-a_{n}\right\| \leq \varepsilon^{n}, & n=1,2,3, \cdots \\
t_{n} \leq \varepsilon^{n}, & n=1,2,3, \cdots \tag{2.7}
\end{array}
$$

Proof. We show the existence of the aimed sequences α and $\left\{t_{n}\right\}$ inductively. First, by Lemma 2.2, there is $T_{1}>0$ such that

$$
\left\|\exp \left(-T_{1} \partial F_{1}\right) a_{2}-a_{1}\right\| \leq \varepsilon .
$$

Put $t_{1}=\varepsilon$. Let α be an arbitrary sequence satisfying $\alpha_{1}=t_{1}{ }^{-1} T_{1}$. Then both (2.6) and (2.7) hold for $n=1$, since $\exp \left(-t \partial \varphi_{\alpha}\right) a_{2}=\exp \left(-t \alpha_{1} \partial F_{1}\right) a_{2}, t>0$.

Next, let k be an arbitrary integer. Assume that there are positive numbers $\alpha_{1}, \cdots, \alpha_{k}$ and t_{1}, \cdots, t_{k} such that, for any sequence α with the first k numbers $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}$, estimates (2.6) and (2.7) hold for $n \leq k$. By Lemma 2.2, let T_{k+1} be a number such that

$$
\begin{equation*}
\left\|\exp \left(-T_{k+1} \partial F_{k+1}\right) a_{k+2}-a_{k+1}\right\| \leq 2^{-1} \varepsilon^{k+1} \tag{2.8}
\end{equation*}
$$

Put

$$
\alpha_{k+1}=\max \left\{\varepsilon^{-k+1} T_{k+1}, 2 T_{k+1} \varepsilon^{-k-1} \sum_{i=1}^{k} \alpha_{i}\left|\partial F_{i}\right|\right\}, \quad t_{k+1}=\alpha_{k+1}^{-1} T_{k+1}
$$

Then, estimate (2.7) holds for $n=k+1$. To verify (2.6) for $n=k+1$, let α be an arbitrary sequence whose first $k+1$ numbers are $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k+1}$, respectively. Lemma 2.3 implies

$$
\begin{gathered}
\left\|\exp \left(-t_{k+1} \partial \varphi_{a}\right) a_{k+2}-\exp \left(-t_{k+1} \alpha_{k+1} \partial F_{k+1}\right) a_{k+1}\right\| \\
\leq t_{k+1} \sum_{i=1}^{k} \alpha_{i}\left|\partial F_{i}\right| \leq 2^{-1} \varepsilon^{k+1}
\end{gathered}
$$

Noting that $T_{k+1}=t_{k+1} \alpha_{k+1}$ in (2.8), we get (2.6) for $n=k+1$.
Consequently, there are sequences α and $\left\{t_{n}\right\}$ satisfying (2.6) and (2.7) for every n.

Lemma 2.5. Fix $\varepsilon \in(0,1)$. Let $\alpha=\left\{\alpha_{i}\right\}$ and $\left\{t_{n}\right\}$ be as mentioned in Lemma 2.4. Put

$$
\begin{equation*}
\tau_{n}=\sum_{t=n+1}^{\infty} t_{i}, \quad n=1,2, \cdots \tag{2.9}
\end{equation*}
$$

Then there is a solution $u \in W_{\mathrm{loc}}^{1,2}((0, \infty) ; H)$ of $\left(\mathrm{E} ; \varphi_{\alpha}\right)$ such that estimate (2.4) holds.

Proof. Define functions $v_{n} \in W_{\text {loc }}^{1,2}\left(\left[\tau_{n}, \infty\right) ; H\right), n=1,2, \cdots$, by

$$
\begin{equation*}
v_{n}(t)=\exp \left(-\left(t-\tau_{n}\right) \partial \varphi_{\alpha}\right) a_{n+1}, \quad t \geq \tau_{n}, \quad n=1,2, \cdots \tag{2.10}
\end{equation*}
$$

Then by (2.6) and the nonexpansivity of the semigroup $\left\{\exp \left(-t \partial \varphi_{a}\right)\right\}$, one has

$$
\begin{equation*}
\left\|v_{n}(t)-\dot{v}_{m}(t)\right\| \leq \sum_{i=m+1}^{n} \varepsilon^{i}, \quad m<n, \quad t \geq \tau_{m} \tag{2.11}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\left\|v_{n}\left(\tau_{m}\right)-a_{m}\right\| \leq \varepsilon^{m}, \quad m<n \tag{2.12}
\end{equation*}
$$

Since $\tau_{n} \rightarrow 0$ as $n \rightarrow \infty$ by (2.7) and (2.9), there is a function $u:(0, \infty) \rightarrow H$ such that for each $\delta>0$

$$
\mathrm{s}-\lim _{\substack{n \geq N_{n}(\delta)}} v_{n}(t)=u(t) \quad \text { uniformly on }[\delta, \infty)
$$

By (2.12), u satisfies (2.4).
Now to complete the proof of Lemma 2.5, we have only to see that u belongs to $W_{\text {loc }}^{1,2}((0, \infty) ; H)$ and is a solution of $\left(\mathrm{E} ; \varphi_{\alpha}\right)$. To verify this, it is enough to see that for each $k=1,2, \cdots$, the set $\left\{\partial \varphi\left(v_{n}\left(\tau_{k}\right)\right): n=k+1, k+2, \cdots\right\}$ is bounded in H, since $\partial \varphi$ is strongly-weakly continuous from H to H. Fix arbitrary k. From Lemma 2.1 (i) and (2.12), it follows that

$$
\begin{array}{r}
\left.\int_{\tau_{k+1}}^{\tau_{k}}\left\|(d / d t) v_{n}(t)\right\| d t<\int_{0}^{\tau_{k}-\tau_{k+1}} \|(d / d t)\left\{\exp \left(-t \alpha_{k} \partial F_{k}\right) a_{k+1}\right)\right\} \| d t+\varepsilon \equiv c(k), \\
n \geq k+1 .
\end{array}
$$

Since $\left\|(d / d t) v_{n}(\cdot)\right\|$ are decreasing,

$$
\left\|(d / d t) v_{n}\left(\tau_{k}\right)\right\|<\left(\tau_{k}-\tau_{k+1}\right)^{-1} c(k), \quad n \geq k+1
$$

Hence the set $\left\{\partial \rho_{\alpha}\left(v_{n}\left(\tau_{k}\right)\right): n \geq k+1\right\}$ is bounded, and Lemma 2.5 was proved.
Remark 2.1. In the above example, the weak limit of the solution $u(t)$ as $t \downarrow 0$ happened to be a minimum point of φ_{α}. But we can revise the functional φ of Theorem 1.1 such that the set of minimum point of φ is empty. In fact, we can define the aimed functional φ as below. Put $H=\left\{\mathrm{re}_{0}: r \in \boldsymbol{R}\right\} \oplus H_{0}$, where $e_{0} \in H \backslash\{0\}$. Let $\varphi_{\alpha}: H_{0} \rightarrow[0, \infty]$ and $u_{0}:[0, \infty) \rightarrow H_{0}$ be the functional and the solution, respectively, obtained in the above proof of Theorem 1.1. Put

$$
\begin{aligned}
& \mathscr{D}(\boldsymbol{\varphi})=\left\{r e_{0}: t \in \boldsymbol{R}\right\}+\mathscr{D}\left(\boldsymbol{\varphi}_{a}\right) \subset\left\{r e_{0}: r \in \boldsymbol{R}\right\} \oplus H_{0} \\
\varphi(x)= & \left(x, e_{0}\right)+\varphi_{\alpha}\left(\operatorname{Proj}_{H_{0}} x\right), \quad \text { if } x \in \mathscr{D}(\boldsymbol{\varphi}) ;=+\infty, \text { otherwise. }
\end{aligned}
$$

Then φ does not attain the minimum in H. The H-valued function $u(t)=$ $-t e_{0}+u_{0}(t)$ on $t \in(0, \infty)$ is a solution of ($\mathrm{E} ; \boldsymbol{\varphi}$) and converges weakly to $0 \in H$ as $t \downarrow 0$, but does not converge strongly.

3. Proof of Theorem 1.2

Let $u \in W_{\mathrm{loc}}^{1,2}((0, \infty) ; H)$ be a solution of $(\mathrm{E} ; \boldsymbol{\varphi})$. Then, since

$$
\frac{d}{d t} \varphi(u(t))=-\left\|\frac{d}{d t} u(t)\right\|^{2}, \quad \text { a.e. } t>0
$$

the value $\varphi(u(t))$ is decreasing on $(0, \infty)$. The definition of the subdifferential and condition (1.1) yield

$$
\begin{aligned}
\left(-c u(t)-u(\tau),-u^{\prime}(\tau)\right) & \leq \varphi(-c u(t))-\varphi(u(\tau)) \leq \varphi(u(t))-\varphi(u(\tau)) \\
\leq 0, & \text { a.e. } \tau \in(0, t), \quad t>0,
\end{aligned}
$$

or

$$
\left(-u(t),-u^{\prime}(\tau)\right) \leq c^{-1}\left(u(\tau),-u^{\prime}(\tau)\right), \quad \text { a.e. } \tau \in(0, t), \quad t>0 .
$$

Hence

$$
\begin{gather*}
\|u(t)-u(s)\|^{2}=\int_{s}^{t}\left\{-\frac{d}{d \tau}\|u(t)-u(\tau)\|^{2}\right\} d \tau=\int_{s}^{t} 2\left(u(t)-u(\tau), u^{\prime}(\tau)\right) d \tau \tag{3.1}\\
\leq \int_{s}^{t} 2\left(1+c^{-1}\right)\left(u(\tau),-u^{\prime}(\tau)\right) d \tau=\left(1+c^{-1}\right)\left\{\|u(s)\|^{2}-\|u(t)\|^{2}\right\},
\end{gather*}
$$

By (3.1) we first see that $\|u(\cdot)\|^{2}$ is decreasing on $(0, \infty)$. Hence, in the case where $\{\|u(t)\|: t \in(0,1]\}$ is bounded, then $\|u(t)\|^{2}$ converges as $t \downarrow 0$. Therefore, using (3.1) again yields that $u(t)$ converges strongly as $t \downarrow 0$.

Acknowledgements. The author would like to express her hearty thanks to Professors Y. Komura and K. Maruo for their constant encouragement and helpful suggestions.

References

[1] M. Arisawa: Extended groups of semigroups and the backward problem of the heat equation, to appear.
[2] J.B. Baillon: Un exemple concernant le comportement asymptotique de la solution $d u$ problème $d u / d t+\partial \varphi(u) \ni 0$, J. Funct. Anal. 28 (1978), 369-376.
[3] V. Barbu: Nonlinear semigroups and differential equations in Banach spaces, Noordhoff International Publ., Groningen, 1976.
[4] H. Brézis: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Math. Studies, 5, North-Holland, Amsterdam-London, 1973.
[5] Y. Kömura: Nonlinear evolution equations (in Japanese), Iwanami-kōza Kiso Sūgaku, Iwanami Shoten, Tokyo, 1977.
[6] H. Okochi: A note on asymptotic strong convergence of nonlinear contraction semigroups, Proc. Japan Acad. 56 (1980), 83-84.

