
Guidetti, D.
Osaka J. Math.
30 (1993), 397-429

O N ELLIPTIC SYSTEMS IN L*

DAVIDE GUIDETTI

(Received April 30, 1992)

Introduction and basic notation

It is the aim of this paper to study regular elliptic problems in the framework
of ZΛ We are interested in existence and regularity of solutions and in esti-
mates depending on a parameter leading to results of generation of analytic semi-
groups.

We start by considering what (in our knowledge) already exists on this
subject.

In [2] the authors prove the accretiveness of certain realizations of
Dirichlet and Neumann problems with homogeneous boundary conditions for
second order elliptic equations in variational form, in cases where a maximum
principle is available.

In [1] H. Amann takes advantage of some results of Stewart [14] for elliptic
problems in spaces of continuous functions and of certain duality arguments
to obtain some results of generation of semigroups in L1 space again for realiza-
tions of second order elliptic problems in variational form. The same basic idea
is used in Pazy's short treatment of Dirichlet problem for operators of arbitrary
order (see [10]).

In the book [16] H. Tanabe, using ideas of R. Beals and L. Hϋmander,
estimates the kernels of (Ap—λ)"1 and exp(tAp), where Ap is the realization in
LP(Ω) of a certain elliptic operator with certain homogeneous boundary con-
ditions and exp(tAp) is the semigroup generated by it. Then, a semigroup G(t)
in L\Ω,) is defined by

where G(ty xyy) is the kernel of cxp(tAp) which is of course independent of p.
Finally, the L1 realization Ax of the elliptic operator is defined as the infinitesi-
mal generator of G{t). These results require however the existence of a dual
problem of the same type (in other words of a Green's formula) and so a varia-
tional formulation or a certain regularity of the coefficients (for a statement of
the needed assumptions in a western language see also [11]). Moreover, only
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the case of equations is considered.

Instead, we are interested in problems for elliptic systems in nonvariational
form and in results requiring minimal assumptions of regularity of the coefficients.

We recall also that the Dirichlet problem for second order elliptic systems
in nonvariational form is treated in [18], who proves, in this particular case, a
result of generation of analytic semigroups under assumptions similar to ours,
using again a duality argument. However, the solution is only intended in a
so called "ultraweak" sense and no attempt is made to study its properties
and regularity more precisely.

We go now to explain the organization of the paper; the first paragraph
contains the study of elliptic systems in Rn. The main result is contained in
1.7 (generation of analytic semigroups in L\Rn)N by elliptic operators with
hϋlder continuous coefficients). The solution is constructed using the classi-
cal method of Levi.

In corollary 1.9 it is stated and proved that, if u&Bj^R*)" and A(x, d)u
&Lι(Rn)N> all the derivatives of order not overcoming 2m— 1 of u are regular
distribution in the variable xny and so admit a sectional trace u{ >xn) for any
xn^R (we say that v^<D'(Rn) is regular in the variable xn if there exist F G

C(R; 3)\Rn-1)) such that for any φ<=Ξ3)(Rn) u(φ)=[ <V{xn\ φ( , #„)> dxn; it is
R

natural to identify V(c) with the sectional trace of v in the hyperplane xn=c). The
paragraph ends with some results (in the constant coefficient case and for equa-
tions) showing that the same precise information concerning the regularity of the
solution as in case p>\ cannot be expected. For results of analogous type in
spaces of continuous functions, even in the case of nonconstant coefficients see
[13], where the author promises analogous considerations for ZΛ Ours are
simply intended as examples and, due to their simplicity, give some insight into
the difference between the two cases p=ί and 1 < ^ > < + OO.

The second paragraph is rather technical in its content and deals with ellip-
tic boundary value problems in half spaces. It is essentially directed to the
proof of the key result, contained in the statement of 2.16. Here, too, the basic
technique is a variant of Levi's method (see for a discussion the notes following
2.6).

The third paragraph contains the main result of the paper, in 3.3. Essen-
tially, a result of generation of an analytic semigroup by a certain realization
of an elliptic problem in L\Ωi)N is given, for nonvariational problems under
"minimal regularity'' assumptions on the coefficients.

The fourth and final paragraph contains some results concerning Besov
spaces which are used here and there in the paper. We refer without comment
to this paragraph for the basic definitions and properties.

Now we introduce some notation: let X be an open subset of Rn

y E a local-
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ly convex Hausdorff space then, C(X, E) is the space of continuous functions
from X to E; if j eiV, O'(X, E) is the set of functions from X to E with all par-
tial derivatives of order less than or equal to m continuous C°°(X, E) stands for
the intersection of all the spaces CJ(X> E); if a>0, a=j+β, withj'eΛΓ or j=0
and 0</3<l, C*(X, E) is the set of elements of CJ'(X, E) such that for any
multiindex 7 of weight jy for any continuous seminorm p in E, there exists
C>0, depending on and p such that p(Qyf(x)—dyf(y))<O\x—y\β for any
x,y&X. BCs(Xy E) will be the subspace of C}'(Xy E) whose elements have all
the derivatives of order not exceeding j bounded. An analogous meaning will
have BC*(X, E). If E is dropped in these notations, we shall always assume
E=C. Here and there we shall consider also the case where X is substituted
by its topological closure X. We shall mean the subset of elements of the cor-
responding space continuously extendable together with their derivatives to X.

OM will indicate the space of functions which are C°° in R* such that for any
multiindex a there exists m(ά) real such that d* u=O( |x\m { Λ )) (|x\ —> + 00).

Let δGΞ/S. We set BCs(Rn):={f\ \x\*fζΞL"(Rn)}.
Γf ^=(^y)i^^w,i^^« is an mXn matrix, IMIHmax^ ̂ ,i<ς; <;ΛK v | .
If uSΞS\Rn)y r > 0 , TGΞΛ, we set (r-A)τu:=F'\(r+ \ξ\2)r Fu), where F

is the Fourier tranform and F~ι is its invevse Fourier tranform.
( , ){0] and ( , ) θ t q (O<0<1, l<q<-{-°°) are the complex and real inter-

polation functors.
The notations " C " and "const" will mean constants (which may be different

in each case) which we are not interested to precise. C(cc, β, γ, •••) will mean
a constant depending on α, β, •••. If a^Ry [a] is the largest integer not larger
than a, [a]" the largest integer strictly less than ay [tfj—a— [a], {a}~=a—[ot]~.

If X is a Banach space, || |U will stand for the norm in the space X.
If R>0, BR is the open ball with center 0 and radius R, BR is the subset of

elements of BR with the last coordinate positive.
<•, •> stands for the duality between a certain locally convex space X and its

dual space X'. If / is a function of certain distinguished arguments 9// wτill
be the derivative with respect to the 7-th argument. If l < r < n , eΊ is the r-th
element of the canonical basis of Rn. If 1 < / > < + °O, || ||j will indicate the
norm in the space Lp(Rn).

For alternative notations (with the same meaning) in the case of Besov spa-
ces see the fourth section of the paper.

1. Problems in Rn

The next proposition will be crucial in the following:

Proposition 1.1. Letm^C°°(Rn), s&R. Assume that VαeNo there exists
C(a)>0 such that \d"m(ξ)\ <C(a) (1+ \ξ\)-s'^. We set K^F"1 m. Then,
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(a) K(=BitO0(Rn).

(b) KI Λn\{0} S O°°(Rn\{0}) and is rapidly decreasing together with all its derivatives

at infinity.

(c) Ifs<>n, for any £>0 there exists C(ζ) >0 such that

\K{x)\ <C(6) | * | — , Vxe=Rn\{0} .

(d) Ifs>n,K(=O(Rn).

Proof, (a) We put m'(£)=(l + 1 ξ \2)s/2 m(ξ). Then, by [4], m' is a Fou-

rier multiplier for the space BC*(Rn) (0<α <1). This implies (see [15] 2, th. 2)

that F - 1 w'eB?fOo(/2n). From 4.5 one has the result.

(b) If a,β(ΞNn

Oy with \β\-\a\<s-n, then ξ->d«(ξ* m(ξ))<=ΞL\Rn). This

implies that x->xΛ dβ K(x) is continuous and bounded in Rn> which proves (b).

(c) Assume n— l<s<n. Then, for j = l , •••, n, 9y m^L\Rn). As f 8y

dξ=Oy one has, for 0 < < l

(exp(w.f)-1] |*.f|- \x ξ\adjtn(ξ)dξ

Rn

which implies, using the inequality | [(exp(ix ξ) — l]\x ξ\ ~a\ <C,

\xjK(x)\<C\x\a^\ξ\a\djm(ξ)\dξ< + oo

Rn

if α < ί + l — n . So (c) is proved if n— l<s<n.

If n—2<s<n— 1, fory=l, •-, w, —iχ.K(x)=F~\d. m) (x) satisfies

0, Λ?G/2Λ\{0}, fory=l, •••, n. Iterating the method, one obtains the gen-

eral result,

(d) follows from the fact that m^L\Rn).

REMARK 1.2. All the constants appearing in the statement of 1.1 depend on

sup ί 6 Λ . .ui£jf(l+ Iξ\ Γ1*11Q" m(ξ) I with M suitably large.

Let A(x, d)={Ai.{x, d))ι^i^Nt\<.j^N be a differential operator valued matrix

(x e Λn). We assume that

(hi) V(ί,y) ίÂ  orrf̂ r o/-4ίy(Λ, 8) ί/ô ί woί exceed 2m (m&N).

(h2) Γfe coefficients of A^x, 9) αr^ o/ ctoί BCβ(Rn) (/8>0).

We setyδ'r^min {/3, 1}.

Next, we indicate with i4jy(#, 9) the part of order 2m of A{j{x, 9), ^4#(Λ;, 9)=

(i4!y(Λ?, d))i^N,^^N' Let (9e [-τr/2, πβ]. We assume:

(h3) For any χ(Ξ Rn, for any (ξ, r)<=Rnx [0, + co [\{(0, 0)} the matrix A\x, iξ)

—r2w exp(iθ) is invertible and \ det(A\x, iξ)—r2m exp (iθ)) \ >c( | ξ | +r) 2 w J V , w ^ c
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positive and independent of x, ξ, r.

Now we set (for a fixed 0e[—ττ/2, π /2]),

X(. f y, r) = (Xy,( ,y, r))*

(r>0). As (f, r)->-4 (y, if)-—^expfiβ) is positively homogeneous of degree
2m> we have for

(1) ||9rμ*(y )ί )-r 2"exP(^))-i | |<C(α)(r+|?|)- 2 '»-'-ι ,

so that from 1.1 and 1.2 we have easily:

Proposition 1.3. t/wίfer the assumptions (hi) «»rf (h2) one has for 1 <i<N,

(a) Vr>0, Vy(=R"
y^K,,{;y, r)GBC%Rn, B\^{Rn)) and \\Kj,( ,y, r^^^KC, independent of

(b) For any XεC"(Λ*), such that \(ξ)=0 in a neighbourhood of 0, X{ξ)=\ for
IξI large, for any r>0, y^X(-) KJ{(-,y,r)eC\Rn, S{R"))
(c) If a, γeiVΪ, 2m— \a\ <n, | γ | <β, Vf>0 there exists C(a, 6, r)>0, such
that

\\d*xd
y

yK(x,y,r)\\<C(a,ε,r) |*|«-'-i

moreover, if \γ\=[0],

(α, e, r) | * | -'-'—f I

(d) f̂ α, γ e JVJ 2JM— | a \ >n, | γ | <,β, there exists C{a, 8, r)>$, such that
||9? 8? ̂ (*, J , r)|| ^C(α, r),/or α»jyεΛ", r>0,
||9»9?^(*,Λ,r)-8-9?K(x,y2>r)\\<C{a, ε,r) \y1-y2\

{β},
Rn.
(e) // αeiVJ, r>0, 9? X(«, j , r ) = r +ι»ι-«- g» ̂ (rx, j , 1).
(f) //|α

Lemma 1.4. Let φeL\R")N. Ifr>0,weset

Tr φ(x) = j K(x-y,y, r) φ(y) dy .
Rn

Then,
(a) τfςΞX(L\ieγ\ Binary).
(b) If 0<j<2m-l, WTrWjXLHR")* T .̂i(R )ΛΓ)^Cr/-2111, w ^ C>0 independent
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(c) // O^ί<2m

Proof. From 1.3 (f) one has that Tr<Ξ£(Lι{R")N; Wj \Rn)N) iij<>2m-\
and it is easily seen that

Analogously, using directly the definition of Bl"00(Rn)N in 4.1, one can show
(c) in case s=2m. The proof of (c) in case 0<s<2m follows by interpolation
(see 4.8).

Lemma 1.4. For any r>0, φeL\R*)N

(2) [A(x, d)-f*" exp(iθ)] Tr φ(x)

= Φ(*)+\ IΆ*. β*)-A\y, 9,)] K{x-y,y, r) φ(y) dy .

Rn

Proof. First of all, by (h2), 1.4 and 4.6, |>4( , d)-r2m exp(ifl)] Trφ is well
defined and belongs to B°ι%0O(Rn)N. Assume that the coefficients of the system
are of class C°°. We indicate with A(x, d)τ the dual system. One has for

)] Tr φ, Ψ> = j ( j K(x-y,y, r) φ(y) dy). [A{x, d)τ-

rlm exp (iθ)] Ψ(x) dx - R« Λ«

J ( j K(x-y, y, r) φ(y). \A(x, df-r2m exp (iθ)] Ψ(x) dx) dy .

Rn Rn

As [A(x, dx)-r2m exp(^)] K(x-y,y, r) = 8(x-y) IN

+ [A(x, dg)-A (y, dx)] K(x-y,y, r),

(IN is the Nx N identity matrix) the result follows.

If the coefficients are not C°°, they can be approximated in BCβ'(R*) by BC°°
coefficients for any β'<β and the result follows from the convergence of the
corresponding terms of (2) in the sense of distributions.

Corollary 1.6. (a) For any r>0, Vφ(=L\Rn)N

[A(; 8)-f* exp(#)] Tr φ<=ΞL\Rny

Proof. The proof follows immediately from 1.5, (h2) and 1.3(c).

Theorem 1.7. Assume that the asssumption (h3) is satisfied VΘ^[—π/2,
π/2]. We consider the following operator:

D(A) - iu<=Bl%(Rn)Nm- A(x, d) u<=L\Rn)N},Au = A(x, 9) u (u(=D(A)).

Then, A is the infinitesimal generator of an analytic semigroup in L\R*)N.

Proof. By 4.9 p(A) contains {z<=C\Rez>0, \z\>R} for R>0 suitably
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large. Further, it is clear that D(A) is dense in L\Rn)N because it contains

W2mΛ{Rn)N. It remains to show that V0eΞ \-π\2s τr/2]

\\(A-r2»> expiiθ^WjXLHRV) = O{r~2>») (r-> + oo).

We consider the equation Au—r2mexp(iθ)u=f(f^L1(Rn)N). We try to

write the unique solution u^Bl^R")1* of this problem (with r large enough)

in the form

u(x) = J K(x—y, y, r) φ(y) dy

Rn

vtith φ<ΞΞL\Rn)N.

From 1.5 one has that

(*) Φ(*)+ J [A{x, Qx)-A\y, 9,)] K(x-y, y, r) φ(y) dy =/(*).

Rn

lϊφtΞL\Rn)N one has

[A(x, 8X)-A\y, dx)] K{x-y,yy r) φ(y) dy\dx<

Rn Rn

, ds)—A\j{y, dx)] Kjii -y^y, r)||Li(Λ«) \\φ\\LHR")"

owing to (h2) and (c), (e) and (f) in 1.3.

This implies that if r is large enough (*) has a unique solution in L\Rn)N

and WΦWiHR^^CWfWL^^jsΓ with C > 0 independent of r and/. So the desired

estimate follows from 1.4 (b).

In view of the treatment of boundary value problems, we are going to con-

sider the existence of sectional traces on xn=const of Trφ and of some of its

derivatives (φ^L\Rn)N). We start with the following

Lemma 1.8. Assume β^N%, 1<J\ i<N.

(a) For any r>0, for any δ>0, (xu,y)-*dβ

s K}i(-,xn,y, r)eC((]-oo, -δ]U[δ,

+ oo[)χ Rn;S(Rn)).

(b) If \β\ <2m-\y sup, e Λ. i, j | e Λ X { 0 } \\&χKrι{-,xn,y,r)\\ B^-^-HR

Proof, (a) follows immediately from 1.3(b).

(b) follows from 1.3 (a), 4.5 and 4.13 if \β\ <2m-2 or \β\=2m-l and /3Φ

(0, •••, 2m— 1). Assume β=(0, •••, 2m— 1). One has, for xn^R\{0} :

IS-\ y xn>y> ')) \ζ ) — Γ ξn \\ιζn) L̂ 1 \}£ > *b»j/> r) ' CXpylU)} ) \Xn) .

Each element of the matric [A*(iξf, iξn,y, r)—r2m exρ(^)]""1 is of the type
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a(ξ',ξ.,y,r)
det([A*(iξ', iξ.,y, r)-^

with a{ , ,y, ) homogeneous polynomial of order 2m(N— 1), y-*a(ξ', ξn,y, r)e
O'(R")V(ξ>,ξn,r). Moreover,

det(A*(iξ', iξn,y, r)-t»- exp(iθ)) = ΣJPitf',* 0 #

with P|( ,jy, •) homogeneous polynomial of order 2mN—l>y-+Pι(ξ',y,r)&
BCβ(Rn)y for any f, r. It follows that, for a fixed %eC°°(Λ), such that X(f)=0
in a neighbourhood of 0, %(ί)=l for | ί | large, each element of the matrix

(iξ.y-1 [A\iξ', iξn>y, r)-r

is of the type

a(y)X(ξH)ξ7ι+Q(ξ',ξn,y,r)

with aί=BC'(ir),y-+Q(; -,y, )^BC\Rn, C~(R"x[0, +oo[\{(0,0)»),
9έ* δ(f'» . y, r)=-O{ξn2-") (I ξn I -*+oo) VyfeeiVU {0}. Therefore we have from
1.1 that, for any xneR\{0},

-1 Kjt x y, r)) (£') = H{x.) A(y)+Φ(ξ', xn,y, r)

(H is the Heaviside function)
with *.-Φ(e',*,,y,r)e5ft.(Λ), (£',r)-Φ(5', . j . r J e C t B - ' x p , +oo[

)) ior*nyyςΞRn,y-*Φ(ξ', .,y,r)^BC%R\B\^{R)) for any
', r) e R " - 1 X Λ+. As B?,.(Λ) is imbedded in BC(R), one has

\Φ(ξ',x*,y,r)\^C(ξ',y,r) for any *,

Moreover, it is easily seen that

= Fidl*-1 K(.,x.(\ξ'\2+**)*,y,r(\ξ'\2+r2)~^)) ((\ξ'\2+r2)-^ ξ'),

which implies

φ(r,*.,y,r) = Φ((irιa+*vΛ^^^
from which the estimate

\\φ(ξ', ,y,Oil- = 1 1 * ( ( I ξ ' I ^ r 2 ) - 1 / 2 ξ ' , ,y,r(\ξ'\

follows. S o ,

^ ' ) I I ^ C , i n d e p e n d e n t of *

with | | ' | 2 + r 2 > 0 .
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If a'GNζ-1, one has

VpFφ-1 K( , χa,y, r)) (£') = (2*)-1 j exp(ι*. ξ.) (^f-1 dp[A*(iξ', iξ.,y, r)

from which

||8? 1W- 1 K( , xn,y, r)) (ξ')W^C(a') (1+ IΠ)"1-'1

This, together with 1.1, implies (b).

Corollary 1.9. For any φ^L\Rn)N, for any r > 0 , for any αeΛΓJ with
\a\<2m—\,dΛTrφ is a distribution which is regular in the variable xn. If

-1'^(Rn-1)N; if \a\=2tn-l, 9 Λ Γ r φ(. ,0)G

Proof. Owing to 1.8(b) and 4.5, if \a\<2m—ί9 for any τ > 0 , for any

xn<ΞR\{0},l<hj<N,

(rt-A*')-7 dΛ

xKjΊ('9xn9yf r)ezL\R-1) and

so that it follows easily from Fubini's theorem that for any τ > 0
(r2—Ax')~τ ft* Trφ is regular in xn, with traces in L\Rn~ι)N. Its trace in xn=c
is of course

*' -* j (r1-^)-1" 9? K(x'-y', c-y.,y, r) φ(y) dy
Rn

The belonging of 3*Γrφ( ,0) to'Bl~jι-™(R*-1) in case \a\<2m-2 follows
from 4.13.

We conclude this paragraph showing that, if n>2, there is no hope to obtain
optimal regularity results comparable with those available in case l<p<-\-oo (see,
for example [3]). For simplicity we shall consider only equations with con-
stant coefficients. We recall that a partial differential operator A(d) of order
2m is strongly elliptic if ReA*(iξ)>0 for any ξ e/2n\{0}. We start with the
following

Lemma 1.10. Let mGC°°(iίβ). Assume that there exists mQ^C°°(Rn\{0})}

positively homogeneous of degree 0 and δ > 0 such that for any

Then m is a Fourier multiplier for L\Rn) if and only if m0 is a constant function.

Proof. First of all, we fix X e C°°(Rn), such that X(ξ)=0 if | ξ \ < 1, X(ξ)=
1 if | £ | ^ 2 . We have m=Xm+(ί—X)m. {\-X)m<EW(Rn) and so m is a
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Fourier multiplier if and only if Xm is a Fourier multiplier. We have Xm—Xm0

+X(m—m0). Owing to 1.1, F"1(X(m—m0))^B\tOO(Rn). So, m is a Fourier
multiplier if and only if Xm0 is a Fourier multiplier. This happens if and only
if F~ι(Xm0) is a finite Borel measure (see [8] th. 1.4). Let/,/<,,/! be, respective-
ly, the restrictions of F-ι(XmQ), F"1 m0, F^dX—l) mQ) to Rn\{0}. Then,
/=/o+/i S O / < Ξ C ~ ( Λ Λ \ { 0 } ) , because/0 and/ x are elements of C°°(i2n\{0})
(owing, respectively, to [9] th. 7.1.18 and the fact that (X—l)m0 has compact
support). Now, if F~ι(Xm0) is a finite Borel measure, / is necessarily in
L\Rn\i0}); in particular / e L 1 ^ ) . But of course f^L1^). This implies
that/OGL 1 ^). However, f0 is homogeneous of degree — n (see ([9] th. 7.1.16)
which means that f0 has to be equal to 0. Therefore, the support of ί1"1 m0 is
contained in {0} and so m0 is necessarily a homogeneous polynomial function of
degree 0.

So the "only if" part is proved. The "if" part follows easily from 1.1.

In [12] the author constructs a function u whose laplacian is in L\Rn), but
such that, for any αeiVg with \a\ =2 d*u^L\Rn). Here we have, more
generally

Proposition 1.11. Let n>2, A(d) a strongly elliptic differential operator of
order 2m in Rn with constant coefficients. Set D{A)=.{u^Lι{Rn)\A(d)u&
L\Rn)}y Au=A(d) u. Then D(A) contains properly W2m>\Rn). More precisely,
there exists u^D(A) such that 9" u$L\Rn) Va^No such that \a\ =2m.

Proof. Fix λ 0GC, such that A(iξ)=^X0 for any £ e R n . It is easily seen
that Xot=p(A) and, for any ftΞL\Rn), (\Q^A)'lf=F"\CK0-A(iS))^ Ff). We
start by showing that, if \α\=2my there exists u^D(A) such that 9* uφL\Rn).
Assume, by contradiction, that, for some αGiV?, u^D(A) implies d* u^Lι(Rn).
This implies that m(ξ)=(iξ)αί(\0—A{iξ))~ι is a Fourier multiplier for Lι{Rn).
However, m satisfies the assumptions of 1.10 with mo(ξ)=—ξ" A^ξ)'1, which
cannot be constant if n>2. Now, define XΛ:={u^D(A)\d*u^L\Rn)} and
set {ίor u^XΛ)\\u\\Λ:^\\u\\DU)+\\d* u\\L\Rn). With this norm XΛ is a Banach
space continuouly imbedded in D{A) and not coinciding with it. It follows
from the open mapping theorem that XΛ is of the first category as a subset of
D(A). So, also the union of all the XΛ with | α\ =2m is of the first category in
D(A) and this proves the result.

Proposition 1.12. Let A(d), B(d) strongly elliptic differential operators of
order 2m with constant coefficients in Rn;put D(A)= {u^L\Rn) \ A{d) u<=L\Rn)},
Au=A(d)u, D(β)=iu^L\Rn)\B(d)u^L\Rn)}y Bu=B{d)u. Then, D(A)=
D(B) if and only if there exists c^C such tha B*(ξ)=cA*(ξ)for any

Proof. We show the "if" part. Let uϊ=D(A). Then, B(β) u=^cAu+Bx{d)u
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-cAx{d)u, where Aι{d)=A{d)-A\d\Bι{d)=B{d)-B\d). So, owing to the

inclusion D(A)^Bi%(Rn)y B(d)u^L\Rn). The opposite inclusion follows from

the fact that, clearly, £φθ.

On the other hand, assume D(A)=D(B). Fix λ o eC, such that \0—A(iξ)

Φ0 VξZΞR". Then λ o e P (^) and B{\Q-Ayι^X{Lι{Rn)), which implies that

m(ξ)=B(iξ) (Xo—Aψξ))'1 is a Fourier miltiplier for L\Rn). So we can apply

1.10 with mo(ξ)=^-B\ξ) A\ξ)-\

REMARK 1.13. In 1.12 we have in fact proved something more than what

declared in the statement; more precisely, we have shown that, if A* and B*

are not proportional, there is no type of inclusion between D(A) and D(B).

2. Boundary value problems in a half-space.

We continue to consider a system A(x, 3) satisfying the assumptions (hi),

(h2), (h3) and we couple to it another system of partial differential operators

B(xy d)=(Bλj(x> d))i£k£mNti£j£N- We assume that the following conditions are

satisfied:

(h4) for any (λ, j) Bλj(x, 3) is an operator of order less than or equal to

with coefficients in BC*M-**-β(R*)\

we indicate with B{tJ(x, 3) the part of order σλ of Bλjy B*(x,d) =

(B{j(x, d))x^x^mN1^j^N. We assume that the following complementary condition

is satisfied:

(h5) for any (x', ξ',r)tΞR"'1 x R"'1 x [0, + oo[, ξ', r not both 0, the O.D.E.prob-

lem

A\x\ 0, iξ\ dt) vit)-^ exp(iθ) v(t)=0 in R,

B\x',0Jξ\dι)p(0)=g,

v bounded in R+

has a unique solution t-+Ω(ξ', ty x', r)gfor any g^CmN;

finally,

(h6) // \x'\ is large enough, the coefficients of A*(x', 0, 3) and B\xr, 3) depend

only on x'l\x'\.

From the uniqueness of the solution one has

(3) Ω(Γ, P"11, x\ pr) = nip'1 £', ty x\ r) S(p'1).

with Sχμ.(p)=S\μ. ρσp( 1 < λ, μ < mNy p e R+). Moreover, from the representation

of the solution in [19], suppl., th. 2 and (h2), (h.4), (h6), it follows that the map-

ping x'-+ΩJλ( , , x'9 ) is in

xp, +oo[χ[0, +oo[: (ξ',
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Next, we have:

Lemma 2.1. There exists δ>0 suck that for any a^Nl, (ξ',r)eR"-1x

[0, +°°[, (ζ', r)Φ(0, 0),

I (8β/)-' (8 f)- ΩA(f, ί, *', r) I <;C(α) exp (-«(| f' | +r) ί) (| ?' I +r)--ι-Ί-* λ

Proof. Again by [19] supplement, th. 2, if | £ ' | + r = l , |(9{/) ' (9t)"»Ω,jλ

(ξ',t,x',r)\<C(a)exp(—δt), with δ>0, independnent of *'. So the result
follows from (3).

Now, let T S JR. We put

' 12)"τ« Ωyλ(f, *., y', r)) (*').

Lemma 2.2. Let l^X^mN^^j^N.r^R. Then,
(a) y'-H^', y', r)eBC\R>-1; C~(R»+)) Vr>0;

(b) Lei φeC~(Λ), ίίίcΛ ίAαί φ(ί)=0 «/ -oo<t<,8, φ(t)=l if t>2δ,δ>0.

Then / - ( ( * ' , *.)-Φ(*-) ^ ΛT(̂ ', *., y', r))sBC^R"1 «S(iT)).
(c) Ifae.Nl and \a\ >σx+τ+\—n, for any £>0, ίAere emίί C(£, r)^0 such

that 18? tfyλτ(*,y', r)I ̂ C(£, r)\x\i-+'λ ^-ι-ι-
(d) Ifa<=Nl and | α | < σ λ + τ + l - « , 18ίH y X T(*,/,r)
(e) V*.:>0HjλT(-, xn,y', r)eBΐ^(R"->) and

(f) if σ λ + τ > - l , Vfi>0, H.λτ(.,y',
(g) Vr>0 /ίyλτ(x, y', r)=r- τ-Ά+-' Hjλτ(rx,y', 1);
(h) ί/<

Proof, (a) and (b) are direct consequences of 2.1. For what concerns (c),
one has for a^Nl, a=(a',an),xn>0

d«x HJλr(x, y'yr) = Fr\(iξY (r*+1 ξ'\2)^ 8J : ί l y λ (? ' , xu,y', r)) (x').

One has for any β&No'1

' r 12rτ/2«: o^e', *„ y', o ι

So, by 1.1,

Moreover,

\d%Hjχτ{x,y',r)\<:0 J ( | Π
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We distinguish three cases: if | α r | - σ λ - τ > 0 , (\ζ'\+ry*ι-Ί-τ£0(\ξ'\ ι*ι-σλ-τ

+ rl-|-V τ) . i f ! _ Λ < I a I _ τ _ σ λ < 0 > (I |/1 + r ) | * | - * λ - < | ξ> | l*l-*λ-\
In each case we obtain

\d«xHjλr(xyy',r)\ <O(S,r) | *J i-W-ι*ι

If | α | - τ - σ λ = l - Λ , f r o m ( | r i + ^
positive <r, one is reduced again to the second case.

The proof of (d) is similar to the proof of (c). (e) follows immediately from
2.1 and 1.1.

We prove (f); assume σ λ + τ > —1. From 2.1 and (c) one has that
Hj\τ('>y'> r)^L\Rl). Derivating, it is also easily seen that, if σλ+τ>m(m^N0)y

Hjλr( ,y', r)eWm+ul(Rl). These facts remain true if we substitute to T any
complex number with real part equal to T. We consider, just for simplicity, the
case — l<<r λ+τ<0. Fix τ0 such that — l<τo+σλ<τ+σλ and set T i = τ 0 + l ,

F(z) (χ'9 xn) = Fp\(f+1 r I ψ'-^o-^ Ω,λ(r, *., y'3 r)) (x') (0<Re *

By complex interpolation (see 4.8 and 4.12) it follows H.λτ( ,y', r)
ϊ P 1(Λϊ))cτ.T0]C(βr:i(Λ:),filΓif(Λ:))[τ-T0]=βϊ^o^ for any £>0. From
the arbitrarity of τ0 and S the result follows.
(g) is an immediate consequence of (3).
(h) Extend HJKT( ,y'9 r) to Rn with the reflexion method described in [17] 2.9.2
(step 3). Then apply directly the definition of Bi^r+ι-\Rn) given in 4.1 (f)
and (g).

In the following lemmas we shall study some properties of

(4) u(x) = j H^x'-y', *.,y', r) ψ(y') dy1

R-1

with ψ^LXR"-1), T<=./?, o λ + τ > —1.

Lemma 2.3. uGC(Rl) and Va^NZ

d* u(x) = j df< 9?2 H.κτ(x'-y', xn,y', r) ψ(y') dy'.

Proof. It is an almost immediate consequence of 2.2 (b).

Lemma 2.4. Assume σλ+τ> — 1. Then we Γl,>o-Bί?£τ+1~ί(-β+) More-
over, ifj e JV0, ;<<r λ +τ+1,

llψHiα,.-., V£>0.

Proof. If σ λ + τ > —1, one has
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-l \\Hjλr( ,y'y r)\\LliRn+) \\ψ\\LHRn-l)

by 2.2 (h). Analogously one can treat the case of y < σ λ + τ + l Extending
(for example) Hiλτ to Rn with the reflection method of [17] 2.9.2, step 3 and
using directly the definition in 4.1, one has

^ Jλr( ,y', O H ^ -

and the result follows from 2.2(h).

Lemma 2.5. Assume <τ λ + τ > — 1 , the coefficients of A(x, 9) and B{x, 9) in
BC2(Rn). Then, V0e] 0,1 [,/ ψeBi^R"-1), ue Π,>0

Proof. Assume ψ e W^R"-1). From 2.2 (a) and (b) one has, for x', y' in

JB-1 HjXT{x'-y', xn,y', r)=HJλτ(x'-y', x., x', r)+ Σ ΘS' H^x'-y', xn, x', r)
{y-χr)+B{χ'-yt,χ.,y',χ',r).
One has, for δe[0, l[,

With the same method of 2.4, applying 4.3, one can show that

IMDJ?+

+θ+1-f £C(e, r) I I ^ - Δ ) 8 ' 2 ψlLHβ -υ^Cίe, r) IM

Moreover, if re{ l , •••,»—!}

-yt QΫ H^(y', x., x', r) = -i8γFj,\Qir{{t*+1f'I1)-1"" «>x(f'. *.. *'. 0) (>

From 2.1 and 1.1, if we set

»(*) = f Σ 3!' H,Jx'-y', xn, x', r) (yr-xr) ψ(y') dy',

we obtain

I N I Γ ^ + 1 - e <C(€, r) HΨILH^-1)

Finally, setting

«(*): = j R(x'-y\ xu, y', x', r) ψ(y') dy',

using the fact that, for example,
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Re R{x'-y', xn,y', x', r) = -Re Σ fr!)"1 Fj}{d\, 9J Ω.AT( , tf.
IYI=2 '

in an analogous way one can show that # e f)t>0B*x*T+2~z(Rl). Therefore
the result follows by interpolation.

Lemma 2.6. Assume ψ G L ^ Λ ' - 1). 77*έ?n VαeiVo 9*H has a sectional
trace on dR\ belong to n 8 > 0 £^H*ι- β ( i2«-i) .

Proof. By lemma 2.4, if <r λ+τ>0 u has a sectional trace belonging to

u(x',0)= J Hjλτ{X'-y>,Q,y',

B-1

(the integral has a meaning owing to 2.2 (c)). Assume <r λ +τ<0. Then, for
any δ>0, xn>0,

However,

(r2-Ax>y8/2u( yxn)(x')=

This implies what we want if a—0 (using 4.3).

Analogous arguments give the result for general a.

After these preliminaries we pass to construct a solution of the problem

A(x, d) u-r2"1 exp (iθ) u=finR\,

(5)
<γ(B(.,d)u)=gondRn

+.
with /"eL1(Λ+)iV', g in a certain subspace of S'(Rn~ι)mN that we shall make
precise and y the trace operator on xn—0.

To this aim, we introduce the following notation: again we put /3':=min
{/3, 1}, fix μ^]2m— 1—/3', 2m—1] and set, for λ = l , — ,IΛJV, τκ=μ—σx.
Next, we put

# ( * ' , ^n, j ' , r) = (Hjλrλ(xf, xn9y', r))^^N^^mN

and look for a solution of the form

(6) «(*) = j ΛΓ(*-y, y, r) φ(y) <fy+ J H(*'-y', *., y', r) ψ(y') dy'

= v(x)+w(x)

with
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Owing to 2.3, one has (if we indicate with z the set of the two first arguments
oiH)

[A(x, d)-t" exp(iθ)] j H(x'-y', xu,y', r) ψ(y') dy'

= J [A(x, 3z)-r2» exp(iθ)] H(x'-y', *., y', r) ψ(y') dy'

= J [A(x,dt)-A*(y',0,dg)\H(x'-y,x.,y',r)i4y')*y'>

as [Λ*(y'f 0, 32)—r2" exp(*0)] H{x'—y', xn,y',r)=0 for x Λ >0. Moreover, by 1.9,
if \a\ <2m—ί, d*v has sectional traces in the space (n β > 0 βiΓ~""""1"e(-β""1))JV»
so that by 4.6 γ(B( , 3) v) is well defined. For what concerns y(B( , 3) to) we
start by introducing the following notation: l e t p e i ί + ; we put Tλμ(ρ)=ρτ>ίSχμ

, μ<mN), 2T(p)=(2\l<p))1SλS«
One has the following

Lemma 2.7. γ(5(., 3) w) (*')

Proof. First of all, by 2.2 (c), the integral in the statement of 2.7 has a mean-
ing. Next, by 2.3, if * β > 0 ,

B(x,d)w(x',xn)= j B{x,dz)H{x'~y',xn,y',r)^{y')dy'

R-1

= j [B(x,d.)-B*(y>,O,d,)]H(x'-y',xΛ,y',r)ψ(y')dy>

B*iy',0,dι)H(x'-y',xn,y',r)ψ(y')dy' = ξ1(xH)(x'
R

It is easily seen, using the regularity of the coefficients and 2.2(c), that ζχ(xa)

tends to ί [£(*', 0, 8 f ) - 5 (y', 0, 8,)] H(x'-y', 0, / , r) ψ(y') dy' in L1(/e»-1)'"w.

Next, fix δ > 0 sufficiently large, in such a way that each term of the matrix

(r*-Δ,')- B*(y'> 0, 3,) H( - / , *„, y', r)

= B*(y', 0, 3,) (^-Δ,')-8 H(—y, xn,y\ r)

converges to the corresponding term of B*(y', 0, dz) (r2—AX')~B H( —y\ 0,y\ r)
in L\Rn~ι) (the existence of such a δ follows from 2.2(e)). However,
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', 0, 8.) (r2-Δ,')-δ # ( • - / , 0,/, r) = (r*-Δ.O"β *rι T«f+ \ξ'\2Tιβ)

so that ζ2{xn) converges to T^r2 cxp(iθ)-Ax^)'1/2)ψ) in S^R"-1)™".

Now we make precise what kind of data g we shall consider. Owing to the
type of solutions we have in mind, a natural choice is the following: if r > 0 ,
we set

Zr:=

with its natural norm.
Now we impose that u (of the form (6)) is a solution of (5); so, owing to 1.5

and 2.7, it should be

φ(x)+ j [A(x, dd-A (y, 9,)] K(x-y,y, r) φ(y) dy

+ J [A(x, d,)-A*{y', 0, 9,)] H{x'-y', χa,y', r) γ(y') dy' =/(*), ^ei?-+ ,

(7) ^ ') + Γ((r 2 exp(^)-Δ ; c ' ) 1 / 2 ) ( J B(*', 0, 9 f)X(*'-/, -ya,y,r)φ(y)dy)

^(*', 0, d,)-B*(y', 0, 9,)] ff(*'-y', 0,/, r)

With \ B(x', 0, 9j) K(x'—y't —yα,y, r) φ(y) dy we mean of course the trace of

*"+

* - J B{x, dt) K(x'-y', xn-yΛ, y, r) φ(y) dy .

*"+

In the following we shall study system (7). For convenience, we set X: =
L\R%)N, Y: =L1(Λ»-1)(»W.

We start by putting, for φ 6 J , r > 0

Tn{r) Φ(x): = j [A(x, d1)-A\y, 9,)] K(x-y,y, r) φ(y) dy .

From the proof of 1.7 we have the following

Lemma 2.8. Let β':=τmn{β, 1}. For any r>0 Tn(r)eΛ(X) and, for

But we have also:

Lemma 2.9. Assume the coefficients of A(x, 3) of class BC\Rn). Then,
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Vr>0 Tu(r)<Ξ-C(X,BΪ.(Rl)«).

Proof. We have

Tn(r) φ(x) = J [A\x, dι)-A\y, βt)] K{x-y,y, r) φ{y) dy

+ J [A(x, dJ-A^x, d,)] K{x-y, y, r) φ(y) dy ,

R\

Owing to 1.7, the second addend belongs to B\^{R\)N.
Next, we have

A\x, Q)-A\y, 9) = ± (χ.-y.) Q.A\x, d)+R(x,y, 9),

where the coefficients of R are O(\x—y]2) (y-*x) uniformly for xGR". If
j€Ξ {1, •••,«}, I a I =2m, one has that

Xj8ΐ K(.,y,r) = const F^ίf- d^(A\(y9 i f )-r" 2 - exp(z^))"1),

so that, by 1.1, if l<j,i<N,

suP>eΛV^l Iky 9? UΓ( , J, r)||βi>oβ(Λ«)< + oo .

Therefore, it follows that

II J (*,-y,) 3? K(x-y,y, r) φ(y) dy\\Bl^R%)χ<C{r) \\φ\\x .

R\

Finally, it is easily seen that, in the sense of distributions,

dXJ( j R(x,y, 80 K(x-y,y, r)φ(y) dy) = j Qxi R(x,y, dj K(x-y,y, r) φ(y) dy

B"+

R(x, y, 90 dxi K(x-y, y, r) φ(y) dy<=X,

so that the result follows from the inclusion W

Next, if r>0, ψ<= Y, we put

T12(r) ψ(*): = J [A(x, β,)-A\y', 0, 8,)] H{x'-y\ x.,y', r) ψ(y') dy'.

We have

Lemma 2.10. For any r>0 TJr)^X{Y}X) and there exists 0 0 such
that Vr>l

Proof. It is easily seen that
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\\[A(x, d,)-A\y', 0, 9,)] H(x'-y\ xn,y', r)\\ dx

\\[A(x, d,)-A\x, d,)] H(x'-y', xn,y>, r)\\ dx

+sup/eJl»-> j \\\A\x, d,)-A*(y', 0, 9Z)] H(x'-y', xn,y', r)\\ dx .

For anyj'e/ί*"1 one has

J | |μ(x, 31)-,4%κ) 9,)] H(x'-y', xn,y', r)\\ dx

^C Σ \\\d1H(X'-y',xH,y',r)\\dx^Cτ2«-'i-\

as a consequence of 2.2 (f).
Analogously, one has, for any j ' e J?11"1,

*, 9,)-Λ (/, 0, 32)] H(x'-y', xn,y\ r)\\ dx

Σ ( (I*-/1 +*„)*' | |9?^'-j', xΛ, '̂, r)|| dx

μ-i-P' (applying 2.2(c) and (g)).

Lemma 2.11. Assume that the coefficients of A(x, 9) are of class BC2(R")
and the coefficients of BkJ are of class BC^-'^R"-1) then if r>0, Tu(r)(=

Proof. One has

T12(r) ψ(x) = j [A\x, Q,)-A\y', 0, 9,)] H(x'-y', xn,y' r) ψ(y') dy'

[A{x, d,)-A\x, 9t)] H(x'-y', xn,y\ r) ψ(y') dy' = vM

-^^ ll^lly maχi^Ίίiv,iSλ^»ιJv supj,/eij»-i \\rtjλτχ( ,y , rjllsft.1 <JI+>

by 2.2(f). Moreover, if \a\ =2m, we have

ΛW-Λ(j ' , 0) = Σ (x,-yk) ek AΛ{y', 0)+xn 3Λ AΛ(y', 0)+Ra(x,y'),

with \\RΛx,y')W^C(\x'-y'\+xn)
2 and, for k= 1, - , », ||9I t RΛ{x, y')

<C{\x'-y'\+xn).
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If l<,k^n-l,l <j<=N, l<X^mN, \a\ =2m one has

xk d«H.kτ,(x, y',r) = c(a) F?(dit [Γ(r2+ \ξ'\ 2 ) " τ ^ df ΩA(f', xn,y', r))]) (x')

9- Hjkτk(x,y',r) = c{a) F?

and

xn d« Hjκτχ(x,y', r) = c(a) Fp(ξ (r*+ \ξ'\Y^ xn 6T- Ω, λ(r, x.,y', r))]) (*')

The same argument of 2.2(f) implies that, for \<k<n,

s u p / e Λ » - i \\xk d* HJλTλ(-,yr, r)\\B*+2-2rn-*

so that

lit Σ Σ[fe-Λ)3ί4(/,0)+^9>4ί(y,0)]
J \Λ\=2m k=l

d"H(x'-y,xn,y',r)

Finally, the terms of Re>(-yy)d"H(-fy'yr) are bounded in WlΛ(R\)y which
implies our result.

L e t φ e X , r > 0 . We set

T21(r)φ(x'): = Γ((r2-Δ

One has:

Lemma 2.12. Foranyr>0 T21(r)^X(X, Y) and, for r>\, \\T21(r)\\χ(χ,γ)
<Cr1+μ~2M.

Proof. One has

., 0, dx) Kμ( -y'y -ynyy,

So we have to estimate I K ^ - Δ ^ ^ S ^ . , 0, dz)KjΊ(.-y'y -ynyy,
We remark, first of all, that, owing to 1.3(a), 4.13, 4.3 one has that

, 0, 3,) Kμ{ - y , -yn, y, r)] eBΪ^-"-'(lί-i) ςzL\R«-%

Moreover,

, o, a j ^ ί — y , - Λ , ^ , r)]\\LtlΛ.-t)

(-, 0. 8.)-Bly(y', 0, 3,)] ^ y ι ( — / , -^.,y

', 0, d,)Kμ{ -y', -y,,y, r))!!^.-.,.



O N ELLIPTIC SYSTEMS IN L1 417

Now observe that

(r'-Δ^V*BUy', 0. 9.) Kjt{.-y', -yn,y, r)

= ^ + "- t a 5 *y(y', 0, 3.) [{\-Ax,γ^Kμ] (r(—y), -ry.,y, 1),

which implies

> 0, 3,) * „ ( — / , - J B ) J, r)|| ii(Λ»-

To estimate | | ( H - Δ ^ ) T ^ {[5λ, ( , 0, 8.)-B$,(/, 0, 8,)] * „ ( . - / , -y, ,
B"-1))

 w e shall distinguish the two cases σλ=2wt—1 and σλ<!2jw—2.
Assume σ λ=2m—1. Then τ λ < 0 . For ̂ ε i ^ β " ' 1 ) sufficiently regular

as F?({τ*+1 r 12r^) (^')==^-i+Tλ ί ^αn-1 r i2Tλ/2) (r*') so,

^ , 0, d,)-BUy, 0, 3,)] ̂  ,( -y, -y., y, r)> lU'α,-.

., 0, 8f)-Biy(y', 0, 8,)] Kj^-y', -yn,y,

\x'-y'\\d*xKJt(x'-y',-yn,y',r)\dx'

+

owing to 1.3(e).
Next, assume σκ<2tn~2, which implies τ λ > 0 . Let g^L\Rn"1). Then,

one has for £ > 0 and g sufficiently regular

As, for any

I dί(('3+1 ?' 12)τ

(independent of ξ ' e Λ "1, r ^ l), from 4.5 it follows

So, we have to estimate

||[5λ;.( , 0, dJ-BUy', 0, 8,)] Kμ{—y', -yH,y, r)\\^m(a.^ •

Let £G]0, 1[. By interpolation

IPλ,.( , 0, dz)-Bij(y', 0, 3,)] Kj,(.-y', -y.,y, r)\\Bl^C{\\[Bλj{-, 0,

-SUy', o, 3,)] ̂ ί ( -y', -y,,y, r)^^-^-* {\\[Bxj{ , o, 9,)

', 0, 3t)] ̂ K — > ' . -y». J. OHr Hβ—)}*
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One has

IPλ,( , 0, d,)-&λi{y', 0, 9,)] Kit(.-y', -y.,y, r)}\\LHa,-i}

Σ J \χ'-y'\\ttκ,t(*'-y',-y.,y',r)\dx'

Σ t J |βί-K>ι(*'-y',-y.,/,r)|<

Differentiating under the integral, one can analogously show that

||[βλ.( , 0, θ.)-BUy', 0, d,)] Kμ{--y', -yn,y, r)\\w,

So we have

||[βλ,( , 0, dt)-ΈUy'> 0. 9.)] Kμ{ -y', -yn,y, r)|U

With the same arguments, if 0 < £ < 1 , one has

\\[BX}{., 0, dJ-BUy, 0, 6,)] K,,(—y, -y.,y, rM

With this the statement is completely proved.

Lemma 2.13. For any r>0, V£>0 T21(r) SΞX{X, B\*-»-ι-\R*-ι)m»).
Moreover, if φ<ΞB\«{R\)Jor some δe]0, β'[, T21{r)

Proof. The first statement can be proved simply remarking that, if δ <
ι—μ—1,

and using 4.3. For what concerns the second statement, it is a simple conse-
quence of 4.9.

We set, if r > 0 , ψ G 7 :

j [B(-90,da)-B\y90,d.)]H(.-y',09y'9r)
ψ(y')dy'}.

We have:

Lemma 2.14. For any r>0 T2z(r)^X(Y) and there exists 0 0 such that
V r > l

Proof. Analogous to the proof of 2.12, using 2.2.

Lemma 2.15. For any r>0 TΆ{r) e ϋ ( Y, B\^(R«-ψN) for any S>0.
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Proof. Analogous to 1.13.

So we have the following

Proposition 2.16. Let f<ΞL\Rl)N,g*ΞZr. Let θ^[-πβ,πβ] and as-
sume that the assumptions (hl)-(h6) are satisfied. Then problem (5) has, for r>0
and sufficiently large, a unique solution of the form

u{x) = J K(x-y,y, r) φ(y) dy+ J H(x'-y', *„ y', r) ψ(y') dy',
R"+ R"-1

with φ<=L\Rl)N, ψ£L 1 (Λ- 1 )"" ' . Moreover,

(8) NL («» )^C(r-2* WftyW+r-*-1 \\g\\zf)

Finally, forj^N, j<μ+ί,

\\u\\wi.HRV^Cr'(r-^ WflkHn^+r-^1 \\g\\Zr)

and for any £>0

1 \\g\\Zf) .

Proof. The existence and the unicity of a unique solution of the form de-
clared follows from 2.8, 2.10, 2.12, 2.14 and the contraction mapping principle.
Next, remark that there exists C > 0 such that for any r large enough,

^-2m \\φ\\x+r-1 \\M\r)

so that, if r is large enough,

' \\g\\Zr)y U\\γ<C{r^-»» \\f\\x+\\g\\zr).

So, (8) follows from 1.4 (b) and 2.4.
The final statement is again a consequence of 2.4.

Lemma 2.17. Assume that (hl)-(h6) are satisfied. There exists p>l

such that, if f^Lp(Rfi)NΓ\L1(R%)N and gEΞ Π W2m~σ^"p p(Rn~

W2m'p(Rn+)N and is the only solution in this space of problem (5).

Proof. Owing to Agmon's estimates (see [3]) problem (3) has, for
]1, +°°[, for any r>0 sufficiently large, at most one solution u in the space

W2m'p(Rn

+)N for 2inyf<=Lp(Rl)N,g(= JlW^-^-^HR"-1).
λ=l

Now assume first that the coefficients of A{xy 3) are of class BC2(Rn), the
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coefficients of B(x', d) are of class BC2m-^+2,feB\^(Bl)N, with 0<8<β',

g<= JlBl'?Js-σκ-1(R"-1). Then, by 4.5, Γ ( ( r ! - Δ ί , ) V 2 ) ^ ε 5 ξ ; 4 ' - | t - ' ( Λ - 1 ) " i '
λ—1

and so g£ΞZr. Then, by 2.9 and 2.11, Φ=Tu(r)φ+T12(r) Ψ+/<ΞJBf,00(/2:)",

for some δ ' > 0 , which implies, by 4.12 and 4.9, that #-> I K(x— y,y, r) φ(y)
Rn

dy(ΞB\m**(RΪ)N. Moreover, by 2.13 and 2.15, Γ21(r) φ<= Π 8>0-
(Rn-ψN a n d T ^ ψ G n 8 > 0 B Ϋ - ' i R - 1 ) - " , so that, by 2.5,

χ-> J Jϊ(*/-/,*.,/,

if δ' is sufficiently small.
Now one has that, by Sobolev theorem (see [17] 2.7) Bl~(Rl)

if \<p<n(n-δ'Yι so that u(=W2m>p(Rn

+)N if \<p<n(n-h')-\ Now take/v

(v(ΞN)<ΞBΪtOO(R%)N such that/ v-^/in LP{R\)N nL\Rl)N.

Let ^ e Π W^-'λ-'^ 'ίΛ11-1) n ^ r . If ^v=^*ωv(ωv is the usual mollifier),

gy,-*g in f l W^ -'λ-* -p(Rn~l)r)Zr. Indicate with wv the solution of (5) with

data/v, gv; then wv~»w in X f] W2m'p(Rn

+)N and so the result is proved if the coef-
ficients are regular.

The general case follows by approximation.

REMARK 2.18. From 2.17 one draws the fact that the solution of (3) in form
(4) does not depend on the choice of μ, at least if g is sufficiently regular.

3. Boundary value problems in a domain

In the following Ω will be a fixed bounded open subset of Rn with the
boundary 3Ω which is a submanifold of Rn of dimension n—1 and class
C2m+β(β>0) and Ω lying on one side of 8Ω.

We want to study the following problem:

(9) r2mexp(iθ)u-A(x,d)u=f in Ω ,

(7 is the trace operator on 9Ω), with r > 0 , —πβ<θ<π\2 under the following as-
sumptions :

(11) for any Λ E Ω A(X, d)=(Aij(x, d))i^i^N i^^N with coefficients in Cβ(Π) satis-
fies (hi), (h3) (/3>0);

(12) B{x, d)=(BXJ(x} 3))i^λ^isr,i^y^iv, with order of Bλj not exceeding σ λ (0<
σx<*2m— 1) and coefficients in C2wι""σλ+β(Ω): we indicate with B*Kj the part of order
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(13) (complementing condition) for any x'^dΩ, for any r>0, for any ξ'
7V(3Ω), r and ξ' not both O,for any 0 e [ — r/2, τr/2] the O.D.E. problem

[r2* ei9-A*(x', iξ'+v{x') 9,)] w(t) = 0 in R,

B*(x',iξf+v(x')dt)w(0) = g

w bounded in R+

has a unique solution for any g^CmN (have v(xf) is the inward normal unit vector
to 9Ωin# '

We start with the following technical lemma:

Lemma 3.1. Let R>0, A(x, d)={Aij{x, d))1^i^Ntl^j^N with coefficients in
Cβ(BΪ), satisfying (hi) and (h3); moreover, let B(x,d)=(BλJ(x9d))1^mN^J^N,
with order of Bλj not overcoming σλ(0<σλ<2m— 1) and coefficients in C2m"σ^+β(Bi)
we indicate with B{tJ the part of order σλ of Bλj, Bt=(B{j)1^λ^mN1^J^N and assume
that (13) is satisfied in any point (x\ 0) with | x' \ <R.

Then, there exist differential operators AA(x, 9), BA(x, d) satisfying (I1)-(I3)
whose restrictions to B% are A(x, 9) and B(x, 9).

Proof. It is easily seen that A(x, 9) and B(x, 9) are extensible to oper-
ators A\x, 9) and B'(x, 9) defined on i?ί+ 8 and preserving the properties of
A(x, 9), B(x, 9). Let ^eC°°([0, +oo[), such that ψ ( r ) = l if 0<r<R, ψ(r)=0

if r>R+S and 0<i/r(r)<l Vre[0, +oo[. Set φ(r)=['ψ(s) ds. Then φG
Jo

C"([0, +oo[), φ(r)=r if 0<r<R, φ(r)<r VrG[0, +oo[, φ(r)=C with C<R+6
if r>R+S. Set AA(x9d)=A(φ(\x\)\x\'1 x.d), BA(xyd)=B(φ(\x\)\x\-1 x9 9)

Lemma 3.2. Assume (I1)-(I3) are satisfied. Let p>ί and
such that y(B( ,d)u)=0. Then, there exists 0 0 such that, ifr>C,

r^ \\{r*»> exp(iθ)-A( , 9))u\\LHti>* ,

and, for 0<σ<2m,

exp(iθ)-A( , 9)) ιι||Li(Q)jr

Proof. Let x' e9Ω. Then, there exist [/ neighbourhood of Λ?' in Rn, R>0
and Φ: U->BR difϊeomorphism of class C2m+β such that Φ(U f]Oi) = Bi and
such that Φ(U ΓidΩ) = ίy^BR\yn = 0}. We set Aφv = A(-9 9) (z oφ)oφ-i,
Bφv=B( , 9) (ZΌΦ)O-1, We assume that the B( , 9) is defined in a neighbour-
hood of 9Ω with the same regularity of the coefficients. It is well known that
Φ may be chosen in such a way that AQ and BQ satisfy the assumptions of 3.1,
so that they can be extended to operators AA(y, 9), BA(yy 9) in the way describ-
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ed in 3.1. Let Ω c {Ji&gs Us, with Us domain of Φ5 with the properties de-
scribed or US<Ξ:Ω. Let { φ J l < s < S } be a partition of unity subordinated to
this covering of Ω. Assume that Us is not contained in Ω. Then vs=(φsu)oφj1

satisfies

t2" e" vs-ΛΦs vs=(φs

with A' = (A'ij(xy θ))^/^^,!^^^, the order of A'ij(x, 9) less than or equal
to 2m-— 1 and the coefficients of class Cβ(Π) vanishing out of US,B'=
(B{j(x> d))ι<zλ<zmNti£j£N, the order of B'λj.(x, 9) less than or equal to σλ— l(B/

ij(x, d)=

0 if <rλ=0) and coefficients of class C2w-(rλ(Π) vanishing out of Us.
Now we think of γ((jB'z/)oφ71) as extended with 0 to the whole JB "1. If

l^λ<wΛΓ, one has Ύ((B'λ.(-9 9) uoφT^W2"*1-**-*'1-*^"-1), so that, using the
fact that if has a compact support, one has 7((j5£y( , 9) woφ71)eβf^Γ<Γλ(ΛΛ"1),
so that, if τ<2m-σλ, by 4.5 (r2-ΔΛ/) τ / 2 7((B(y( , d)uoΦ71)*ΞL\R -'1).

Using 3.1, we can extend AQs and BΩs in such a way to be able of applying
the machinery of the second section (whose notations we are going to use). By
2.16, we have

-*»\\vs\\x<C(r

Now we estimate
If <rk=2m—ly with the same method employed in 2.12 we have

\\Ύ(B'λi(-, 3) «/oΦ71)||Λf.M(β.-»)(e>0)^Cr^ \\B'λJ( •, 3) U

(by 4.13)

Analogously, one has

*? Ύ(B'K.(-, 3) M,.°Φ7 1

-μ) if 0<er λ <2m-2 .

So, we have, coming back to Ω and summing up in s:

(10) \\u\

With the same method, applying the last statement of 2.16,
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m3sr

λ=l

and, if 0<σ<μ+l,

\\u\\Bϊ^ω"<Grσ[r-2m \\f\\LHQ)*+r-2>» \\u\

mJΓ

λ = l

Assume, for example, maxλσλ=2/w—1. For σ=2m—1+£ we obtain, if r is
large,

Substituting this estimate in (10) we obtain easily

+ Σ Γ-Ά-1 |MI*-λ+.(a)* ] ,
< Γ ^ 2 2 1° °

and, ifθ<σ</i+l,

+ ' 2 ί -'λ"1 ||«||ajλ+tto,jr] .

Iterating the method (eliminating the strongest norms first) after a finite num-
ber of passages one obtains the desired estimate, taking into account the fact that
μ + 1 can be chosen arbitrarily near 2m (owing to 2.18).

Thoerem 3.3. Assume (I1)-(I3) are satisfied. If ! .</><+ oo, set

D{AP) = iuεΞW2*>'>(Ω,)N\y(B(.y d)u)=0} ,

Apu = A(x, 9) u .

Then:
(a) Ap is closable in L\Ω)N

(b) the closure of Ap does not depend on p
if Aι is this closure,

(c) z>(A)<=ne>oS5M~-W;
(d) ifu^D{A1), λ<=C, Re λ>0 and | λ| is sufficiently large,/=(λ—Λ)",
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kV if 0<σ<2m;

(e) ί/maxλ <rλ<Ξ2w—2,

= 0, A{

(f) ^ ώ £#£ infinitesimal generator of an analytic semigroup in L\Ω)N.
Proof. From [3] one has that for any p> 1 Ap is the infinitesimal gener-

ator of an analytic semigroup in Lp{Cl)N and it is easily seen that, if l<p<p'<
+ °°, Ap' is closable in LP(Ω)N and its closure is Ap. This implies that the
closure of the graph of Ap in L\Ω)N XL\Ωi)N is the same for any p>\.

Now, fix/>>l. Then, by 3.2, if Re μ>0 and \μ\ is sufficiently large,
(μ—Ap)-1 is extensible to a linear bounded operator R^)^X(L\a)N

9 BιfOO(Ω,)N)
for any <r<2m and

(II)

It is immediately seen that {R^)/Kt μ>0y \μ\ >C} is a pseudoresolvent and
from the first estimate in (11) and [20] VIII.4, lemma Γ, one has that Ker (Ri(μ))

ΠR{Ri(μ))={0}. However, it is clear that R(R^)) is dense in L\a)N and
this implies that Ri(μ) is injective and there exists a linear operator Ax such that
Rι(μ)=(μ—A1)~1. From this (a)-(d) and (f) follow easily, (e) follows from
4.14.

REMARK 3.4. In case maxλ <τλ=2m— 1, if u^D{A^)y the boundary condition
IT

Ύ( Σ Bλj Uj)=0 may be intended in the following sense: fix a point x'^dΩ, and

a local change of variable Φ of class C2m+β such that, if U is the domain of Φ,
Φ(U) is of the form Vx]-T, Γ[(Γ>0), Φ(U ΠΩ)={^GΦ(ί7) |^ n >0}, Φ(U
Γ\dΩ,)={y^Φ(U)\ yn=0} and the transformed operators Aφ and Bφ satisfy

the assumptions of 3.1. Then, Bφ^oφ-1) has a sectional trace in Vx {0} equal
to 0.

REMARK 3.5. The method employed can be used to study boundary value
problems for elliptic systems in spaces which are different from L1. For exam-
ple with an analogous method one can study problems in spaces of Borel meas-
ures (taking into account that the space of finite Borel measures M(Rn) is includ-
ed in the space B\~{Rn) (see [15] 2) and in L°°{Rn) (using spaces BttOO). In
each case one can prove results of generation of semigroups which are not
strongly continuous in 0, because the domains of the infinitesimal generators are
not dense.

4. Appendix: Besov spaces B"q

In this appendix we collect for convenience some results concerning Besov



O N ELLIPTIC SYSTEMS IN L1 425

spaces B*q(l<q< -\- °°) which were used in the previous paragraphs. Most of
these results are only stated without proof, as they are already present in the
literature.

DEFINITION 4.1. Let a^R, 0<α<;i, l < g ^ + °o. We set

O l s u p * e Λ » \ ( 0 } | ^ ^
n) I{ (|K

Rn

Letα>l .

Bΐtq(Rn): = {ut=WW-\Rn)\ V/3eiVS with \β\ = [a]~ dβu£=B[»ΐ(Rn)}.

These spaces will be always considered with their natural norms || ||?.ί:

In case 0<{or}"<l equivalent norms can be obtained replacing dβu( +fή—
2dβu+dβu( -h) with dβu(-+h)-dβu(sεt [17] 2.5.12).

Thoerem 4.2. .For <my α>0 there exist O>0, N&N such that, for any
m<ΞθMsfor

\dβm(x)\

Proof. It is a particular case of [4].

Theorem 4.3. Let ayβ^R, a>0, a+β>0; then, u->(l—A)~β/2u is a
linear and topological isomorphism between B i,q(Rn) and B"*q

β(Rn).

Proof. See [15] 1, th. 8.

DEFINITION 4.4. Let a^R, a<0, a=β—γ, with β>0. We set

B tq(Rn): = {u = (1-Δ)^ v\v€=Blq(RT)}.

Owing to 4.3 this definition is independent of β>0. So, if α<0, we can
set

Proposition 4.5. Let a, βeR, meOM There exist 0 0 , N&N such
that V/e5f.f(Λ")
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\\F-1(tnFf)\\iq<CsnpisRnι^N(ί+\ξ\γ-^m\d >m(ξ)\ ll/llΐ,

A consequence of 4.5 is that V « E Λ , β^N% u-* dβu is a linear bounded
operator from B ?.f(Λ") to Bft

For what concerns pointwise multipliers, we have the following result:

Proposition 4.6. (see [17] 2.8.2) Let a, β<=R, β>\a\. Then BCP(R")
is a space of pointwise multipliers for Bΐtt(R").

Lemma 4.7. Let a(=BCp(R"), with β>0, <z(0)=0. // \a\<β, l<,q<,
). «(*)=0 if | * |

|M|f.f

ω(i?) βwt/ η(R) indepedent of u and ω(i?)->0 (i?-»0).

Proof. See [5] prop. 4.2.

Proposition 4.8. Assume a0, a^R, l<q,qo,qi< +

If ao

l with a=(l-θ) ao+θai;

Proof. See [17] 2.3.2, 2.4.2, 2.4.7, 2.5.7.

Proposition 4.9. L /̂ yϊ(#, 3)=(^4iy(^, d))i^itJ^N be a differential operator
valued matrix with coefficients in BCβ(Rn) (/3>0). Assume further that (hi), (h3)
are satisfied. Consider the problem

(12) Xu-A(x, d)u=f in Rn,

with λ e C , Re \>0,fGBt,q(Rn)N

ί with \a\ <β. Then, there exists R>0 such
that, if \\\ >R, the problem has a unique solution

Proof. We start from the constant coefficient case; assume first that
A(d)=A\d) and 0e[—τr/2, τr/2]. Then, for any ξ&R" and any r > 0 , with
(r, f)Φ(0, 0), the matrix r2™ eiθ-A(iξ) is invertible. We set (fm eiθ—A(iξ))"1=
((Xij(r, ξ))i£itj£N. It is easily seen that arι is homogeneous of order —2m in the
variables (r, ξ). Therefore, problem (12) has a unique solution u in S'(Rn)N

and such a solution, owing to 4.5, belongs to Bltyc6(Rn)N. Moreover, if r > l ,
we have the estimate
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(13) r2* | M l ^ i f (

which can be obtained by arguments similar to [6] proposition 2.3.
A simple perturbation argument gives the same result also in case ^4(3) Φ

Now we consider the case of variable coefficients. Using 4.7 and the same
method of (for example) [6] (lemma 2.4 and prop. 2.5) one obtains estimate (9)
in case q= 1 and the existence of a solution of (8) in the case of BC°° coefficients.
A standard approximation argument allows to extend these results to the case
of coefficients in BCβ. By interpolation the case #4=1 follows.

DEFINITION 4.10. Let Ω be an open subset of Rn, a^R,\<q< + oom We
set

is a Banach space with its natural topology of quotient space. We
have:

Proposition 4.11. Let Ω, O be open subsets of Rn, Φ: O->Ω a diffeomor-
phism of class Cp(p>ί). Let ί/G5ί(ί(Ω), with 0<a<p or a<0, \a\ + l < p and
suρp(w) compact in Ω. Then, uoφ is a well defined element of Bΐtq(O).

Proof. See [5] prop. 4.3.

Proposition 4.12. Let N^N. There exists a linear operator PN belonging
to X{Bΐtq{RΪ), Blq(Rn)) for any a<Ξ]—Ny N[, suck that PNu |Λ» =u. Moreover,
if —l<a<\,given any element u^B*tq{Rn+), there exists a unique element u0^
B°ltq{Rn) such that u is the restriction of u0 to R\ and the support of u0 is contained
in the closure of R%.

Proof. See [17] 3.3.4, 2.8.7. The uniqueness of u0 can be obtained like in
[5] prop. 4.4.

With the help of 4.11 and 4.12 it is now easy to obtain natural extensions of
4.6, 4.8 and 4.12 itself to the case Ω=Λ+ or a bounded open subset of Rn, with
boundary 3Ω of class Cp and Ω lying on one side of 9Ω. Moreover, using 4.11,
it is possible to define, by local charts, J5?9(9Ω) for any α G Λ , 1— ρ«x<p.
One has:

Proposition 4.13. Let a^R, l<a<p. If u^B*tq(Ω), u has a trace on
3Ω. Such a trace belongs to the space Bi

Proof. See [17] 3.3.3.

Now, (just with obvious modifications of the proof) one has the following
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variant of theorem 3.1 in [7]:

Proposition 4.14. Assume the assumptions (I1)-(I3) are satisfied. Let

•Bi*(ft)" such that Ύ(B(X'> 9) «)=0 ( 1 < ? < + °O). Let λ e C , \u—A(x, 3) u=f
in Ω. Then there exists C(Xy q)>0 independent off such that

The author is happy to thank Prof. H. Tanabe of Osaka University for ex-
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paper and Prof. H. Amann with his group in Zurich for stimulating conversa-
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