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Introduction Let (Q, A, u) be a probability space, E a Banach space.
We consider constant-preserving contractive projections of Ly(Q, <A, p, E) into
itself. If E=R or E is a strictly-convex Banach space, then it is known (Ando
[2], Douglas [3] and Landers and Rogge [6]) that such operators coincide pre-
cisely with the conditional expectation operators. If E=L,(X, S, a, R), where
(X, S, ) is a localizable measure space, then the author [8] proved that such
operators which are translation invariant coincide with the conditional expecta-
tion operators. If E=L.(X, S, \, R), where (X, S, \) is a measure space, and
the dimension of E is bigger than 2, then author [9] proved that such operators
coincide with the conditional expectation operators. On the other hand if E=
L.(X, S, A, R) and the dimension of E is 2, then the author [9] proved that such
operators can be expressed as a linear combination of two conditional expecta-
tion operators. In this paper we deal with the case that E is an M-space. An
L..-space is an M-space, and hence this paper contains the result of the author
[9] as a special case. If E is an M-space, whose dimension is bigger than 2,
then such operators coincide with conditional expectation operators.
If E is an M-space with unit, i.e., the unit ball in E has a least upper bound, then
we can prove many of lemmas in this paper by easier way. In this paper we
do not assume that E is an M-space with unit.

1. Definitions and properties of M-spaces. Let E be a real linear
space and N the class of natural numbers and R the class of real numbers.

DeriniTiON 1.1, A lattice (E, <) is an ordered linear space such that
(1) a=aforanyackE;
(2) ifa,beE, a<b and b=a, then a=b;
(3) ifa,b,cEE and a<b and b=c, then a=c;
(4) if a<b, then a+c=<b-c for any cEE;
(5) if 0=<ain E, then 0=<ka in E for any k=0 in R;
(6) sup{a, b} and inf {a, b} exist for any a, bEE.
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In a lattice we write aVb=sup{a, b}, aA\b=inf {q, b}, at=a V0, a-=
(—a)VO0 and |a|=aV(—a) for any a,bcE. Let.E*={acsE;a=0}. Note
that aAb=0 implies that a, b€ E*. If acE* and a=+0, then we write ¢>0.
We also use V and A for real numbers, and hence kVA=sup{k, 4} and kAh=
inf {&, h} for k, hER.

DrerFiNITION 1.2, An M-space (E, =, || ||) is a normed lattice such that
(1) (avdAc= (aNc)V(bAc) foranya,b, ceE;
(2) Eis complete under || |l;
(3) llaVall = llallV|IBll ~for any a, b E*;
(4) If a,b=E and |a| <b, then ||a|]|<||b]|. In particular || |a] || = [|all.

Lemma 1.1. If E is an M-space, then there exist a Hausdorff compact space
X, a linear operator T of E into C(X) and a linear subspace F of C(X) which satis-
fy the following conditions, where C(X) is the class of real-valued continuous func-
tions on X with the norm ||d||=sup{|d(x)|; x€ X} for d €C(X).
(1) dVeEF for d,ecF, where \ is defined by

(dVe) (%) = sup{d(x), e(®)} -
(2) T is a one-to-one operator onto F such that
T(aV/'b) = T(a)V T(b)

and

IT(@) = llall .
For the proof see Aliprantis and Bourkinshaw [1] p. 75.

Let E,= {a*; a* is a linear functional of E into R, ||la*||<1, i.e., |a¥*(a)| =
|lal| for a€ E and a*(aV b)=a*(a)V a*(b) for a, bEE}.

Lemma 1.2. For any ac<E there exists a* € E, such that |a*(a)|=]||al|.

Proof. By Lemma 1.1 T(e)eC(X) and ||a||=||T(a)||. We can choose
x€ X such that | T(a) (x)| =||T(a)l|. We define a* by a*(b)=T(d) (x) for any
beE. Then a* is linear and

[a*(a)| = | T(a) (»)| = [IT(@)|| = llal| .
By the definition of a*
a*(bVe) = T(bVc) (x) = (T(b)V T(c)) () = (T(]) (x)) V (T(c) (x))
= a*(b)Va*(c) .
Therefore a* € E,, Q.E.D.
Lemma 1.3. LetacE and b,c,d=E*. Then
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(1) (aAb)V —b = (aV —b)A\Db,

(2) (—a)Ab)V —b= —((aNb)V —b),
(3) ((@anb)V —b)" = a* N,

(4 ((@anb)V —b)~ =a" N,

(5) 1(anb)V —b| = |a| \b

and

6) (B+o)Ad=<bAd+cAd.

Proof. Since b€ E*, for any acE
(@aNb)V —b = (aAb)V ((—b)A\b) = (aV —b)A\b,
and hence we have (1). Since « is arbitrary, by (1)
(—a)AB)V —b = ((—a)V —b)A\b= —((aNb)V —b),
which implies (2). Since b€ E™*, we have
(aNb)V —b)" = ((aAb)V —b)VO = (aANb)VO
= (aVO)A(bVO)=a*Ab,
which implies (3). By (2) and (3)
((@Ab)V =b)~ = (=((aAb)V =b))" = (—a) AB)V —b)*
=(—a)*ANb=a Nb,
which implies (4). Since a* Aa~=0, by (3) and (4)
[(@aAb)V —b| = a* Ab+a~ Ab = (a* Ab)V (a~ A\b)
= (@a*Va )Ab= |a| A\b.
For the proof of (6) see Fremlin [4] p.14. QE.D.

Lemma 1.4. For any a,bEE and c,d € E* we have
(D) @A)V —et(bA)V —cll=llatbll,
2) Mletal|=llell Vla—ell
and
Q) lle—dli=llell V1l
If in addition |a| A\ c=0, then
@ llat-cll=llall Vlell.

Proof. By Lemma 1.2 there exists a* € E* such that
(5) @A)V —cE(bAc)V —cll=]|a*(aNc)V —c+(bAc)V —c)].
We may assume that a*(c)=0.
By the definition of E,
(6) la*((anc)V —ct(bAc)V —c)|=](a*(a) A a*(c))V —a*(c)



318 R. M1YADERA

H(a* () Aa*(e)) V —a*(c)].
Since a*(a), a*(b)ER, a*(c)=0 and |[a*||<1, we have
(7) (@ (@A a*(e) V —a*(e)E(a*(B) A a*(e)) V —a*(c)]
= |a*(@)La*(b)| =|laLdl|.
By (5), (6) and (7) we have (1).

cVi]a—c|=cV(c—a) = c+(0V(—a)) = c+a =0,
and hence by Definition 1.2 (4) we have
lleVila—c| [IZlle+a]l .
By Definition 1.2 (3) and (4)
lleVila—cl |l = llell VIl la—¢] Il = llell V lla—ell ,

and hence we have (2).
Since ¢, d € E implies that |c—d| =cVd, by Definition 1.2(3) and (4) we have

lle—dll=lleVdll = llell V]Il .
If |a| Ac=0, then
lat-c| = |a| +c= |a| Ve.
Therefore by Definition 1.2(3) and (4)
llat-cll = |l la+c| [| = Il |a] Vell = llal| Vll| . QE.D.

Lemma 1.5. For any b, cEE* with b\ c=0 and xE
(1) [ls-FbtellZIEAB)Y —b+blIVIIEA) Y —cLell

Proof. Since bA ¢=0 implies that ¢ A 2b=0,
b=0b—cA2b = (b—c)V—-b=Z((bt£c)Ab)V—b=b.

Therefore

(2) (bc)Ab)V —b=1b.

Since bA (c+¢)<bA2c=0, we have

(3) (BEAIA)Y —c = (BA(CTFA)Ee)V —c = (£)V—c = <.
By (2), (3) and Lemma 1.4 (1)

[lx—+btell
Z(xFAD)V =b+-((0L)AD)V =Bl VII(xAe) V —c+((bLe)Ae) V —l|
Z (AL V —=b+bl| VI]I(xAc)V —ctell QE.D.

2. A characterization of conditional expectation. Let (Q, A, u) be
a probability space and for any A=A we denote by I, the indicator function of
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A. Let L(Q, A, u, E) be the class of E-valued Bochner integrable functions,
which is a Banach spase with the norm || ||, defined by

171l = [ If@)ll dn forany fELi(Q, A, u E).
Let L(Q, A, u, EY)={f€L\(Q, A, u, E); f(o)EE*(a.e.0)}. For any fEL,
(Q, A, p, E) and a=E we define f+a by
(f+9) (o) = f(o)+a.

For any E€L\(Q, A, u, R) and a€E we define ¥ a by (¥ra)(0)=v(»)a.
Then ||y al|.=]|a|| ||[¥r||l.. For the definition and properties of Bochner inte-
gral, see Hille and Phillips [5].

DEerINITION 2.1. For a o-subalgebra B of A, a function g is called the
conditional expectation of f given B if g is measurable with respect to B, and

S gdy,:S fdu foreach BeB,

B B

where the integral is the Bochner integral. We denote by f9 the conditional
expectation of f given .

DerINITION 2.2. Let P be a linear operator of L,(Q, A, u, E) into itself.
P is said to be contractive if

1Pl = sup{lIlP(Nllz; fELAQ, A, gy E) and | f]l, = 1} =1,

P is constant-preserving if P(Ig a)=1Ig a for each a€E and P is called a projec-
tion if PoP=P, where I is the indicator function of Q.

Lemma 2.1. For each fEL,(Q, A, u, E) the conditional expectation of f
extists uniquely up to almost everywhere and the conditional expectation operator
()2 is a constant-preserving contractive projection for each o-subalgebra B of .

For the proof see Schwartz [10].

Lemma 2.2. If P is a constant-preserving contractive projection of
Ly(Q, A, u, R) into itself, then there exists a o-subalgebra B of A such that P(f)
:f_@ fOT annyLl(‘Q‘: '—’zl: 22 R) ‘

For the proof see Douglas [3]. Note that this Lemma is for the real-valued
functions.

Lemma 2.3. If a* is a bounded linear operator of E into R and fE
L(Q, A, u, E), then we have

(| f(@) i) = | *(f@)) ds.
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For the proof see Hille and Phillips [5].

Lemma 2.4. Let Q be a constant-preserving contractive projection of L,
(Q, A, u, E) into itself. If a,b, cEE* withaNb=bAc=cA\a=0 and b>0, then
for any Y EL\(Q, A, p, R) we have

(1) (Q(yr @) (@) A )V —c = 0 (a.e.0)

Proof. If a=0 or ¢=0, then this Lemma is trivial. So we may assume
that ||a||=]|b|]|=]||c||=1. First we assume that |Y/(w)| =1 (a.e.0).

Let ezs QW ))Ae)V —c| dp={ 1Q(4 )| Acdu, where the last equation

comes from Lemma 1.3 (5).

Suppose that e>0. Then there exist k€R* and d*€E, such that d*(ke)
=|lke|]|=1. Let d=keV c, then ||d||=1.

Since e=c¢, aAd=d ANb=0.

Since d*(c)<||c||=1,

d*(d) = d*(ke\/c) = d*(ke)Vd*(c) = 1.
Let f(w)=(Q(y a) (@) AbB)V —b

and
8(@) = (O @) @) AV —d.
By Lemma 1.3 (5) | g(w)| = | Q(++ a) ()| Ad, and hence by Lemma 2.3 we have
@ 1= d*(ke) = ka*(| |Q(y@)| Acdp)
<ka*([ 10w @) Addp)
<ka*({ |g| du)
— k(| a*(lgh) du,

where the last equation comes from Lemma 2.3.

Since | y(w)| =1 (a..0) and aAb=bAd=d Aa=0 with
llall = 15l = II4]| = 1,
by Lemma 1.4 (4)
l[¥(@) a+bt-d|| = |ly(w) all VIIB VIId]| = 1 (a.e.0) .

O is constant-preserving and contractive, and hence

® 1= (I a+btdll duz{ 10 a)+btdll dp
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By Lemma 1.5 we have
@ [ 106w ay+-tal duz |1 f+0VIlgal du
By the property of integral we have
(5) [ nr+o1viigLal d

2 I1f+oll dp v | llg=tdl] dy

2 1f+oll duA | gl dy

2| | fau+blAll | g dutall.
Therefore by (3), (4) and (5)

12{ lgalldpzll { g dutdll.
ince || | gdpt+dl+11 | gdu—daliz2 1d1=2, we have

(6) 1 {gdpran=1.
Similarly we can prove that

@) {7 dutol=1.
Therefore by (3), (4), (5), (6) and (7)

[1g(w)+d|l = || f(w)-+l|
= || g(w)—4Il .
Since

l12(@)+-dl|+llg(w)—dl|22 ||d]| = 2,
by (5) we have

®) llg(@)+dll = llg(w)—d]| = 1 (a..0) .
By the definition of g(») we have d—g(w), d+g(»)=0 (a.e.»), and hence by (8)
lld+ 1 g()! I

= [l(d—g(»)) V (d+2(o)ll
= [l[d—g(@)l| Vlld+g(o)ll = 1 (a.c.0) .

Since d*(d)=1,
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14+d*(| g(w)|) = d*(d+ | g(w)])
<lld+ | g(@)] IIS1 (@e0).
Therefore we have

a*(1g()|) = 0 (a.c.0),

which contradicts (2). (1) remains valid for any bounded function +. Since
an arbitrary function can be approximated by bounded functions, by Lemma
1.4(1) we can prove (1). Q.E.D.

Lemma 2.5. Suppose that there exist a, b, cE E with a ANb=bAc=c A\ a=0
and a,b,¢c>0. Then

(1) O(r a) (w)EE*(a.e.w) for any y<L,(Q, A, p, RY).
In particular if 0=r(0) =1 (a.e.0), then 0<0(yr a) (0)=a (a.e.0).

Proof. We may suppose that 0=<+r(w)=<1 (a.e.0) and [|a||=][b|]|=1. Let
e=S O(Wra)~dp. We suppose that e>0. Then there exists 2>0 such that
|lke]|]=1. Let d=ke. Since aAb=0, by Lemma 2.4

Q@) (@AB)V —b=0.
Hence by Lemma 1.3 (4), (5)

2) 1Q(¥ a) ()| Ab = Q(¥ a) ()" Ab= 0 (a.c0).
Therefore

©) dAb=keNb=0.

Since a A b=0, by Lemma 1.4(3) and Definition 1.2

4) [Wr(w) a—d+b| < |[Y(w) a+b]| V|d]]

= |Bll V [Wr(w) all VIId]| = 1 (a.e.00) .
By (2), (3) and Lemma 1.3 (6) we have
1Q( @) (0)—d| Ab= |Q (¥ @) (0) | ANb+d N0 =0,
and hence by Lemma 1.4 (4) and the fact that ||b]|=||d||=1

®) 19 (¥ a) (w) —d+bl| = ||Q (¥ @) (w)—d|| Vbl
=1 @) (0)—dl| VIld|l .

By Lemma 1.4 (2)
(6) 1Q (¥ @) (0)—dII VIId|IZ]IQ (¥ @) (0)~+4d]l -
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Since Q is constant-preserving and contractive, by (4),(5) and (6),
12 I a—d+ll dpz | 10 @)—d-+51

2o ay+dll dpzll | 0 @y du-tal
= lle+dll = I(/R)+ 1) dlI>1,

which leads to a contradiction, and hence e=0. Therefore

O @) (0) EE* (a.0).
Let ¢(0)=1—+4r(w). Then similarly we can prove that
O(¢ a) (w)€E*. Since Q is constant-preserving,
QW a) (0)+Q (P a) (0) =a.
Hence we have
00 a)(w)<a (acew). Q.E.D.

Lemma 2.6. Suppose that there exist a,b, c€ E* with a N\b=bA\c=cN\a=
0 and ||a]|=]|bl|=l|c]|=1. If d€E™* and d*<E, with d*(d)=||d||, then for any
YyeL(Q, A, u, RT) we have

d¥(Q (Y d) (w)) = [|1Q (¥ d) (0l (a.e.0),
(W d)ll. = W dll.
and

1Q (¥ @) ()l = [1Q (¥ 8) ()| (a.e.00) -

Proof. First we assume that 0=+yr(w)=1 (a.e.0) and [|d||=1. Let ¢(o)=
1—+r(w). Since ||d*||<1, we have

4) d*Q (¥ d) () =1Q (¥ ) ()l (a-€.00)
and

©) d*(Q(¢ d) («))=1|Q (¢ d) ()] (a-e.00) -
O is constant-preserving, and hence

(6) d*Q (¥ d) (0))+d*(Q(¢ @) ()

= d*Q(lad) (@) = d*(d) = 1.

Since Q is contractive,

@ (e aldut{io@ dldu=|ivaldut|ieddp
=l =1.
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By (4), (5), (6) and (7) we have

® QW d) (@) = 1004 &) (@) (2.6.0)
and
© (oW il dn = [k dil du.

It is easy to show that (8) and (9) remain true for any bounded function €L,
(Q, A, p, R*). Since any ¢ EL\(Q, A, p, RT) can be approximated by a se-
quence of bounded functions, (8) and (9) are true for 4. We have proved (1)
and (2). By Lemma 2.5 0=0Q(¥ra) (w)<a and 0=0Q(yr b) (0)=b, and hence
by the relation a A b=0 we have

QW a) (@) AQ (¥ b) (0) = 0 (a.e.00) .
By Lemma 1.4 (4)

w0  {1owanview vildw = {106 o+ 0w bl du
< { I atvr bll ds = | Il all V1 811 s
— i altan = 1w el dn.

(9) remains true for d=a or b, and hence by (10) we have

10 (¥ @) (@)l = 1Q (¥ b) (@)]] (a-e0) - QED.

Lemma 2.7. Suppose that there exist a,b,cSE such that a,b,c¢>0 and
aNb=bAc=cANa=0. If b, pEL\(Q, A, pu, R) satisfy the condition

(1) 0Sy(@)=1(aew) and () llall = IQ(¥ @) (@)I| (a.e0), then
19 (¢ @) ()l = ¢(w) lal] -
Proof. We assume that ||a||=]||b]|=1. By (1) and Lemma 2.5 we have
) 0=0(b) (@)<b (a.c.0),

and hence 0=¢(0)=1 (a.e.0).
Therefore by Lemma 2.5 we have

3) 0=0(¢a) (w)=a (a.c0).
Since a A b=0, by (1), (2), (3) and Lemma 1.4 we have
) [1Q (¥ 8) (0)—Q (¢ a) (w)l| = [IQ (¥ 8) () VIIQ($ @) ()]

= ¢ () VIIQ(¢ a) (0)l] (a-e.0)

and
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() 1O (¥ b) () — (o) all = [I1Q (¥ b) ()] VI (w) all
= ¢(0) (a.e.0).

Since Q is a contractive projection,

(10w b~ all duz 100w ©)-0( @)l dis,
and hence by (4) and (5) we have

[ anz{oviowaldn,
which implies that

$@=I10($ @) (@) (a.c).
By Lemma 2.6

10(6 )l = 14 all = ligll .

Therefore we have

b () = 10(¢ a) ()| (a.e.00) . QED.

Lemma 2.8. If there exist a,b,cEE with aANb=bAc=cAa=0 and
a,b,c>0, then there exists a o-subalgebra B of A such that ||Q(r a) (w)||=

'\!"Q(w) llal| for any 1I"EELI(‘Q: A, 122) R+)

Proof. We may suppose that [|a]|=1. Let a*€E, such that a*(a)=1.
Define an operator P of L,(Q, A, u, R) into itself by P(vr) (0)=a*(O( a) (w))
for any Y ELy(Q, A, u, R). Since a* and Q are linear operators, P is a linear
operator. Since Q is constant-preserving, we have

1) P(Io) (w) = a*(Q (Lo a) (@) = a*(a) = Ig(@) -
If y(w)=0, then by Lemma 2.6
IQ (¥ @) (w)ll = a*(Q (Lo @) (@)) = P(¥) -

Since Q is contractive and ||a*||=1,

@ [ 1P di = [ 1a%Q @) (@)1 i

<( 0w all du=|ilvaldu = 1v1 dn.
Let
3 $(©) = 12 a) @)l = P() ().

If 0=Y/(0)=1 (a.e.0), then by Lemma 2.7
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C)] # () = (¢ a) (o)l = 1IQ(¢ a) (o)l = P(9) () -
By (3) and (4)
) P(y)=P(P(y)).

Since P is a linear contractive operator, it is easy to show that (5) remains valid

for any wEL\(Q, A, u, R). Therefore by (1), (2), (5) and Lemma 2.2 there

exists a o-subalgebra & such that

(6) P(y) =3,

By Lemma 2.6 and the definition of P

(7) P(4) (@) = a*(Q(+ @) ()) = 10 (¥ @) ()]l

By (6) and (7) we have proved this Lemma. Q.E.D.
Lemma2.9. Leta,b,c,d=EEwitha,b,c,d>0and a\Nb=bAc=cN\a=0.

Then we can choose a’,b’,d' EE*,RER such that d=d'+(kaNd)+(kRbAd)+
(keAd),a’, b'>0 and a’ Nb'=b"ANd'=d’' Aa’=0.

Proof. We may suppose that ||a||=][b||=||c||=1. Let k=2||d||, and a’'=
ka—kaNd, b'=kb—kbA\d and d'=d—d Ak (aVVb\Vc). Since ||ka||=k>||d||=
|lkaAd||V||kRbAd]|, we have a’, ' >0.

Since a Ab=bAc=cA a=0, we have
d=d—dAk(@VbVc)=d—((kaNd)V (kbAA)\ (ke \d))
= d—(kaA\Nd+kbAd+kcNd).

By the definitions of %, @’, ' and d’ we have
0<a'Ab'<kaNkb=0.

and
0=d'ANa’ = (d—dNk(aVbV )N (ka—kad)
=(d—kaANd)N\(ka—kaANd) = kaANd—kaNd = 0.
Similarly we can prove that ' Ad’'=0. Q.E.D.

Lemma 2.10. Suppose that there exist a, b, cEE with a, b, ¢c>0 and a \b=
bAc=cNa=0. If d,e€E and d=e, then Q(yrd) (0)=0( €) (w) (a.e.w) for
any rELy(Q, A, u, R").

Proof. We may suppose that d>0. Then by Lemma 2.9 there exist
a',b’,d' €E such that

1) a',b'>0,
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(2) d = d'+(kaN\d)+-(kRb A d)+(kc A d)
and

3) a'ANb' =b'Nd' =d' Na’=0.
If d’>0, then by (1), (3) and Lemma 2.5 we have

4) O d)(w)EEY (aew).

If d’=0, then (4) is trivial.
Since a A b=bAc=cAa=0,

5) (kaNd)Nb = (kaANd)Ac=bAc=0.
If kaAd>0, then by (5) and Lemma 2.5
(6) O(Yr(kaNd)) (0)EE* (a.e.w).

If ka A d=0, then (6) is trivial.
Similarly we can prove that

) Q¥ (kbAd)) (0) EE™
and
©) Q(Y(kcAd)) (0) EET .
By (2), (4), (6), (7) and (8) we have
QY d) () EE* (a..0).
Since Q is linear, this proves the lemma. Q.E.D.

Lemma 2.11. Suppose that there exist a,b, cEE with a,b,c>0 and
aAb=bAc=cNa=0. Then for any dEE" there exists a o-subalgebra B of A
such that

IO (v @) ()ll = 2 ||d]| (a.e.00)
for any EL\(Q, A, u, R), where B is independent of the choice of d.

Proof. We may suppose that ||4||=]||d||. Then [laVd| =|la||V]|ld|=

llall=l2]].
By Lemma 2.10

(1) O(¥(dVa) (@)= 0 (W ) (0) VO (¥ d) ()20 in E .

By Lemma 2.8 there exists a o-subalgebra B of A such that
1Q (¥ a) (o)l = 2 |lal| .

and hence by (1) and Definition 1.2 (4) we have
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@) 19 (¥ (aV 2)) ()| Z11Q (¥ @) ()l
= P2 |la| =2 |laVd]l.
By Lemma 2.6 and the properties of conditional expectation

19 (@Va)ll. = llv(@Va)ll. = 2 (aVd)ll. »
and hence by (2) we have

©) IQ (Y (aVa)) (o)l = ¥2 llall = v2 |4]] .
By (1)

) 1Q (W (aVa)) ()| ZI1Q (¥ ) ()l -
By Lemma 2.6

QW Dl = Il dlle = W2 dll. = llv2ll lIal],
and hence by (3) and (4)
19 (¥ d) ()l =2 |Id]| .
It is clear that B is independent of the choice of d. Q.E.D.

Lemma 2.12. If dim(E)=3, where dim(E) is the dimension of E as a linear
space, then there exist a, b, cEE such that a,b,c>0 and a N\b=bA c=cA a=0.

The proof of this lemma is a direct result of Theorem 26.10 of Luxemburg
and Zaanen [7]

Theorem 1. If dim(E)=3, then there exists a o-subalgebra B of A such
that Q(f)=f*2 for any fEL\(Q, A, u, E).

Proof. Let B be the o-subalgebra whose existence was proved in Lemma
2.11. Since the conditional expectation operator ()% and Q are linear bounded
operators, it is sufficient to show that for any d€E* and A€ A with ||d||=1

| (I, d) = (I3 d.
Let e:S (0, 'd) (@) VI, d)8 (0)—Q (I, d) (w)) du(w). Clearly e€E*. We
suppose that e>>0. Since e>0, by Lemma 1.2 there exists e¥EE, such that
llell = le*(e)| = e*(e) -
By Lemma 2.5
(1) 0=<Q(I,d) (o) =d.

By the properties of conditional expectation we have



CHARACTERIZATION OF CONDITIONAL EXPECTATIONS 329

0=(L, )% (w)=d,
and hence by (1)
0<e=d,
by which we have
e¥(e)=e*(d).
Therefore we can choose k=1 such that e¥(ke)=e*(d). Then we have
(2) e¥(keNd) = e*(ke) N e*(d) = e*(d) .
Since ||e*|| =1,
3) e¥(ke Nd)Z||ke Nd||=||ke|| = ke*(e) = e*(d) .
By (2) and (3) we have
4) e*¥(keNd) = ||keNd]|| = e*(d) .

Since d =ke A d, by (4) and Lemma 2.6
e*(Q(4 d) (0))2e*(Q(La(ke Ad)) (@) = [|Q(La(ke A d)) ()] -
By Lemma 2.11 and (4)
19 (La(ke Ad)) (o)l = (La)2(w) lIkeAd|| = (1,)B(w) e¥(d) .
Therefore
0<e*(e) = e*( { Q14 d) () V (L4 4)3(0)—Q (1, d) (w)) dx)
= S (e(QU4d) (@) V) %(w) e¥(d)—e*(Q (14 d) (w))) du
= *o.a) @) —e*Q U, ) @) dn =0,

which is a contradiction. We have proved that e=0, and hence we have

(4) QL4 d) (0)2(14d)%(w) (a.c.0) .
Similarly we can prove that
(5) Ola-4d) (©) 2 (Ia-4 d)%(0) (a.0.0) .

Since Q is constant-preserving,

Q4 d) (0)+Q(o-42) (0) = Qg @) ()
= Iad(0) = (14 d)%(0)+(a-44)%(w) ,

and hence by (4) and (5) we have
O d)=(1,d)% Q.E.D.
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