Kôno, S. and Tamamura, T.

J-GROUPS OF SUSPENSIONS OF STUNTED LENS SPACES MOD 8

Susumu KÔNO and Akie TAMAMURA

(Received December 26, 1991)

1. Introduction

Let $L^{n}(q)=S^{2 n+1} / \boldsymbol{Z}_{q}$ be the $(2 n+1)$-dimensional standard lens space mod q. As defined in [7], we set

$$
\begin{align*}
& L_{q}^{2 n+1}=L^{n}(q) \tag{1.1}\\
& L_{q}^{2 n}=\left\{\left[z_{0}, \cdots, z_{n}\right] \in L^{n}(q) \mid z_{n} \text { is real and } z_{n} \geqq 0\right\}
\end{align*}
$$

In the previous paper [10], we determined the J-groups $\tilde{J}\left(S^{j}\left(L_{q}^{m} / L_{q}^{n}\right)\right)$ of the suspensions of the stunted lens spaces L_{q}^{m} / L_{q}^{n} for $q=4$ and for $j \equiv 1(\bmod 2)$. The purpose of this paper is to determine the $K O$ - and J-groups of suspensions of stunted lens spaces mod 8.

This paper is organized as follows. In section 2 we state the main theorems: the structures of $\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right)$ and $\widetilde{J}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right)$ for $j \equiv 0(\bmod 2)$ are given in Theorems 1 and 2 respectively. In section 3 we prepare some lemmas and recall known results in [8], [9] and [11]. By virtue of the results in [8], the proofs of Theorems 1 and 2 for the case $j \equiv 0(\bmod 4)$ are given in section 4. Applying the method used in the corresponding parts of [10], we prove Theorems 1 and 2 for the case $j \equiv 2(\bmod 4)$ in the final section.

The authors would like to express their gratitude to Professor Michikazu Fujii, Professor Teiichi Kobayashi and Professor Hideaki Ōshima for helpful suggestions.

2. Statement of results

We prepare functions $h_{1}, h_{2}, h_{3}, h_{4}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$ and a_{7} defined by

$$
\left\{\begin{array}{l}
h_{1}(n)=[n / 4]+[(n+7) / 8]+[(n+4) / 8] \tag{2.1}\\
h_{2}(n)=[n / 4]+[(n+7) / 8]+[n / 8]+1 \\
h_{3}(m, n)=[m / 4]-[n / 4] \\
h_{4}(m, n)=[m / 8]-[n / 8] .
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
a_{1}(m, n)=h_{1}(m)-[(n+1) / 4]-[(n+1) / 8]-[(n+6) / 8]+1 \tag{2.2}\\
a_{2}(m, n)=h_{3}(m, n+1) \\
a_{3}(m, n)=h_{4}(m-2, n+5) \\
a_{4}(m, n)=h_{4}(m, n+7) \\
a_{5}(m, n)=a_{1}(m, n)-[(m+4) / 8]+[m / 8] \\
a_{6}(m, n)=[(m+4) / 8]+[(m-2) / 8]-[(n+1) / 4] \\
a_{7}(m, n)=2[(m+4) / 8]-[(n+5) / 4]
\end{array}\right.
$$

Let \boldsymbol{Z} / k denote the cyclic group $\boldsymbol{Z} / k \boldsymbol{Z}$ of order k. For an integer $n, G(n)$ denotes the group defined by

$$
G(n)= \begin{cases}\boldsymbol{Z} / 2 \oplus \boldsymbol{Z} / 2 & (n \equiv 1(\bmod 8)) \tag{2.3}\\ \boldsymbol{Z} / 2 & (n \equiv 0 \text { or } 2(\bmod 8)) \\ 0 & (\text { otherwise })\end{cases}
$$

Theorem 1. Let j, m and n be non-negative integers with $j \equiv 0(\bmod 2)$ and $m>n$.
(1) Suppose $j \equiv 0(\bmod 4)$.
i) If $n \neq 3(\bmod 4)$ and $m \geqq 4[(n+j+15) / 8]+2[(n-j) / 4]$, then we have

$$
\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong \oplus_{i=1}^{4} Z / 2^{a_{i}(m+j, n+j)}
$$

ii) If $n \neq 3(\bmod 4)$ and $4[(n+j+15) / 8]+2[(n-j) / 4]>m>n$, then we have

$$
\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong \begin{cases}\boldsymbol{Z} / 2^{a_{1}(m+j, n+j)} & (m \geqq 4[n / 4]+4) \\ \boldsymbol{Z} / 2 \oplus \boldsymbol{Z} / 2 & (n+j \equiv 0(\bmod 8) \text { and } n+4>m \geqq n+2) \\ \boldsymbol{Z} / 2 & \left(h_{4}(n+j+6, n+j)=[m / 2]-[(n+1) / 2]=0\right) \\ 0 & (\text { otherwise })\end{cases}
$$

iii) If $n \equiv 3(\bmod 4)$, then we have

$$
\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong \begin{cases}Z \oplus \widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n+1}\right)\right) & (m \geqq n+2) \\ Z & (m=n+1)\end{cases}
$$

(2) Suppose $j \equiv 2(\bmod 4)$.
i) If $m \geqq 8[(n+j+15) / 8]-j+2$, then we have

$$
\begin{aligned}
\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong & \boldsymbol{Z} / 2^{h_{3}(m+j, n+j-3)} \oplus\left(\oplus_{i=0}^{1} \boldsymbol{Z} / 2^{h_{4}(m+j-4 i, n+j-4 i+5)}\right) \\
& \oplus G(m+j) \oplus H(n+j)
\end{aligned}
$$

where $G(m)$ is the group defined by (2.3) and $H(n)$ is the group defined by

$$
H(n)= \begin{cases}Z & (n \equiv 3(\bmod 4)) \\ G(n) & (\text { otherwise })\end{cases}
$$

ii) If $8[(n+j+15) / 8]-j+2>m \geqq 6[(n+j+7) / 8]+2[(n+j+1) / 8]-j+4$, then we have

$$
\begin{aligned}
\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong & \boldsymbol{Z} / 2^{h_{3}(m+j, n+j-3)} \oplus \boldsymbol{Z} / 2^{h_{4}(m+j-4, n+j+1)} \\
& \oplus G_{1}(m+j) \oplus H_{1}(n+j)
\end{aligned}
$$

where $G_{1}(m)$ is the group defined by

$$
G_{1}(m)= \begin{cases}\boldsymbol{Z} / 4 \oplus \boldsymbol{Z} / 2 & (m \equiv 1(\bmod 8)) \tag{2.4}\\ \boldsymbol{Z} / 4 & (m \equiv 0(\bmod 8)) \\ G(m) & (\text { otherwise })\end{cases}
$$

and $H_{1}(n)$ is the group defined by

$$
H_{1}(n)= \begin{cases}Z & (n \equiv 3(\bmod 4)) \\ G_{1}(2-n) & (\text { otherwise })\end{cases}
$$

iii) If $6[(n+j+7) / 8]+2[(n+j+1) / 8]-j+4>m \geqq n+3$, then we have

$$
\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong G_{2}(m+j) \oplus H_{2}(n+j),
$$

where $G_{2}(m)$ is the group defined by

$$
G_{2}(m)= \begin{cases}\boldsymbol{Z} / 8 \oplus \boldsymbol{Z} / 2 & (m \equiv 1(\bmod 8)) \\ \boldsymbol{Z} / 8 & (m \equiv 0(\bmod 8)) \\ G(m) & (\text { otherwise })\end{cases}
$$

and $H_{2}(n)$ is the group defined by

$$
H_{2}(n)= \begin{cases}Z & (n \equiv 3(\bmod 4)) \\ G_{2}(2-n) & (\text { otherwise })\end{cases}
$$

iv) If $n+3>m>n$, then we have $\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong \widetilde{K O}\left(L_{8}^{m+j} / L_{8}^{n+j}\right)$.

Remark. (1) Combining this theorem with [13, Theorem 2], we obtain the complete results for the groups $\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right)$.
(2) The partial results for the case $n=0$ of this theorem have been obtained in [8].

Let $\nu_{p}(s)$ denote the exponent of the prime p in the prime power decomposition of s, and $\mathfrak{m}(s)$ the function defined on positive integers as follows (cf. [3]):

$$
\nu_{p}(\mathfrak{m}(s))= \begin{cases}0 & (p \neq 2 \text { and } s \equiv 0(\bmod (p-1))) \\ 1+\nu_{p}(s) & (p \neq 2 \text { and } s \equiv 0(\bmod (p-1))) \\ 1 & (p=2 \text { and } s \neq 0(\bmod 2)) \\ 2+\nu_{2}(s) & (p=2 \text { and } s \equiv 0(\bmod 2)) .\end{cases}
$$

In order to state the next theorem, we set

$$
\left\{\begin{array}{l}
b_{1}(j, m, n)= \begin{cases}\min \left\{\nu+h_{4}(n+9, n-3), a_{1}(m+j, n+j)\right\} & (j \equiv 4(\bmod 8)) \\
\min \left\{\nu+h_{4}(n+9, n-2), a_{5}(m, n)\right\} & \text { (otherwise) }\end{cases} \tag{2.5}\\
b_{2}(j, m, n)= \begin{cases}\min \left\{\nu+h_{4}(n+3, n-7), a_{7}(m, n)\right\} & (j \equiv 4(\bmod 8)) \\
\min \left\{\nu+h_{4}(n+5, n-7), a_{6}(m, n)\right\} & \text { (otherwise) }\end{cases} \\
b_{3}(j, m, n)= \begin{cases}\min \left\{\nu+1, a_{3}(m+j, n+j)\right\} & (j \equiv 4(\bmod 8)) \\
\min \left\{\nu+1, a_{4}(m, n)\right\} & \text { (otherwise) }\end{cases}
\end{array}\right.
$$

where ν is the integer defined by

$$
\nu= \begin{cases}\nu_{2}(j) & (j \neq 0) \\ m & (j=0)\end{cases}
$$

Main result is the following theorem.
Theorem 2. Let j, m and n be non-negative integers with $j \equiv 0(\bmod 2)$ and $m>n$.
(1) Suppose $j \equiv 0(\bmod 4)$ and $n \equiv 3(\bmod 4)$.

$$
\text { i) If } m \geqq 2[n / 4]+4[n / 8]+6+h_{4}(j, j-4)\left(2 h_{4}(n-2, n+4)-4 a_{4}(n, n)\right) \text {, then }
$$ we have

$$
\tilde{f}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \simeq \begin{cases}\left(\oplus_{i=1}^{3} \boldsymbol{Z} / 2^{b_{i}(j, m, n)}\right) \oplus \boldsymbol{Z} / 2 & \left(n \equiv 2+2 h_{4}(j+4, j)(\bmod 8)\right) \\ \oplus_{i=1}^{3} \boldsymbol{Z} / 2^{b_{i}(j, m, n)} & \text { (otherwise })\end{cases}
$$

ii) If $2[n / 4]+4[n / 8]+6+h_{4}(j, j-4)\left(2 h_{4}(n-2, n+4)-4 a_{4}(n, n)\right)>m>n$, then we have

$$
\widetilde{J}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong \begin{cases}\boldsymbol{Z} / 2^{b_{1}(j, m, n)} \oplus \boldsymbol{Z} / 4 & \left(h_{4}(n+j+5, n+j-2)=h_{3}(m, n+6)=0\right) \\ \boldsymbol{Z} / 8 & \left(h_{4}(n+j+6, n+j-1)=h_{3}(m, n+3)=0\right) \\ \widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) & (\text { otherwise })\end{cases}
$$

(2) Suppose $j \equiv n+1 \equiv 0(\bmod 4)$. Set $M=\mathfrak{m}((n+j+1) / 2)$ and $b_{i}=b_{i}(j, m, n)$ $(1 \leqq i \leqq 3)$.
i) If $m \geqq n+2 h_{4}(j+4, j) h_{4}(n+1, n)+5$, then we have

$$
\tilde{J}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong\left\{\begin{array}{l}
\boldsymbol{Z} / 2^{c_{1}} \boldsymbol{M} \oplus \boldsymbol{Z} / 2^{c_{2}+i_{1}} \oplus \boldsymbol{Z} / 2^{b_{3}} \oplus \boldsymbol{Z} / 2 \quad(j(n+1) \equiv 4(\bmod 8)) \\
\boldsymbol{Z} / 2^{c_{1}} \boldsymbol{M} \oplus \boldsymbol{Z} / 2^{c_{2}+i_{1}} \oplus \boldsymbol{Z} / 2^{c_{3}+i_{2}} \oplus \boldsymbol{Z} / 2^{i_{3}} \quad \text { (otherwise) },
\end{array}\right.
$$

where $i_{1}, i_{2}, i_{3}, c_{1}, c_{2}$ and c_{3} are integers defined by

$$
\boldsymbol{i}_{i_{1}}=\left\{\begin{array}{ll}
\min \left\{b_{1}, \nu_{2}(n+1)-1\right\} & (n+j \equiv 7(\bmod 8)) \\
\min \left\{b_{1}, \nu_{2}(n+1)\right\} & (n+j \equiv 3(\bmod 8))
\end{array} i_{2}=\left\{\begin{array}{ll}
\min \left\{b_{2}, \nu_{2}(n+1)-2\right\} & (n+j \equiv 7(\bmod 8)) \\
\min \left\{b_{2}, \nu_{2}(n+1)-1\right\} & (n+j \equiv 3(\bmod 8))
\end{array} ~ . ~ \$\right.\right.
$$

$$
\begin{cases}i_{3}= \begin{cases}\min \left\{b_{3}, \nu_{2}(n+1)-2\right\} & (j \equiv n-3 \equiv 4(\bmod 8)) \\ b_{3} & (\text { otherwise })\end{cases} \tag{2.6}\\ c_{1}=\max \left\{b_{k}-i_{k} \mid 1 \leqq k \leqq 3\right\} \\ c_{3}=\min \left\{b_{k}-i_{k} \mid 1 \leqq k \leqq 3\right\} \\ c_{2}=\left(\sum_{k=1}^{3} b_{k}-i_{k}\right)-c_{1}-c_{3} .\end{cases}
$$

ii) If $n+2 h_{4}(j+4, j) h_{4}(n+1, n)+5>m>n$, then we have

$$
\tilde{J}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong \begin{cases}\boldsymbol{Z} / 2^{b-i} M \oplus \boldsymbol{Z} / 2^{i} & (m \geqq n+5) \\ \boldsymbol{Z} / M \oplus \widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n=1}\right)\right) & (n+5>m>n+1) \\ \boldsymbol{Z} / M & (m=n+1)\end{cases}
$$

where $b=b_{1}$ and $i=\min \left\{b, \nu_{2}(n+1)\right\}$.
(3) Suppose $j \equiv 2(\bmod 4)$ and $n \equiv 1(\bmod 4)$.
i) If $m \geqq 8[(n+17) / 8]+h_{4}(j+4, j)\left(6 h_{4}(n-2, n+1)+2 h_{4}(n-6, n+9)\right)$, then we have

$$
\tilde{J}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong\left\{\begin{array}{c}
\boldsymbol{Z} / 2^{b} \oplus \boldsymbol{Z} / 4 \oplus \boldsymbol{Z} / 2 \oplus G(n+j) \oplus G(m+j) \\
\left(h_{4}\left(n+5-2 h_{4}(j, j-4), n-2\right)=0\right) \\
\boldsymbol{Z} / 2^{b} \oplus \boldsymbol{Z} / 8 \oplus G(n+j) \oplus G(m+j) \quad(\text { otherwise })
\end{array}\right.
$$

where $b=b_{3}(j, m+2, n)$ and $G(m)$ is the group defined by (2.3).
ii) If $8[(n+17) / 8]+h_{4}(j+4, j)\left(6 h_{4}(n-2, n+1)+2 h_{4}(n-6, n+9)\right)>m \geqq$ $8[(n+2) / 8]+10$, then we have

$$
\tilde{J}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong\left\{\begin{array}{l}
\boldsymbol{Z} / 4 \oplus \boldsymbol{Z} / 2 \oplus G_{1}(m+j) \quad\left(h_{4}\left(n+5-2 h_{4}(j, j-4), n-2\right)=0\right) \\
\left.\boldsymbol{Z} / 8 \oplus G_{1}\left(h_{4}(j+4, j)(2 n-1)-n\right) \oplus G_{1}(m+j) \quad \text { (otherwise }\right)
\end{array}\right.
$$

where $G_{1}(m)$ is the group defined by (2.4).
iii) If $8[(n+2) / 8]+10>m>n$, then we have

$$
\widetilde{J}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong \widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right)
$$

(4) Suppose $j \equiv n+1 \equiv 2(\bmod 4)$. Set $M=\mathfrak{m}((n+j+1) / 2)$.
i) If $m \geqq 8[n / 8]+2 h_{4}(j, j-4)+14$, then we have

$$
\tilde{J}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong \begin{cases}\boldsymbol{Z} / 2^{b} M \oplus \boldsymbol{Z} / 4 \oplus \boldsymbol{Z} / 2 \oplus G(m+j) & (n \equiv 1(\bmod 8)) \\ \boldsymbol{Z} / 4 M \oplus \boldsymbol{Z} / 2^{b} \oplus \boldsymbol{Z} / 2 \oplus G(m+j) & (n \equiv 5(\bmod 8))\end{cases}
$$

where $b=b_{3}(j, m+2, n)$ and $G(m)$ is the group defined by (2.3).
ii) If $8[n / 8]+14+2 h_{4}(j, j-4)>m \geqq 4 h_{4}(j+4, j) h_{4}(n-4, n)+8[n / 8]+10$, then we have

$$
\tilde{J}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong \begin{cases}\boldsymbol{Z} / 2 M \oplus \boldsymbol{Z} / 4 \oplus G_{1}(m+j) & (j \equiv n+1 \equiv 2(\bmod 8)) \\ \boldsymbol{Z} / 2^{c+1} M \oplus \boldsymbol{Z} / 2 \oplus G_{1}(m+j) & (j \equiv n-3 \equiv 2(\bmod 8)) \\ \boldsymbol{Z} / 2^{c} M \oplus \boldsymbol{Z} / 4 \oplus G(m+j) & (j \equiv n+5 \equiv 6(\bmod 8)) \\ \boldsymbol{Z} / 2 M \oplus \boldsymbol{Z} / 2^{d} \oplus G_{1}(m+j) & (j \equiv n+1 \equiv 6(\bmod 8)),\end{cases}
$$

where $c=[(m-n-1) / 8], d=h_{4}(m-4, n)$ and $G_{1}(m)$ is the group defined by (2.4).
iii) If $4 h_{4}(j+4, j) h_{4}(n-4, n)+8[n / 8]+10>m>n$, then we have

$$
\tilde{J}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong \begin{cases}\boldsymbol{Z} / M \oplus \widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n+1}\right)\right) & (m \geqq 4[n / 4]+6) \\ \boldsymbol{Z} / M \oplus \widetilde{\boldsymbol{Z}} / 2 & (n+j \equiv 7(\bmod 8) \text { and } n+4>m \geqq n+2) \\ \boldsymbol{Z} / M & (\text { otherwise })\end{cases}
$$

Remark. (1) Combining this theorem with [10, Theorem 1], we obtain the complete results for the groups $\widetilde{J}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right)$.
(2) The partial results for the case $j=n=0$ of this theorem have been obtained in [9].

3. Preliminaries

In this section we prepare some lemmas and recall known results which are needed to prove Theorems 1 and 2.

Lemma 3.1. Let j, k, l and s be integers with $j>0, \nu=\nu_{2}(j) \geqq s \geqq 1, l \geqq 2$ and $k \equiv \pm 1\left(\bmod 2^{l}\right)$. Then we have

$$
\begin{align*}
k^{j}-1 & \equiv\left(k^{2 v}-1\right)\left(j / 2^{\nu}\right) & & \left(\bmod 2^{2 v+2 l}\right) . \tag{1}\\
k^{j} & \equiv 1 & & \left(\bmod 2^{v+l}\right) . \tag{2}\\
k^{j}-1 & \equiv\left(k^{2^{s}-1}\right)\left(j / 2^{s}\right) & & \left(\bmod 2^{v+s+2 l-1}\right) . \tag{3}
\end{align*}
$$

Proof. Since $k^{2} \equiv 1\left(\bmod 2^{l+1}\right)$, by making use of the method used in the proof of [10, Lemma 3.1] we can show that

$$
k^{j}-1 \equiv\left(k^{2}-1\right)(j / 2) \quad\left(\bmod 2^{\nu+2 l}\right)
$$

This implies (2). In particular, we have

$$
k^{2^{\nu}} \equiv 1\left(\bmod 2^{\nu+l}\right)
$$

Then, the rest of the proof is similar to that of [10, Lemma 3.1].
q.e.d.

Considering the $\boldsymbol{Z} / 8$-action on $S^{2 n+1} \times \boldsymbol{C}$ given by

$$
\exp (2 \pi \sqrt{-1} / 8)(z, u)=(z \cdot \exp (2 \pi \sqrt{-1} / 8), u \cdot \exp (2 \pi \sqrt{-1} / 8))
$$

for $(z, u) \in S^{2 n+1} \times C$, we have a complex line bundle

$$
\eta:\left(S^{2 n+1} \times C\right) /(\boldsymbol{Z} / 8) \rightarrow L_{8}^{2 n+1}
$$

Then we have the following elements

$$
\begin{equation*}
\sigma(i)=\eta^{2^{i}}-1 \in \tilde{K}\left(L_{8}^{2 n+1}\right) \subset K\left(L_{8}^{2 n+1}\right) \quad(0 \leqq i \leqq 2) . \tag{3.2}
\end{equation*}
$$

We denote the restriction of $\sigma(i)$ in $\tilde{K}\left(L_{8}^{2 n}\right)$ by the same symbol, and $\sigma(0)$ by σ. The following proposition is well known.

Proposition 3.3 (Mahammed [11]). The ring $K\left(L_{8}^{m}\right)$ is isomorphic to the truncated polynomial ring $\boldsymbol{Z}[\sigma] /\left(\sigma^{[m / 2]+1},(\sigma+1)^{8}-1\right)$, where $\left(\sigma^{[m / 2]+1},(\sigma+1)^{8}-1\right)$ means the ideal of $\boldsymbol{Z}[\sigma]$ generated by $\sigma^{[m / 2]+1}$ and $(\sigma+1)^{8}-1$.

In order to state the next lemma, we set

$$
\begin{align*}
\text { (1) } \begin{cases}\sigma_{2^{i}}=\sigma(i) & (0 \leqq i \leqq 2) \\
\sigma_{6}=\sigma_{4} \sigma_{2} & \\
\sigma_{2 i+1}=\sigma_{2 i} \sigma_{1} & (1 \leqq i \leqq 3) .\end{cases} \tag{3.4}\\
\left\{\begin{array}{l}
b(n)=\left((-68-48 \sqrt{2})^{n}+(-68+48 \sqrt{2})^{n}\right) / 2 \\
c(n)=\left((-68-48 \sqrt{2})^{n}-(-68+48 \sqrt{2})^{n}\right) / 2 \sqrt{2} .
\end{array}\right.
\end{align*}
$$

Then we have

$$
\begin{align*}
& \left\{\begin{array}{l}
b(0)=1, b(n+1)=-68 b(n)-96 c(n) \\
c(0)=0, c(n+1)=-48 b(n)-68 c(n)
\end{array}\right. \tag{3.5}\\
& \begin{cases}b(n) \equiv(-4)^{n} & \left(\bmod 2^{2 n+4}\right) \\
c(n)=0 & \left(\bmod 2^{2 n+2}\right)\end{cases} \tag{1}
\end{align*}
$$

The following lemma is obtained by Proposition 3.3 and (3.5) (1).
Lemma 3.6. Let u be a positive integer. Then, in $K\left(L_{8}^{m}\right)$,

$$
\sigma^{u}=\Sigma_{i=1}^{7} a_{u, i} \sigma_{i}
$$

where $a_{u, i}(1 \leqq i \leqq 7)$ are integers defined by $a_{u, 1}=(-2)^{u-1}$,

$$
a_{u, 2}=(1 / 5)(-4)^{[u / 4]+1}+(2 / 5)(-4)^{[(u-1) / 4]}-(1 / 5)(-4)^{[(u+2) / 4]}
$$

$$
+(3 / 5)(-4)^{[(w+1) / 4]}
$$

$$
a_{u, 3}=-(-2)^{u-2}-(1 / 2) a_{u+1,2},
$$

$$
a_{u, 4}=-(1 / 2) h_{4}(u, u-1) b([u / 8])+h_{4}(u-1, u-2) c([u / 8])
$$

$$
-h_{4}(u-2, u-3) c([u / 8])+h_{4}(u+4, u+3)(b([u / 8])+2 c([u / 8]))
$$

$$
-h_{4}(u+3, u+2)(4 b([u / 8])+6 c([u / 8]))
$$

$$
+h_{4}(u+2, u+1)(10 b([u / 8])+14 c([u / 8]))
$$

$$
-h_{4}(u+1, u)(20 b([u / 8])+28 c([u / 8])),
$$

$$
a_{u, 5}=-(-2)^{u-2}-a_{u+1,4}-a_{u+2,4}-(1 / 2) a_{u+3,4},
$$

$$
a_{u, 6}=(1 / 2) a_{u, 2}-a_{u+1,4}-(1 / 2) a_{u+2,4}
$$

and $a_{u, 7}=(-2)^{u-3}-(1 / 4) a_{u+1,2}-(1 / 2) a_{u+1,4}$.
Proof. By making use of the relation $(\sigma+1)^{8}=1$, we obtain equalities $a_{u+1,1}=-2 a_{u, 1}, a_{u+1,2}=a_{u, 1}-2 a_{u, 3}, a_{u+1,3}=a_{u, 2}-2 a_{u, 3}, a_{u+1,4}=a_{u, 3}-2 a_{u, 7}, a_{u+1,5}=$ $a_{u, 4}-2 a_{u, 5}, a_{u+1,6}=a_{u, 5}-2 a_{u, 7}$ and $a_{u+1,7}=a_{u, 6}-2 a_{u, 7}$, where $a_{1,1}=1$ and $a_{1, i}=0$ $(2 \leqq i \leqq 7)$. Thus the lemma is proved by the induction with respect to u. q.e.d.

In order to state the next proposition, we set
(3.7) (1) Let $F(x)$ denote the free abelian group generated by $\left\{x_{i} \mid 1 \leqq i \leqq 7\right\}$. Then X_{i} and $X_{i}(n)(7 \geqq i \geqq 1, n \geqq 0)$ denote the elements of $F(x)$ defined by $X_{1}=$ $4 x_{1}+2 x_{3}+2 x_{5}+x_{7}, X_{2}=2 x_{2}+x_{6}, X_{3}=2 x_{3}+x_{7}, X_{6}=x_{6}+x_{7}, X_{i}=x_{i}(i=4,5$ or 7$)$, $X_{1}(n)=2^{[n / 2]} X_{1}$,

$$
\begin{aligned}
X_{2}(n)= & 2^{[n / 4]} X_{2}-2^{2[n / 4]} X_{1}, \\
X_{3}(n)= & 2^{[n-2) / 4]} X_{3}+2^{2[n / 4]-1} h_{3}(n, n-2) X_{1}, \\
X_{4}(n)= & 2^{[n / 8]} X_{4}+2^{2[n / 8]} h_{4}(n+4, n) X_{2}+2^{2[n / 8]+[n / 4]} X_{1}, \\
X_{5}(n)= & 2^{[(n-2) / 8]} X_{5}+2^{2[(n-2) / 8]} h_{4}(n+2, n-2) X_{3} \\
& -2^{[(n+2) / 4]+2[(n-2) / 8]} X_{1}, \\
X_{6}(n)= & 2^{[(n-4) / 8]} X_{6}+2^{[n / 4]-1} h_{4}(n, n-4) X_{2} \\
& -2^{[n / 4]+2[(n-4) / 8]+1} X_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
X_{7}(n)= & 2^{[n-6) / 8]} X_{7}-2^{[n-6) / 4]} h_{4}(n+6, n+2)\left(X_{3}-2 X_{2}\right) \\
& +2^{[n-2) / 4]+2[(n+2) / 8]} X_{1} .
\end{aligned}
$$

(2) Let $\varphi: F(x) \rightarrow \tilde{K}\left(L_{8}^{m}\right)$ be the homomorphism defined by setting $\varphi\left(x_{i}\right)=\sigma_{i}$ ($1 \leqq i \leqq 7$).

Proposition 3.8 (Kobayashi and Sugawara [9]). The homomorphism φ is an epimorphism, and the kernel of φ coincides with the subgroup of $F(x)$ generated by $\left\{X_{i}(m) \mid 1 \leqq i \leqq 7\right\}$.

According to [1], we have the following lemma.
Lemma 3.9. The Adams operations are given by the following formulae, where $s_{i}=\varphi\left(X_{i}\right)(1 \leqq i \leqq 7)$.

$$
\begin{align*}
& \psi^{k}\left(s_{1}\right)= \begin{cases}s_{1} & (k \equiv 1(\bmod 2)) \\
2 s_{2} & (k \equiv 2(\bmod 4)) \\
4 s_{4} & (k \equiv 4(\bmod 8)) \\
0 & (k \equiv 0(\bmod 8)) .\end{cases} \\
& \psi^{k}\left(s_{2}\right)= \begin{cases}s_{2} & (k \equiv 1(\bmod 2)) \\
2 s_{4} & (k \equiv 2(\bmod 4)) \\
0 & (k \equiv 0(\bmod 4)) .\end{cases}
\end{align*}
$$

$$
\begin{align*}
& \psi^{k}\left(s_{3}\right)= \begin{cases}s_{3}-2 h_{3}(k+1, k)\left(s_{2}+s_{3}\right) & (k \equiv 1(\bmod 2)) \\
2 s_{6}-2 s_{7} & (k \equiv 2(\bmod 8)) \\
-4 s_{4}-2 s_{6}+2 s_{7} & (k \equiv 6(\bmod 8)) \\
0 & (k \equiv 0(\bmod 4)) .\end{cases} \tag{3}\\
& \psi^{k}\left(s_{4}\right)= \begin{cases}s_{4} & (k \equiv 1(\bmod 2)) \\
0 & (k \equiv 0(\bmod 2)) .\end{cases} \tag{4}\\
& \psi^{k}\left(s_{5}\right)= \begin{cases}s_{5}-2 h_{4}(k+4, k)\left(s_{4}+s_{5}\right) & (k \equiv 1(\bmod 4)) \\
s_{5}+s_{6}-2 h_{4}(k+4, k)\left(s_{4}+s_{6}+s_{5}\right) & (k \equiv 3(\bmod 4)) \\
0 & (k \equiv 0(\bmod 2)) .\end{cases} \tag{5}\\
& \psi^{k}\left(s_{6}\right)= \begin{cases}\left(1-2 h_{4}(k+5, k+1)\right) s_{6} & (k \equiv 1(\bmod 2)) \\
0 & (k \equiv 1(\bmod 4))\end{cases} \\
& \psi^{k}\left(s_{7}\right)
\end{align*}= \begin{cases}s_{7}-2 h_{4}(k+4, k) s_{6} & (k \equiv 3(\bmod 4)) \\
2 s_{4}-s_{7}+2 h_{4}(k+4, k) s_{6} & (k \equiv 0(\bmod 2)) .\end{cases}
$$

For each integer n with $0 \leqq n<m$, we denote the inclusion map of L_{8}^{n} into L_{8}^{m} by i_{n}^{m}, and denote the kernel of the homomorphism

$$
\left(i_{n}^{m}\right)^{!}: \tilde{K}\left(L_{8}^{m}\right) \rightarrow \tilde{K}\left(L_{8}^{n}\right)
$$

by V_{n}. Then by Proposition 3.8, Lemma 3.6 and (3.5) (2), we obtain the following lemma.

Lemma 3.10. (1) The group V_{n} is the subgroup of $\tilde{K}\left(L_{8}^{m}\right)$ generated by $\left\{\varphi\left(X_{i}(n)\right) \mid 1 \leqq i \leqq 7\right\}$.
(2) Let u be a positive integer with $2 u<m$. Then we have

$$
\sigma^{u} \equiv \begin{cases}-\varphi\left(X_{4}(2 u-2)\right) & (u \equiv 0(\bmod 4)) \\ -\varphi\left(X_{5}(2 u-2)\right) & (u \equiv 1(\bmod 4)) \\ -\varphi\left(X_{6}(2 u-2)+X_{1}(2 u-2)\right) & (u \equiv 2(\bmod 4)) \\ \varphi\left(X_{7}(2 u-2)\right) & (u \equiv 3(\bmod 4))\end{cases}
$$

modulo the subgroup $V_{2 u}$.
Considering the $\boldsymbol{Z} / 8$-action on $S^{2 n+1} \times \boldsymbol{R}$ given by

$$
\exp (2 \pi \sqrt{-1} / 8)(z, v)=(z \cdot \exp (2 \pi \sqrt{-1} / 8),-v)
$$

for $(z, v) \in S^{2 n+1} \times \boldsymbol{R}$, we have a real line bundle

$$
\nu:\left(S^{2 n+1} \times \boldsymbol{R}\right) /(\boldsymbol{Z} / 8) \rightarrow L_{8}^{2 n+1}
$$

We set $\kappa=\nu-1 \in \widetilde{K O}\left(L_{8}^{2 n+1}\right)$. It is easy to see that

$$
\left\{\begin{array}{l}
c(\kappa)=\sigma(2) \tag{3.11}\\
r(\sigma(2))=2 \kappa
\end{array}\right.
$$

where $c: K O \rightarrow K$ is the complexification and $r: K \rightarrow K O$ is the real restriction.
Let $I: \widetilde{K}(X) \rightarrow \tilde{K}\left(S^{2} X\right)\left(\right.$ resp. $\left.I_{R}: \widetilde{K O}(X) \rightarrow \widetilde{K O}\left(S^{8} X\right)\right)$ be the Bott periodicity isomorphisms for K (resp. $K O$)-theory. In order to state the next proposition, we set
(3.12) Let j be a non-negative integer with $j \equiv 0(\bmod 4)$.
(1)

$$
\begin{cases}\tau_{i}=r\left(I^{j / 2}\left(\sigma_{i}\right)\right) & (1 \leqq i \leqq 2) \\ \tau_{3}=r\left(I^{j / 2}\left(\sigma_{5}\right)\right) \\ \tau_{4} & = \begin{cases}I_{R}^{j / 8}(\kappa) & (j \equiv 0(\bmod 8)) \\ r\left(I^{j / 2}\left(\sigma_{4}\right)\right) & (j \equiv 4(\bmod 8))\end{cases} \end{cases}
$$

(2) Let $F(y)$ denote the free abelian group generated by y_{1}, y_{2}, y_{3} and y_{4}. Then $X_{i}^{j}, Y_{i}^{j}, X_{i}^{j}(n)$ and $Y_{i}^{j}(n)(1 \leqq i \leqq 4, n \geqq 0)$ denote the elements of $F(y)$ defined by $Y_{4}^{j}=y_{4}$,

$$
\begin{aligned}
& Y_{1}^{j}=(-1)^{(j / 4)} X_{1}^{j}=h_{4}(j+12, j)\left(2 y_{1}-y_{2}+y_{3}\right)+y_{4}, \\
& Y_{2}^{j}=X_{2}^{j}=h_{4}(j+12, j) y_{2}-y_{4}, \\
& Y_{3}^{j}=-y_{3}-h_{4}(j, j-12) y_{4}, \\
& X_{i}^{j}=Y_{i+h_{4}(j+4, j)(7-2 i)}^{j}(3 \leqq i \leqq 4), \\
& X_{1}^{j}(n)=(-1)^{(j / 4)} Y_{1}^{j}(n)=2^{h_{1}(n+j)-h_{1}(j)} X_{1}^{j}, \\
& X_{2}^{j}(n)=Y_{2}^{j}(n)=2^{[n / 4]-h_{4}(j+4, j)}\left(X_{2}^{j}-(-2)^{[n / 4]} h_{4}(n+j+7, n+j) Y_{1}^{j}\right), \\
& X_{3}^{j}(n)=2^{h_{4}(n+j-2, j+4)} X_{3}^{j}+2^{[n / 4]-h_{4}(j+12, j)} h_{4}(n+j, n+j-2) X_{2}^{j} \\
& \quad \quad-2^{2 h_{4}(n+j+4, j+4)+[n / 4]-1} h_{4}(n+j+4, n+j-2) X_{1}^{j}, \\
& X_{4}^{j}(n)=2^{h_{4}(n+j, j+4)} X_{4}^{j}+2^{2[(n-4) / 8]} h_{4}(n+j+4, n+j) X_{2}^{j} \\
& \quad \quad+2^{2 h_{4}(n+j, j+4)+[n / 4]} h_{4}(n+j+7, n+j) X_{1}^{j}
\end{aligned}
$$

and $Y_{i}^{j}(n)=X_{i+h_{4}(j+4, j)(7-2 i)}^{j}(n) \quad(3 \leqq i \leqq 4)$.
(3) Let $\mu_{j}: F(y) \rightarrow \widetilde{K O}\left(S^{j} L_{8}^{m}\right)$ be the homomorphism defined by setting $\mu_{j}\left(y_{i}\right)$ $=\boldsymbol{\tau}_{i}(1 \leqq i \leqq 4)$.

Proposition 3.13 (Kobayashi [8]). Let j be a non-negative integer with $j \equiv 0(\bmod 4)$. Then the homomorphism μ_{j} is an epimorphism, and the kernel of μ_{j} coincides with the subgroup of $F(y)$ generated by $\left\{Y_{i}^{j}(m) \mid 1 \leqq i \leqq 4\right\}$.

According to [1] and [4], we have the following lemma.
Lemma 3.14. Let j be a non-negative integer with $j \equiv 0(\bmod 4)$. Then the Adams operations are given by the following formulae, where $t_{i}=\mu_{j}\left(Y_{i}^{j}\right)$
$(1 \leqq i \leqq 4)$ and $k \equiv 1(\bmod 2)$.
(1) $\psi^{k}\left(t_{i}\right)=k^{j / 2} t_{i}(i=1,2$ or 4$)$.
(2) $\psi^{k}\left(t_{3}\right)=k^{j / 2}\left(1-2 h_{4}(k+5, k+1)\right) t_{3}$.

By Lemma 3.9 and (3.11), we have the following Lemma.
Lemma 3.15. Let j be a non-negative integer with $j \equiv 0(\bmod 4) . \quad$ Then homomorphisms $c: K O \rightarrow K$ and $r: K \rightarrow K O$ are given by the following formurae, where $s_{i}=I^{j / 2}\left(\boldsymbol{\varphi}\left(X_{i}\right)\right)(1 \leqq i \leqq 7)$ and $t_{i}=\mu_{j}\left(Y_{i}^{j}\right)(1 \leqq i \leqq 4)$.
(1) $r\left(s_{i}\right)=h_{4}(j, j-12) t_{i}(i=1,2$ or 4$)$.
(2) $r\left(s_{3}\right)=-r\left(s_{2}\right)$.
(3) $r\left(s_{5}\right)=-t_{3}-h_{4}(j, j-12) t_{4}$.
(4) $r\left(s_{6}\right)=2 t_{3}$.
(5) $r\left(s_{7}\right)=2 t_{3}+h_{4}(j, j-12) t_{4}$.
(6) $c\left(t_{i}\right)=h_{4}(j+12, j) s_{i}(i=1,2$ or 4$)$.
(7) $c\left(t_{3}\right)=s_{6}$.

4. Proof for the case $\boldsymbol{j} \equiv \mathbf{0}(\bmod 4)$

In this section we prove the parts of the case $j \equiv 0(\bmod 4)$ of Theorems 1 and 2. Throughout this section, j denotes a non-negative integer with $j \equiv 0$ $(\bmod 4)$, and ν the integer defined by

$$
\nu= \begin{cases}\nu_{2}(j) & (j>0) \tag{4.1}\\ m & (j=0)\end{cases}
$$

For each integer n with $0 \leqq n<m$, we denote the kernel of the homomorphism

$$
\left(i_{n}^{m}\right)^{t}: \widetilde{K O}\left(S^{j} L_{8}^{m}\right) \rightarrow \widetilde{K O}\left(S^{j} L_{8}^{n}\right)
$$

by $V O_{m, n}^{j}$. It follows from Proposition 3.13 that we have
(4.2) The group $V O_{m, n}^{j}$ is the subgroup of $\widetilde{K O}\left(S^{j} L_{8}^{m}\right)$ generated by

$$
\left\{\mu_{j}\left(Y_{i}^{j}(n)\right) \mid 1 \leqq i \leqq 4\right\}
$$

where $\mu_{j}: F(y) \rightarrow \widetilde{K O}\left(S^{j} L_{8}^{m}\right)$ is the homomorphism defined in (3.12).
By Lemma 3.14, we have the following lemma.
Lemma 4.3. The Adams operations are given by the following formulae, where $T_{i}=\mu_{j}\left(Y_{i}^{j}(n)\right)(1 \leqq i \leqq 4)$ and $k \equiv 1(\bmod 2)$.
(1) $\psi^{k}\left(T_{i}\right)=k^{j / 2} T_{i}(i=1,2$ or 4$)$.
(2) $\psi^{k}\left(T_{3}\right)=k^{j / 2}\left(T_{3}+h_{4}(k+5, k+1)\left(-2 T_{3}+\alpha(0, j, n) T_{2}-\alpha(1, j, n) T_{1}\right)\right)$,
where $\alpha(l, j, n)=h_{4}\left(n+h_{4}(j, j-28 l), n+(-2)^{1-l} h_{4}(j+12, j+16 l)\right)(0 \leqq l \leqq 1)$.
We set

$$
\begin{equation*}
U O_{m, n}^{j}=\sum_{k}\left(\bigcap_{e} k^{e}\left(\psi^{k}-1\right) V O_{m, n}^{j}\right), \tag{4.4}
\end{equation*}
$$

where the intersection runs over all non-negative integers e. Since the order of $V O_{m, n}^{j}$ is equal to a power of 2 , we have

$$
U O_{m, n}^{j}=\sum_{k: \text { odd }}\left(\psi^{k}-1\right) V O_{m, n}^{j} .
$$

It follows from Lemmas 3.1 and 4.3 that we have
(4.5) The group $U O_{m, n}^{j}$ is the subgroup of $V O_{m, n}^{j}$ generated by

$$
\left\{2^{\nu+1} T_{i} \mid i=1,2 \text { or } 4\right\} \cup\{R\},
$$

where $T_{i}=\mu_{j}\left(Y_{i}^{j}(n)\right)(1 \leqq i \leqq 4)$,

$$
R=2\left(2^{\nu}-1\right) T_{3}+\alpha(0, j, n) T_{2}-\alpha(1, j, n) T_{1}
$$

and $\alpha(l, j, n)$ is the integer defined in Lemma $4.3(0 \leqq l \leqq 1)$.
4.1. Proof for the case $\boldsymbol{n} \equiv 3(\bmod 4)$. Suppose that $n \neq 3(\bmod 4)$. According to [13], we have the exact sequence

$$
0 \rightarrow \widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \rightarrow \widetilde{K O}\left(S^{j} L_{8}^{m}\right) \xrightarrow{\left(i_{n}^{m}\right)^{!}} \widetilde{K O}\left(S^{j} L_{8}^{n}\right) \rightarrow 0
$$

Hence we have

$$
\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong V O_{m, n}^{j}
$$

Since the order of $V O_{m, n}^{j}$ is finite, we have

$$
\tilde{J}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong V O_{m, n}^{j} / U O_{m, n}^{j}
$$

It follows from Proposition 3.13 that we have

$$
V O_{m, n}^{j} \cong\left\langle\left\{w_{i} \mid 1 \leqq i \leqq 4\right\}\right\rangle /\left\langle\left\{R_{i} \mid 1 \leqq i \leqq 4\right\}\right\rangle
$$

where $w_{i}=X_{i}^{j}(n)(1 \leqq i \leqq 4), R_{1}=2^{h_{1}(m+j)-h_{1}(n+j)} w_{1}$,
$R_{2}=2^{h_{3}(m, n)+a_{4}(n+j, n+j)}\left(\widetilde{w}_{2}+2^{h_{3}(m, n)} w_{1}\right)$,
$R_{3}=2^{a_{3}(m+j, n+j)}\left(\tilde{w}_{3}+2^{a_{4}(m+j+4, n+j)}\left(\tilde{w}_{2}-2^{a_{7}(m+j, n+j)+1} w_{1}\right)\right)$,
$R_{4}=2^{a_{4}(m+j, n+j)}\left(\widetilde{w}_{4}+2^{h_{4}(m+j, n+j+4)}\left(\widetilde{w}_{2}+2^{a_{7}(m+j-4, n+j)+2} w_{1}\right)\right)$,
$\tilde{w}_{2}=h_{4}(n+j+15, n+j) w_{2}-(-1)^{[n+j) / 4]} a_{4}(n+j, n+j) w_{1}$,
$\widetilde{w}_{3}=h_{4}(n+j+12, n+j-2) w_{3}-h_{4}(n+j, n+j-2) w_{2}+a_{4}(n+j+12, n+j) w_{1}$
and

$$
\widetilde{w}_{4}=h_{4}(n+j+15, n+j) w_{4}-h_{4}(n+j+4, n+j) w_{2}+a_{4}(n+j+4, n+j) w_{1} .
$$

Suppose that $m \geqq 4[(n+j+7) / 8]+4[(n-j+12) / 8]$, and set $A_{i}=R_{i}(3 \leqq i \leqq 4)$,

$$
\begin{aligned}
A_{1}= & R_{1}-(-1)^{[(n+j) / 4]} 2^{h_{1}(m+j)-2\left[(n+j)(4]-h_{3}(m, n)\right.} R_{2} \\
& -h_{4}(n+j, n+j-2) 2^{a_{1}(m+j, n+j)}\left(2^{h_{4}(n+j, m+j+6)} R_{3}-2^{h_{4}(n+j, m+j)-1} R_{2}\right) \\
& +h_{4}(n+j+4, n+j) 2^{a_{1}(m+j, n+j)}\left(2^{h_{4}(n+j, m+j)} R_{4}-2^{h_{4}(n+j, m+j+4)} R_{2}\right), \\
A_{2}= & R_{2}+h_{4}(n+j-1, n+j-4) 2^{h_{4}(m+j+4, n+j)} R_{4} \\
& +h_{4}(n+j+4, n+j) 2^{h_{3}(m+j, n+j)-h_{4}(m+j-2, n+j)} R_{3}, \\
u_{1}= & -(-1)^{[(n+j) / 4]} 2^{h_{3}(m, n)+a_{4}(n+j, n+j)-1} w_{1} \\
& -h_{4}(n+j-2, n+j-4)\left(w_{2}+2^{h_{3}(m, n)-2} w_{1}\right) \\
& -h_{4}(n+j, n+j-2)\left(w_{3}-2^{a_{4}(m+j-4, n+j)}\left(2^{h_{3}(m, n)}+2^{a_{7}(m+j, n+j)+1}\right) w_{1}\right) \\
& +h_{4}(n+j+4, n+j)\left(w_{4}-2^{h_{4}(m+j, n+j)-2}\left(2^{h_{3}(m, n)}-2^{2 h_{4}(m+j, n+j)}\right) w_{1}\right), \\
u_{2}= & w_{2}+2^{h_{3}(m, n)+a_{4}(n+j, n+j)} w_{1} \\
& +h_{4}(n+j-1, n+j-4)\left(w_{4}+2^{a_{4}(m+j, n+j)}\left(\widetilde{w}_{2}+2^{2 h_{4}(m+j, n+j)+1} w_{1}\right)\right) \\
& +h_{4}(n+j+4, n+j)\left(w_{3}+2^{a_{4}(m+j-4, n+j)}\left(\widetilde{w}_{2}-2^{a_{7}(m+j, n+j)+1} w_{1}\right)\right),
\end{aligned}
$$

$$
u_{3}=\tilde{w}_{3}+2^{a_{4}(m+j+4, n+j)}\left(\tilde{w}_{2}-2^{a_{7}(m+j, n+j)+1} w_{1}\right)
$$

and $\quad u_{4}=\widetilde{w}_{4}+2^{h_{4}(m+j, n+j+4)}\left(\widetilde{w}_{2}+2^{a_{7}(m+j-4, n+j)+2} w_{1}\right)$. Then we have
$A_{i}=2^{a_{i}(m+j, n+j)} u_{i}(1 \leqq i \leqq 4)$,

$$
w_{1}=h_{4}(n+j, n+j-2) h_{4}(n+j+15, n+j)\left(2 u_{1}+u_{2}+u_{3}-2^{h_{4}(m+j+4, n+j)} u_{2}\right)
$$

$$
+h_{4}(n+j-1, n+j-2)\left(2^{h_{4}(m+j+4, n+j)}-1\right) u_{4}
$$

$$
+h_{4}(n+j-2, n+j-4)\left(2 u_{1}+2 u_{2}-u_{4}\right)
$$

$$
+h_{4}(n+j+4, n+j)\left(4 u_{1}-2 u_{2}+u_{3}-2 u_{4}+2^{h_{4}(m+j, n+j)}\left(2 u_{2}-u_{3}\right)\right)
$$

and

$$
\begin{aligned}
w_{2}= & -2^{h_{3}(m, n)+a_{4}(n+j, n+j)} w_{1}-h_{4}(n+j-2, n+j-4) u_{1}+h_{4}(n+j, n+j-1) u_{2} \\
& -h_{4}(n+j-1, n+j-2)\left(2 u_{1}+u_{3}-2^{h_{4}(m+j-4, n+j)}\left(2 u_{2}-u_{4}\right)\right) \\
& +h_{4}(n+j+4, n+j)\left(2 u_{1}-u_{4}+2^{a_{4}(m+j, n+j)}\left(2 u_{2}-u_{3}\right)\right) .
\end{aligned}
$$

This implies that $\left\langle\left\{w_{i} \mid 1 \leqq i \leqq 4\right\}\right\rangle=\left\langle\left\{u_{i} \mid 1 \leqq i \leqq 4\right\}\right\rangle$ and

$$
V O_{m, n}^{j} \cong\left\langle\left\{u_{i} \mid 1 \leqq i \leqq 4\right\}\right\rangle /\left\langle\left\{A_{i} \mid 1 \leqq i \leqq 4\right\}\right\rangle \cong \oplus_{i=1}^{4} \boldsymbol{Z} / 2^{a_{i}(m+j, n+j)}
$$

Suppose that $4[(n+j+7) / 8]+4[(n-j+12) / 8]>m \geqq h_{1}(n+j)+2[(n-j+4) / 8]+$ $2[(n-j+6) / 8]+1$, and set $A_{i}=R_{i}(2 \leqq i \leqq 4), u_{2 i}=R_{2 i}(1 \leqq i \leqq 2)$,

$$
\begin{aligned}
& A_{1}= \begin{cases}2^{h_{3}(m+3, n)}\left(2 R_{4}-R_{2}\right)-R_{1} & \left(h_{4}(n+j, n+j-4)=0\right) \\
R_{1}-4 R_{2}+8 R_{3} & (n+j \equiv 1(\bmod 8) \text { and } m \geqq n+3) \\
R_{1}+4 R_{2} & (n+j \equiv 2(\bmod 8)) \\
R_{1} & \left(h_{3}(m, n)=0\right),\end{cases} \\
& u_{1}= \begin{cases}w_{4}+w_{1} & \left(h_{4}(n+j, n+j-4)=0\right) \\
w_{3}-2 w_{1} & (n+j \equiv 1(\bmod 8) \text { and } m \geqq n+3) \\
w_{2}+2 w_{1} & (n+j \equiv 2(\bmod 8)) \\
w_{1} & \left(h_{3}(m, n)=0\right)\end{cases}
\end{aligned}
$$

and

$$
u_{3}= \begin{cases}w_{3}+w_{2}-w_{1} & \left(h_{4}(n+j, n+j-4)=0\right) \\ 2 w_{3}+w_{2}-3 w_{1} & (n+j \equiv 1(\bmod 8) \text { and } m \geqq n+3) \\ w_{3}+2 w_{2}-3 w_{1} & (n+j \equiv 2(\bmod 8)) \\ w_{3} & \left(h_{3}(m, n)=0\right)\end{cases}
$$

Then we have $A_{i}=u_{i}(i=2$ or 4$)$,

$$
\begin{aligned}
& A_{1}= \begin{cases}2^{a_{1}(m+j, n+j)} u_{1} & (m \geqq 4[n / 4]+4) \\
2 u_{1} & (n+j \equiv 0(\bmod 8)) \\
u_{1} & (n+j \equiv 1(\bmod 8) \text { and } n+3>m>n),\end{cases} \\
& A_{3}= \begin{cases}2 u_{3} & \left(h_{4}(n+j-2, n+j-4)=[(m+j) / 2]-4[(n+j+4) / 8]-1=0\right) \\
u_{3} & (\text { otherwise }),\end{cases} \\
& w_{1}= \begin{cases}2 u_{4}-u_{2}-4 u_{1} & \left(h_{4}(n+j, n+j-4)=0\right) \\
4 u_{1}+u_{2}-2 u_{3} & (n+j \equiv 1(\bmod 8) \text { and } m \geqq n+3) \\
2 u_{1}-u_{2} & (n+j \equiv 2(\bmod 8)) \\
u_{1} & \left(h_{3}(m, n)=0\right)\end{cases}
\end{aligned}
$$

and

$$
w_{2}= \begin{cases}2 u_{1}+u_{2}-u_{4} & \left(h_{4}(n+j, n+j-4)=0\right) \\ -6 u_{1}-u_{2}+3 u_{3} & (n+j \equiv 1(\bmod 8) \text { and } m \geqq n+3) \\ 2 u_{2}-3 u_{1} & (n+j \equiv 2(\bmod 8)) \\ u_{2}-u_{1} & \left(h_{3}(m, n)=0\right)\end{cases}
$$

This implies that $\left\langle\left\{w_{i} \mid 1 \leqq i \leqq 4\right\}\right\rangle=\left\langle\left\{u_{i} \mid 1 \leqq i \leqq 4\right\}\right\rangle$ and

$$
V O_{m, n}^{j} \simeq \begin{cases}\boldsymbol{Z} / 16 \oplus \boldsymbol{Z} / 2 & \left(h_{4}(n+j, n+j-4)=[m / 2]-2[n / 4]-3=0\right) \\ \boldsymbol{Z} / 2^{a_{1}(m+j, n+j)} & (4[(n+j+15) / 8]+2[(n-j) / 4]>m \geqq 4[n / 4]+4) \\ \boldsymbol{Z} / 2 \oplus \boldsymbol{Z} / 2 & (n+j \equiv 0(\bmod 8) \text { and }[m / 2]=(n / 2)+1) \\ \boldsymbol{Z} / 2 & \left(h_{4}(n+j+6, n+j)=[m / 2]-[(n+1) / 2]=0\right)\end{cases}
$$

If $h_{1}(n+j)+2[(n-j+4) / 8]+2[(n-j+6) / 8] \geqq m>n$, then we have $V O_{m, n}^{j} \cong 0$. Thus the proof for the case $j \equiv 0(\bmod 4)$ and $n \equiv 3(\bmod 4)$ of Theorem 1 is completed.

Consider the case $j \equiv 0(\bmod 8)$. It follows from (4.5) that we have

$$
\mu_{j}^{-1}\left(U O_{m, n}^{j}\right)=\left\langle\left\{2^{\nu+h_{3}(i+5, i)} w_{i} \mid 1 \leqq i \leqq 4\right\} \cup\left\{R_{i} \mid 0 \leqq i \leqq 4\right\}\right\rangle
$$

where ν is the integer defined by (4.1) and

$$
R_{0}=2\left(2^{\nu}-1\right) w_{3}+h_{4}(n, n-2) w_{2}-h_{4}(n+4, n-1) w_{1} .
$$

Suppose that $m \geqq 4[(n+15) / 8]+2[(n+6) / 8]+2[n / 8]$, and set

$$
\begin{aligned}
v_{1}= & h_{4}(n-2, n-4) w_{2}+h_{4}(n, n-2) w_{3}+h_{4}(n+4, n) w_{4}, \\
v_{2}= & h_{4}(n-1, n-2)\left(w_{4}+2 w_{3}+2^{h_{3}(m, n)+1}\left(1-2^{h_{4}(m+6, n)}\right) w_{3}+2^{v} w_{3}\right) \\
& +h_{4}(n-2, n-4)\left(w_{4}+w_{2}+2^{h_{3}(m, n)} w_{2}\right)+h_{4}(n+4, n)\left(w_{3}+2 w_{4}-2^{h_{3}(m, n)+1} w_{4}\right) \\
& +h_{4}(n, n-1)\left(w_{2}+2^{h_{3}(m, n)+1} w_{3}+2^{v} w_{3}\right), \\
v_{3}= & h_{4}(n, n-1)\left(w_{4}+2^{h_{4}(m, n)} w_{2}-2^{3 h_{4}(m, n)+2} w_{3}\right) \\
& +h_{4}(n-1, n-2)\left(2 w_{4}-w_{1}+2^{h_{4}(m, n)+1}\left(w_{4}+2 w_{3}\right)-2^{3 h_{4}(m, n)+3} w_{3}\right) \\
& +h_{4}(n-2, n-4)\left(2 w_{4}-w_{1}+2^{h_{4}(m, n)+1}\left(w_{4}+w_{2}\right)-2^{3 h_{4}(m, n)+2} w_{2}\right) \\
& +h_{4}(n+4, n)\left(2 w_{4}-w_{2}+2^{h_{4}(m, n)}\left(w_{3}+2 w_{4}\right)+2^{3 h_{4}(m, n)+1} w_{4}\right)
\end{aligned}
$$

and $v_{4}=R_{0}+h_{4}(n-2, n-3)\left(w_{3}-R_{0}\right)$. Then we have $\left\langle\left\{w_{i} \mid 1 \leqq i \leqq 4\right\}\right\rangle=\left\langle\left\{v_{i} \mid 1 \leqq\right.\right.$ $i \leqq 4\}>$ and

$$
V O_{m, n}^{j} / U O_{m, n}^{j} \cong \begin{cases}\left(\oplus_{i=1}^{3} \boldsymbol{Z} / 2^{b_{i}(j, m, n)}\right) \oplus \boldsymbol{Z} / 2 & (n \equiv 2(\bmod 8)) \\ \oplus_{i=1}^{3} \boldsymbol{Z} / 2^{b_{i}^{(j, m, n)}} & \text { (otherwise) } .\end{cases}
$$

Suppose that $4[(n+15) / 8]+2[(n+6) / 8]+2[n / 8]>m \geqq 4[(n+14) / 8]+4[n / 8]$, and set

$$
\begin{aligned}
v_{1}= & h_{4}(n-2, n-3) w_{2}+h_{4}(n-1, n-2) w_{3}+h_{4}(n+4, n) w_{4}, \\
v_{2}= & h_{4}(n-2, n-3)\left(w_{4}+5 w_{2}\right)+h_{4}(n-1, n-2)\left(w_{4}-2 w_{3}\right) \\
& +h_{4}(n+4, n)\left(w_{3}-2 w_{4}\right), \\
v_{3}= & h_{4}(n-2, n-3)\left(2 w_{4}-w_{1}-16 w_{2}\right)+h_{4}(n-1, n-2)\left(w_{1}-4 w_{3}\right) \\
& +h_{4}(n+4, n)\left(w_{2}+6 w_{4}\right)
\end{aligned}
$$

and $v_{4}=R_{0}+h_{4}(n-2, n-3)\left(w_{3}+2 w_{2}-3 w_{1}-R_{0}\right)$. Then we have $\left\langle\left\{w_{i} \mid 1 \leqq i \leqq\right.\right.$ $4\}\rangle=\left\langle\left\{v_{i} \mid 1 \leqq i \leqq 4\right\}\right\rangle$ and

$$
V O_{m, n}^{j} / U O_{m, n}^{j} \simeq \begin{cases}\boldsymbol{Z} / 2^{b_{1}(j, m, n)} \oplus \boldsymbol{Z} / 4 & (n \equiv 2(\bmod 8)) \\ \boldsymbol{Z} / 8 & (n \equiv 1(\bmod 8)) \\ V O_{m, n}^{j} & \left(h_{4}(n, n-4)=0\right)\end{cases}
$$

If $4[(n+14) / 8]+4[n / 8]>m>n$, then we have $U O_{m, n}^{j} \simeq 0$. Thus the proof for the case $j \equiv 0(\bmod 8)$ and $n \equiv 3(\bmod 4)$ of Theorem 2 is completed.

Consider the case $j \equiv 4(\bmod 8)$. It follows from (4.5) that we have

$$
\mu_{j}^{-1}\left(U O_{m, n}^{j}\right)=\left\langle\left\{2^{3+h_{3}(i, i-1)} w_{i} \mid 1 \leqq i \leqq 4\right\} \cup\left\{R_{i} \mid 0 \leqq i \leqq 4\right\}\right\rangle,
$$

where $R_{0}=2 w_{4}-h_{4}(n+3, n)\left(8 w_{4}+w_{1}\right)-h_{4}(n, n-4)\left(8 w_{4}+w_{2}\right)$. Suppose that $m \geqq$ $2[n / 4]+4[(n+2) / 8]+6$, and set

$$
\begin{aligned}
v_{1}= & h_{4}(n, n-4) w_{4}+h_{4}(n+4, n+2) w_{3}+h_{4}(n+2, n) w_{2}, \\
v_{2}= & h_{4}(n, n-4)\left(w_{3}-2 w_{4}\right)+h_{4}(n+4, n+3)\left(w_{2}+w_{4}-2^{h_{3}(m, n)+1} w_{3}\right) \\
& +h_{4}(n+3, n+2)\left(w_{4}-2 w_{3}\right)+h_{4}(n+2, n)\left(w_{4}+w_{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
v_{3}= & h_{4}(n, n-4)\left(2 w_{3}+w_{1}+2^{h_{4}(m, n)+1}\left(w_{3}-2 w_{4}\right)\right) \\
& +h_{4}(n+4, n+3)\left(2 w_{3}-w_{2}+w_{1}+2^{h_{4}(m, n)} w_{2}\right) \\
& +h_{4}(n+3, n+2)\left(2 w_{3}-w_{2}+2^{h_{4}(m, n)}\left(w_{4}-2 w_{3}\right)\right) \\
& +h_{4}(n+2, n)\left(w_{3}+2^{h_{4}(m, n)}\left(w_{4}+w_{2}\right)\right)
\end{aligned}
$$

and $v_{4}=R_{0}+h_{4}(n+4, n+3)\left(w_{4}-R_{0}\right)$. Then we have $\left\langle\left\{w_{i} \mid 1 \leqq i \leqq 4\right\}\right\rangle=\left\langle\left\{v_{i} \mid 1 \leqq\right.\right.$ $i \leqq 4\}>$ and

$$
V O_{m, n}^{j} / U O_{m, n}^{j} \cong \begin{cases}\left(\oplus_{i=1}^{3} \boldsymbol{Z} / 2^{b_{i}(j, m, n)}\right) \oplus \boldsymbol{Z} / 2 & (n \equiv 4(\bmod 8)) \\ \oplus_{i=1}^{3} \boldsymbol{Z} / 2^{b_{i}(j, m, n)} & \text { (otherwise) }\end{cases}
$$

If $2[n / 4]+4[(n+2) / 8]+6>m>n$, then we have $U O_{m, n}^{j} \cong 0$. Thus the proof for the case $j \equiv 4(\bmod 8)$ and $n \equiv 3(\bmod 4)$ of Theorem 2 is completed.
4.2. Proof for the case $n \equiv 3(\bmod 4)$. Now, we turn to the case $n \equiv 3(\bmod 4)$. It follows from [13] that we have the following commutative diagram, in which rows are exact.

$$
\begin{align*}
0 & \rightarrow V O_{m, n+1}^{j} \xrightarrow{f_{1}} \widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \xrightarrow{f_{2}} \widetilde{K O}\left(S^{j+n+1}\right) \rightarrow 0 \\
\| & \downarrow f_{3} \tag{4.6}\\
0 & \rightarrow V O_{m, n+1}^{j} \rightarrow \widetilde{K O}\left(S^{j} L_{8}^{m}\right) \xrightarrow{f_{4}} \widetilde{\downarrow} \widetilde{K O}\left(S^{j} L_{8}^{n+1}\right) \rightarrow 0 .
\end{align*}
$$

Since $\widetilde{K O}\left(S^{j+n+1}\right)$ is isomorphic to \boldsymbol{Z}, the upper row of (4.6) splits. Choose $y \in \widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right)$ such that $\beta=f_{2}(y)$ generates the group $\widetilde{K O}\left(S^{j+n+1}\right)$. Then we have an isomorphism

$$
f: V O_{m, n+1}^{j} \oplus \widetilde{K O}\left(S^{j+n+1}\right) \rightarrow \widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right)
$$

defined by $f(x, k \beta)=f_{1}(x)+k y$ for every $(x, k) \in V O_{m, n+1}^{j} \oplus \boldsymbol{Z}$. This proves the case $j \equiv n+1 \equiv 0(\bmod 4)$ of Theorem 1.

Lemma 4.7. If $j \equiv n+1 \equiv 0(\bmod 4)$, then there is an element $y \in$ $\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right)$ which satisfies the following conditions:
(1) $\beta=f_{2}(y)$ generates the group $\widetilde{K O}\left(S^{j+n+1}\right)$,
(2) $f_{3}(y)= \begin{cases}\mu_{j}\left(Y_{4}^{j}(n)\right) & (j \equiv n+1 \equiv 0(\bmod 8)) \\ \mu_{j}\left(Y_{3}^{j}(n)+Y_{1}^{j}(n)\right) & (j \equiv n+1 \equiv 4(\bmod 8)) \\ \mu_{j}\left(Y_{3}^{j}(n)+Y_{2}^{j}(n)+2 Y_{1}^{j}(n)\right) & (j \equiv n-3 \equiv 0(\bmod 8)) \\ \mu_{j}\left(Y_{4}^{j}(n)+Y_{2}^{j}(n)\right) & (j \equiv n-3 \equiv 4(\bmod 8)) .\end{cases}$

Proof. Consider the following commutative diagram, in which rows are exact:

$$
\begin{aligned}
0 \rightarrow & V_{m, n+1}^{j} \xrightarrow{f_{C, 1}} \tilde{K}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \xrightarrow{f_{C, 2}} \tilde{K}\left(S^{n+j+1}\right) \rightarrow 0 \\
& \downarrow f_{C, 3} \\
0 \rightarrow & V_{m, n+1}^{j} \longrightarrow \\
& \tilde{K}\left(S^{j} L_{8}^{m}\right) \xrightarrow{f_{C, 4}} \tilde{K}\left(S^{j} L_{8}^{n+1}\right) \rightarrow 0 .
\end{aligned}
$$

According to Lemma 3.10, there is an element $x \in \tilde{K}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right)$ such that $f_{C, 2}(x)$ generates the group $\tilde{K}\left(S^{n+j+1}\right)$ and

$$
f_{C, 3}(x)= \begin{cases}I^{j / 2}\left(\varphi\left(X_{4}(n)\right)\right) & (n \equiv 7(\bmod 8)) \\ I^{j / 2}\left(\varphi\left(X_{6}(n)+X_{1}(n)\right)\right) & (n \equiv 3(\bmod 8))\end{cases}
$$

If $n+j \equiv 3(\bmod 8)$, then $r: \widetilde{K}\left(S^{n+j+1}\right) \rightarrow \widetilde{K O}\left(S^{n+j+1}\right)$ is an isomorphism. It follows from Lemma 3.15 that $y=r(x)$ satisfies the conditions (1) and (2). If $n+j \equiv 7(\bmod 8)$, then $c: \widetilde{K O}\left(S^{n+j+1}\right) \rightarrow \tilde{K}\left(S^{n+j+1}\right)$ is an isomorphism and $c: \widetilde{K O}\left(S^{j} L_{8}^{n+1}\right) \rightarrow \tilde{K}\left(S^{j} L_{8}^{n+1}\right)$ is a monomorphism. There is an element $\tilde{y} \in$ $\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right)$ such that $f_{2}(\tilde{y})$ generates the group $\widetilde{K O}\left(S^{n+j+1}\right)$ and $f_{c, 4}\left(c\left(f_{3}(\mathfrak{y})\right)\right)=f_{c, 4}\left(f_{c, 3}(x)\right)$. It follows from Lemma 3.15 that we have $f_{c, 3}(x)=c(Y)$, where

$$
Y= \begin{cases}\mu_{j}\left(Y_{4}^{j}(n)\right) & (n+1 \equiv j \equiv 0(\bmod 8)) \\ \mu_{j}\left(Y_{3}^{j}(n)+Y_{1}^{j}(n)\right) & (n+1 \equiv j \equiv 4(\bmod 8))\end{cases}
$$

This implies that $f_{4}\left(f_{3}(\tilde{y})\right)=f_{4}(Y)$ and $y=\tilde{y}+f_{1}\left(Y-f_{3}(\tilde{y})\right)$ satisfies the conditions (1) and (2).
q.e.d.

In the rest of this section, we fix an element $y \in \widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right)$ which satisfies the conditions of Lemma 4.7, and set

$$
\begin{equation*}
T_{i}=\mu_{j}\left(Y_{i}^{j}(n+1)\right) \quad(1 \leqq i \leqq 4) . \tag{4.8}
\end{equation*}
$$

Lemma 4.9. If k is an odd integer, then the Adams operation ψ^{k} is given by

$$
\psi^{k}(y)=k^{(n+j+1) / 2} y+\left(\left(k^{j / 2}-k^{(n+j+1) / 2}\right) / 8\right) f_{1}\left(8 f_{3}(y)\right)+k^{j / 2} f_{1}(w),
$$

where $w=h_{4}(k+5, k+1)\left(W-8 f_{3}(y)\right)$ and

$$
\begin{equation*}
W=8 f_{3}(y)-h_{4}(n, n-4)\left(T_{3}+h_{4}(j, j-4)\left(T_{3}+T_{1}\right)\right) . \tag{4.10}
\end{equation*}
$$

Proof. We necessarily have

$$
\psi^{k}(y)=u y+f_{1}(x)
$$

for some integer u and an element $x \in V O_{m, n+1}^{j}$. By using the ψ-map f_{2}, we see that $u=k^{(n+j+1) / 2}$. Under $f_{3}, f_{1}(x)$ maps into x and y maps into $f_{3}(y)$, and we see that

$$
\psi^{k}\left(f_{3}(y)\right)=k^{(n+j+1) / 2} f_{3}(y)+x .
$$

It follows from Lemma 4.3 that

$$
k^{j / 2}\left(f_{3}(y)+w\right)=k^{(n+j+1) / 2} f_{3}(y)+x .
$$

This implies that

$$
x=\left(\left(k^{j / 2}-k^{(n+j+1) / 2}\right) / 8\right)\left(8 f_{3}(y)\right)+k^{j / 2} w .
$$

We now recall some definition in [3]. Set $Y=\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right)$ and let f be a function which assigns to each integer k a non-negative integer $f(k)$. Given such a function f, we define Y_{f} to be the subgroup of Y generated by

$$
\left\{k^{f(k)}\left(\psi^{k}-1\right)(y) \mid k \in \boldsymbol{Z}, y \in Y\right\} ;
$$

that is,

$$
Y_{f}=\left\langle\left\{k^{f(k)}\left(\psi^{k}-1\right)(y) \mid k \in Z, y \in Y\right\}\right\rangle .
$$

Then the kernel of the homomorphism $J^{\prime \prime}: Y \rightarrow J^{\prime \prime}(Y)$ coincides with $\bigcap_{f} Y_{f}$, where the intersection runs over all functions f.

Suppose that f satisfies
(4.11) $\quad f(k) \geqq m+\max \left\{\nu_{p}(\mathfrak{m}((n+j+1) / 2)) \mid p\right.$ is a prime divisor of $\left.k\right\}$
for every $k \in \boldsymbol{Z}$. For each odd integer $i, N(i)$ denotes the integer chosen to satisfy the property

$$
\begin{equation*}
i N(i) \equiv 1 \quad\left(\bmod 2^{m}\right) \tag{4.12}
\end{equation*}
$$

In the following calculation we put $(n+j+1) / 2=u$ for the sake of simplicity. From Lemma 3.1, (4.5) and Lemma 4.9, we have

$$
\begin{aligned}
& k^{f(k)}\left(\psi^{k}-1\right)(y) \\
& =k^{f(k)}\left(k^{u}-1\right) y+\left(k^{f(k)}\left(k^{j / 2}-k^{u}\right) / 8\right) f_{1}\left(8 f_{3}(y)\right)+k^{f(k)+(j / 2)} f_{1}(w) \\
& \equiv k^{f(k)}\left(k^{u}-1\right) y+\left(k^{f(k)}\left(k^{j / 2}-k^{u}\right) / 8\right) f_{1}(W)\left(\bmod f_{1}\left(U O_{m, n+1}^{j}\right)\right) \\
& =k^{f(k)}\left(k^{u}-1\right) y+\left(k^{f(k)} N\left(u / 2^{v_{2}(u)}\right)\left(u\left(k^{j / 2}-1\right)-u\left(k^{u}-1\right)\right) / 2^{\nu_{2}(8 u)}\right) f_{1}(W) \\
& \equiv k^{f(k)}\left(k^{u}-1\right) y \\
& \quad+\left(k^{f(k)} N\left(u / 2^{v_{2}(u)}\right)\left((j / 2)\left(k^{u}-1\right)-u\left(k^{u}-1\right)\right) / 2^{v_{2}((z u)}\right) f_{1}(W)\left(2^{\nu}+1\right) \\
& \quad\left(\bmod f_{1}\left(U O_{m, n+1}^{j}\right)\right) \\
& =\left(k^{f(k)}\left(k^{u}-1\right) / 2^{v_{2}(4 u)}\right)\left(2^{v_{2}(4 u)} y-N\left(u / 2^{v_{2}(u)}\right)((n+1) / 4) f_{1}(W)\left(2^{\nu}+1\right)\right) .
\end{aligned}
$$

By virtue of [3; II, Theorem (2.7) and Lemma (2.12)], we have

$$
\begin{aligned}
Y_{f} & =\left\langle f_{1}\left(U O_{m, n+1}^{j}\right) \cup\left\{k^{f(k)}\left(\psi^{k}-1\right)(y) \mid k \in Z\right\}\right\rangle \\
& =\left\langle f_{1}\left(U O_{m, n+1}^{j}\right) \cup\left\{\mathfrak{m}(u) y-M f_{1}(W)\right\}\right\rangle,
\end{aligned}
$$

where $M=\left(\mathfrak{m}(u) / 2^{\nu_{2}(u)+2}\right) N\left(u / 2^{\nu_{2}(u)}\right)((n+1) / 4)\left(2^{\nu}+1\right)$. Since this is true for every function f which satisfies (4.11), we have

$$
\begin{equation*}
J^{\prime \prime}(Y) \cong Y\left|<f_{1}\left(U O_{m, n+1}^{j}\right) \cup\left\{\mathfrak{m}((n+j+1) / 2) y-M f_{1}(W)\right\}\right\rangle \tag{4.13}
\end{equation*}
$$

where $\nu_{2}(M)=\nu_{2}(n+1)-2$ and

$$
W= \begin{cases}4 T_{4}+2 T_{2}+T_{1} & (j \equiv n+1 \equiv 0(\bmod 8)) \\ 8 T_{4}+4 T_{2}-T_{1} & (j \equiv n-3 \equiv 4(\bmod 8)) \\ 6 T_{3}+4 T_{2}+4 T_{1} & (j \equiv n-3 \equiv 0(\bmod 8)) \\ 3 T_{3}+2 T_{2}+3 T_{1} & (j \equiv n+1 \equiv 4(\bmod 8))\end{cases}
$$

Suppose that $m \geqq n+5+2 h_{4}(j+4, j) h_{4}(n+1, n)$. It follows from the proof for the case $n \neq 3(\bmod 4)$ that we have

$$
W \equiv \Sigma_{i=1}^{3} m_{i} z_{i} \quad\left(\bmod U O_{m, n+1}^{j}\right)
$$

where $z_{i}=\mu_{j}\left(v_{i}\right)(1 \leqq i \leqq 3), \nu_{2}\left(m_{i}\right)=2+h_{4}(n+j, n+j-4)-i(1 \leqq i \leqq 2)$ and $\nu_{2}\left(m_{3}\right)$ $=2 h_{4}(j, j-4)$. Therefore

$$
J^{\prime \prime}(Y) \cong F(v) /\left\langle\left\{\Sigma_{i=0}^{3} M_{i} v_{i}\right\} \cup\left\{B_{i} \mid 1 \leqq i \leqq 4\right\}\right\rangle
$$

where $F(v)$ is the free abelian group generated by $\left\{v_{i} \mid 0 \leqq i \leqq 4\right\}, M_{0}=$ $\mathfrak{m}((n+j+1) / 2)$,

$$
\begin{aligned}
& B_{i}=2^{b_{i}(j, m, n)} v_{i} \quad(1 \leqq i \leqq 3), \\
& B_{4}=\left(h_{4}(j+4, j) h_{4}(n+5, n+1)+1\right) v_{4}
\end{aligned}
$$

and $M_{i}=-m_{i} M(1 \leqq i \leqq 3)$. Set

$$
\begin{equation*}
i_{k}=\min \left\{b_{k}(j, m, n), \nu_{2}(n+1)+\nu_{2}\left(m_{k}\right)-2\right\} \quad(1 \leqq k \leqq 3) \tag{4.14}
\end{equation*}
$$

For the sake of simplicity, we put $b_{k}=b_{k}(j, m, n)(1 \leqq k \leqq 3)$ in the following calculation. Since $\nu_{2}(M)=\nu_{2}(n+1)-2$, the greatest common divisor of M_{k} and $2^{b_{k}}$ is equal to $2^{i_{k}}(1 \leqq k \leqq 3)$. Choose integers $e_{11}, e_{12}, e_{21}, e_{22}, e_{31}$ and e_{32} with $e_{k 1} 2^{b_{k}}+e_{k 2} M_{k}=2^{i_{k}}(1 \leqq k \leqq 3)$. If $b_{1}-i_{1}>b_{2}-i_{2}$ and $i_{2} \leqq \nu_{2}\left(M_{3}\right)$, then we have

$$
A_{1}\left(\begin{array}{l}
\sum_{i=0}^{3} M_{i} v_{i} \\
B_{1} \\
B_{2} \\
B_{3}
\end{array}\right)=\left(\begin{array}{l}
2^{b_{1}-i_{1}} M_{0} v_{0} \\
2^{b_{2} i_{2}}\left(e_{12} M_{0} v_{0}+2^{i_{1}} v_{1}\right) \\
e_{22}\left(M_{0} v_{0}+M_{1} v_{1}+M_{3} v_{3}\right)+2^{i_{2}} v_{2} \\
B_{3}
\end{array}\right)
$$

where

$$
A_{1}=\left(\begin{array}{llll}
2^{b_{1}-i_{1}} & -M_{1} / 2^{i_{1}} & -2^{b_{1}-b_{2}-i_{1}} M_{2} & -2^{b_{1}-b_{3}-i_{1}} M_{3} \\
e_{12} 2^{b_{2}-i_{2}} & e_{11} 2^{b_{2}-i_{2}} & -e_{12} M_{2} / 2^{i_{2}} & -2^{b_{2}-b_{3}-i_{2}} e_{12} M_{3} \\
e_{22} & 0 & e_{21} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and $\operatorname{det} A_{1}=1$. This implies that

$$
J^{\prime \prime}(Y) \cong\left\{\begin{array}{l}
\boldsymbol{Z} / 2^{b_{1}-1} M_{0} \oplus \boldsymbol{Z} / 2^{b_{2}+1} \oplus \boldsymbol{Z} / 2^{b_{3}} \oplus \boldsymbol{Z} / 2 \quad(j \equiv n+1 \equiv 4(\bmod 8)) \\
\boldsymbol{Z} / 2^{b_{1}-i_{1}} M_{0} \oplus \boldsymbol{Z} / 2^{b_{2}-i_{2}+i_{1}} \oplus \boldsymbol{Z} / 2^{i_{2}} \oplus \boldsymbol{Z} / 2^{b_{3}} \quad \text { (otherwise) }
\end{array}\right.
$$

If $b_{2}-i_{2} \geqq b_{1}-i_{1}$ and $\nu_{2}\left(M_{3}\right) \geqq i_{2}$, then we have

$$
A_{2}\left(\begin{array}{l}
\sum_{i=0}^{3} M_{i} v_{i} \\
B_{1} \\
B_{2} \\
B_{3}
\end{array}\right)=\left(\begin{array}{l}
2^{b_{2}-i_{2}} M_{0} v_{0} \\
B_{1} \\
e_{22}\left(M_{0} v_{0}+M_{1} v_{1}+M_{3} v_{3}\right)+2^{i_{2}} v_{2} \\
B_{3}
\end{array}\right)
$$

where

$$
A_{2}=\left(\begin{array}{llll}
2^{b_{2}-i_{2}} & -M_{1} 2^{b_{2}-b_{1}-i_{2}} & -M_{2} / 2^{i_{2}} & -2^{b_{2}-b_{3}-i_{2}} M_{3} \\
0 & 1 & 0 & 0 \\
e_{22} & 0 & e_{21} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and $\operatorname{det} A_{2}=1$. This implies that

$$
J^{\prime \prime}(Y) \cong\left\{\begin{array}{l}
\boldsymbol{Z} / 2^{b_{2}} M_{0} \oplus \boldsymbol{Z} / 2^{b_{1}} \oplus \boldsymbol{Z} / 2^{b_{3}} \oplus \boldsymbol{Z} / 2 \quad(j \equiv n+1 \equiv 4(\bmod 8)) \\
\boldsymbol{Z} / 2^{b_{2}-i_{2}} M_{0} \oplus \boldsymbol{Z} / 2^{b_{1}} \oplus \boldsymbol{Z} / 2^{i_{2}} \oplus \boldsymbol{Z} / 2^{b_{3}} \quad \text { (otherwise) }
\end{array}\right.
$$

If $i_{2}>\nu_{2}\left(M_{3}\right)$, then we necessarily have $j \equiv n-3 \equiv 4(\bmod 8), b_{1}=4, i_{1} \geqq 3, b_{2}=3$ and $i_{2}=i_{1}-1=\nu_{2}\left(M_{3}\right)+1$. If $i_{2}>\nu_{2}\left(M_{3}\right)$ and $b_{2}-i_{2}>b_{3}-i_{3}$, then we have $i_{2}=2$, $b_{3}=i_{3}$ and

$$
A_{3}\left(\begin{array}{l}
\Sigma_{i=0}^{3} M_{i} v_{i} \\
B_{1} \\
B_{2} \\
B_{3}
\end{array}\right)=\left(\begin{array}{l}
2 M_{0} v_{0} \\
B_{1} \\
e_{22}\left(M_{0} v_{0}+M_{1} v_{1}\right)+4 v_{2} \\
B_{3}
\end{array}\right)
$$

where

$$
A_{3}=\left(\begin{array}{llll}
2 & -M_{1} / 8 & -M_{2} / 4 & -2 M_{3} / 2^{b_{3}} \\
0 & 1 & 0 & 0 \\
e_{22} & 0 & e_{21} & -e_{22} M_{3} / 2^{b_{3}} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and $\operatorname{det} A_{3}=1$. This implies that

$$
J^{\prime \prime}(Y) \cong \boldsymbol{Z} / 2 M_{0} \oplus \boldsymbol{Z} / 16 \oplus \boldsymbol{Z} / 4 \oplus \boldsymbol{Z} / 2^{b_{3}}
$$

If $i_{2}>\nu_{2}\left(M_{3}\right)$ and $b_{3}-i_{3} \geqq b_{2}-i_{2}$, then we have

$$
A_{4}\left(\begin{array}{l}
\Sigma_{i=0}^{3} M_{i} v_{i} \\
B_{1} \\
B_{2} \\
B_{3}
\end{array}\right)=\left(\begin{array}{l}
2^{b_{3}-i_{3}} M_{0} v_{0} \\
B_{1} \\
B_{2} \\
e_{32}\left(M_{0} v_{0}+M_{1} v_{1}+M_{2} v_{2}\right)+2^{i_{3}} v_{3}
\end{array}\right)
$$

where

$$
A_{4}=\left(\begin{array}{llll}
2^{b_{3}-i_{3}} & -M_{1} 2^{b_{3}-i_{3}-4} & -M_{2} 2^{b_{3}-i_{3}-3} & -M_{3} / 2^{i_{3}} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
e_{32} & 0 & 0 & e_{31}
\end{array}\right)
$$

and $\operatorname{det} A_{4}=1$. This implies that

$$
J^{\prime \prime}(Y) \cong \boldsymbol{Z} / 2^{b_{3}-i_{3}} M_{0} \oplus \boldsymbol{Z} / 16 \oplus \boldsymbol{Z} / 8 \oplus \boldsymbol{Z} / 2^{i_{3}}
$$

If $n+7>m \geqq n+5$ and $j \equiv n-3 \equiv 4(\bmod 8)$, then we have $W \equiv m_{1} T_{3}(\bmod$ $\left.U O_{m, n+1}^{j}\right)$, where $\nu_{2}\left(m_{1}\right)=2$. Therefore

$$
J^{\prime \prime}(Y) \cong F(v) /\left\langle\left\{M_{0} v_{0}+M_{1} v_{1}, B_{1}\right\}\right\rangle,
$$

where $F(v)$ is the free abelian group generated by $\left\{v_{i} \mid 0 \leqq i \leqq 1\right\}, M_{0}=$ $\mathfrak{m}((n+j+1) / 2), B_{1}=2^{b} v_{1}, b=b_{1}(j, m, n)$ and $M_{1}=-m_{1} M$. Set $i=\min \left\{b, \nu_{2}(n+1)\right\}$. Choose integers e_{1} and e_{2} with $e_{1} 2^{b}+e_{2} M_{1}=2^{i}$. Then we have

$$
\left(\begin{array}{ll}
2^{b-i} & -M_{1} 2^{i} \\
e_{2} & e_{1}
\end{array}\right)\binom{M_{0} v_{0}+M_{1} v_{1}}{B_{1}}=\binom{2^{b-i} M_{0} v_{0}}{e_{2} M_{0} v_{0}+2^{i} v_{1}} .
$$

This implies that $J^{\prime \prime}(Y) \cong \boldsymbol{Z} / 2^{b-i} M_{0} \oplus \boldsymbol{Z} / 2^{i}$.
If $n+5>m>n$, then we have $M f_{1}(W) \equiv 0\left(\bmod f_{1}\left(U O_{m, n}^{j}\right)\right)$ and

$$
J^{\prime \prime}(Y) \cong \boldsymbol{Z} / \mathfrak{m}((n+j+1) / 2) \oplus\left(V O_{m, n+1}^{j} / U O_{m, n+1}^{j}\right)
$$

According to [2], [3] and [12], we have $\widetilde{J}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong J^{\prime \prime}(Y)$. Thus, the proof for the parts of the case $n+1 \equiv j \equiv 0(\bmod 8)$ of Theorem 2 is completed.

5. Proof for the case $\boldsymbol{j} \equiv \mathbf{2}(\bmod 4)$

In this section we prove the parts of the case $j \equiv 2(\bmod 4)$ of Theorems 1 and 2. Throughout this section j denotes a positive integer with $j \equiv 2(\bmod 4)$. Consider the elements $S_{i}(1 \leqq i \leqq 7)$ of $\tilde{K}\left(S^{j} L_{8}^{m}\right)$ defined by

$$
\begin{equation*}
S_{i}=I^{j / 2}\left(\varphi\left(X_{i}(n+1)\right)\right) \quad(1 \leqq i \leqq 7), \tag{5.1}
\end{equation*}
$$

where $\varphi: F(x) \rightarrow \tilde{K}\left(L_{8}^{m}\right)$ is the homomorphism defined in (3.7). For each integer n with $0 \leqq n \leqq m$, we denote the kernel of the homomorphism

$$
\left(i_{n}^{m}\right)^{1}: \tilde{K}\left(S^{j} L_{8}^{m}\right) \rightarrow \tilde{K}\left(S^{j} L_{8}^{n}\right)
$$

by $V_{m, n}^{j}$. By Proposition 3.8, we have

$$
\begin{equation*}
V_{m, 2[(n+1) / 2]}^{j}=\left\langle\left\{S_{i} \mid 1 \leqq i \leqq 7\right\}\right\rangle . \tag{5.2}
\end{equation*}
$$

Consider the Bott exact sequence (cf. [5] and [6, (12.2)])

$$
\begin{equation*}
\rightarrow \widetilde{K O}\left(S^{j+2} X\right) \xrightarrow{c} \widetilde{K}\left(S^{j+2} X\right) \xrightarrow{r \circ I^{-1}} \widetilde{K O}\left(S^{j} X\right) \xrightarrow{\partial} \widetilde{K O}\left(S^{j-1} X\right) \rightarrow \tag{5.3}
\end{equation*}
$$

for $X=L_{8}^{m} / L_{8}^{n}$, where ∂ is the homomorphism defined by the exterior product with the generator of $\widetilde{K O}\left(S^{1}\right)$. Using the isomorphisms

$$
V O_{m, 2[(n+1) / 2]}^{j+2} \cong \widetilde{K O}\left(S^{j+2}\left(L_{8}^{m} / L_{8}^{2[(n+1) / 2]}\right)\right)
$$

and

$$
V_{m, 2[(n+1) / 2]}^{j} \cong \widetilde{K}\left(S^{j}\left(L_{8}^{m} / L_{8}^{2[(n+1) / 2]}\right)\right),
$$

we obtain the exact sequence

$$
\begin{equation*}
\rightarrow V O_{m, 2 u}^{j+2} \xrightarrow{I^{-1} \circ c} V_{m, 2 u}^{j} \xrightarrow{r_{1}} \widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{2 u}\right)\right) \xrightarrow{\partial} G \rightarrow 0, \tag{5.4}
\end{equation*}
$$

where $u=[(n+1) / 2]$ and

$$
G= \begin{cases}\widetilde{K O}\left(S^{j+1}\left(L_{8}^{m} / L_{8}^{2 u}\right)\right) & (m+j \equiv 0,1 \text { or } 2(\bmod 8)) \\ 0 & (\text { otherwise })\end{cases}
$$

Using Lemma 3.15, we obtain the following lemma.
Lemma 5.5. For the homomorphism r_{1} in the exact sequence (5.4), we have

$$
\operatorname{Ker} r_{1}= \begin{cases}\left\langle\left\{S_{1}, S_{2}, S_{4}, S_{6}\right\}\right\rangle & (2 u+j \equiv 4 \operatorname{or} 6(\bmod 8)) \\ \left\langle\left\{2 S_{1}, S_{2}, S_{4}, S_{6}\right\}\right\rangle & (2 u+j \equiv 2(\bmod 8)) \\ \left\langle\left\{S_{1}, S_{2}, S_{4}, 2 S_{6}\right\}\right\rangle & (2 u \equiv j-4 \equiv 2(\bmod 8)) \\ \left\langle\left\{S_{1}, S_{2}, 2 S_{4}, S_{6}\right\}\right\rangle & (2 u \equiv j-4 \equiv 6(\bmod 8)),\end{cases}
$$

where $u=[(n+1) / 2]$.
It follows from Lemmas 3.9 and 5.5 that we have
Lemma 5.6. The Adams operations are given by the following formulae, where $u=[(n+1) / 2], T_{i}=r_{1}\left(S_{i}\right)(1 \leqq i \leqq 7)$ and $k \equiv 1(\bmod 2)$.

$$
\begin{align*}
& \psi^{k}\left(T_{3}\right)=(-1)^{h_{3}(k+2, k)} k^{j / 2} T_{3} . \tag{1}\\
& \psi^{k}\left(T_{5}\right)=(-1)^{h_{4}(k+4, k)} k^{j / 2} \widetilde{T}_{5} \tag{2}
\end{align*}
$$

where $\widetilde{T}_{5}=T_{5}-h_{4}(k+5, k+1)\left(h_{3}(u+1, u-1) T_{3}+h_{4}(j+4, j) h_{3}(u+2, u+1) T_{1}\right)$.

$$
\begin{equation*}
\psi^{k}\left(T_{7}\right)=(-1)^{k_{3}(k+2, k)} k^{j / 2} \widetilde{T}_{7} \tag{3}
\end{equation*}
$$

where $\widetilde{T}_{7}=T_{7}-h_{4}(k+5, k+1) h_{4}(j+4, j) h_{3}(u+2, u+1) T_{1}$.

$$
\begin{equation*}
\psi^{k}\left(T_{i}\right)=T_{i} \quad(i=1,2,4 \text { or } 6) \tag{4}
\end{equation*}
$$

We set

$$
\begin{equation*}
U_{m, 2 u}^{j}=\sum_{k: \text { odd }}\left(\psi^{k}-1\right) r_{1}\left(V_{m, 2 u}^{j}\right) \tag{5.7}
\end{equation*}
$$

It follows from Lemma 5.6 that we have

$$
\begin{equation*}
U_{m, 2 u}^{j}=\left\langle\left\{4 T_{3}, R_{1}, R_{2}\right\}\right\rangle \tag{5.8}
\end{equation*}
$$

where $u=[(n+1) / 2]$,

$$
\begin{aligned}
& R_{1}=2 T_{5}+h_{3}(u+1, u-1) T_{3}-h_{4}(j+4, j) h_{3}(u+2, u+1) T_{1} \\
& R_{2}=4 T_{7}-h_{4}(j+4, j) h_{3}(u+2, u+1) T_{1}
\end{aligned}
$$

and $T_{i}=r_{1}\left(S_{i}\right)(1 \leqq i \leqq 7)$.
5.1. Proof for the case $n \equiv 0(\bmod 2)$. Suppose $n \equiv 0(\bmod 2)$. If $m \geqq n+2$, then by Proposition 3.8 and Lemma 5.5, we have

$$
r_{1}\left(V_{m, n}^{j}\right) \cong\left\langle\left\{w_{i} \mid 0 \leqq i \leqq 3\right\}\right\rangle\left\langle\left\langle\left\{R_{i} \mid 4 \leqq i \leqq 7\right\}\right\rangle\right.
$$

where $w_{0}=h_{3}(n, n-2) X_{1}(n)+h_{4}(n+6, n+4) X_{6}(n)+h_{4}(n+2, n) X_{4}(n)$,

$$
\begin{aligned}
& w_{1}=\left(1-2 h_{4}(n+6, n+2)\right) X_{3}(n), \\
& w_{2}=h_{4}(n+2, n-2) X_{5}(n)+h_{4}(n+6, n+2) X_{7}(n), \\
& w_{3}=h_{4}(n+6, n+2) X_{5}(n)+h_{4}(n+2, n-2) X_{7}(n), \\
& R_{4}=h_{4}(n+j, n+j-12) w_{0}, \\
& R_{5}=2^{h_{3}(m+j, n+j)-1} \widetilde{w}_{1}, \\
& R_{6}=2^{a_{8}(m+j, n+j)}\left(\widetilde{w}_{2}+2^{a_{8}(m+j, n+j)} \widetilde{w}_{1}\right), \\
& R_{7}=2^{a_{9}(m+j, n+j)-1}\left(\widetilde{w}_{3}-2^{a_{9}(m+j, n+j)} \widetilde{w}_{1}\right), \\
& \widetilde{w}_{1}=\left(1-2 h_{4}(n+6, n+2)\right)\left(2 X_{3}(n)-h_{4}(n+j+6, n+j+4) w_{0}\right), \\
& \widetilde{w}_{2}=2 w_{2}-w_{1}+h_{4}(j, j-4) h_{4}(n, n-2) w_{0}, \\
& \widetilde{w}_{3}=2 w_{3}-h_{4}(n+j+6, n+j+4) w_{0}, \\
& a_{8}(m+j, n+j)=\sum_{i=0}^{1} h_{4}(n+j+4 i, n+j+4 i-4) h_{4}(m+j+4 i-4, n+j+4 i)
\end{aligned}
$$

and $a_{9}(m+j, n+j)=a_{8}(m+j+8, n+j+4)$. If $m \geqq n+2+12 h_{4}(n+j+6, n+j+4)$ $+2 h_{3}(n+2, n)$, then we have

$$
r_{1}\left(V_{m, n}^{j}\right) \cong\left\langle\left\{u_{i} \mid 0 \leqq i \leqq 3\right\}\right\rangle\left\langle\left\langle\left\{A_{i} \mid 0 \leqq i \leqq 3\right\}\right\rangle\right.
$$

where $u_{0}=w_{0}, u_{1}=w_{2}, A_{0}=R_{4}, A_{1}=2^{n_{3}(m+j, n+j)+1} u_{1}$,

$$
\begin{aligned}
& A_{i}=2^{a_{i+6}(m+j, n+j)} u_{i} \quad(2 \leqq i \leqq 3), \\
& u_{2}=2 w_{2}-w_{1}+2^{a_{8}(m+j, n+j)+2} w_{2}
\end{aligned}
$$

and $u_{3}=w_{3}-2^{a_{9}(m+j, n+j)+1} w_{2}$. If $n+2+12 h_{4}(n+j+6, n+j+4)+2 h_{3}(n+2, n)>m$ $\geqq n+2+2 h_{4}(n+j+4, n+j+2)$, then we have

$$
r_{1}\left(V_{m, n}^{j}\right) \cong\left\langle\left\{u_{i} \mid 0 \leqq i \leqq 3\right\}\right\rangle \mid\left\langle\left\{A_{i} \mid 0 \leqq i \leqq 3\right\}\right\rangle,
$$

where $u_{1}=w_{2}$,

$$
\begin{aligned}
& u_{0}= \begin{cases}2 w_{3}-4 w_{1}-w_{0} & (n+j \equiv 2(\bmod 8) \text { and } n+14>m \geqq n+6) \\
2 w_{1}-w_{0} & (n+j \equiv 2(\bmod 8) \text { and } n+6>m \geqq n+2) \\
w_{0} & (n+j \equiv 0(\bmod 8) \text { and } n+4>m \geqq n+2),\end{cases} \\
& u_{2}= \begin{cases}2 w_{2}-w_{1} & (n+j \equiv 2(\bmod 8) \text { and } n+14>m \geqq n+10) \\
2 w_{2}+w_{1}-h_{4}(n+4, n) w_{0} & (n+j \equiv 2(\bmod 8) \text { and } n+10>m \geqq n+2) \\
w_{1} & (n+j \equiv 0(\bmod 8) \text { and } n+4>m \geqq n+2),\end{cases} \\
& u_{3}= \begin{cases}w_{3}-w_{1}-h_{4}(n+4, n) w_{0} & (n+j \equiv 2(\bmod 8) \text { and } n+6>m \geqq n+2) \\
w_{3}-2 w_{1} & (\text { otherwise }),\end{cases} \\
& A_{0}= \begin{cases}2 u_{0} & (n+j \equiv 0(\bmod 8) \text { and } n+4>m \geqq n+2) \\
u_{0} & (\text { otherwise }),\end{cases} \\
& A_{1}= \begin{cases}2_{4}(m+j+20, n+j) & u_{1} \\
u_{1} & (n+j \equiv 2(\bmod 8))\end{cases} \\
& A_{2}= \begin{cases}2 u_{2} & (n+j \equiv 0(\bmod 8)), \\
u_{2} & (\text { otherwise })\end{cases}
\end{aligned}
$$

and

$$
A_{3}= \begin{cases}4 u_{3} & (n+j \equiv 2(\bmod 8) \text { and } n+14>m \geqq n+6) \\ u_{3} & \text { (otherwise) }\end{cases}
$$

If $n+2+2 h_{4}(n+j+4, n+j+2)>m>n$, then we have $r_{1}\left(V_{m, n}^{j}\right) \cong 0$.
Suppose $j \equiv 2(\bmod 8)$. If $m \geqq 8[(n+2) / 8]+10+4 h_{4}(n, n-2)$, then we have

$$
J^{\prime \prime}\left(r_{1}\left(V_{m, n}^{j}\right)\right) \cong\left\langle\left\{v_{i} \mid 0 \leqq i \leqq 3\right\}\right\rangle \mid\left\langle\left\{B_{i} \mid 0 \leqq i \leqq 3\right\}\right\rangle
$$

where $v_{0}=w_{0}, v_{1}=w_{2}, v_{2}=2 w_{2}+w_{1}, v_{3}=w_{3}, B_{0}=R_{4}$,

$$
\begin{aligned}
& B_{1}=4 h_{4}(n+10, n-2) v_{1}, \\
& B_{2}=2^{h_{4}(n+6, n+2) b_{3}(j, m+2, n)} v_{2}
\end{aligned}
$$

and $B_{3}=2^{h_{4}(n+6, n+2)+h_{4}(n+2, n-2) b_{3}(j, m+2, n)} v_{3}$. If $8[(n+2) / 8]+10+4 h_{4}(n, n-2)>m \geqq$ $8[(n+2) / 8]+10$, then we have

$$
J^{\prime \prime}\left(r_{1}\left(V_{m, n}^{j}\right)\right) \cong\left\langle\left\{v_{i} \mid 0 \leqq i \leqq 3\right\}\right\rangle \mid\left\langle\left\{B_{i} \mid 0 \leqq i \leqq 3\right\}\right\rangle,
$$

where $v_{0}=2 w_{3}-w_{0}, v_{1}=w_{2}, v_{2}=2 w_{2}+w_{1}, v_{3}=w_{3}, B_{0}=v_{0}, B_{1}=8 v_{1}, B_{2}=v_{2}$ and $B_{3}=$ $4 v_{3}$. If $8[(n+2) / 8]+10>m<n$, then we have $U_{m, n}^{j} \cong 0$.

Suppose $j \equiv 6(\bmod 8)$. If $m \geqq 8[(n+2) / 8]+10$, then we have

$$
J^{\prime \prime}\left(r_{1}\left(V_{m, n}^{j}\right)\right) \cong\left\langle\left\{v_{i} \mid 0 \leqq i \leqq 3\right\}\right\rangle \mid\left\langle\left\{B_{i} \mid 0 \leqq i \leqq 3\right\}\right\rangle,
$$

where $v_{0}=w_{0}-4 h_{4}(n+4, n+2) w_{2}, v_{1}=w_{2}, v_{2}=2 w_{2}+\left(1-2 h_{4}(n+4, n+2)\right) w_{1}$,

$$
\begin{aligned}
& v_{3}=w_{3}-2 h_{4}(n+4, n+2) w_{2}, \\
& B_{0}=h_{4}(n+14, n+4) v_{0}, \\
& B_{1}=4 h_{4}(n+12, n-2) v_{1}, \\
& B_{2}=2^{h_{4}(n+6, n+2) b_{3}(j, m+2, n)} v_{2}
\end{aligned}
$$

and $B_{3}=2^{h_{4}(n+6, n+2)+h_{4}(n+2, n-2) b_{3}(j, m+2, n)} v_{3}$. If $8[(n+2) / 8]+10>m<n$, then we have $U_{m, n}^{j} \cong 0$. Thus we obtain
(5.9) Suppose that $n \equiv 0(\bmod 2)$.
(1) If $m \geqq n+2+12 h_{4}(n+j+6, n+j+4)+2 h_{3}(n+2, n)$, then we have

$$
r_{1}\left(V_{m, n}^{j}\right) \cong \boldsymbol{Z} / 2^{h_{3}(m+j, n+j)+1} \oplus\left(\oplus_{i=0}^{1} \boldsymbol{Z} / 2^{h_{4}(m+j-4 i, n+j-4 i+4)}\right) \oplus G(n+j)
$$

where $G(n+j)$ is the group defined by (2.3).
(2) If $n+2+12 h_{4}(n+j+6, n+j+4)+2 h_{3}(n+2, n)>m>n$, then we have

$$
r_{1}\left(V_{m, n}^{j}\right) \cong \begin{cases}\boldsymbol{Z} / 2^{n_{3}(m+j, n+j)+1} \oplus \boldsymbol{Z} / 2^{h_{4}(m+j-4, n+j)} \oplus \boldsymbol{Z} / 4 \quad(m \geqq n+6) \\ \boldsymbol{Z} / 8 & (n+j \equiv 2(\bmod 8) \text { and } n+6>m \geqq n+2) \\ \boldsymbol{Z} / 2 & (n+j \equiv 0(\bmod 8) \text { and } n+4>m \geqq n+2) \\ 0 & \text { (otherwise })\end{cases}
$$

(3) If $m \geqq 8[(n+2) / 8]+10+4 h_{4}(n, n-2) h_{4}(j, j-4)$, then we have

$$
J^{\prime \prime}\left(r_{1}\left(V_{m, n}^{j}\right)\right) \cong\left\{\begin{array}{l}
\boldsymbol{Z} / 8 \oplus \boldsymbol{Z} / 2^{b} \oplus G(n+j)\left(h_{4}(n+6, n+2) h_{4}(n+j+4, n+j-2)=0\right) \\
\left.\boldsymbol{Z} / 4 \oplus \boldsymbol{Z} / 2^{b} \oplus \boldsymbol{Z} / 2 \oplus G(n+j) \quad \text { (otherwise }\right)
\end{array}\right.
$$

where $b=b_{3}(j, m+2, n)$ and $G(n+j)$ is the group defined by (2.3).
(4) If $j \equiv n+2 \equiv 2(\bmod 8)$ and $n+14>m \geqq n+10$, then we have

$$
J^{\prime \prime}\left(r_{1}\left(V_{m, n}^{j}\right)\right) \cong \boldsymbol{Z} / 8 \oplus \boldsymbol{Z} / 4
$$

(5) If $8[(n+2) / 8]+10>m>n$, then we have $J^{\prime \prime}\left(r_{1}\left(V_{m, n}^{j}\right)\right) \cong r_{1}\left(V_{m, n}^{j}\right)$.

By (5.4) and (5.9), we obtain the results for the cases $j \equiv 2(\bmod 4), n \equiv 0$ $(\bmod 2)$ and $m+j \equiv 3,4,5,6$ or $7(\bmod 8)$.

We now turn to the case $m+j \equiv 0(\bmod 8)$. Consider the commutative diagram

of exact sequences. Since $\widetilde{K O}\left(S^{m+j+1}\right) \cong \boldsymbol{Z} / 2$, Lemma 3.10 implies that $\widetilde{K}\left(S^{m+j}\right)$ $\simeq \boldsymbol{Z}$ has a generator $\boldsymbol{\gamma}$ with

$$
f(\gamma)= \begin{cases}I^{j / 2}\left(\varphi\left(X_{5}(m-2)\right)\right) & (j \equiv 6(\bmod 8)) \\ I^{j / 2}\left(\varphi\left(X_{7}(m-2)\right)\right) & (j \equiv 2(\bmod 8))\end{cases}
$$

and $r(\gamma)=2 \beta$, where β is a generator of the group $\widetilde{K O O_{(}}\left(S^{m+j}\right) \cong Z$. It follows from Lemma 5.5 that we have

$$
2 g(\beta)=r_{1}(f(\gamma))=2^{h_{4}(m+j-16, n+j)} W_{2}+2^{h_{3}(m+j-12, n+j)} W_{1}
$$

where $W_{1}=\left(1-2 h_{4}(n+j, n+j-4)\right) r_{1}\left(I^{j / 2}\left(\varphi\left(\widetilde{w}_{1}\right)\right)\right)$ and

$$
W_{2}= \begin{cases}r_{1}\left(I^{j / 2}\left(\varphi\left(\widetilde{w}_{2}\right)\right)\right) & \left(h_{4}(n+j, n+j-4)=0\right) \\ r_{1}\left(I^{j / 2}\left(\varphi\left(\widetilde{w}_{3}\right)\right)\right) & \text { (otherwise) } .\end{cases}
$$

If $m>n+12$, we set

$$
\alpha=g(\beta)- \begin{cases}2^{[(m-n-14) / 8]} W_{3}-2^{[(m-n-10) / 4]} W_{1} & \left(h_{4}(n+j+4, n+j)=0\right) \\ 2^{[(m-n-14) / 8]}\left(2 W_{2}-W_{1}\right)+2^{[(m-n-10) / 4]} W_{1} & (\text { otherwise }),\end{cases}
$$

where $W_{i}=r_{1}\left(I^{j / 2}\left(\varphi\left(w_{i}\right)\right)\right)(1 \leqq i \leqq 3)$. Then we have $\partial(\alpha) \neq 0$ and $2 \alpha=$ $0^{m-n-14} W_{0}$, where $W_{0}=r_{1}\left(I^{j / 2}\left(\varphi\left(w_{0}\right)\right)\right)$. By Lemma 3.9, Lemma 5.5, (5.8) and the fact $8 g(\beta)=0$, we have

$$
\begin{equation*}
\psi^{k}(\alpha) \equiv(k-2[k / 2]) \alpha \quad\left(\bmod U_{m, n}^{j}\right) . \tag{5.10}
\end{equation*}
$$

According to [3, II], the Adams operations on $\widetilde{K O}\left(S^{m+j+1}\right)$ are given by $\psi^{k}=$ $k-2[k / 2]$. If $m>n+14$, then the short exact sequence

$$
0 \rightarrow r_{1}\left(V_{m, n}^{j}\right) \rightarrow \widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \xrightarrow{\partial} \widetilde{K O}\left(S^{j+1}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \rightarrow 0
$$

splits. Hence we have

$$
\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong r_{1}\left(V_{m, n}^{j}\right) \oplus Z / 2
$$

It follows from (5.10) that we have

$$
\tilde{J}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \simeq J^{\prime \prime}\left(r_{1}\left(V_{m, n}^{j}\right)\right) \oplus \boldsymbol{Z} / 2
$$

If $m=n+14$, then we have

$$
\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right)=\left\langle r_{1}\left(V_{m, n}^{j}\right) \cup\{\alpha\}\right\rangle=\left\langle\left\{W_{1}, W_{2}, W_{3}, \alpha\right\}\right\rangle .
$$

Since $\operatorname{ord} \widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right)=1024$ by [13], ord $\left\langle\left\{W_{1}, W_{2}, W_{3}\right)\right\rangle=256$ and ord $\langle\alpha\rangle=4$, we have

$$
\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong \boldsymbol{Z} / 32 \oplus \boldsymbol{Z} / 4 \oplus \boldsymbol{Z} / 4 \oplus \boldsymbol{Z} / 2
$$

and

$$
\tilde{J}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong \begin{cases}\boldsymbol{Z} / 8 \oplus \boldsymbol{Z} / 4 \oplus \boldsymbol{Z} / 4 & (j \equiv 2(\bmod 8)) \\ \boldsymbol{Z} / 8 \oplus \boldsymbol{Z} / 2 \oplus \boldsymbol{Z} / 2 \oplus \boldsymbol{Z} / 2 & (j \equiv 6(\bmod 8))\end{cases}
$$

If $n+12 \geqq m \geqq n+2$, we set

$$
\alpha=g(\beta)-([(m-n-2) / 8]+[(m-n+2) / 8]) W_{2} .
$$

Then we have

$$
2 \alpha=W_{2}+[(m-n+2) / 8]\left(W_{3}-W_{2}\right)+[(m-n-2) / 8]\left(W_{1}-2 W_{2}-W_{3}\right)
$$

Hence $\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right)=\left\langle r_{1}\left(V_{m, n}^{j}\right) \cup\{\alpha\}\right\rangle$

$$
= \begin{cases}\left\langle\left\{W_{2}, W_{3}, \alpha\right\}\right\rangle & (m \geqq n+10) \\ \left\langle\left\{W_{0}, W_{2}, \alpha\right\}\right\rangle & (m=n+8) \\ \left\langle\left\{W_{2}, \alpha\right\}\right\rangle & (m=n+6) \\ \langle\alpha\rangle & (n+6>m \geqq n+2),\end{cases}
$$

$$
\begin{aligned}
\text { ord }\left\langle\left\{W_{2}, W_{3}\right\}\right\rangle & =32 & & (m \geqq n+10), \\
\operatorname{ord}\left\langle W_{2}\right\rangle & =8 & & (n+10>m \geqq n+6)
\end{aligned}
$$

and

$$
\text { ord }\langle\alpha\rangle=2^{[n-m+31) / 8]}
$$

Since ord $\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right)=2^{2 h_{3}(m+j, n+j)+h_{4}(n+j, n+j-4)+1}$ by [13], we have

$$
\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong \begin{cases}\boldsymbol{Z} / 16 \oplus \boldsymbol{Z} / 4 \oplus \boldsymbol{Z} / 2 & (m \geqq n+10) \\ \boldsymbol{Z} / 8 \oplus \boldsymbol{Z} / 4 \oplus \boldsymbol{Z} / 2 & (m=n+8) \\ \boldsymbol{Z} / 8 \oplus \boldsymbol{Z} / 8 & (m=n+6) \\ \boldsymbol{Z} / 8 & (n+6>m \geqq n+2)\end{cases}
$$

and

$$
\tilde{J}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong \begin{cases}\boldsymbol{Z} / 8 \oplus \boldsymbol{Z} / 2 \oplus \boldsymbol{Z} / 2 & (m \geqq n+10 \text { and } j \equiv 6(\bmod 8)) \\ \boldsymbol{Z} / 4 \oplus \boldsymbol{Z} / 4 \oplus \boldsymbol{Z} / 2 & \left(m \geqq n+8 \text { and } h_{4}(n+2, n-2)=0\right) \\ \boldsymbol{Z} / 8 \oplus \boldsymbol{Z} / 4 & (m=n+6 \text { and } j \equiv 6(\bmod 8)) \\ \widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) & \text { (otherwise }) .\end{cases}
$$

Thus we obtain the results for the case $m+j \equiv 0(\bmod 8)$.
Modifying the proof above, we obtain the results for the case $m+j \equiv 1$ $(\bmod 8)(c f .[10])$.

Finally we consider the case $m+j \equiv 2(\bmod 8) . \quad$ Since

$$
\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{m-2}\right)\right) \cong \widetilde{K O}\left(S^{j+m-2} L_{8}^{2}\right) \cong Z / 2 \oplus Z / 2
$$

by Proposition 3.13, and the Adams operations on $\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{m-2}\right)\right)$ are given by $\psi^{k}=k-2[k / 2]$, the proof for this case is similar to the corresponding proof of [10].

Thus the proof for the case $j \equiv 2(\bmod 4)$ and $n \equiv 0(\bmod 2)$ is completed.
5.2. Proof for the case $\boldsymbol{n} \equiv 1(\bmod 2)$. Consider the following commutative diagram, in which the row is exact.

$$
\begin{aligned}
& 0 \rightarrow V_{m, n+1}^{j} \xrightarrow{f_{1}} \tilde{K}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \xrightarrow{f_{2}} \tilde{K}\left(S^{n+j+1}\right) \rightarrow 0 \\
& \| \quad \downarrow f_{3} \\
& V_{m, n+1}^{j} \hookrightarrow \tilde{K}\left(S^{j} L_{8}^{m}\right) .
\end{aligned}
$$

By Lemma 3.10, we can choose an element $x \in \tilde{K}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right)$ such that $f_{2}(x)$ generates the group $\tilde{K}\left(S^{n+j+1}\right) \cong \boldsymbol{Z}$ and

$$
f_{3}(x)= \begin{cases}I^{j / 2}\left(\varphi\left(X_{5}(n)\right)\right) & (n \equiv 1(\bmod 8)) \\ I^{j / 2}\left(\varphi\left(X_{6}(n)+X_{1}(n)\right)\right) & (n \equiv 3(\bmod 8)) \\ I^{j / 2}\left(\varphi\left(X_{7}(n)\right)\right) & (n \equiv 5(\bmod 8)) \\ I^{j / 2}\left(\varphi\left(X_{4}(n)\right)\right) & (n \equiv 7(\bmod 8)) .\end{cases}
$$

Inspect the following commutative diagram

of exact sequences. By Lemma 3.9, Proposition 3.13 and Lemma 3.15, we obtain

$$
\text { Ker } r_{2}= \begin{cases}\left\langle\left\{f_{1}\left(S_{i}\right) \mid i=1,2,4 \text { or } 6\right\}\right\rangle & (n \equiv 1(\bmod 4)) \tag{5.11}\\ \left\langle f_{1}\left(\operatorname{Ker} r_{1}\right) \cup\{2 x\}\right\rangle & (n+j \equiv 1(\bmod 8)) \\ \left\langle f_{1}\left(\operatorname{Ker} r_{1}\right) \cup\{x\}\right\rangle & (n+j=5(\bmod 8)) .\end{cases}
$$

Suppose $m \geqq n+3$. Then we have

$$
\text { Coker } g_{2} \cong \widetilde{K O}\left(S^{n+j+2}\right) \cong \begin{cases}Z / 2 & (n+j \equiv 7(\bmod 8)) \\ 0 & (\text { otherwise })\end{cases}
$$

and hence

$$
r\left(\widetilde{K}\left(S^{n+j+1}\right)\right)=g_{2}\left(\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right)\right)= \begin{cases}2 \widetilde{K O}\left(S^{n+j+1}\right) & (n+j \equiv 7(\bmod 8)) \\ \widetilde{K O}\left(S^{n+j+1}\right) & (\text { otherwise })\end{cases}
$$

Since h_{1} is a monomorphism, we have $\operatorname{Ker} g_{1} \subset r_{1}\left(V_{m, n+1}^{j}\right)$. Thus we obtain a split short exact sequence

$$
0 \rightarrow \widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n+1}\right)\right) / \operatorname{Ker} g_{1} \xrightarrow{\bar{g}_{1}} \widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \xrightarrow{\bar{g}_{2}} H \rightarrow 0,
$$

where $\operatorname{Ker} g_{1}=\left\langle\left\{r_{1}\left(S_{4}\right), r_{1}\left(S_{6}\right)\right\}\right\rangle$ and

$$
H= \begin{cases}2 \widetilde{K O}\left(S^{n+j+1}\right) & (n+j \equiv 7(\bmod 8)) \\ \widetilde{K O}\left(S^{n+j+1}\right) & (\text { otherwise })\end{cases}
$$

Applying the method used in the proof of Lemma 4.11 to x, we obtain the following result by Lemma 3.9 and (5.11).
(5.12) (1) If $n \equiv 3(\bmod 4)$, then the Adams operations are given by

$$
\psi^{k}\left(r_{2}(x)\right)=(k-2[k / 2]) r_{2}(x) .
$$

(2) Suppose $n \equiv 1(\bmod 4)$ and $k \equiv \varepsilon(\bmod 8)$, where ε is an odd integer with $-3 \leqq \varepsilon \leqq 3$. Then the Adams operation ψ^{k} is given by

$$
\psi^{k}\left(r_{2}(x)\right)=k^{u} r_{2}(x)+\left(\left(\varepsilon k^{j / 2}-k^{u}\right) / 8\right) r_{2}\left(f_{1}\left(8 f_{3}(x)\right)\right)+k^{j / 2} w,
$$

where $u=(n+j+1) / 2, w=-(\varepsilon / 3) h_{4}(\varepsilon+5, \varepsilon+1) W$ and

$$
W= \begin{cases}r_{2}\left(f_{1}\left(S_{3}+S_{5}\right)\right) & (n \equiv 1(\bmod 8)) \\ r_{2}\left(f_{1}\left(2 S_{7}-S_{3}\right)\right) & (n \equiv 5(\bmod 8)) .\end{cases}
$$

Suppose $n \equiv 3(\bmod 4) . \quad$ Then using (5.11) and (5.12) (1), we see that the short exact sequence

$$
0 \rightarrow \widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n+1}\right)\right) \rightarrow \widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \rightarrow \widetilde{K O}\left(S^{n+j+1}\right) \rightarrow 0
$$

of ψ-maps splits. This implies that

$$
\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong \widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n+1}\right)\right) \oplus \widetilde{K O}\left(S^{n+j+1}\right)
$$

and

$$
\tilde{J}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong \tilde{J}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n+1}\right)\right) \oplus \tilde{J}\left(S^{n+j+1}\right)
$$

Thus, results of the case $j \equiv 2(\bmod 4), n \equiv 3(\bmod 4)$ and $m \geqq n+3$ follow from those of the case $j \equiv 2(\bmod 4)$ and $n \equiv 0(\bmod 4)$.

Now, we turn to the case $n \equiv 1(\bmod 4)$. If $m \geqq n+5$, then we have

$$
\operatorname{Im} r_{2} \cong \boldsymbol{Z} \oplus \boldsymbol{Z} / 2^{h_{3}(m+j, n+j)} \oplus\left(\oplus_{i=0}^{1} \boldsymbol{Z} / 2^{h_{4}(m+j-4 i, n+j-4 i+5)}\right)
$$

If $n+5>m \geqq n+3$, then we have $\operatorname{Im} r_{2} \cong \boldsymbol{Z}$. Under the assumption of (5.12) (2), we have

$$
\begin{aligned}
& \left(\left(\varepsilon k^{j / 2}-k^{u}\right) / 8\right) r_{2}\left(f_{1}\left(8 f_{3}(x)\right)\right)+k^{j / 2} w \\
& \quad \equiv((n+1) / 2) N\left(u / 2^{v_{2}(u)}\right)\left(\left(k^{u}-1\right) / 2^{v_{2}(u)+2}\right) W\left(\bmod g_{1}\left(U_{m, n+1}^{j}\right)\right),
\end{aligned}
$$

where $u=(n+j+1) / 2$. Thus we have $\widetilde{J}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong \widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) / U_{1}$, where U_{1} is the subgroup of $\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right)$ generated by

$$
g_{1}\left(U_{m, n+1}^{j}\right) \cup\left\{\mathfrak{m}((n+j+1) / 2) r_{2}(x)+M W\right\}
$$

with $M \equiv 1(\bmod 2) . \quad$ By (5.8), we have

$$
U_{1}= \begin{cases}\left\langle\left\{4 v_{1}, 2 v_{2}, 4 v_{3}, M_{0} v_{0}+M\left(v_{1}+v_{2}\right)\right\}\right\rangle & (n \equiv 1(\bmod 8)) \tag{5.13}\\ \left\langle\left\{8 v_{2}, 2 v_{2}+v_{1}, 4 v_{3}, M_{0} v_{0}+2 M\left(v_{2}+v_{3}\right)\right\}\right\rangle & (n \equiv 5(\bmod 8)),\end{cases}
$$

where $M_{0}=\mathfrak{m}((n+j+1) / 2), \nu_{2}(M)=0, v_{i}=g_{1}\left(r_{1}\left(S_{2 i+1}\right)\right)(1 \leqq i \leqq 3)$ and $v_{0}=r_{2}(x)$.
This implies that we have

$$
J^{\prime \prime}\left(\operatorname{Im} r_{2}\right) \cong F(v) /\left\langle\left\{B_{i} \mid 0 \leqq i \leqq 3\right\}\right\rangle,
$$

where $F(v)$ is the free abelian group generated by $\left\{v_{i} \mid 0 \leqq i \leqq 3\right\}$,

$$
\begin{aligned}
& B_{0}= \begin{cases}4 M_{0} v_{0} & \left(m \geqq n+9+12 h_{4}(n, n-4)\right) \\
2 M_{0} v_{0} & \left(n+9+12 h_{4}(n, n-4)>m \geqq n+5+4 h_{4}(n, n-4)\right) \\
M_{0} v_{0} & \left(n+5+4 h_{4}(n, n-4)>m\right),\end{cases} \\
& B_{1}= \begin{cases}v_{1}+2 v_{2} & (n \equiv 5(\bmod 8)) \\
2 M_{0} v_{0}+2 v_{1} & (n \equiv 1(\bmod 8) \text { and } m \geqq n+13) \\
v_{1}-2 v_{3} & (n \equiv 1(\bmod 8) \text { and } n+13>m),\end{cases} \\
& B_{2}= \begin{cases}2 M_{0} v_{0}+4 v_{2} & (n \equiv 5(\bmod 8) \text { and } m \geqq n+17) \\
M M_{0} v_{0}+2 v_{2} & (n \equiv 5(\bmod 8) \text { and } n+17>m \geqq n+5) \\
M_{0} v_{0}+M v_{1}+v_{2} & (n \equiv 1(\bmod 8) \text { and } m \geqq n+9) \\
v_{2}+2 h_{4}(n, n-4) v_{3} & \left(n+5+4 h_{4}(n, n-4)>m\right)\end{cases}
\end{aligned}
$$

and

$$
B_{3}= \begin{cases}M_{0} v_{0}+2 M v_{0}+2 v_{3} & (n \equiv 5(\bmod 8) \text { and } m \geqq n+9) \\ 4 v_{3} & (n \equiv 1(\bmod 8) \text { and } m \geqq n+5) \\ v_{3}+2 h_{4}(n+4, n) v_{2} & \left(n+5+4 h_{4}(n+4, n)>m\right) .\end{cases}
$$

By the proof for the case $n \equiv 2(\bmod 4)$, we obtain
(5.14) Suppose $j-1 \equiv n \equiv 1(\bmod 4)$ and $m \geqq n+3$.
(1) If $m+j \equiv 0(\bmod 8)$, then we have

$$
\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong \begin{cases}\left(\operatorname{Im} r_{2}\right) \oplus \boldsymbol{Z} / 2 & (m \geqq n+17) \\ \boldsymbol{Z} \oplus \boldsymbol{Z} / 16 \oplus \boldsymbol{Z} / 4 \oplus \boldsymbol{Z} / 2 & (m=n+13) \\ \boldsymbol{Z} \oplus \boldsymbol{Z} / 8 \oplus \boldsymbol{Z} / 4 & (m=n+9) \\ \boldsymbol{Z} \oplus \boldsymbol{Z} / 8 & (m=n+5)\end{cases}
$$

and

$$
\widetilde{J}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong \begin{cases}J^{\prime \prime}\left(\operatorname{Im} r_{2}\right) \oplus \boldsymbol{Z} / 2 & (m \geqq n+17) \\ \boldsymbol{Z} / 2 M_{0} \oplus \boldsymbol{Z} / 4 \oplus \boldsymbol{Z} / 4 & \left(h_{4}(n+4, n)=m-n-13=0\right) \\ \boldsymbol{Z} / 4 M_{0} \oplus \boldsymbol{Z} / 2 \oplus \boldsymbol{Z} / 2 \oplus \boldsymbol{Z} / 2 & \left(h_{4}(n, n-4)=m-n-13=0\right) \\ \boldsymbol{Z} / 2 M_{0} \oplus \boldsymbol{Z} / 4 \oplus \boldsymbol{Z} / 2 & \left(h_{4}(n+4, n)=m-n-9=0\right) \\ \boldsymbol{Z} / 4 M_{0} \oplus \boldsymbol{Z} / 4 \oplus \boldsymbol{Z} / 2 & \left(h_{4}(n, n-4)=m-n-9=0\right) \\ \boldsymbol{Z} / M_{0} \oplus \boldsymbol{Z} / 8 & \left(h_{4}(n+4, n)=m-n-5=0\right) \\ \boldsymbol{Z} / 2 M_{0} \oplus \boldsymbol{Z} / 4 & \left(h_{4}(n, n-4)=m-n-5=0\right),\end{cases}
$$

where $M_{0}=\mathfrak{m}((n+j+1) / 2)$.
(2) If $m+j \equiv 1(\bmod 8)$, then we have

$$
\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong \widetilde{K O}\left(S^{j}\left(L_{8}^{m-1} / L_{8}^{n}\right)\right) \oplus \widetilde{Z} / 2
$$

and

$$
\widetilde{J}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong \widetilde{J}\left(S^{j}\left(L_{8}^{m-1} / L_{8}^{n}\right)\right) \oplus \boldsymbol{Z} / 2
$$

(3) If $m+j \equiv 2(\bmod 8)$, then we have

$$
\widetilde{K O}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong\left(\operatorname{Im} r_{2}\right) \oplus \boldsymbol{Z} / 2
$$

and

$$
\widetilde{J}\left(S^{j}\left(L_{8}^{m} / L_{8}^{n}\right)\right) \cong J^{\prime \prime}\left(\operatorname{Im} r_{2}\right) \oplus \boldsymbol{Z} / 2
$$

Noting the fact that we have $S^{j}\left(L_{8}^{n+1} / L_{8}^{n}\right) \approx S^{n+j+1}$ and

$$
S^{j}\left(L_{8}^{n+2} / L_{8}^{n}\right) \simeq \begin{cases}S^{n+j+2} \vee S^{n+j+1} & (n \equiv 1(\bmod 2)) \\ S^{n+j} L_{8}^{2} & (n \equiv 0(\bmod 2))\end{cases}
$$

we obtain the result for the case $n \equiv 1(\bmod 2)$.

References

[1] J.F. Adams: Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
[2] J.F. Adams: On the groups $J(X)-I$, Topology 2 (1963), 181-195.
[3] J.F. Adams: On the groups $J(X)-I I,-I I I$, Topology 3 (1965), 137-171, 193-222.
[4] J.F. Adams and G. Walker: On complex Stiefel manifolds, Proc. Camb. Phil. Soc. 61 (1965), 81-103.
[5] D.W. Anderson: A new cohomology theory, Thesis, Univ. of California, Berkeley, 1964.
[6] R. Bott: Lectures on $K(X)$, Benjamin, 1969.
[7] K. Fujii, T. Kobayashi and M. Sugawara: Stable homotopy types of stunted lens spaces, Mem. Fac. Sci. Kochi Univ. (Math.) 3 (1982), 21-27.
[8] T. Kobayashi: KO-cohomology of the lens space mod 8, Mem. Fac. Sci. Kochi Univ. (Math.) 7 (1986), 33-57.
[9] T. Kobayashi and M. Sugawara: On stable homotopy types of stunted lens spaces II, Hiroshima Math. J. 7 (1977), 689-705.
[10] S. Kôno and A. Tamamura: J-groups of suspensions of stunted lens spaces mod 4, Osaka J. Math. 26 (1989), 319-345.
[11] N. Mahammed: A propos de la K-théorie des espaces lenticulaires, C.R. Acad. Sc. Paris 271 (1970), 639-642.
[12] D. Quillen: The Adams conjecture, Topology 10 (1971), 67-80.
[13] A. Tamamura and S. Kôno: On the KO-cohomologies of the stunted lens spaces, Math. J. Okayama Univ. 29 (1987), 233-244.

Susumu Kôno
Department of Mathematics
Osaka University
Toyonaka, Osaka 560, Japan
Akie Tamamura
Department of Applied Mathematics
Okayama University of Science
Ridai, Okayama 700, Japan

