ON AUSLANDER-REITEN COMPONENTS FOR CERTAIN GROUP MODULES

Shigeto KAWATA

(Received January 7, 1992)

Let G be a finite group and k a field of characteristic $p>0$. Let $\Gamma_{s}(k G)$ be the stable Auslander-Reiten quiver of the group algebra $k G$. By Webb's theorem, the tree class of a connected component Δ of $\Gamma_{s}(k G)$ is a Euclidean diagram, a Dynkin diagram or one of the infinite trees $A_{\infty}, B_{\infty}, C_{\infty}, D_{\infty}$, or A_{∞}^{∞}. Moreover if Δ contains the trivial $k G$-module k, then the graph structure of Δ has been investigated (see [21], [16] and [17]). In this paper we study a connected component of $\Gamma_{s}(k G)$ containing an indecomposable $k G$-module whose k-dimension is not divisible by p. Suppose that M is an indecomposable $k G$-module and $p X \operatorname{dim}_{k} M$. In Section 2, we will show that M lies in a connected component isomorphic to $\boldsymbol{Z} A_{\infty}$ if k is algebraically closed and a Sylow p-subgroup of G is not cyclic, dihedral, semidihedral or generalized quaternion. In Section 3 we make some remarks on tensoring the component containing the trivial $k G$-module k with M. In Sections 4 and 5 we consider the situation where $p=2$ and a Sylow 2-gubgroup of G is dihedral of order at least 8 or semidihedral.

The notation is almost standard. All modules considered here are finite dimensional over k. We write $W \cong W^{\prime}$ (mod projectives) for $k G$-modules W and W^{\prime} if the projective-free part of W is isomorphic to that of W^{\prime}. For an indecomposable non-projective $k G$-module W, we write $\mathcal{A}(W)$ to denote the Auslander-Reiten sequence ($A R$-sequence) $0 \rightarrow \Omega^{2} W \rightarrow m(W) \rightarrow W \rightarrow 0$ terminating at W, where Ω is the Heller operator, and we write $m(W)$ to denote the middle term of $\mathcal{A}(W)$. If an exact sequence of $k G$-modules \mathcal{S} is of the form $0 \rightarrow \Omega^{2} W \oplus U^{\prime} \rightarrow m(W) \oplus U \oplus U^{\prime} \rightarrow W \oplus U \rightarrow 0$, where W is an indecomposable non-projective $k G$-module, and U, U^{\prime} are proejctive or 0 , we say that \mathcal{S} is the $A R$-sequecne $\mathcal{A}(W)$ modulo projectives. The symbol \otimes denotes the tensor product over the coefficient field k. For an exact sequence of $k G$-modules $\mathcal{S}: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ and a $k G$-module W, we write $\mathcal{S} \otimes W$ to denote the tensor sequence $0 \rightarrow A \otimes W \rightarrow B \otimes W \rightarrow C \otimes W \rightarrow 0$. Concerning some basic facts and terminologies used here, we refer to [2], [10] and [11].

1. Preliminaries

We start by summarizing results on the graph structure of connected components of $\Gamma_{s}(k G)$.

Theorem 1.1 ([21], [17], [5], [9]). Let Δ be a connected component of $\Gamma_{s}(k G)$. Then the tree class of Δ is $A_{n}, A_{1,2}, \tilde{B}_{3}, A_{\infty}, B_{\infty}, C_{\infty}, D_{\infty}$ or A_{∞}^{∞}. If k is algebraically closed, then the tree class is not $\tilde{B}_{3}, B_{\infty}$ or C_{∞}. Moreover if the tree class or the reduced graph of Δ is Euclidean, then the modules in Δ lie in a block whose defect group is a Klein four group.

Theorem 1.2 ([21], [16], [17], [7]). Let Δ_{0} be the connected component containing the trivial $k G$-module k, and let P be a Sylow p-subgroup of G. Then;
(1) If P is not cyclic, dihedral, semidihedral or generalized quaternion, then $\Delta_{0} \cong \boldsymbol{Z} A_{\infty}$ and k lies at the end of Δ_{0}.
(2) If P is a dihedral 2-group of order at least 8 , then $\Delta_{0} \cong \boldsymbol{Z} A_{\infty}^{\infty}$.
(3) If P is a semidihedral 2 -group, then $\Delta_{0} \cong \boldsymbol{Z} D_{\infty}$ and k lies at the end of Δ_{0}.
(4) If P is a generalized quaternion 2-group, then Δ_{0} is a 2-tube.

We will need the following result on tensoring the AR-sequence by Auslander and Carlson [1].

Theorem 1.3 ([1], see also [3]). Assume that k is algebraically closed. Let $\mathcal{A}(k): 0 \rightarrow \Omega^{2} k \rightarrow m(k) \rightarrow k \rightarrow 0$ be the $A R$-sequence terminating at the trivial $k G$-module k. Let M be an indecomposable $k G$-module. Then the tensor sequence $\mathcal{A}(k) \otimes M$: $0 \rightarrow \Omega^{2} k \otimes M \rightarrow m(k) \otimes M \rightarrow M \rightarrow 0$ has the following properties.
(i) If $p \nmid \operatorname{dim}_{k} M$, the tensor sequence $\mathcal{A}(k) \otimes M$ is the $A R$-sequence $\mathcal{A}(M)$ modulo projectives.
(ii) If $p \mid \operatorname{dim}_{k} M$, then the tensor sequence $\mathcal{A}(k) \otimes M$ is split.

Concerning tensor products, we will also need the following result by Benson and Carlson [3].

Theorem 1.4([3], see also [1]). Assume that k is algebraically closed. Let M and N be indecomposable $k G$-modules. Then;
(1) The following are equivalent.
(a) $k \mid M \otimes N$.
(b) $p X \operatorname{dim}_{k} M$ and $N \cong M^{*}$. Here $M^{*}=\operatorname{Hom}_{k}(M, k)$ is the dual of M.

Moreover if $p \nmid \operatorname{dim}_{k} M$, then the multiplicity of k in $M \otimes M^{*}$ is one.
(2) Suppose that $p \mid \operatorname{dim}_{k} M$. Then for any indecomposable direct summand U of $M \otimes N$, we have $p \mid \operatorname{dim}_{k} U$.

As an immediate consequence of Theorem 1.3, we have;
Lemma 1.5. Assume that k is algebraically closed. Let M be an indecom-
posable $k G$-module with $p X \operatorname{dim}_{k} M$ and $\mathcal{A}(M): 0 \rightarrow \Omega^{2} M \rightarrow m(M) \rightarrow M \rightarrow 0$ be the $A R$-sequence terminating at M. Let W be a $k G$-module, and let $M \otimes W=$ $\left(\oplus_{i} M_{i}\right) \oplus\left(\oplus_{j} N_{j}\right) \oplus U$, where M_{i} and N_{j} are non-projective indecomposable $k G$ modules (possibly 0) such that $p \nmid \operatorname{dim}_{k} M_{i}$ and $p \mid \operatorname{dim}_{k} N_{j}$, and U is projective or 0. Then the tensor sequence $\mathcal{A}(M) \otimes W: 0 \rightarrow \Omega^{2} M \otimes W \rightarrow m(M) \otimes W \rightarrow M \otimes W \rightarrow 0$ is a direct sum $\oplus_{i} \mathcal{A}\left(M_{i}\right)$ of the $A R$-sequences $\mathcal{A}\left(M_{i}\right)$ plus a split sequence $0 \rightarrow$ $\left(\oplus_{j} \Omega^{2} N_{j}\right) \oplus U^{\prime} \rightarrow\left(\oplus_{j} \Omega^{2} N_{j}\right) \oplus\left(\oplus_{j} N_{j}\right) \oplus U \oplus U^{\prime} \rightarrow\left(\oplus_{j} N_{j}\right) \oplus U \rightarrow 0$, where U and U^{\prime} are projective or 0 .

Let (,) denote the inner product of the Green ring $a(k G)$ induced from $\operatorname{dim}_{k} \operatorname{Hom}($,$) (see [4]). For an exact sequence of k G$-modlules $\mathcal{S}: 0 \rightarrow A \rightarrow B$ $\rightarrow C \rightarrow 0$, let $[\mathcal{S}] \in a(k G)$ be the element $[\mathcal{S}]=B-A-C$. Using the results of Benson and Parker [4, Section 3], we have the following two lemmas.

Lemma 1.6. Assume that k is an algebraically closed field. Let M be a non-projective indecomposable $k G$-module and H a subgroup of G. Suppose that exactly n non-isomorphic indecomposable $k H$-modules $L_{i}(i=1,2, \cdots, n)$ satisfy $M \mid L_{i} \uparrow^{\uparrow}$. Let t_{i} be the multiplicity of M in $L_{i} \uparrow^{\top}$. Then $\left[\mathcal{A}(M) \downarrow_{H}\right]=$ $\Sigma_{i=1}^{n} t_{i}\left[\mathcal{A}\left(L_{i}\right)\right]$ as elements of the Green ring $a(k H)$. (n may be zero, and in this case, the right hand side of the above is understood to be zero.) In particular we have;
(1) Let Q be a vertex of M and S a Q-source of M. Let $N=N_{G}(Q)$ and $T=\left\{g \in N \mid S^{g} \cong S\right\}$. Let t be the multiplicity of M in $S \uparrow^{G}$. Then $\left[\mathcal{A}(M) \downarrow{ }_{Q}\right]=$ $t\left(\Sigma_{g \in N / T}\left[\mathcal{A}\left(S^{g}\right)\right]\right)$.
(2) ([14, Lemma 2.3]) Suppose that H is a normal subgroup of G and M is H-projective. Let S be an H-source of M. Let $T=\left\{g \in G \mid S^{g} \cong S\right\}$ and t the multiplicity of M in $S \uparrow^{G}$. Then $\left[\mathcal{A}(M) \downarrow_{H}\right]=t\left(\Sigma_{g \in G / T}\left[\mathcal{A}\left(S^{g}\right)\right]\right)$.
(3) ([2, Proposition 2.17.10]) The $A R$-sequence $\mathcal{A}(M)$ splits on restriction to H if and only if M is not H-projective.

Proof. By [4, Theorem 3.4], it suffices to show that $\left(V,\left[\mathcal{A}(M) \downarrow_{H}\right]\right.$ $\left.\sum_{i=1}^{n} t_{i}\left[\mathcal{A}\left(L_{i}\right)\right]\right)=0$ for any indecomposable $k H$-module V. Using the Frobenius reciprocity, we have $\left(V,\left[\mathcal{A}(M) \downarrow_{H}\right]-\sum_{i=1}^{n} t_{i}\left[\mathcal{A}\left(L_{i}\right)\right]\right)=\left(V,\left[\mathcal{A}(M) \downarrow_{H}\right]\right)-(V$, $\left.\sum_{i=1}^{n} t_{i}\left[\mathcal{A}\left(L_{i}\right)\right]\right)=\left(V \uparrow^{G},[\mathcal{A}(M)]\right)-\sum_{i=1}^{n} t_{i}\left(V,\left[\mathcal{A}\left(L_{i}\right)\right]\right) . \quad$ Now $M \mid V \uparrow^{G}$ if and only if V is isomorphic to some L_{i}. Since k is algeblaically closed, we have $\left(V \uparrow^{G}\right.$, $[\mathcal{A}(M)])=t_{i}$ in this case, and hence $\left(V,\left[\mathcal{A}(M) \downarrow_{H}\right]-\sum_{i=1}^{n} t_{i}\left[\mathcal{A}\left(L_{i}\right)\right]\right)=0$ as desired.

Lemma 1.7. Let M be a non-projective indecomposable $k G$-module. Let $\mathcal{E}: 0 \rightarrow \Omega^{2} M \rightarrow X \rightarrow M \rightarrow 0$ be an exact sqeuence. Then;
(1) \mathcal{E} is the $A R$-sequence $\mathcal{A}(M)$ if and only if $(M,[\mathcal{E}])=d_{M}$. Here $d_{M}=$ $\operatorname{dim}_{k}\left(\operatorname{End}_{k G}(M) / \operatorname{Rad}\left(\operatorname{End}_{k G}(M)\right)\right)$.
(2) \mathcal{E} is the $A R$-sequence $\mathcal{A}(M)$ if and only if \mathcal{E} does not split and $(m(M)$,
$[\mathcal{E}])=0$.
Proof. (1) Suppose that \mathcal{E} is the $A R$-sequence. Then by [2, 2.18.4 Theorem] we have $(M,[\mathcal{E}])=d_{M}$. To show the converse assume by way of contradiction that $(M,[\mathcal{E}])=d_{M}$ but \mathcal{E} is not the $A R$-sequence $\mathcal{A}(M)$. Now the exact sequence \mathcal{E} does not split since $(M,[\mathcal{E}])>0$. Letting $\mathcal{A}(M): 0 \rightarrow \Omega^{2} M \rightarrow m(M)$ $\rightarrow M \rightarrow 0$ be the $A R$-sequence terminating at M, we have the following commutative diagram.

Since the left-hand square is a pushout diagram, we get an exact sequence $\mathcal{E}^{\prime}: 0 \rightarrow \Omega^{2} M \rightarrow X \oplus \Omega^{2} M \rightarrow m(M) \rightarrow 0$. Since \mathcal{E} is not the $A R$-sequence $\mathcal{A}(M)$, \mathcal{E}^{\prime} does not split: if \mathcal{E}^{\prime} is a split sequence, then X is isomorphic to $m(M)$ but this implies that \mathcal{E} is the $A R$-sequence $\mathcal{A}(M)$, a contradiction. Thus we also have the following commutative diagram.

Since the right-hand square is a pullback diagram, we get an exact sequence $\mathcal{E}^{\prime \prime}: 0 \rightarrow m(M) \rightarrow X \oplus \Omega^{2} M \oplus M \rightarrow m(M) \rightarrow 0$. Thus we get $[\mathcal{E}]=[\mathcal{A}(M)]+\left[\mathcal{E}^{\prime}\right]=$ $[\mathcal{A}(M)]+[\mathcal{A}(M)]+\left[\mathcal{E}^{\prime \prime}\right] . \quad$ Hence we have $(M,[\mathcal{E}])=(M,[\mathcal{A}(M)]+[\mathcal{A}(M)]+$ $\left.\left[\mathcal{E}^{\prime \prime}\right]\right)=2 d_{M}+\left(M,\left[\mathcal{E}^{\prime \prime}\right]\right)>d_{M}$, a contradiction.
(2) Suppose that \mathcal{E} is the $A R$-sequence. Then by [2, 2.18.4 Theorem] we have $(m(M),[\mathcal{E}])=0$ since $M X m(M)$. Conversely suppose that \mathcal{E} does not split and $(m(M),[\mathcal{E}])=0$. Let $\left[\mathcal{E}^{\prime}\right]$ be as in the proof of (1). Since $[\mathcal{E}]=[\mathcal{A}(M)]$ $+\left[\mathcal{E}^{\prime}\right]$ and $(m(M),[\mathcal{E}])=0$, it follows that $\left(m(M),\left[\mathcal{E}^{\prime}\right]\right)=0$, which implies that \mathcal{E}^{\prime} splits. Thus X is isomorphic to $m(M)$, and hence \mathcal{E} is the $A R$-sequence $\mathcal{A}(M)$.

Remark. If k is algebraically closed, then $d_{M}=1$ for any indecomposable $k G$-module M.

The following two lemmas are useful for our investigation.
Lemma 1.8. Let Δ be a connected component of $\Gamma_{s}(k G)$. Suppose that the tree class of Δ is A_{∞}. Let $T: M_{1} \leftarrow M_{2} \leftarrow \cdots \leftarrow M_{n} \leftarrow \cdots$ be a tree in Δ such that $\Delta \cong \boldsymbol{Z} T / \Pi$ for some admissible group of automorphisms $\Pi \subseteq$ Aut $\boldsymbol{Z} T$. Then $\operatorname{dim}_{k} M_{n}$ $\equiv n\left(\operatorname{dim}_{k} M_{1}\right)(\bmod p)$ for all $n \geq 1$.

Proof. We proceed by induction on n. Clearly $\operatorname{dim}_{k} M_{1}=1 \times \operatorname{dim}_{k} M_{1}$ and
$\operatorname{dim}_{k} \Omega^{2} M_{1} \equiv \operatorname{dim}_{k} M_{1}(\bmod p)$. Since the $A R$-sequence $\mathcal{A}\left(M_{1}\right)$ is of the form $0 \rightarrow \Omega^{2} M_{1} \rightarrow M_{2} \oplus U \rightarrow M_{1} \rightarrow 0$, where U is projective or 0 , we have $\operatorname{dim}_{k} M_{2} \equiv$ $2\left(\operatorname{dim}_{k} M_{1}\right)(\bmod p)$.

Suppose then that $\operatorname{dim}_{k} M_{i} \equiv \operatorname{dim}_{k} \Omega^{2} M_{i} \equiv i\left(\operatorname{dim}_{k} M_{1}\right)(\bmod p)$ for all i with $1 \leq i \leq n-1$. Now we have the $A R$-sequence $\mathcal{A}\left(M_{n-1}\right): 0 \rightarrow \Omega^{2} M_{n-1} \rightarrow \Omega^{2} M_{n-2} \oplus$ $M_{n} \oplus U \rightarrow M_{n-1} \rightarrow 0$, where U is projective or 0 . Therefore $\operatorname{dim}_{k} M_{n} \equiv \operatorname{dim}_{k} M_{n-1}$ $+\operatorname{dim}_{k} \Omega^{2} M_{n-1}-\operatorname{dim}_{k} \Omega^{2} M_{n-2} \equiv n\left(\operatorname{dim}_{k} M_{1}\right)(\bmod p)$.

Lemma 1.9. Let Θ be a connected component of $\Gamma_{s}(k G)$.
(1) If the tree class of Θ is A_{∞}^{∞}, then $\operatorname{dim}_{k} M \equiv \operatorname{dim}_{k} M^{\prime}(\bmod p)$ for all indecomposable $k G$-modules M and M^{\prime} in Θ.
(2) Suppose that the tree class of Θ is D_{∞}. Let $T: M \leftarrow \underset{\downarrow}{\leftarrow} M_{\downarrow} \leftarrow M_{3} \leftarrow \cdots \leftarrow M_{n} \leftarrow \cdots$

$$
M^{\prime}
$$

be a tree in Θ with $\Theta \cong \boldsymbol{Z} T$. Then $\operatorname{dim}_{k} M \equiv \operatorname{dim}_{k} M^{\prime}(\bmod p)$ and $\operatorname{dim}_{k} M_{n} \equiv$ $2\left(\operatorname{dim}_{k} M\right)(\bmod p)$ for all $n \geq 2$.

Proof. Let x be an element of G of order p and let $H=\langle x\rangle$. Then the group algebra $k H$ has only p non-isomorphic indecomposable modules, say $V_{1}, V_{2}, \cdots, V_{p-1}$ and V_{p}, where $\operatorname{dim}_{k} V_{t}=t(1 \leq t \leq p)$ and V_{p} is projective. For a $k G$-module M, let $a(t, M)$ be the multiplicity of V_{t} in $M \downarrow_{H}$.
(1) We show that $a(t, M)=a\left(t, M^{\prime}\right)$ for any indecomposable $k G$-modules M and M^{\prime} in Θ and $1 \leq t \leq p-1$. Let a_{t} be the smallest integer in $\{a(t, M) \mid M \in$ $\Theta\}$ and let M_{1} be a $k G$-module in Θ such that $a\left(t, M_{1}\right)=a_{t}$. Let $T: \cdots \rightarrow W_{n}$ $\rightarrow \cdots \rightarrow W_{2} \rightarrow M_{1} \leftarrow M_{2} \leftarrow M_{3} \leftarrow \cdots \leftarrow M_{n} \leftarrow \cdots$ be a tree in Θ such that $\Theta \cong \boldsymbol{Z} T / \Pi$ for some admissible group of automorphisms $\Pi \subseteq$ Aut $\boldsymbol{Z} T$. Then we have the $A R$ sequence $\mathcal{A}\left(M_{1}\right): 0 \rightarrow \Omega^{2} M_{1} \rightarrow W_{2} \oplus M_{2} \oplus U \rightarrow M_{1} \rightarrow 0$, where U is projective or 0 . Since the connected component containing M_{1} is not a tube, M_{1} is not periodic and in particular M_{1} is not H-projective. Thus $\mathcal{A}\left(M_{1}\right)$ splits on restriction to H by Lemma 1.6(3) and it follows that $W_{2} \downarrow_{H} \oplus M_{2} \downarrow_{H} \oplus U \downarrow_{H} \cong M_{1} \downarrow_{H} \oplus \Omega^{2} M_{1} \downarrow_{H}$. This implies that $a\left(t, W_{2}\right)+a\left(t, M_{2}\right)=a_{t}+a\left(t, \Omega^{2} M_{1}\right)$. Since $a\left(t, W_{2}\right) \geq a_{t}, a\left(t, M_{2}\right)$ $\geq a_{t}$ and $a\left(t, \Omega^{2} M_{1}\right)=a_{t}$, we have $a\left(t, W_{2}\right)=a\left(t, M_{2}\right)=a_{t}$. Proceeding inductively, we obtain $a\left(t, M_{n}\right)=a\left(t, W_{n}\right)=a_{t}$ for all $n \geq 2$ and all t with $1 \leq t \leq p-1$. Thus the result follows.
(2) Since the tree class of Θ is D_{∞}, all indecomposable modules in Θ are not H-projective. Hence for any indecomposable $k G$-module M in Θ, the $A R$ sequence $\mathcal{A}(M)$ splits on restriction to H by Lemma 1.6(3). We have the $A R$ sequences $\mathcal{A}(M): 0 \rightarrow \Omega^{2} M \rightarrow M_{2} \oplus U \rightarrow M \rightarrow 0$ and $\mathcal{A}\left(M^{\prime}\right): 0 \rightarrow \Omega^{2} M^{\prime} \rightarrow M_{2} \oplus U^{\prime}$ $\rightarrow M^{\prime} \rightarrow 0$, where U and U^{\prime} are projective or 0 . Since both $\mathcal{A}(M)$ and $\mathcal{A}\left(M^{\prime}\right)$ split on restriction to H, we have $\Omega^{2} M_{\downarrow_{H}} \oplus M \downarrow_{H} \cong M_{2} \downarrow_{H} \oplus U \downarrow_{H}$ and $\Omega^{2} M^{\prime} \downarrow_{H} \oplus$ $M^{\prime} \downarrow_{H} \simeq M_{2} \downarrow_{H} \oplus U^{\prime} \downarrow_{H}$. Thus we get $a\left(t, M_{2}\right)=2 a(t, M)=2 a\left(t, M^{\prime}\right)$ for $1 \leq t \leq$ $p-1$.

Next we show that $a\left(t, M_{n}\right)=a\left(t, M_{2}\right)=2 a(t, M)$ for $1 \leq t \leq p-1$ and all $n \geq 2$ by indiction on n. We have the $A R$-sequence $\mathcal{A}\left(M_{2}\right): 0 \rightarrow \Omega^{2} M_{2} \rightarrow M_{3} \oplus$ $\Omega^{2} M \oplus \Omega^{2} M^{\prime} \oplus U_{2} \rightarrow M_{2} \rightarrow 0$, where U_{2} is projective or 0 . Since $\mathcal{A}\left(M_{2}\right)$ splits on restriction to H, we get $a\left(t, M_{3}\right)=a\left(t, M_{2}\right)+a\left(t, \Omega^{2} M_{2}\right)-a\left(t, \Omega^{2} M\right)-a\left(t, \Omega^{2} M^{\prime}\right)=$ $a\left(t, M_{2}\right)$ for $1 \leq t \leq p-1$. Suppose then that $a\left(t, M_{i}\right)=a\left(t, M_{2}\right)$ for all i with $2 \leq$ $i \leq n-1$. We have the $A R$-sequence $\mathcal{A}\left(M_{n-1}\right): 0 \rightarrow \Omega^{2} M_{n-1} \rightarrow \Omega^{2} M_{n-2} \oplus M_{n} \oplus U^{\prime \prime}$ $\rightarrow M_{n-1} \rightarrow 0$, where $U^{\prime \prime}$ is projective or 0 . As $\mathcal{A}\left(M_{n-1}\right)$ splits on restriction to H, we get $a\left(t, M_{n}\right)=a\left(t, M_{n-1}\right)+a\left(t, \Omega^{2} M_{n-1}\right)-a\left(t, M_{n-2}\right)=a\left(t, M_{2}\right)$ for $1 \leq t \leq$ $p-1$. Hence the result follows.

In the rest of this section, we consider the following situation.
${ }^{(*)}$ Assume that k is an algebraically closed field of characteristic $p>0$ and a Sylow p-subgroup P of G is normal. Let Ξ be a connected component of $\Gamma_{s}(k P)$. Assume that every module in Ξ is G-invariant. Assume furthermore that Ξ is not a tube and every arrow in Ξ is multiplicity free. Let S be an indecomposable $k P$-module in Ξ and M an indecomposable $k G$-module having S as a P-source. Let Θ be the connected component of $\Gamma_{s}(k G)$ containing M.

Remark. The assumption (*) implies that P is not a Klein four group and Ξ is isomorphic to $\boldsymbol{Z} A_{\infty}, \boldsymbol{Z} D_{\infty}$ or $\boldsymbol{Z} A_{\infty}^{\infty}$.

Lemma 1.10. Assume (*). Then all the P-sources of the indecomposable modules in Θ lie in Ξ.

Proof. Let W be an indecomposable $k G$-module in Θ. Then there is a sequence of indecomposable $k G$-modules $M=M_{1}, M_{2}, \cdots, M_{n}=W$ such that M_{i} and M_{i+1} are connected by an irreducible map ($1 \leq i \leq n-1$). We proceed by induction on n.

By the assumption, a P-source S of $M=M_{1}$ lies in Ξ. Suppose then that a P-source S_{n-1} of M_{n-1} lies in 当. Now $M_{n} \mid m\left(M_{n-1}\right)$ or $M_{n} \mid m\left(\Omega^{-2} M_{n-1}\right)$, where $m\left(M_{n-1}\right)$ (resp. $m\left(\Omega^{-2} M_{n-1}\right)$) is the middle term of the $A R$-sequence $\mathcal{A}\left(M_{n-1}\right)$ (resp. $\left.\mathcal{A}\left(\Omega^{-2} M_{n-1}\right)\right)$. By Lemma 1.6 (2), we have $\left[\mathcal{A}\left(M_{n-1}\right) \downarrow{ }_{P}\right]=$ $t\left[\mathcal{A}\left(S_{n-1}\right)\right]$ and $\left[\mathcal{A}\left(\Omega^{-2} M_{n-1}\right) \downarrow_{P}\right]=t\left[\mathcal{A}\left(\Omega^{-2} S_{n-1}\right)\right]$, where t is the multiplicity of M_{n-1} in $S_{n-1} \uparrow^{G}$. This implies that a P-source of $M_{n}=W$ lies in Ξ.

For an indecomposable $k G$-module W in Θ, let φW be a (unique) P source of W. The following fact is an immediate consequence of the result of Uno[20, Section 3].

Lemma 1.11. Assume (*). Then φ induces a graph isomorphism from Θ onto Ξ.

Proof. By [20, Theorem 3.5], the multiplicity of S in M_{\downarrow} is equal to
that of M in $S \uparrow^{G}$. From Lemma 1.10 and [20, Theorem 3,7], we get the result.

2. $\boldsymbol{Z} \boldsymbol{A}_{\infty}$-Components

In this section we consider a connected component of $\Gamma_{s}(k G)$ containing an indecomposable $k G$-module whose k-dimension is not divisible by p under the following hypothesis:
(\#) k is an algebraically closed field of characteristic $p>0$ and a Sylow p-subgroup P of G is not cyclic, dihedral, semidihedral or generalized quaternion.

Theorem 2.1. Assume (\#). Suppose that Θ is a connected component of $\Gamma_{s}(k G)$ and Θ contains an indecomposable $k G$-module whose k-dimension is not divisible by p. Then Θ is isomorphic to $\boldsymbol{Z} A_{\infty}$.

Proof. The tree class of Θ is A_{∞}, D_{∞} or A_{∞}^{∞} by Theorem 1.1.
Step 1. The tree class of Θ is not A_{∞}^{∞}.
Proof. We shall derive a contradiction assuming that the tree class of Θ is A_{∞}^{∞}. Let $T: \cdots \rightarrow W_{n} \rightarrow \cdots \rightarrow W_{2} \rightarrow M_{1} \leftarrow M_{2} \leftarrow M_{3} \leftarrow \cdots \leftarrow M_{n} \leftarrow \cdots$ be a tree in Θ with $\Theta \cong \boldsymbol{Z} T$. Note that $p \nmid \operatorname{dim}_{k} M, p \nmid \operatorname{dim}_{k} M_{n}$ and $p \nmid \operatorname{dim}_{k} W_{n}$ for all $n \geq 2$ from Lemma 1.9(1). On the other hand the connected component Δ_{0} containing k is isomorphic to $\boldsymbol{Z} A_{\infty}$ by Theorem 1.2. Let $T_{0}: k=L_{1} \leftarrow L_{2} \leftarrow \cdots \leftarrow L_{n} \leftarrow \cdots$ be a tree in Δ_{0} with $\Delta_{0} \cong \boldsymbol{Z} T_{0}$. Let $\mathcal{A}(k): 0 \rightarrow \Omega^{2} k \rightarrow L_{2} \oplus U \rightarrow k \rightarrow 0$ be the $A R$ sequence terminating at k, where U is projective or 0 . Then the tensor sequence $\mathcal{A}(k) \otimes M: 0 \rightarrow \Omega^{2} k \otimes M \rightarrow\left(L_{2} \oplus U\right) \otimes M \rightarrow M \rightarrow 0$ is the $A R$-sequence $\mathcal{A}(M)$ modulo projectives by Theorem 1.3. Hence it follows that $L_{2} \otimes M \cong M_{2}$ $\oplus W_{2}$ (mod projectives).

In case $p=2$, this is a contradiction, since $2 \mid \operatorname{dim}_{k} L_{2}$ by Lemma 1.8 and thus $L_{2} \otimes M$ does not have any odd dimensional indecomposable direct summand from Theorem 1.4(2).

In case $p>2$, applying Lemma 1.5 , we have the tensor sequence $\mathcal{A}\left(L_{2}\right) \otimes M$: $0 \rightarrow \Omega^{2} L_{2} \otimes M \rightarrow\left(\Omega^{2} k \oplus L_{3}\right) \otimes M \rightarrow L_{2} \otimes M \rightarrow 0$, which is a direct sum $\mathcal{A}\left(M_{2}\right) \oplus$ $\mathcal{A}\left(W_{2}\right)$ modulo projectives, as $p \nmid \operatorname{dim}_{k} L_{2}, p \nmid \operatorname{dim}_{k} M_{2}$ and $p X \operatorname{dim}_{k} W_{2}$. Hence we have $L_{3} \otimes M \cong M_{3} \oplus W_{3} \oplus \Omega^{2} M$ (mod projectives). Repeating this argument until $n=p$, we have $\mathcal{A}\left(L_{n-1}\right) \otimes M$ is a direct sum of the $A R$-sequences modulo projectives and $M_{n} \oplus W_{n} \mid L_{n} \otimes M$ for $n \leq p$. In particular we obtain $M_{p} \oplus W_{p} \mid L_{p}$ $\otimes M$. But this is also a contradiction, since $p \mid \operatorname{dim}_{k} L_{p}$ from Lemma 1.8 and thus $L_{p} \otimes M$ has no indecomposable direct summand whose k-dimension is not divisible by p from Theorem 1.4(2).

Step 2. The tree class of Θ is not D_{∞}.
Proof. Assume contrary that the tree class of Θ is D_{∞}. Let
$T: M \leftarrow M_{\downarrow} \leftarrow M_{3} \leftarrow \cdots \leftarrow M_{n} \leftarrow \cdots$ be a tree in Θ with $\Theta \in \boldsymbol{Z} T$.
W
Note that $p X \operatorname{dim}_{k} M$ and $p \nmid \operatorname{dim}_{k} W$ from Lemma 1.9(2). Let $\mathcal{A}(k): 0 \rightarrow \Omega^{2} k$ $\rightarrow m(k) \rightarrow k \rightarrow 0$ be the $A R$-sequence terminating at k. By Theorem 1.3 the tensor sequences $\mathcal{A}(k) \otimes M$ and $\mathcal{A}(k) \otimes W$ are the $A R$-sequences $\mathcal{A}(M)$ modulo projectives and $\mathcal{A}(W)$ modulo projectives respectively. Hence we have $M_{2} \cong$ $m(k) \otimes M \cong m(k) \otimes W\left(\bmod\right.$ projectives). Thus $m(k) \otimes M \otimes M^{*} \cong m(k) \otimes W \otimes M^{*}$ (mod projectives). Note that $m(k) \otimes M \otimes M^{*}$ and $m(k) \otimes W \otimes M^{*}$ are the middle terms of the tensor sequences $\mathcal{A}(k) \otimes M \otimes M^{*}$ and $\mathcal{A}(k) \otimes W \otimes M^{*}$ respectively.

Let $M \otimes M^{*}=k \oplus\left(\oplus_{i} L_{i}\right) \oplus\left(\oplus_{j} L_{j}^{\prime}\right) \oplus N$, where L_{i} is an indecomposable $k G$-module lying in Δ_{0} such that $p \nmid \operatorname{dim}_{k} L_{i}$ and L_{j}^{\prime} is an indecomposable $k G$ module lying in Δ_{0} such that $p \mid \operatorname{dim}_{k} L_{j}^{\prime}$ and N has no indecomposable direct summand lying in Δ_{0}. Since the multiplicity of k in $M \otimes M^{*}$ is one, L_{i} is not isomorphic to k. By Lemma 1.5, we have $m(k) \otimes M \otimes M^{*} \simeq m(k) \oplus\left(\oplus_{i} m\left(L_{i}\right)\right) \oplus$ $\left(\oplus_{j}\left(\Omega^{2} L_{j}^{\prime} \oplus L_{j}^{\prime}\right)\right) \oplus N^{\prime}$ for some $k G$-module N^{\prime}. Note that N^{\prime} does not have any indecomposable direct summand lying in Δ_{0}. Therefore the number of indecomposable direct summands of $m(k) \otimes M \otimes M^{*}$ lying in Δ_{0} is odd. On the other hand k is not a direct summand of $W \otimes M^{*}$. Therefore the number of indecomposable direct summands of $m(k) \otimes W \otimes M^{*}$ lying in Δ_{0} is even, a contradiction.

By Steps 1 and 2, the tree class of Θ is A_{∞}. Since a Sylow p-subgroup P of G is not generalized quaternion, indecomposable $k G$-modules whose k-dimension is not divisible by p are not periodic. Hence Θ is isomorphic to $\boldsymbol{Z} A_{\infty}$.

Lemma 2.2. Assume (\#). Suppose that Θ is a connected component of $\Gamma_{s}(k G)$ and Θ contains an indecomposable $k G$-module whose k-dimension is not divisible by p. Then all modules in Θ have the same vertex P.

Proof. By Theorem 2.1, Θ is isomorphic to $\boldsymbol{Z} A_{\infty}$. Let M_{1} be an indecomposable $k G$-module lying at the end of Θ. Then Lemma 1.8 implies that $p \nmid \operatorname{dim}_{k} M_{1}$. Hence a Sylow p-subgroup P of G is a vertex of M_{1} and the result follows from [20, Theorem 4.3].

Let M be an indecomposable $k G$-module having a Sylow p-subgroup P of G as vertex, and let S be a P-source of M. Then $p X \operatorname{dim}_{k} M$ if and only if $p X \operatorname{dim}_{k} S$ from [3, Proposition 2.4].

Proposition 2.3. Assume (\#). Suppose that Θ is a connected component of $\Gamma_{s}(k G)$ containing an indecomposable $k G$-module whose k-dimension is not divisible by p, and let $T: M_{1} \leftarrow M_{2} \leftarrow \cdots \leftarrow M_{n} \leftarrow \cdots$ be a tree in Θ with $\Theta \cong \boldsymbol{Z} T$. Let S_{1} be a P-source of M_{1} and Ξ the connected component of $\Gamma_{s}(k P)$ containing S_{1}. Then we
have P-source S_{n} of $M_{n}(n \geq 1)$ and a tree $T^{\prime}: S_{1} \leftarrow S_{2} \leftarrow \cdots \leftarrow S_{n} \leftarrow \cdots$ with $\Xi \cong \boldsymbol{Z} T^{\prime}$.
Proof. Lemma 1.8 implies that $p \nmid \operatorname{dim}_{k} M_{1}$, and thus by the remark preceding Proposition 2.3 we have $p \not \subset \operatorname{dim}_{k} S_{1}$. Hence both Θ and Ξ are isomorphic to $\boldsymbol{Z} A_{\infty}$ by Theorem 2.1.

Step 1. We may assume that P is a normal subgroup of G.
Proof. Let $N=N_{G}(P)$ and f the Green correspondence with respect to (G, $P, N)$. Let Θ^{\prime} be the connected component of $\Gamma_{s}(k N)$ containing $f M$. Since $p X \operatorname{dim}_{k} f M_{1}, \Theta^{\prime}$ is isomorphic to $\boldsymbol{Z} A_{\infty}$ and all modules in Θ^{\prime} have the same vertex P by Theorem 2.1 and Lemma 2.2. Therefore f induces a graph isomorphism between Θ and Θ^{\prime} by [13, Theorem].

Step 2. We may assume that every module in Ξ is G-invariant.
Proof. Let $H=\left\{g \in G \mid W^{g} \in \Xi\right.$ for all $\left.W \in \Xi\right\}$ be the inertia group of Ξ. Since $\Xi \cong \boldsymbol{Z} A_{\infty}, H$ acts on Ξ trivially. Hence H is the inertia group of S_{1} and all modules in Ξ are H-invariant.

Suppose that $S_{1} \uparrow^{H}=R_{1} \oplus R_{2} \oplus \cdots \oplus R_{n}$ is an indecomposable direct sum decomposition such that $R_{1} \uparrow^{\natural}=M_{1}$ (Note that each $R_{i} \uparrow^{G}$ is indecomposable by [12, VII. 9.6 Theorem]). Let $\Theta^{\prime \prime}$ be the connected component of $\Gamma_{s}(k H)$ containing R_{1}. Then the inducing from H to G gives a graph isomorphism from $\Theta^{\prime \prime}$ onto Θ by [14, Theorem].

Now we may assume that P is normal and every module in Ξ is G-invariant. Hence we can apply Lemma 1.11 and the conclusion holds.

As an immediate consequence of Proposition 2.3, we have;
Corollary 2.4. Assume (\#). Let M be an indecomposable $k G$-module whose k-dimension is not divisible by p, and let S be a P-source of M. Then M lies at the end of a $\boldsymbol{Z} A_{\infty}$-component if and only if S lies at the end of a $\boldsymbol{Z} A_{\infty}$ component.

In the rest of this section, we give examples of indecomposable $k G$-modules lying at the end of a $\boldsymbol{Z} A_{\infty}$-component.

Lemma 2.5. Suppose that Θ is a connected component isomorphic to $\boldsymbol{Z} A_{\infty}$. Let $T: M_{1} \leftarrow M_{2} \leftarrow \cdots \leftarrow M_{n} \leftarrow \cdots$ be a tree in Θ with $\Theta \cong \boldsymbol{Z} T$. Suppose that all modules in Θ have the same vertex P. Let Q be a proper subgroup of P, and let N be the projective-free part of $M_{1} \downarrow$. Then $M_{n} \downarrow_{Q}=\oplus_{t=0}^{n-1} \Omega^{2 t} N$ (mod projectives) for all $n \geq 1$.

Proof. We proceed by induction on n. Clearly $M_{1} \downarrow=N(\bmod$ projectives) and $\Omega^{2} M_{1} \downarrow_{Q}=\Omega^{2} N\left(\bmod\right.$ projectives). Now the $A R$-sequence $\mathcal{A}\left(M_{1}\right)$ is of the form $0 \rightarrow \Omega^{2} M_{1} \rightarrow M_{2} \oplus U \rightarrow M_{1} \rightarrow 0$, where U is projective or 0 . Since $\mathcal{A}\left(M_{1}\right)$ splits on restriction to Q by Lemma 1.6(3), we have $M_{2} \downarrow=\oplus_{t=0}^{1} \Omega^{2 t} N(\bmod$ projectives).

Suppose then that $M_{i} \downarrow_{Q}=\oplus_{i=0}^{i-1} \Omega^{2 t} N$ (mod projectives) for all i with $1 \leq i \leq$ $n-1$. We have the $A R$-seqeunce $\mathcal{A}\left(M_{n-1}\right): 0 \rightarrow \Omega^{2} M_{n-1} \rightarrow M_{n} \oplus \Omega^{2} M_{n-2} \oplus U \rightarrow$ $M_{n-1} \rightarrow 0$, where U is projective or 0 . Since $\mathcal{A}\left(M_{n-1}\right)$ splits on restriction to Q by Lemma 1.6(3), we have $\left(M_{n} \oplus \Omega^{2} M_{n-2} \oplus U\right) \downarrow_{Q} \cong M_{n-1} \downarrow_{Q} \oplus \Omega^{2} M_{n-1} \downarrow_{Q}$. This implies that $M_{n} \downarrow_{Q}=\oplus_{t=0}^{n-1} \Omega^{2 t} N(\bmod$ projectives).

From Theorem 2.1 and Lemmas 2.2 and 2.5, we have;
Lemma 2.6. Assume (\#). Let Q be a proper subgroup of P. Let M be an indecomposable $k G$-module whose k-dimension is not divisible by p. Suppose that $N \oplus \Omega^{2} N \not \subset M \downarrow_{Q}$ and $N \oplus \Omega^{-2} N \nmid M \downarrow_{Q}$ for some non-projective indecomposable direct summand N of $M \downarrow_{\varrho}$. Then M lies at the end of a $\boldsymbol{Z} A_{\infty}$-component.

Corollary 2.7. Assume (\#). Let M be an indecomposable $k G$-module with vertex P and S a P-source of M.
(1) Suppose that p is odd and $\operatorname{dim}_{k} S=2$. Then M lies at the end of $a \boldsymbol{Z} A_{\infty}-$ component.
(2) Suppose that $p \neq 3$ and $\operatorname{dim}_{k} S=3$. Then M lies at the end of $a \boldsymbol{Z} A_{\infty}$ component.
(3) Suppose that $p \neq 5$ and $\operatorname{dim}_{k} S=5$. Then M lies at the end of $a Z A_{\infty}$ component.

Proof. There exists an element x of P such that x does not act on S trivially. Let $Q=\langle x\rangle$. Then $S \downarrow_{Q}$ satisfies the assumption in Lemma 2.6. Therefore S lies at the end of a $\boldsymbol{Z} A_{\infty}$-component, and M lies at the end of a $\boldsymbol{Z} A_{\infty}$-component by Corollary 2.4.

Remark. In [8], Erdmann proved that there are infinitely many $k P$ modules of dimension 2 or 3 lying at the ends of $\boldsymbol{Z} A_{\infty}$-components under the hypothesis (\#) ([8, Propositions 4.2 and 4.4$])$. Consequently she showed that for a block B over an algebraically closed field, the stable Auslander-Reiten quiver $\Gamma_{s}(B)$ has infinitely many components isomorphic to $\boldsymbol{Z} A_{\infty}$ if a defect group of B is not cyclic, dihedral, semidihedral or generalized quaternion ([8, Theorem 5.1]).

3. Remarks on Tensoring with a Certain Module

Suppose that M is an indecomposable $k G$-module such that $p X \operatorname{dim}_{k} M$, and let Θ be the connected component of $\Gamma_{s}(k G)$ containing M. Let Δ_{0} be the connected component of $\Gamma_{s}(k G)$ containing the trivial $k G$-module k. In this section we consider tensoring modules in Δ_{0} with M under the same hypothesis as in Section 2:
(\#) k is an algebraically closed field of characteristic $p>0$ and a Sylow
p-subgroup P of G is not cyclic, dihedral, semidihedral or generalized quaternion.

Thus both Θ and Δ_{0} are isomorphic to $\boldsymbol{Z} A_{\infty}$ by Theorem 2.1. We fix some notation: $T_{0}: k=L_{1} \leftarrow L_{2} \leftarrow L_{3} \leftarrow \cdots \leftarrow L_{n} \leftarrow$ is a tree in Δ_{0} with $\Delta_{0} \cong \boldsymbol{Z} T_{0}$.

Proposition 3.1. Assume (\#). Suppose that M is an indecomposable $k G$ module such that $p X \operatorname{dim}_{k} M$ and M lies at the end of its component Θ. Let S be a P-source of M. Let Ξ and Λ_{0} be the connected components of $\Gamma_{s}(k P)$ containing S and the trivial $k P$-module k respectively. Then tensoring with M induces a graph isomorphism from Δ_{0} onto Θ if and only if tensoring with S induces a graph isomorphism from Λ_{0} onto Ξ.

Remark. The assumption in Proposition 3.1 implise that both Λ_{0} and Ξ are isomorphic to $\boldsymbol{Z} A_{\infty}$ and S lies at the end of Ξ by Theorem 2.1 and Corollary 2.4.

Proof of Proposition 3.1. Let $T: M=M_{1} \leftarrow M_{2} \leftarrow \cdots \leftarrow M_{n} \leftarrow \cdots$ be a tree in Θ with $\Theta \cong \boldsymbol{Z} T$. Then we have P-sources S_{n} of $M_{n}(n \geq 1)$ and a tree $T^{\prime}: S=$ $S_{1} \leftarrow S_{2} \leftarrow \cdots \leftarrow S_{n} \leftarrow \cdots$ with $\Xi \cong \boldsymbol{Z} T^{\prime}$ by Proposition 2.3. Let $T^{\prime \prime}: k=H_{1} \leftarrow H_{2} \leftarrow$ $H_{3} \leftarrow \cdots \leftarrow H_{n} \leftarrow \cdots$ be a tree in Λ_{0} with $\Lambda_{0} \cong \boldsymbol{Z} T^{\prime \prime}$.

Suppose that the tensoring with S_{1} induces a graph isomorphism from Λ_{0} onto Ξ. This means that $H_{n} \otimes S_{1} \cong S_{n}$ (mod projectives) and $\mathcal{A}\left(H_{n}\right) \otimes S_{1}$ is the $A R$-sequence $\mathcal{A}\left(S_{n}\right)$ modulo projectives for $n \geq 1$. We show that $L_{n} \otimes M_{1} \cong M_{n}$ (mod projectives) for all $n \geq 1$ by induction on n. Clearly $L_{1} \otimes M_{1}=k \otimes M_{1} \cong M_{1}$. By Theorem 1.3, $\mathcal{A}(k) \otimes M_{1}$ is the $A R$-sequence $\mathcal{A}\left(M_{1}\right)$ modulo projectives. Hence $L_{2} \otimes M_{1} \cong M_{2}$ (mod projectives). Suppose then that $L_{i} \otimes M_{1} \cong M_{i}(\bmod$ projectives) for all i with $1 \leq i \leq n-1$. We claim that $\mathcal{A}\left(L_{n-1}\right) \otimes M_{1}$ is the $A R$ sequence $\mathcal{A}\left(M_{n-1}\right)$ modulo projectives: Since $L_{n-1} \mid L_{n-1} \otimes M_{1} \otimes M_{1}^{*}$ by Theorem 1.4, we have $0 \neq\left(L_{n-1} \otimes M_{1} \otimes M_{1}^{*},\left[\mathcal{A}\left(L_{n-1}\right)\right]\right)=\left(L_{n-1} \otimes M_{1},\left[\mathcal{A}\left(L_{n-1}\right) \otimes M_{1}\right]\right)$. This implies that $\mathcal{A}\left(L_{n-1}\right) \otimes M_{1}$ does not split. Thus in order to show that $\mathcal{A}\left(L_{n-1}\right) \otimes M_{1}$ is the $A R$-sequence $\mathcal{A}\left(M_{n-1}\right)$ modulo projectives, it is enough to show that $\left(m\left(M_{n-1}\right),\left[\mathcal{A}\left(L_{n-1}\right) \otimes M_{1}\right]\right)=0$ by Lemma 1.7(2). From Proposition 2.3, we have $m\left(M_{n-1}\right) \mid m\left(S_{n-1}\right) \uparrow^{G}$ and $M_{1} \mid S_{1} \uparrow^{G}$. Thus it follows that $\left(m\left(S_{n-1}\right) \uparrow^{G}\right.$, $\left.\left[\mathcal{A}\left(L_{n-1}\right) \otimes\left(S_{1} \uparrow^{G}\right)\right]\right) \geq\left(m\left(M_{n-1}\right),\left[\mathcal{A}\left(L_{n-1}\right) \otimes M_{1}\right]\right) \geq 0$. Now we have $\left(m\left(S_{n-1}\right) \uparrow^{G}\right.$, $\left.\left[\mathcal{A}\left(L_{n-1}\right) \otimes\left(S_{1} \uparrow^{G}\right)\right]\right)=\left(m\left(S_{n-1}\right),\left[\mathcal{A}\left(L_{n-1}\right) \downarrow_{P} \otimes\left(S_{1} \uparrow^{G}\right) \downarrow_{P}\right]\right)$ from the Frobenius reciprocity. By the Mackey decomposition theorem, we have $\left(S_{1} \uparrow^{\top}\right) \downarrow_{P}=\bigoplus_{g \in P \backslash G / P}$ $\left(S_{1}^{g} \downarrow_{P \cap P^{g}}\right) \uparrow^{P}$. Since $\left[\mathcal{A}\left(L_{n-1}\right) \downarrow_{P}\right]=\left[\mathcal{A}\left(H_{n-1}\right)\right]$ as elements of the Green ring $a(k P)$ by Lemma 1.6(1), we get $\left[\mathcal{A}\left(L_{n-1}\right) \downarrow_{P} \otimes\left(S_{1} \uparrow^{G}\right)^{\prime} \downarrow_{P}\right]=\Sigma_{g \in N_{G}(P) / P}\left[\mathcal{A}\left(S_{n-1}^{g}\right)\right]$ by our assumption. Since $S_{n-1}^{g} X m\left(S_{n-1}\right)$ for any g in $N_{G}(P)$, we get $\left(m\left(S_{n-1}\right)\right.$, $\left.\left[\mathcal{A}\left(L_{n-1}\right) \downarrow_{P} \otimes\left(S_{1} \uparrow^{G}\right) \downarrow_{P}\right]\right)=0$. Thus we obtain $\left(m\left(M_{n-1}\right),\left[\mathcal{A}\left(L_{n-1}\right) \otimes M_{1}\right]\right)=0$ as desired. Therefore $\mathcal{A}\left(L_{n-1}\right) \otimes M_{1}: 0 \rightarrow \Omega^{2} L_{n-1} \otimes M_{1} \rightarrow\left(\Omega^{2} L_{n-2} \oplus L_{n}\right) \otimes M_{1} \rightarrow$ $L_{n-1} \otimes M_{1} \rightarrow 0$ is the $A R$-sequence $\mathcal{A}\left(M_{n-1}\right)$ modulo projectives. This implies
that $L_{n} \otimes M_{1} \cong M_{n}$ (mod projectives).
Conversely suppose that the tensoring with M_{1} induces a graph isomorphism from Δ_{0} onto Θ. We show that $H_{n} \otimes S_{1} \cong S_{n}$ (mod projectives) for all $n \geq 1$ by induction on n. Clearly $H_{1} \otimes S_{1}=k \otimes S_{1} \cong S_{1}$. By Theorem 1.3, $\mathcal{A}(k) \otimes S_{1}$ is the $A R$-seqeunce $\mathcal{A}\left(S_{1}\right)$ modulo projectives. Hence $H_{2} \otimes S_{1} \cong S_{2}$ (mod projectives). Suppose then that $H_{i} \otimes S_{1} \cong S_{i}$ (mod projectives) for all i with $1 \leq i \leq$ $n-1$. We claim that $\mathcal{A}\left(H_{n-1}\right) \otimes S_{1}$ is the $A R$-sequence $\mathcal{A}\left(S_{n-1}\right)$ modulo projectives: Since $H_{n-1} \otimes S_{1} \cong S_{n-1}$ (mod projectives) and $\Omega^{2} H_{n-1} \otimes S_{1} \cong \Omega^{2} S_{n-1}$ (mod projectives), it is enough to show that $\left(m\left(S_{n-1}\right),\left[\mathcal{A}\left(H_{n-1}\right) \otimes S_{1}\right]\right)=0$ by Lemma 1.7(2). From Lemma 1.6(1), we have $m\left(S_{n-1}\right)\left|m\left(M_{n-1}\right) \downarrow_{P}, S_{1}\right| M_{1} \downarrow_{P}$ and $\left[\mathcal{A}\left(H_{n-1}\right)\right]=\left[\mathcal{A}\left(L_{n-1}\right) \downarrow_{P}\right]$. Hence it follows that $\left(m\left(S_{n-1}\right),\left[\mathcal{A}\left(L_{n-1}\right) \downarrow_{P} \otimes\right.\right.$ $\left.\left.\left(M_{1} \downarrow_{P}\right)\right]\right) \geq\left(m\left(S_{n-1}\right),\left[\mathcal{A}\left(H_{n-1}\right) \otimes S_{1}\right]\right) \geq 0$. Using the Frobenius reciprocity, we have $\left(m\left(S_{n-1}\right),\left[\mathcal{A}\left(L_{n-1}\right) \downarrow_{P} \otimes\left(M_{1} \downarrow_{P}\right)\right]\right)=\left(m\left(S_{n-1}\right) \uparrow^{G},\left[\mathcal{A}\left(L_{n-1}\right) \otimes M_{1}\right]\right)=\left(m\left(S_{n-1}\right) \uparrow^{G}\right.$, [$\left.\mathcal{A}\left(M_{n-1}\right)\right]$), which is zero since $m\left(S_{n-1}\right)=S_{n} \oplus \Omega^{2} S_{n-2}$ yields $M_{n-1} \nmid m\left(S_{n-1}\right) \uparrow^{G}$. This implies that $\left(m\left(S_{n-1}\right),\left[\mathcal{A}\left(H_{n-1}\right) \otimes S_{1}\right]\right)=0$ as desired. Therefore $\mathcal{A}\left(H_{n-1}\right)$ $\otimes S_{1}: 0 \rightarrow \Omega^{2} H_{n-1} \otimes S_{1} \rightarrow\left(\Omega^{2} H_{n-2} \oplus H_{n}\right) \otimes S_{1} \rightarrow H_{n-1} \otimes S_{1} \rightarrow 0$ is the $A R$-sequence $\mathcal{A}\left(S_{n-1}\right)$ modulo projectives. This implies that $H_{n} \otimes S_{1} \cong S_{n}$ (mod projectives).

Corollary 3.2. Let M be a trivial source module with vertex P. Let Θ be the connected component of $\Gamma_{s}(k G)$ containing M. Then Θ is isomorphic to $\boldsymbol{Z} A_{\infty}$ and M lies at the end of Θ. Moreover tensoring with M induces a graph isomorphism from Δ_{0} onto Θ.

Proof. Proposition 2.3 and Corollary 2.4 imply that Θ is isomorphic to $\boldsymbol{Z} A_{\infty}$ and M lies at the end of Θ. The second statement follows by Proposition 3.1.

In the following, we give some conditions each of which implies that tensoring an indecomposable $k G$-module M induces a graph isomorphism from Δ_{0} onto a component isomorphic to $\boldsymbol{Z} A_{\infty}$.

Proposition 3.3. Assume (\#). Let M be an indecomposable $k G$-module such that $p X \operatorname{dim}_{k} M$, and let Θ be the connected component of $\Gamma_{s}(k G)$ containing M. Let Q be a proper subgroup of P. Suppose that M satisfies the following conditions (with respect to Q).
(1) The trivial $k Q$-module k is a direct summand of $\left(M \otimes M^{*}\right) \downarrow_{Q}$ with multiplicity one;
(2) If Q is generalized quaternion, then $\Omega^{2} k X\left(M \otimes M^{*}\right) \downarrow_{Q}$.

Then tensoring with M induces a graph isomorphism from Δ_{0} onto Θ.
Remark. (i) From Theorem 1.4, the above condition (1) is equivalent to the following condition:
(1') We have an indecomposable direct sum decomposition $N \oplus\left(\oplus_{t} W_{t}\right)$ of
$M \downarrow_{Q}$, where $p \nmid \operatorname{dim}_{k} N$ and $p \mid \operatorname{dim}_{k} W_{t}$ for all t.
(ii) Θ is isomorphic to $\boldsymbol{Z} A_{\infty}$ by Theorem 2.1. Moreover M lies at the end of Θ by Lemma 2.6.

In ordre to prove Proposition 3.3, we need the following.
Lemma 3.4. Under the same assumption as in Proposition 3.3, L_{n} is a direct summand of $L_{n} \otimes M \otimes M^{*}$ with multiplicity one for all $n \geq 1$.

Proof. Note that L_{n} is a direct summand of $L_{n} \otimes M \otimes M^{*}$ since $k \mid M \otimes M^{*}$. From Lemma 2.5, we have $L_{n} \downarrow_{Q}=\oplus_{t=0}^{n-1} \Omega^{2 t} k$ (mod projectives). Since the multiplicity of k in $\left(M \otimes M^{*}\right) \downarrow_{Q}$ is one (and $\Omega^{2} k$ is not a direct summand of $(M \otimes$ $\left.M^{*}\right) \downarrow_{Q}$ if Q is generalized quaternion), it follows that $2\left(\oplus_{t=0}^{n-1} \Omega^{2 t} k\right) X\left(L_{n} \otimes M \otimes\right.$ $\left.M^{*}\right) \downarrow_{Q}$. This implies that the multiplicity of L_{n} in $L_{n} \otimes M \otimes M^{*}$ is one.

Proof of Proposition 3.3. Let $T: M=M_{1} \leftarrow M_{2} \leftarrow M_{3} \leftarrow \cdots \leftarrow M_{n} \leftarrow \cdots$ be a tree in Θ with $\Theta \cong \boldsymbol{Z} T$. We show that $L_{n} \otimes M \cong M_{n}$ (mod proejctives) for all $n \geq 1$ by induction on n.

Clearly $L_{1} \otimes M=k \otimes M_{1} \cong M_{1}$. Let $\mathcal{A}(k): 0 \rightarrow \Omega^{2} k \rightarrow L_{2} \oplus U \rightarrow k \rightarrow 0$ be the $A R$-sequence terminating at k, where U is projective or 0 . Then the tensor sequence $\mathcal{A}(k) \otimes M$ is the $A R$-sequence $\mathcal{A}(M)$ modulo projectives by Theorem 1.3. Hence $L_{2} \otimes M \cong M_{2}(\bmod$ projectives).

Suppose then that $L_{i} \otimes M \cong M_{i}(\bmod$ projectives) for all i with $1 \leq i \leq n-1$. We claim that $\mathcal{A}\left(L_{n-1}\right) \otimes M$ is the $A R$-sequence $\mathcal{A}\left(M_{n-1}\right)$ modulo projectives: By lemma 1.7(1), it suffices to show that $\left(M_{n-1},\left[\mathcal{A}\left(L_{n-1}\right) \otimes M\right]\right)=1$. Since L_{n-1} is a direct summand of $L_{n-1} \otimes M \otimes M^{*}$ with multiplicity one by Lemma 3.4, we have $\left(M_{n-1},\left[\mathcal{A}\left(L_{n-1}\right) \otimes M\right]\right)=\left(L_{n-1} \otimes M,\left[\mathcal{A}\left(L_{n-1}\right) \otimes M\right]\right)=\left(L_{n-1} \otimes M \otimes M^{*}\right.$, $\left.\left[\mathcal{A}\left(L_{n-1}\right)\right]\right)=1$ as desired.

Now $\mathcal{A}\left(L_{n-1}\right) \otimes M: 0 \rightarrow \Omega^{2} L_{n-1} \otimes M \rightarrow\left(\Omega^{2} L_{n-2} \oplus L_{n} \oplus U^{\prime}\right) \otimes M \rightarrow L_{n-1} \otimes M \rightarrow 0$ is the $A R$-sequence $\mathcal{A}\left(M_{n-1}\right)$ modulo projectives, where U^{\prime} is projective or 0 . Thus we get $L_{n} \otimes M \cong M_{n}(\bmod$ projectives).

Corollary 3.5. (1) Suppose that p is odd. Let M be an indecomposable $k G$-module with vertex P and S a P-source of M. Suppose that $\operatorname{dim}_{k} S=2$. Then tensoring with M induces a graph isomorphism from Δ_{0} onto the connected component containing M.
(2) Suppose that $p=2$. Let M be an indecomposable $k G$-module with vertex P and S a P-source of M. Suppose that $\operatorname{dim}_{k} S=3$. Then tensoring with M induces a graph isomorphism from Δ_{0} onto the connected component containing M.

Proof. The result follows from Corollary 2.7 and Propositions 3.1 and 3.3.

Proposition 3.6. Assume (\#). Let M be an indecomposable $k G$-module with $p X \operatorname{dim}_{k} M$, and let Θ be the connected component containing M. Suppose
that M satisfies the following conditions.
(1) M lies at the end of Θ.
(2) $M \otimes M^{*} \cong k \oplus\left(\oplus_{t} W_{t}\right)$, where each W_{t} is indecomposable and $p \mid \operatorname{dim}_{k} W_{t}$. Then tensoring with M induces a graph isomorphism from Δ_{0} onto Θ.
In order to prove Proposition 3.6, we need the following.
Lemma 3.7([22, p.16, Konstruktionslemma]). Let M and N be nonprojective indecomposable $k G$-modules and

an exact sequence. Suppose that $\alpha: \Omega^{2} M \rightarrow N$ and $\beta: N \rightarrow M$ are irreducible maps and $N \not \subset N^{\prime}$. Then \mathcal{E} is the AR-sequence $\mathcal{A}(M)$.

Proof of Proposition 3.6. Let $T: M=M_{1} \leftarrow M_{2} \leftarrow M_{3} \leftarrow \cdots \leftarrow M_{n} \leftarrow \cdots$ be a tree in Θ with $\Theta \cong \boldsymbol{Z} T$. We will show that $L_{n} \otimes M \cong M_{n}$ (mod projectives) and the tensor sequence $\mathcal{A}\left(L_{n}\right) \otimes M$ is the $A R$-sequence $\mathcal{A}\left(M_{n}\right)$ modulo projectives for all $n \geq 1$ by induction on n. Clearly $L_{1} \otimes M=k \otimes M_{1} \cong M_{1}$. By Theorem 1.3, the tensor sequence $\mathcal{A}(k) \otimes M$ is the $A R$-sequence $\mathcal{A}(M)$ modulo projectives. Hence $L_{2} \otimes M \cong M_{2}$ (mod projectives).

Suppose then that $L_{i} \otimes M \cong M_{i}(\bmod$ projectives) for all i with $1 \leq i \leq n-1$ and the tensor sequence $\mathcal{A}\left(L_{i}\right) \otimes M$ is the $A R$-sequence $\mathcal{A}\left(M_{i}\right)$ modulo projectives for all i with $1 \leq i \leq n-2$. We will show that the tensor sequence $\mathcal{A}\left(L_{n-1}\right) \otimes M$ is the $A R$-sequence $\mathcal{A}\left(M_{n-1}\right)$ modulo projectives.

Now $\mathcal{A}\left(L_{n-2}\right) \otimes M: 0 \rightarrow \Omega^{2} L_{n-2} \otimes M \rightarrow \Omega^{2} L_{n-3} \otimes M \oplus L_{n-1} \otimes M \rightarrow L_{n-2} \otimes M \rightarrow 0$ and $\mathcal{A}\left(\Omega^{2} L_{n-2}\right) \otimes M: 0 \rightarrow \Omega^{4} L_{n-2} \otimes M \rightarrow \Omega^{4} L_{n-3} \otimes M \oplus \Omega^{2} L_{n-1} \otimes M \rightarrow \Omega^{2} L_{n-2} \otimes M \rightarrow$ 0 are the $A R$-sequences $\mathcal{A}\left(M_{n-2}\right)$ modulo projectives and $\mathcal{A}\left(\Omega^{2} M_{n-2}\right)$ modulo projectives respectively. Let $\alpha: \Omega^{2} L_{n-1} \rightarrow \Omega^{2} L_{n-2}$ and $\beta: \Omega^{2} L_{n-2} \rightarrow L_{n-1}$ be irreducible maps. Then $\alpha \otimes i d_{M}: \Omega^{2} L_{n-1} \otimes M \rightarrow \Omega^{2} L_{n-2} \otimes M$ is an irredicible map $\Omega^{2} M_{n-1} \rightarrow \Omega^{2} M_{n-2}$ plus some split map from the projective part of $\Omega^{2} L_{n-1} \otimes M$ to the projective part of $\Omega^{2} L_{n-2} \otimes M$, and $\beta \otimes i d_{M}: \Omega^{2} L_{n-2} \otimes M \rightarrow L_{n-1} \otimes M$ is an irreducible map $\Omega^{2} M_{n-2} \rightarrow M_{n-1}$ plus some split map from the projective part of $\Omega^{2} L_{n-2} \otimes M$ to the projective part of $L_{n-1} \otimes M$.

Consider the tensor sequence $\mathcal{A}\left(L_{n-1}\right) \otimes M$:

Here $\Omega^{2} M_{n-2} \nmid L_{n} \otimes M$: Assume not. Then $\Omega^{2} M_{n-2} \mid L_{n} \otimes M$ and $\Omega^{2} M_{n-2} \otimes M^{*} \mid$ $L_{n} \otimes M \otimes M^{*}$. Now by the inductive hypothesis $L_{n-2} \otimes M \cong M_{n-2}(\bmod$ projectives) and $\Omega^{2} L_{n-2} \otimes M \cong \Omega^{2} M_{n-2}$ (mod projectives). Thus the condition (2) implies that $\Omega^{2} M_{n-2} \otimes M^{*} \cong \Omega^{2} L_{n-2} \oplus\left(\oplus_{t} W_{t}^{\prime}\right)$, where each W_{t}^{\prime} is indecomposable and $p \mid \operatorname{dim}_{k} W_{t}^{\prime}$. Also the condition (2) implies that $L_{n} \otimes M \otimes M^{*} \cong L_{n} \oplus$ $\left(\oplus_{t} W_{t}^{\prime \prime}\right)$, where each $W_{t}^{\prime \prime}$ is indecomposable and $p \mid \operatorname{dim}_{k} W_{t}^{\prime \prime}$. This implies that $L_{n} \cong \Omega^{2} L_{n-2}$, a contradiction.

Now the tensor sequence $\mathcal{A}\left(L_{n-1}\right) \otimes M$ satisfies the assumption in Lemma 3.7. Thus $\mathcal{A}\left(L_{n-1}\right) \otimes M$ is the $A R$-sequence $\mathcal{A}\left(M_{n-1}\right)$ modulo projectives. This implies that $L_{n} \otimes M \cong M_{n}(\bmod$ projectives).

Corollary 3.8. Assume (\#). Suppose that M is an endotrivial $k G$-module. Let Θ be the connected component containing M. Then tensoring with M induces a graph isomorphism from Δ_{0} onto Θ.

Proof. Let $\mathcal{A}(k): 0 \rightarrow \Omega^{2} k \rightarrow L_{2} \oplus U \rightarrow k \rightarrow 0$ be the $A R$-sequence. Here L_{2} is non-projective indecomposable and U is projective or 0 by our assumption. By Theorem 1.3, the tensor sequence $\mathcal{A}(k) \otimes M$ is the $A R$-sequence $\mathcal{A}(M)$ modulo projectives. Since tensoring with an endotrivial module preserves the number of non-projective indecomposable direct summands, the pro-jective-free part of $L_{2} \otimes M$ is indecomposable. This implies that M lies at the end of Θ. Hence M satisfies the conditions in Proposition 3.6 and the result follows.

Remark. In [6], Bessenrodt studied endotrivial modules in the AuslanderReiten quiver. She showed that without the hypothesis (\#), if M is an endotrivial $k G$-module, then tensoring with M induces a graph isomorphism from the connected component containing the trivial $k G$-module k onto the connected component containing M ([6, Theorem 2.3]).

4. $\boldsymbol{Z} \boldsymbol{A}_{\infty}^{\infty}$-Components of Dihedral 2-Groups

Throughout this section we assume that
k is a field of characteristic 2 and a Sylow 2-subgroup P of G is dihedral of order at least 8 .

Let Δ_{0} be the connected component containing the trivial $k G$-module k. Then Δ_{0} is isomorphic to $\boldsymbol{Z} A_{\infty}^{\infty}$ by Theorem 1.2. It is known that all modules in Δ_{0} are endotrivial $k G$-modules (see, e.g., [6]).

Proposition 4.1. Let M be an odd dimensional indecomposable $k G$-module. Let Θ be the connected component of $\Gamma_{s}(k G)$ containing M and Δ_{0} the connected
component containing k. Then Θ is isomorphic to $\boldsymbol{Z} A_{\infty}^{\infty}$ and tensoring with M induces a graph isomorphism from Δ_{0} onto Θ.

Proof. Let $T_{0}: \cdots \rightarrow V_{n} \rightarrow \cdots \rightarrow V_{2} \rightarrow k \leftarrow L_{2} \leftarrow L_{3} \leftarrow \cdots \leftarrow L_{n} \leftarrow \cdots$ be a tree in Δ_{0} with $\Delta_{0} \simeq \boldsymbol{Z} T_{0}$. Since tensoring with an endotrivial module preserves the number of non-projective indecomposable direct summands, the projective-free part $M_{n}\left(\right.$ resp. $\left.W_{n}\right)$ of $L_{n} \otimes M$ (resp. $\left.V_{n} \otimes M\right)$ is indecomposable and odd dimensional. Therefore the tensor seqences $\mathcal{A}\left(L_{n}\right) \otimes M$ and $\mathcal{A}\left(V_{n}\right) \otimes M$ are the $A R$ sequences $\mathcal{A}\left(M_{n}\right)$ and $\mathcal{A}\left(W_{n}\right)$ modulo projectives respectively by Lemma 1.5. Thus we obtain a tree $T: \cdots \rightarrow W_{n} \rightarrow \cdots \rightarrow W_{2} \rightarrow M \leftarrow M_{2} \leftarrow M_{3} \leftarrow \cdots \leftarrow M_{n} \leftarrow \cdots$ with $\Theta \cong \boldsymbol{Z} T$.

Corollary 4.2. Let M be an odd dimensional indecomposable $k G$-module and Θ the connected component containing M. Then all modules in Θ have the same vertex P.

Proof. By Proposition 4.1, the tree class of Θ is A_{∞}^{∞}. Therefore all modules in Θ are odd dimensional by Lemma 1.9(1). This implies the result.

5. $\boldsymbol{Z} \boldsymbol{D}_{\infty}$-Components of Semidihedral 2-Groups

Throughout this section, we assume that
k is an algebraically closed field of characteristic 2 and a Sylow 2-subgroup P of G is semidihedral.

Let Δ_{0} be the connected component of $\Gamma_{s}(k G)$ containing the trivial $k G$-module k. Then Δ_{0} is isomorphic to $\boldsymbol{Z} D_{\infty}$ by Theorem 1.2 (see [7, p 76 II. 10.7 Remark]). Thus a part of Δ_{0} is as follows for some indecomposable $k G$ modules L_{2}, L_{3} and I.

Let $P=\left\langle x, y ; x^{2}=y^{2^{n-1}}=1, y^{x}=y^{-1+2^{n-2}}\right\rangle$ and $\mathfrak{X}=\{\langle x\rangle\}$. Let $0 \rightarrow \Omega_{\mathfrak{X}} k \rightarrow$ $U \rightarrow k \rightarrow 0$ be an \mathfrak{X}-projective cover resolution of the trivial $k G$-module k. Con-
cerning some basic facts on relative projective cover, we refer to [15], [19] and [18]. The following result is due to Okuyama.

Theorem 5.1([18]). With the same assumption and notation as above,
(1) $I \cong \Omega\left(\Omega_{\mathfrak{£}} k\right)$ and I is an endotrivial $k G$-module.
(2) I is self-dual and odd dimensional.
(3) If I^{\prime} is self-dual, odd dimensional and indecomposable, then $I^{\prime} \cong k$ or I.

Lemma 5.2. Let M be an odd dimensional indecomposable $k G$-module. Then $M \nmid M \otimes I$.

Proof. Assume contrary that $M \mid M \otimes I$. Then $M \otimes I \cong M(\bmod$ projectives), since tensoring with an endotrivial module preserves the number of nonprojective indecomposable direct summands. Moreover it follows by Theorem 1.4 that $k\left|M \otimes M^{*}\right|\left(M \otimes M^{*}\right) \otimes I$. This implies that $I \mid M \otimes M^{*}$.

Since $2 X \operatorname{dim}_{k} M, k$ is a direct summand of $M \otimes M^{*}$ with multiplicity one. If an indecomposable $k G$-module W is a direct summand of $M \otimes M^{*}$, then W^{*} is also a direct summand of $M \otimes M^{*}$. Let $M \otimes M^{*} \cong k \oplus I \oplus\left(\oplus_{i}\left(W_{i} \oplus W_{i}^{*}\right)\right) \oplus$ $\left(\oplus_{j} T_{j}\right)$ be an indecomposable direct sum decomposition, where W_{i} is not selfdual and T_{j} is self-dual. Since $M \otimes M^{*}$ is odd dimensional, some T_{j} is odd dimensional. By Theorem $5.1(3)$, this T_{j} must be isomorphic to I. Hence we get $I \oplus I \mid M \otimes M^{*}$ and $k \oplus k|(I \oplus I) \otimes I|\left(M \otimes M^{*}\right) \otimes I \cong M \otimes M^{*}(\bmod$ projectives). But this contradicts that the multiplicity of k in $M \otimes M^{*}$ is one.

Theorem 5.3. Let M be an odd dimensional indecomposable $k G$-module and Θ the connected component of $\Gamma_{s}(k G)$ containing M. Then Θ is isomorphic to $Z D_{\infty}$ and M lies at the end of Θ.

Proof. We continue to use the same notation as above.
Let $\mathcal{A}(k): 0 \rightarrow \Omega^{2} k \rightarrow m(k) \rightarrow k \rightarrow 0$ and $\mathcal{A}(I): 0 \rightarrow \Omega^{2} I \rightarrow m(I) \rightarrow I \rightarrow 0$ be the $A R$-sequences terminating at k and I respectively. Note that $L_{2} \cong m(k) \simeq m(I)$ (mod projectives). By Theorem 1.3, the tensor sequence $\mathcal{A}(k) \otimes M$ is the $A R$ sequence $\mathcal{A}(M)$ modulo projectives. Since I is an endotrivial $k G$-module, the projective-free part M^{\prime} of $I \otimes M$ is indecomposable. Hence by Lemma 1.5, the tensor sequence $\mathcal{A}(I) \otimes M$ is the $A R$-sequence $\mathcal{A}\left(M^{\prime}\right)$ modulo projectives. Note that M^{\prime} is not isomorphic to M by Lemma 5.2.

We claim that the projective-free part M_{2} of $L_{2} \otimes M$ is indecomposable: Assume not. Then we have $X_{1} \oplus X_{2} \mid L_{2} \otimes M$ for some non-projective indecomposable $k G$-modules X_{1} and X_{2}. Note that X_{1} is not isomorphic to X_{2} by Theorem 1.1. Since $X_{1} \oplus X_{2} \mid m(M)$ and $X_{1} \oplus X_{2} \mid m\left(M^{\prime}\right)$, where $m(M)$ and $m\left(M^{\prime}\right)$ are the middle terms of $\mathcal{A}(M)$ and $\mathcal{A}\left(M^{\prime}\right)$ respectively, we get a part of Θ as follows.

But this is a contradiction since Θ can not have such a subquiver by Theorem 1.1.

Consequently we have $m(M) \cong M_{2}\left(\bmod\right.$ projectives) and $m\left(M^{\prime}\right) \cong M_{2}(\bmod$ projectives). This implies that $\Theta \cong \boldsymbol{Z} D_{\infty}$ and M lies at the end.

Lemma 5.4. Let M be an odd dimensional indecomposable $k G$-module and Θ the connected component containing M. Then all modules in Θ have the same vertex P.

Proof. By Theorem 5.3 and Lemma 1.9(2), Θ is isomorphic to $\boldsymbol{Z} D_{\infty}$ and M lies at the end of Θ. Since M is odd dimensional, a Sylow 2-subgroup P of G is a vertex of M. The result follows from [20, Theorem 4.3].

Lemma 5.5. Let M be an odd dimensional indecomposable $k G$-module and Θ the connected component of $\Gamma_{s}(k G)$ containing M. Let $T: M \leftarrow M_{2} \leftarrow M_{3} \leftarrow M_{4} \leftarrow \cdots \leftarrow M_{n} \leftarrow \cdots$ be a tree in Θ with $\Theta \cong \boldsymbol{Z} T$. Let S be a
\downarrow
M^{\prime} P-source of M and Ξ the connected component of $\Gamma_{s}(k P)$ containing S. Then we have $P^{-s o u r c e s} S^{\prime}$ and S_{n} of M^{\prime} and $M_{n}(n \geq 2)$ respectively and a tree $T^{\prime}: S \leftarrow S_{2} \leftarrow S_{3} \leftarrow \cdots \leftarrow S_{n} \leftarrow \cdots$ with $\Xi \cong \boldsymbol{Z} T^{\prime}$.

S^{\prime}

Proof. All modules in Θ have the same vertex P by Lemma 5.4. Thus applying the similar argument in the proof of Proposition 2.3, Steps 1 and 2, we may assume that P is a normal subgroup of G and G is the inertial group of E. Since the order of G / P is odd and Ξ is isomorphic to $\boldsymbol{Z} D_{\infty}, G$ acts on Ξ trivially. Therefore we may also assume that every module in Ξ is G-invariant. Applying Lemma 1.11, we get the result.

In the rest we consider tensoring Δ_{0} with an odd dimensional indecomposable $k G$-module.

Proposition 5.6. Let S be an odd dimensional indecomposable $k P$-module and E the connected component of $\Gamma_{s}(k P)$ containing S. Let Λ_{0} be the connect-
ed component of $\Gamma_{s}(k P)$ containing the trivial $k P$-module k. Then tensoring with S induces a graph isomorphism from Λ_{0} onto Ξ.

In order to prove Proposition 5.6, we need the following Lemmas 5.7 and 5.8. Let $T_{0}: k \leftarrow H_{2} \leftarrow H_{3} \leftarrow \cdots \leftarrow H_{n} \leftarrow \cdots$ be a tree in Λ_{0} with $\Lambda_{0} \cong \boldsymbol{Z} T_{0}$. Let \downarrow
$P=\left\langle x, y ; x^{2}=y^{2^{n-1}}=1, y^{x}=y^{-1+2^{n-2}}\right\rangle$.
Lemma 5.7. $\quad H_{n} \downarrow\langle x\rangle \cong k \oplus k$ (mod projectives) for all $n \geq 2$.
Proof. Use induction on n. Since all modules in Λ_{0} have the same vertex P, the $A R$-sequences $\mathcal{A}(k), \mathcal{A}\left(I_{0}\right)$ and $\mathcal{A}\left(H_{n}\right)$ split on restriction to $\langle x\rangle$. Hence $\left(k \oplus \Omega^{2} k\right) \downarrow\left\langle{ }_{\langle \rangle} \cong m(k) \downarrow\langle x\rangle \cong H_{2} \downarrow\langle x\rangle \cong m\left(I_{0}\right) \downarrow\langle x\rangle \cong\left(I_{0} \oplus \Omega^{2} I_{0}\right) \downarrow_{\langle x\rangle}\right.$. Thus we get $I_{0} \downarrow\langle x\rangle \cong$ k (mod projectives), $\Omega^{2} I_{0} \downarrow_{\langle x\rangle} \cong k\left(\bmod\right.$ projectives) and $H_{2} \downarrow\langle x\rangle \cong k \oplus k$ (mod projectives). Also $\mathcal{A}\left(H_{2}\right): 0 \rightarrow \Omega^{2} H_{2} \rightarrow H_{3} \oplus \Omega^{2} k \oplus \Omega^{2} I_{0} \rightarrow H_{2} \rightarrow 0$ splits on restrictio to $\langle x\rangle$. So we have $\left(H_{3} \oplus \Omega^{2} k \oplus \Omega^{2} I_{0}\right) \downarrow\langle x\rangle \cong\left(\Omega^{2} H_{2} \oplus H_{2}\right) \downarrow\langle x\rangle$ and $H_{3} \downarrow\langle x\rangle \cong k \oplus k(\bmod$ projectives).

Suppose then that $H_{i} \downarrow\langle x\rangle \cong k \oplus k(\bmod$ projectives $)$ for all i with $2 \leq i \leq n-1$. Since $\mathcal{A}\left(H_{n-1}\right): 0 \rightarrow \Omega^{2} H_{n-1} \rightarrow H_{n} \oplus \Omega^{2} H_{n-2} \rightarrow H_{n-1} \rightarrow 0$ splits on restriction to $\langle x\rangle$, we have $\left(H_{n} \oplus \Omega^{2} H_{n-2}\right) \downarrow\langle x\rangle \cong\left(\Omega^{2} H_{n-1} \oplus H_{n-1}\right) \downarrow\left\langle_{\langle x\rangle}\right.$. This implies that $H_{n} \downarrow\langle x\rangle \cong$ $k \oplus k$ (mod projectives).

Lemma 5.8. Let S be an odd dimensional $k P$-module.
(1) The trivial $k\langle x\rangle$-module k is a direct summand of $S_{\downarrow\langle x\rangle}$ with multiplicity one.
(2) $\quad H_{n}$ is a direct summand of $H_{n} \otimes S \otimes S^{*}$ with multiplicity one for all $n \geq 2$.

Proof. (1) The statement follows from [7, p 73. Lemma II 10.5].
(2) From (1) we have $\left(S \otimes S^{*}\right) \downarrow \downarrow_{x\rangle} \cong k$ (mod projectives). Hence $\left(H_{n} \otimes S \otimes\right.$ $\left.S^{*}\right) \downarrow\langle x\rangle \cong k \oplus k$ (mod projectives) from Lemm 5.7. Thus we have $2 H_{n} \downarrow\langle x\rangle X$ $\left(H_{n} \otimes S \otimes S^{*}\right) \downarrow\langle x\rangle$, which implies the result.

Proof of Proposition 5.6. Let $T: S \underset{\downarrow}{S} S_{2} \leftarrow S_{3} \leftarrow S_{4} \leftarrow \cdots \leftarrow S_{n} \leftarrow \cdots$ be a tree S^{\prime}
in Ξ with $\Xi \cong Z T$. Since $k \otimes S \cong S$ and $I_{0} \otimes S \cong S^{\prime}$, it suffices to show that $H_{n} \otimes S \cong S_{n}(\bmod$ projectives) for all $n \geq 2$. We proceed by induction on n.

From the argument in the proof of Theorem 5.3, we have $H_{2} \otimes S \cong S_{2}(\bmod$ proejctives) and $\Omega^{2} H_{2} \otimes S \cong \Omega^{2} S_{2}$ (mod projectives). Also we have (S_{2}, $\left[\mathcal{A}\left(H_{2}\right) \otimes\right.$ $S])=\left(H_{2} \otimes S,\left[\mathcal{A}\left(H_{2}\right) \otimes S\right]\right)=\left(H_{2} \otimes S \otimes S^{*},\left[\mathcal{A}\left(H_{2}\right)\right]\right)=1$ since the multiplicity of H_{2} in $H_{2} \otimes S \otimes S^{*}$ is one by Lemma 5.8(2). This implies that the tensor sequence $\mathcal{A}\left(H_{2}\right) \otimes S: 0 \rightarrow \Omega^{2} H_{2} \otimes S \rightarrow\left(H_{3} \oplus \Omega^{2} k \oplus \Omega^{2} I_{0}\right) \otimes S \rightarrow H_{2} \otimes S \rightarrow 0$ is the $A R-$ sequence $\mathcal{A}\left(S_{2}\right)$ modulo projectives by Lemma 1.7(1). Thus we get $H_{3} \otimes S \cong S_{3}$
(mod projectives).
Suppose then that $H_{i} \otimes S \cong S_{i}$ (mod projectives) for all i with $2 \leq i \leq n-1$. Using Lemma 5.8(2) again, we have $\left(S_{n-1},\left[\mathcal{A}\left(H_{n-1}\right) \otimes S\right]\right)=\left(H_{n-1} \otimes S \otimes S^{*}\right.$, $\left.\left[\mathcal{A}\left(H_{n-1}\right)\right]\right)=1$. Thus the tensor sequence $\mathcal{A}\left(H_{n-1}\right) \otimes S: 0 \rightarrow \Omega^{2} H_{n-1} \otimes S \rightarrow\left(H_{n} \oplus\right.$ $\left.\Omega^{2} H_{n-2}\right) \otimes S \rightarrow H_{n-1} \otimes S \rightarrow 0$ is the $A R$-sequence $\mathcal{A}\left(S_{n-1}\right)$ modulo projectives. Therefore we get $H_{n} \otimes S \cong S_{n}$ (mod projectives).

Proposition 5.9. Let M be an odd dimensional indecomposable $k G$-module and Θ the connected component containing M. Let Δ_{0} be the connected component containing the trivial $k G$-module k. Then tensoring with M induces a graph isomorphism from Δ_{0} onto Θ.

Proof. Let S be a P-source of M. Let Ξ and Λ_{0} be the connected components of $\Gamma_{s}(k P)$ containing S and k respectively. Then tensoring with S induces a graph isomorphism from Λ_{0} onto Ξ by Proposition 5.6. Using an argument similar to the one in the proof of Proposition 3.1 (use Lemma 5.5 in place of Proposition 2.3), we get the result.

Acknowledgements. The author would like to thank Professor T. Okuyama for his helpful advice. He also wishes to thank the referee for his careful reading the manuscript and many comments.

References

[1] M. Auslander and J.F. Carlson: Almost-split sequences and group rings, J. Algebra 103 (1986), 122-140.
[2] D.J. Benson: Modular Representation Theory: New Trends and Methods, Lecture Notes in Math. 1081, Springer-Verlag, New York/Berlin, 1984.
[3] D.J. Benson and J.F. Carlson: Nilpotent elements in the Green ring, J. Algebra 104 (1985), 329-350.
[4] D.J. Benson and R.A. Parker: The Green ring of a finite group, J. Algebra 87 (1984), 290-331.
[5] C. Bessenrodt: The Auslander-Reiten quiver of a modular group algebra revisited, Math. Z. 206 (1991), 25-34.
[6] C. Bessenrodt: Endotrivial modules and the Auslander-Reiten quiver, in "Representation Theory of Finite Groups and Finite-Dimensional Algebras," Progress in Math. 95, 317-326, Birkhäuser Verlag Basel, 1991.
[7] K. Erdmann: Blocks of Tame Representation Type and Related Algebras, Lecture Notes in Math. 1428, Springer-Verlag, New York/Berlin, 1990.
[8] K. Erdmann: On Auslander-Reiten components for wild blocks, in "Representation Theory of Finite Groups and Finite-Dimensional Algebras," Progress in Math. 95, 371-387, Birkhäuser Verlag Basel, 1991.
[9] K. Erdmann and A. Skowroński: On Auslander-Reiten components of blocks and self-injective biserial algebras, preprint.
[10] W. Feit: The Representation Theory of Finite Groups, North-Holland, Amsterdam, 1982.
[11] P. Gabriel: Auslander-Reiten sequences and representation-finite algebras, Lecture Notes in Math. 831, 1-71, Springer-Verlag, New York/Berlin, 1980.
[12] B. Huppert and N. Blackburn: Finite Groups II, Grundlehren der mathematischen Wissenschaften Bd.242, Springer-Verlag, Berlin Heidelberg New York, 1982.
[13] S. Kawata: Module correspondence in Auslander-Reiten quivers for finite groups, Osaka J. Math. 26 (1989), 671-678.
[14] S. Kawata: The modules induced from a normal subgroup and the Auslander-Reiten quiver, Osaka J. Math. 27 (1990), 265-269.
[15] R. Knörr: Relative projective covers, in "Proceedings Symposium on Modular Representations of Finite Groups, Aarhus University, 1978," 28-32.
[16] P.A. Linnell: The Auslander-Reiten quiver of a finite group, Arch. Math., 45 (1985), 289-295.
[17] T. Okuyama: On the Auslander-Reiten quiver of a finite group, J. Algebra 110 (1987), 425-430.
[18] T. Okuyama: Some use of relative projective covers of modules over a finite group algebra, preprint (1991).
[19] J. Thévenaz: Relative projective covers and almost split sequences, Comm. Algebra 13(7) (1985), 1535-1554.
[20] K. Uno: On the vertices of modules in the Auslander-Reiten quiver, Math. Z. 208 (1991), 411-436.
[21] P.J. Webb: The Auslander-Reiten quiver of a finite group, Math. Z. 179 (1982), 97-121.
[22] A. Wiedemann: Die Auslander-Reiten Köcher der Git'erendlichen Gorensteinordnungen, Bayreuther Math. Schr. 23 (1987), 1-134.

