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Let G be a finite group and k a field of characteristic ^>>0. Let Ts(kG)
be the stable Auslander-Reiten quiver of the group algebra kG. By Webb's the-

orem , the tree class of a connected component Δ of Ts(kG) is a Euclidean dia-
gram, a Dynkin diagram or one of the infinite trees A*, B^, CU, Λ», or AS.

Moreover if Δ contains the trivial AG-module k, then the graph structure of

Δ has been investigated (see [21], [16] and [17]). In this paper we study a
connected component of Ts(kG) containing an indecomposable &G-module

whose ^-dimension is not divisible by^>. Suppose that M is an indecomposable

&G-module and pJfdimkM. In Section 2, we will show that M lies in a con-

nected component isomorphic to ZA^ if k is algebraically closed and a Sylow

/>-subgroup of G is not cyclic, dihedral, semidihedral or generalized quaternion.

In Section 3 we make some remarks on tensoring the component containing the

trivial &G-module k with M. In Sections 4 and 5 we consider the situation
where p=2 and a Sylow 2-gubgroup of G is dihedral of order at least 8 or semidi-
hedral.

The notation is almost standard. All modules considered here are finite

dimensional over k. We write W^ W (mod projectives) for ΛG-modules W
and W if the projective-free part of W is isomorphic to that of W. For an

indecomposable non-projective AG-module W, we write <Jl(W) to denote the

Auslander-Reiten sequence (^4jf?-sequence) 0—»Ω2PF—>m(W)—»PF—>0 termi-

nating at W, where Ω is the Heller operator, and we write m(W) to denote the
middle term of <Jl(W). If an exact sequence of &G-modules <5 is of the form

Q-*Ω2W®U'-*m(W)®U®U'-*W®U->0, where W is an indecomposable

non-projective &G-module, and U9U' are proejctive or 0, we say that <5 is the
AR-sequecne <Jl(W) modulo projectives. The symbol ® denotes the tensor

product over the coefficient field k. For an exact sequence of ΛG-modules

<5: 0-»^4->J5->C->0 and a &G-module W, we write <S®W to denote the tensor

sequence Q^A®W-*B®W-+C®W-+Q. Concerning some basic facts and

terminologies used here, we refer to [2], [10] and [11].
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1. Preliminaries

We start by summarizing results on the graph structure of connected com-
ponents of Ts(kG).

Theorem 1.1 ([21], [17], [5], [9]). Let Δ be a connected component
of Ts(kG). Then the tree class of Δ is An, Al>2, B3, A*, B<», C«>, D*> or A~.
If k is algebraically closed, then the tree class is not B3, B^ or C<*. Moreover if
the tree class or the reduced graph of Δ is Euclidean, then the modules in Δ lie in a
block whose defect group is a Klein four group.

Theorem 1.2 ([21], [16], [17], [7]). Let Δ0 be the connected component
containing the trivial kG-module k, and let P be a Sylow p-subgroup of G. Then;

(1) If P is not cyclic, dihedral, semidihedral or generalized quaternion, then
Δo^ZAoo and k lies at the end of Δ0

(2) If Pis a dihedral 2-group of order at least 8, then Δ^ZA~.
(3) If P is a semidihedral 2-group, then Δ^ZD^ and k lies at the end of Δ0

(4) If P is a generalized quaternion 2-group, then Δ0 is a 2-tube.

We will need the following result on tensoring the AR-sequence by Aus-
lander and Carlson [1].

Theorem 1.3 ([1], see also [3]). Assume that k is algebraically closed. Let
Jl(k): Q-^Ω?k-+m(k)-*k->Q be the AR-sequence terminating at the trivial kG-module
k. Let M be an indecomposable kG-module. Then the tensor sequence <JL(k)®M:
O^Ω2&®M-»w(&)®M->M-»0 has the following properties.

(i) If PX'dim^M, the tensor sequence Jl(k)®M is the AR-sequence Jl(M)
modulo projectiles.

(ii) If p I dim^M, then the tensor sequence <Λ(k)ξ§M is split.

Concerning tensor products, we will also need the following result by Ben-
son and Carlson [3].

Theorem 1.4([3], see also [1]). Assume that k is algebraically closed. Let
M and N be indecomposable kG-modules. Then;

(1) The following are equivalent.
(a) k\M®N.
(b) p X dim*M and ΛfβM*. Here M*=Hom*(M, k) is the dual of M.

Moreover if pJCdimkM, then the multiplicity of k in M®M* is one.
(2) Suppose that p \ dim^M. Then for arty indecomposable direct summand

U of M0N, we have p \ dimk U.

As an immediate consequence of Theorem 1.3, we have;

Lemma 1.5. Assume that k is algebraically closed. Let M be an indecom-
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posable kG-module with p X dimkM and JL(M): Q-*Ω2M-+m(M)-*M-*Q be the
AR-sequence terminating at M. Let W be a kG-module, and let M®W=
(®f Mf )φ(0j. -/Vy)®?/, where Mi and N. are non-projective indecomposable kG-
modules (possibly 0) such that p X dim^M,- and p \ dim^Λ/^ and U is projective or 0.
Then the tensor sequence Jί(M}®W: Q^Ω2M®W-+m(M}®W-*M®W^ is
a direct sum Φ, ̂ ?(M,.) of the AR-sequences Jl(M?) plus a split sequence 0-»
(ΦyΩW;OΦί7/^(φ.ΩW.)Φ(Φ;.ΛΓ.)φZ7φt/'->(φyΛΓy)φC/->0, where U and
Ur are projective or 0.

Let ( , ) denote the inner product of the Green ring a(kG) induced from
dimΛHom( , ) (see [4]). For an exact sequence of ΛG-modlules cS: Q-*A-+B
-^e->0, let [S]Ga(kG) be the element [S]=B—A—C. Using the results of
Benson and Parker [4, Section 3], we have the following two lemmas.

Lemma 1.6. Assume that k is an algebraically closed field. Let M be a
non-projective indecomposable kG-module and H a subgroup of G. Suppose that
exactly n non-isomorphίc indecomposable kH-modules L{ (i=l, 2, ••-, n) satisfy
M\Li\

G. Let tf be the multiplicity of M in LJG. Then [JL(M)\H] =
2f-ιί f [<-Λ(i, )] as elements of the Green ring a(kH). (n may be zero, and in this
case, the right hand side of the above is understood to be zero.) In particular we
have;

(1) Let Q be a vertex of M and S a Q-source of M. Let N=NG(Q) and
T= {g(=N\Sg^S} . Let t be the multiplicity of M in SfG. Then [JL(M)),Q]=

(2) ([14, Lemma 2.3]) Suppose that H is a normal subgroup of G and M is
H-projective. Let S be an H-source of M. Let T= {g<=G\Sg^S} and t the multi-
plicity of M in S\G. Then [Jί(M)lH]=t(ΣgGG/τ[^(Sg)]).

(3) ([2, Proposition 2.17.10]) The AR-sequence JL(M) splits on restriction
to H if and only if M is not H-projective.

Proof. By [4, Theorem 3.4], it suffices to show that (V, [JL(M)\H}—
Σ?=ι^[c^?(Lί)])=Ofor any indecomposable /^//-module V. Using the Frobenius
reciprocity, we have (V, \JL(M)\tt} -Si-if^L,)]) - (V, [JL(M)\H}}-(V,
S7-ιf,[oϊ(£,)])=(nG, M(M)])-Σ?=ιί,<F, M(L,.)]) Now M| V\G if and only
if V is isomorphic to some L^ Since k is algeblaically closed, we have (V\G,
Mpf)])==f, in this case, and hence (V, [Jί(M)^]— Σ?.ιίί[cJϊ(Lί)])=0 as de-
sired.

Lemma 1.7. Let M be a non-projective indecomposable kG-module. Let
G: 0->Ω2M-» -̂>M->0 be an exact sqeuence. Then;

(1) 6 is the AR-sequence Jl(M) if and only if (M,[β])=dM. Here dM=

(2) 6 is the AR-sequence Jl(M) if and only if 6 does not split and (m(M),
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Proof. (1) Suppose that 8 is the AR-sequence. Then by [2, 2.18.4 Theo-
rem] we have (M, [<?])— dM. To show the converse assume by way of contra-

diction that (My [<5])=dM but S is not the AR-sequence Jl(M}. Now the exact
sequence 8 does not split since (M, [<?])>0. Letting JL(M): 0->Ω2M->m(M)
-*M->0 be the AΛ-sequence terminating at M, we have the following commu-

tative diagram.

0-*Ω2M-^ X -^M->0

I I II

Since the left-hand square is a pushout diagram, we get an exact sequence

<?': 0->Ω2M-*X®Ω2M-+m(M)-+Q. Since 5 is not the AΛ-sequence Jl(M),
6' does not split: if 8' is a split sequence, then X is isomorphic to m(M) but
this implies that 8 is the AjR-sequence «^?(M), a contradiction. Thus we also

have the following commutative diagram.

m(M) -* M ^0

II I I
0 -> Ω2M -> JT ΘΛ2Af -> m(M) -* 0

Since the right-hand square is a pullback diagram, we get an exact sequence
8": Q-*m(M)->X®a2M®M-^m(M)^0. Thus we get [8}=[JL(M)}+[8'] =

Hence we have (M, [£])=(M, [J[(Λf)] + [oί(M)] +
, a contradiction.

(2) Suppose that 6 is the AjR-sequence. Then by [2, 2.18.4 Theorem] we
have (m(M)y [<?])— 0 since M/^T^M). Conversely suppose that (? does not split
and (ιιι(M), [<SΓ|)=0. Let [<?'] be as in the proof of (1). Since [8] = [Jί(M)}
+ [8'} and (m(M), [£])=0, it follows that (ιw(Λf), [<?']) =0, which implies that
(?' splits. Thus J? is isomorphic to m(M)y and hence <? is the AR-sequence

JL(M).

REMARK. If k is algebraically closed, then dM=\ for any indecomposable
ΛG-module M.

The following two lemmas are useful for our investigation.

Lemma 1.8. Let Δ be a connected component of ΓS(&G). Suppose that the
tree class of Δ is A**. Let T: Ml^-M2< ---- *-Mn< ---- be a tree in Δ such that

or some admissible group of automorphisms Π £Ξ Aut ZT. Then dimΛMn

(mod p) for alln>\.

Proof. We proceed by induction on n. Clearly dim^Mj^l xdim^Mj and
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l (modp). Since the AR-sequence ^(M^ is of the form
0->Ω?M1->M2φ U-^M1->0J where U is projective or 0, we have dimΛM2=
2(dimkM1) (mod^).

Suppose then that dim* Mi = dim* Ω2Mi = i(dιmk Mλ) (modp) for all i with
1 <ί<,n— 1. Now we have the Aβ-sequence JL(Mn-^: Q-+Ω2MΛ-ί-*Ω2MΛ-2®
MtQU-^Mt-i-^Q, where U is projective or 0. Therefore dimAMn = dimjfeMn-1

+ dim* Ω2Mn _x — dim* Ω2Mn _2 ΞΞ n(dimk Mλ) (mod p) .

Lemma 1.9. Let Θ be a connected component of Ts(kG).
(1) If the tree class of Θ is A^y then dim^MΞdim^M' (mod p) for all in-

decomposable kG-modules M and M' in Θ.
(2) Suppose that the tree class of Θ is Zλo . Let T : M*-M2^M3< ---- <-Mw < ----

I
M'

be a tree in Θ with Θ^ZΓ. Then dim*M=dim*M' (modp) and dimAMM =
2(dim*M) (mod p) for all n>2.

Proof. Let x be an element of G of order p and let H= <V>. Then
the group algebra kH has only p non-isomorphic indecomposable modules,

say Vι,V2> " >Vp-ι and Vp> where dim^ Vt— t (\<t<p) and Vp is projective.
For a &G-module M, let a(t, M} be the multiplicity of Vt in M\E.

(1) We show that a(t, M)—a(t9 M') for any indecomposable ΛG-modules
M and M' in Θ and 1 <t <p— 1. Let Λ, be the smallest integer in {a(t, Λί) | M e
Θ} and let Mj be a ΛG-module in Θ such that a(t, M1)=at. Let Γ: ---- >IΓn

-> ---- >W2-^M1^-M2^-M3< ---- ^-Mn< ---- be a tree in Θ such that Θ^ZΓ/Π for
some admissible group of automorphisms Πc: Aut ZT. Then we have the AR-

sequence JL(M^ 0->Ω2M1-^ίF2φM20ί7-^M1-^0, where U is projective or 0.
Since the connected component containing Ml is not a tube, Mx is not periodic
and in particular M1 is not /ί-projective. Thus Jl(M^) splits on restriction to

H by Lemma 1.6(3) and it follows that W2^H®M2^H®UIH^M11H®ΩI

2M11H.
This implies that a(t, W2)+a(t, M2)=at+a(t, Ω2M^ Since a(t, W2)>at, a(t, M2)
>at and a(ty Ω?Ml)=at, we have a(t, W2)=a(t, M2)=at. Proceeding inductively,
we obtain a(t, Mn)=a(t, Wn)=at for all n>2 and all t with \<t<ρ— 1. Thus
the result follows.

(2) Since the tree class of Θ is Z)«>, all indecomposable modules in Θ are
not /f-projective. Hence for any indecomposable &G-module M in Θ, the AR-
sequence <JL(M) splits on restriction to H by Lemma 1.6(3). We have the AR-
sequences JL(M)ι 0-^Ω2M->M20[/->M-^0 and JL(M'): 0->Ω2M/-^M20C//

->M'->0, where U and U' are projective or 0. Since both JL(M) and Jl(Mr)
split on restriction to H, we have Ω2M^B®ΛHss^M2^a®U^a and Ω2M'|H0
M'lff^Ma^eZ/'^. Thus we get a(t, M2)=2a(t, M)=2a(t, M') for \<t<
p-L
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Next we show that a(t, Mn)=a(ty M2)=2a(t, M) for l<t<p— 1 and all
n>2 by indiction on n. We have the AR-sequence Jl(M2): 0->Ω2M2-*M30
Ω2M0Ω2M/0C/2->M2-^0, where U2 is projective or 0. Since JL(M2) splits on

restriction to H, we get a(t, M3)=a(f, M2)+α(ί, Ω2M2)—α(f, Ω2M)—β(ί, Ω2M')=
α(ί, Λf2) for !<*<£—1. Suppose then that α(ί, Λf,)=α(f, Af2) for all / with 2<
i<n-\. We have the ̂ -sequence ̂ (M^): 0->Ω2Mn_1-^Ω2MM_2eMΛ0t7"
->Λf „_!->(), where U" is projective or 0. As <Λ(Mn-^ splits on restriction to

#, we get tf(ί,MJ=α(*,Mw_θHX*>Ω2MM_0-tf(^^ for \<t<
p—1. Hence the result follows.

In the rest of this section, we consider the following situation.

(*) Assume that k is an algebraically closed field of characteristic ^>>0
and a Sylow ̂ -subgroup P of G is normal. Let Ξ be a connected component of
Ts(kP). Assume that every module in B is G-invariant. Assume furthermore
that 3 is not a tube and every arrow in B is multiplicity free. Let S be an
indecomposable fcP-module in B and M an indecomposable &G-module having
S as a P-source. Let Θ be the connected component of Ts(kG) containing M.

REMARK. The assumption (*) implies that P is not a Klein four group

and B is isomorphic to Z!/4L, Z7X, or Z14Ξ.

Lemma 1.10. Assume (*). Then all the P-sources of the indecomposable
modules in Θ lie in B.

Proof. Let W be an indecomposable &G-module in Θ. Then there is a
sequence of indecomposable &G-modules M— Mly M2, •••, Mn = W such that
Mf and Mi+l are connected by an irreducible map (l<i<n— 1). We proceed
by induction on n.

By the assumption, a P-source S of M—M4 lies in B. Suppose then that a
P-source Sn^ of M^ lies in B. Now ΛfJ m(Mn^) or MM | w '̂M,̂ ),
where m(Mn-l) (resp. m(Ω"2Mn-1)) is the middle term of the AR-sequence

Jl(Mn-ύ (resp. JL(Ωr2Mn-J). BY Lemma 1.6 (2), we have [JL(Mn^\P}=

t[JL(Sn^)] and [cjϊ(Ω"2Mίl.1)IJ = ίM(Ω"2S«-ι)]> where ί is the multiplicity of
Mw _ j in Sn -if6. This implies that a P-source of MM = W lies in B.

For an indecomposable &G-module W in Θ, let φW be a (unique) P-
source of PF. The following fact is an immediate consequence of the result of
Uno[20, Section 3].

Lemma 1.11. Assume (*). Then φ induces a graph isomorphism from

Θ onto B.

Proof. By [20, Theorem 3.5], the multiplicity of S in M\P is equal to
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that of M in S]G. From Lemma 1.10 and [20, Theorem 3,7], we get the result.

2. ZA -Components

In this section we consider a connected component of Ts(kG) containing an

indecomposable AG-module whose ^-dimension is not divisible by p under the
following hypothesis:

(#) k is an algebraically closed field of characteristic p>0 and a Sylow

^-subgroup P of G is not cyclic, dihedral, semidihedral or generalized quater-
nion.

Theorem 2.1. Assume (#). Suppose that Θ is a connected component
of T$(kG) and Θ contains an indecomposable kG-module whose k-dimension is

not divisible by p. Then Θ is isomorphic to ZA<*>.

Proof. The tree class of Θ is A*,, Zλ. or A~ by Theorem 1.1.

Step 1. The tree class of Θ is not A".

Proof. We shall derive a contradiction assuming that the tree class of Θ is
A~. Let T: •••^Wn^ ^W2^Ml<^M2*-Mz<- ^-Mn*- be a tree in Θ

with Θ^ZT. Note that p X dim* M, p X dim* M„ and p X dim* Wn for all n> 2

from Lemma 1.9(1). On the other hand the connected component Δ0 containing

k is isomorphic to ZA^ by Theorem 1.2. Let T0: k=Lι<^L2< <-Lw<- be

a tree in Δ0 with ΔQ^ZTQ. Let JL(k): 0->Ω2&->L20t/^&->0 be the AR-

sequence terminating at k, where U is projective or 0. Then the tensor se-
quence JL(k)®M: ΰ->Ω2k®M-+(L2ξ&U)®M-+M-*Q is the AR-sequence

Jl(M] modulo projectives by Theorem 1.3. Hence it follows that L2®M^M2

(&W2 (mod projectives).

In case p=2, this is a contradiction, since 2|dim*L2 by Lemma 1.8 and

thus L2®M does not have any odd dimensional indecomposable direct sum-

mand from Theorem 1.4(2).

In case p>2, applying Lemma 1.5, we have the tensor sequence <Jl(L2)(g)M:
0^fl2L2®M-^(Ω2A0L3)(g)M-^L2(g)M-»0, which is a direct sum Jl(M2)®

Jl( W2) modulo projectives, as p X dim*L2, p X dim* M2 and p X dim* W2. Hence

we have L3®M = M3Q)W3Q)Ω,2M (mod projectives). Repeating this argument

until n=p, we have Jl(Ln- ̂ ®M is a direct sum of the A/?-sequences modulo

projectives and MnφWn \Ln®M for n<p. In particular we obtain Mp@Wp\Lp

®M. But this is also a contradiction, since ^Idim*!/^ from Lemma 1.8 and
thus Lp®M has no indecomposable direct summand whose ^-dimension is not

divisible by p from Theorem 1.4(2).
Step 2. The tree class of Θ is not Zλo.

Proof. Assume contrary that the tree class of Θ is Zλo. Let
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T: M*-M2+-M3<- -^-Mn«-• be a tree in Θ with ΘeZT.
I

W

Note that p X dimk M and p X dim* W from Lemma 1.9(2). Let JL(k): 0->Ω?k
-+m(k)-+k-*>0 be the A/2-sequence terminating at k. By Theorem 1.3 the tensor

sequences Jl(k}®M and Jl(K)®W are the A/?-sequences Jl(M] modulo pro-

jectives and Jl(W} modulo projectives respectively. Hence we have M2^

m(k)®M^m(k)®W(mod projectives). Thus m(k)®M®M*s*m(k)®W®M*
(mod projectives). Note that m(k)®M®M* and m(K)® W®M* are the middle
terms of the tensor sequences <Λ(k)®M®M* and <Λ(k)®W®M* respec-

tively.

Let M®M*=Λ0(0ί 1 )̂0(0,. LJ)0ΛΓ, where Lf is an indecomposable
&G-module lying in Δ0 such that p X'dim^L, and LJ is an indecomposable kG-

module lying in Δ0 such that p \ dimft LJ and N has no indecomposable direct
summand lying in Δ0. Since the multiplicity of k in M®M* is one, L, is not
isomorphic to k. By Lemma 1.5, we have m(K)®M®M*^m(k)®(@i ro(L,))0
(Φy(Ω2L<®Z,y))0ΛΓ' for some &G-module N'. Note that N' does not have any
indecomposable direct summand lying in Δ0. Therefore the number of inde-

composable direct summands of m(K)®M®M* lying in Δ0 is odd. On the
other hand k is not a direct summand of W®M*. Therefore the number of
indecomposable direct summands of m(k)®W®M* lying in Δ0 is even, a con-
tradiction.

By Steps 1 and 2, the tree class of Θ is A**. Since a Sylow ^-subgroup P
of G is not generalized quaternion, indecomposable &G-modules whose ^-di-

mension is not divisible by p are not periodic. Hence Θ is isomorphic to ZA*>.

Lemma 2.2. Assume (#). Suppose that Θ is a connected component of
Ts(kG) and Θ contains an indecomposable kG-module whose k-dimension is not
divisible by p. Then all modules in Θ have the same vertex P.

Proof. By Theorem 2.1, Θ is isomorphic to ZA^. Let Ml be an in-
decomposable &G-module lying at the end of Θ. Then Lemma 1.8 implies that
^/fdiiϊijΛ/Ί. Hence a Sylow ^-subgroup P of G is a vertex of Mλ and the result
follows from [20, Theorem 4.3].

Let M be an indecomposable ΛG-module having a Sylow ^-subgroup P
of G as vertex, and let S be a P-source of M. Then p X^dim^M if and only if
^/fdinifcS from [3, Proposition 2.4].

Proposition 2.3. Assume ($). Suppose that Θ is a connected component of
Ts(kG} containing an indecomposable kG-module whose k-dimension is not divisible
by p, and let T: M1<-M2< *-Mn< be a tree in Θ with Θ^ZT. Let S1 be a
P-source of Mλ and B the connected component of Γs(fcP) containing Sλ. Then we
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have P-source Sn of Mn (n>\] and a tree T': *V-S2<- • <-5f

n<— •• with

Proof. Lemma 1.8 implies that ^/fdim^Mi, and thus by the remark pre-
ceding Proposition 2.3 we have p^dimkS^ Hence both Θ and B are iso-
morphic to ZAo* by Theorem 2.1.

Step 1. We may assume that P is a normal subgroup of G.
Proof. Let N=NG(P) and / the Green correspondence with respect to (G,

P, N). Let Θ' be the connected component of Ts(kN) containing fM. Since
p^dimkfMly Θ' is isomorphic to ZA^ and all modules in Θ' have the same
vertex P by Theorem 2.1 and Lemma 2.2. Therefore / induces a graph isomor-
phism between Θ and Θ' by [13, Theorem].

Step 2. We may assume that every module in B is G-invariant.
Proof. Let H={g<=G\ Wg^B for all W^B} be the inertia group of B.

Since B=ZΆo, H acts on B trivially. Hence H is the inertia group of Sλ and
all modules in B are //-invariant.

Suppose that Sί^
H=Rlξ&R2(& ®Rn is an indecomposable direct sum de-

composition such that JE?1f
G=M1(Note that each R^G is indecomposable by

[12, VII. 9.6 Theorem]). Let Θ" be the connected component of Ts(kH)
containing Rlm Then the inducing from H to G gives a graph isomorphism from

Θ" onto Θ by [14, Theorem].
Now we may assume that P is normal and every module in B is G-invariant.

Hence we can apply Lemma 1.11 and the conclusion holds.

As an immediate consequence of Proposition 2.3, we have;

Corollary 2.4. Assume (#). Let M be an indecomposable kG-module
whose k-dimension is not divisible by p, and let S be a P -source of M. Then M
lies at the end of a ZA^-component if and only if S lies at the end of a ZA<»-
component.

In the rest of this section, we give examples of indecomposable &G-modu-
les lying at the end of a ZΆo-component.

Lemma 2.5. Suppose that Θ is a connected component isomorphic to
Let T: Ml^-M2< ---- +-Mn< ---- be a tree in Θ with Θ^ZT. Suppose that all
modules in Θ have the same vertex P. Let Q be a proper subgroup of P} and let N
be the projective-free part of M^Q. Then Mn\Q= ΦϊlJίPΛΓ (mod projectives) for
alln>ί.

Proof. We proceed by induction on n. Clearly Ml\Q=N (mod projec-
tives) and fϊ2M1JQ=ΩW (mod projectives). Now the AR-sequence JL(M^ is of
the form 0-^Ω,2M1^M2®U->M1-^0, where U is projective or 0. Since Jί(M^
splits on restriction to Q by Lemma 1.6(3), we have M2|0=0}.0Ω

2W (mod pro-
jectives).
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Suppose then that Mi]fQ=®i

t~lΏ?tN (mod projectives) for all i with \<i<

n-l. We have the ^Λ-seqeunce JL(Mn.^\ 0->Ω,2Mn-l-*Mn®Ω?Mn-2®U-*
MΛ_1->0, where (7 is projective or 0. Since c^ϊ(Mn_1) splits on restriction to Q
by Lemma 1.6(3), we have (MΛφΩ2Mn_20C/)|Q^MΛ_1|Q0Ω2Mn_1|0. This
implies that MMjρ=®ϊlίΩ2W (mod projectives).

From Theorem 2.1 and Lemmas 2.2 and 2.5, we have;

Lemma 2.6. Assume (#). Let Q be a proper subgroup of P. Let M be an
indecomposable kG-module whose k-dίmensίon is not divisible by p. Suppose that
ΛΓφΩW X M\fQ and N@Ωr2NJfM\Q for some non-projecΐive indecomposable
direct summand N of MJ,Q. Then M lies at the end of a ZA^-component.

Corollary 2.7. Assume (#). Let M be an indecomposable kG-module with
vertex P and S a P-source of M.

(1) Suppose that p is odd and dim* 5=2. Then M lies at the end of a ZA«>-
component.

(2) Suppose that p=£3 and dimkS=3. Then M lies at the end of a ZA«>-
component.

(3) Suppose that £Φ5 and dim*S= 5. Then M lies at the end of a ZA~-
component.

Proof. There exists an element x of P such that x does not act on S tri-
vially. Let Q—(xy. Then S\Q satisfies the assumption in Lemma 2.6.
Therefore S lies at the end of a Z]/4oo-comρonent, and M lies at the end of a
ZA«> -component by Corollary 2.4.

REMARK. In [8], Erdmann proved that there are infinitely many kP-
modules of dimension 2 or 3 lying at the ends of ZA^ -components under the
hypothesis (#) ([8, Propositions 4.2 and 4.4]). Consequently she showed that
for a block B over an algebraically closed field, the stable Auslander-Reiten
quiver T*S(B) has infinitely many components isomorphic to ZA^ if a defect
group of B is not cyclic, dihedral, semidihedral or generalized quaternion ([8,
Theorem 5.1]).

3. Remarks on Tensoring with a Certain Module

Suppose that M is an indecomposable &G-module such that ^/fdim^M,
and let Θ be the connected component of Ts(kG) containing M. Let Δ0 be
the connected component of Ts(kG) containing the trivial &G-module k. In this
section we consider tensoring modules in Δ0 with M under the same hypothe-
sis as in Section 2:

k is an algebraically closed field of characteristic ^>>0 and a Sylow
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^-subgroup P of G is not cyclic, dihedral, semidihedral or generalized quater-
nion.

Thus both Θ and Δ0 are isomorphic to ZA«> by Theorem 2.1. We fix some

notation: TQ: k=L1<^-L2*-L3+- <^-Ln<- is a tree in Δ0 with Δ0^2ΓΓ0.

Proposition 3.1. Assume (#). Suppose that M is an indecomposable kG-

module such that pjf άimkM and M lies at the end of its component Θ. Let

S be a P-source of M. Let B and Λ0 be the connected components of Ts(kP) con-

taining S and the trivial kP-module k respectively. Then tensorίng with M induces

a graph isomorphism from Δ0 onto θ if and only if tensoring with S induces a
graph isomorphism from Λ0 onto Ξ.

REMARK. The assumption in Proposition 3.1 implise that both Λ0 and Ξ

are isomorphic to ZA^ and S lies at the end of H by Theorem 2.1 and Corol-

lary 2.4.

Proof of Proposition 3.1. Let T: M=M1*-M2< *-Mn< be a tree in

θ with Θ^ZT. Then we have P-sources Sn of Mn (n>\) and a tree T': S=
Sl«-S2«— *-SΛ+-. with S«ZΓ' by Proposition 2.3. Let T"\ k=Hl+-H2+-

#3<- - *-Hn<- be a tree in Λ0 with Λ0^ ZT".

Suppose that the tensoring with Sλ induces a graph isomorphism from Λ0

onto H. This means that Hn®S^Sn (mod projectives) and <Jί(Hn)®S1 is the
AR-sequence <JL(Sn) modulo projectives for n>l. We show that Ln®M^Mn

(mod projectives) for all n>\ by induction on n. Clearly L1®Ml=k®Ml^M1.

By Theorem 1.3, JL(k)®Ml is the AR-sequence Jί(M^) modulo projectives.
Hence L2®M^M2 (mod projectives). Suppose then that Li®Ml^Mi (mod

projectives) for all /with l<i<n— 1. We claim that <Λ(LH,ί)®Ml is the AR-
sequence «^?(Mrt_1) modulo projectives: Since LΛ_1|I<n_1(g)M1®Mf by Theo-

rem 1.4, we have OΦίL^φM^M?, [oϊ(L.-1)])=(Lll.1®M1, [^(L.-OΘMJ).
This implies that <Jί(Ln-1)®Ml does not split. Thus in order to show that
^Jί(Ln^1)®Ml is the -472-sequence Jl(Mn- ^) modulo projectives, it is enough to

show that (w(Mn_1), [<J,(Ln^1)®Ml])=0 by Lemma 1.7(2). From Proposition

2.3, we have m(Mn.1) \ m(Sn.^
G and Mλ \ SJG. Thus it follows that (m(Sn-MG,

Now we have (m(Sn^
G,

) from the Frobenius reci-

procity. By the Mackey decomposition theorem, we have (SΛG)lP=ξ&g(Ξp\G/p

(*SίJ,Pnp*)tP Since [c-Λ(ίf«-ι)ip] = M(fiΓ«-ι)] as elements of the Green ring
a(kP) by Lemma 1.6(1), we get [JL(Ln.1^P®(S^G)lP]=^geN&(P)/P[Jl(S^l)]
by our assumption. Since 5f_ι/|/m(*Sn_1) for any g in ΛΓG(P), we get (m(Sn- ΐ),

M(L.-1)iP®(51t
c)ip]) = 0. Thus we obtain (m(Mu^\ [oϊ(L.-1)®MJ) = 0

as desired. Therefore JL(LΛ^®M^ 0->Ω2LΛ_1®M1->(Ω2L^2eLM)(g)M1->

is the ^IR-sequence <_Λ(Mn^1) modulo projectives. This implies
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that Ln®M^Mn (mod projectives).

Conversely suppose that the tensoring with Ml induces a graph isomorphism

from Δ0 onto Θ. We show that /^(gjS^S,, (mod projectives) for all n>\ by

induction on n. Clearly H1®S1=k®S1^S1. By Theorem 1.3, <Jl(k)®S1 is

the AR-seqeunce Jl(S^) modulo projectives. Hence H2®S1^S2 (mod projec-

tives). Suppose then that Hi®Sl^Si (mod projectives) for all i with !</<

n— 1. We claim that <_A(Hn-l)®S1 is the AR-sequence <Λ(Sn^ modulo pro-

jectives: Since Hn^.1®S1^Sn^1 (mod projectives) and Ω2Jϊίl-1®S1«Ω2*Sn_1

(mod projectives), it is enough to show that (m(Sn-1)9 [<Jl(Hn-.1)®S^\)=Q by
Lemma 1.7(2). From Lemma 1.6(1), we have m(Sn.l)\m(Mn,1)]fP9 S^M^p

and M^n-^-MίL^OIp]. Hence it follows that (m(Sn.,)y [Jl(LM^P®

(M1|P)])>(m(SΛ_1), [Jl(Hn-1)®S1])>Q. Using the Frobenius reciprocity, we

have M^-0, [Jί(Ln-l^P®(M1lP)])=(m(Sn.^
G

J [Jί(LJI-1)®MJ)=(ιιι(Sli-1)tG,
[JL(Mn^)}\ which is zero since m(Sn^=Sn@Ω?Sn.2 yields Mn_1/j

/m(5 f

M_1)fG.

This implies that (m(SH^)9 [Jl(Hn^1)®Sl])=G as desired. Therefore Jl(Hn-ύ

: Q^Ω?Hn-l®Sl^(Ω?HH-2®HJ®Sί^Hn-l®Sl-+Q is the AΛ-sequence

»-ι) modulo projectives. This implies that Hn®Sl^SH (mod projectives).

Corollary 3.2. L ί̂ M be a trivial source module with vertex P. Let Θ be
the connected component of Ts(kG) containing M. Then Θ is isomorphic to ZA^

and M lies at the end of Θ. Moreover tensoring with M induces a graph isomor-

phism from ΔO onto Θ.

Proof. Proposition 2.3 and Corollary 2.4 imply that Θ is isomorphic to

ZAn and M lies at the end of Θ. The second statement follows by Proposition

3.1.

In the following, we give some conditions each of which implies that tensor-

ing an indecomposable &G-module M induces a graph isomorphism from Δ0

onto a component isomorphic to ZA«>.

Proposition 3.3. Assume (#). Let M be an indecomposable kG-module
such that p X dimΛ M, and let Θ be the connected component of Ts(kG) contain-

ing M. Let Q be a proper subgroup of P. Suppose that M satisfies the following

conditions (with respect to Q).

(1) TAe trivial kQ-module k is a direct summand of (M®M*}\Q with multiplicity
one;

(2) // Q is generalized quaternion, then Ω,2k^(M®M^)^Q.

Then tensoring with M induces a graph isomorphism from Δ0 onto Θ.

REMARK, (i) From Theorem 1.4, the above condition (1) is equivalent to

the following condition:
(!') We have an indecomposable direct sum decomposition N®(®tWt) of
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M\ Q, where p X dim* N and p \ dim* Wt for all t.
(ii) Θ is isomorphic to Z^oo by Theorem 2.1. Moreover Λf lies at the

end of Θ by Lemma 2.6.

In ordre to prove Proposition 3.3, we need the following.

Lemma 3.4. Under the same assumption as in Proposition 3.3, Ln is a
direct summand of Ln®M®M* with multiplicity one for all n>l.

Proof. Note that Ln is a direct summand of Ln®M®M* since k \ M®M*.
From Lemma 2.5, we have LnlQ= ®ϊ~$Ω2tk (mod projectives). Since the multi-
plicity of k in (M®M*)\Q is one (and Ω2k is not a direct summand of (M®

Λf*)Jρ if Q is generalized quaternion), it follows that 2(0JljΩ2'Λ)/j
/(LM<g)M®

M*) JQ. This implies that the multiplicity of Lw in Ln®M®M* is one.

Proof of Proposition 3.3. Let T: M=M1+-M2*-M3<- +-Mn*—' be a

tree in Θ with Θ^ZT. We show that Ln®M^Mn (mod proejctives) for all

n>\ by induction on w.

Clearly Z1(g)Λί=*<g)M1^Λf1. Let <jZ(Λ):'θ^Ω2^Zr20^Λ-*0 be the
AR-sequence terminating at &, where U is projective or 0. Then the tensor
sequence Jl(k)®M is the AR-sequence <A(M) modulo projectives by Theorem
1.3. Hence L2®M^M2 (mod projectives).

Suppose then that L{®M^Mf (mod projectives) for all /with l<z</&—1.
We claim that <Jl(Ln-^)®M is the AR-sequence <JH(Mn- ^ modulo projectives:

By lemma 1.7(1), it suffices to show that (Mn.ly [0?(Zrll-1)(g)M])=l. Since Ln^
is a direct summand of L^^M^M* with multiplicity one by Lemma 3.4,

we have (M ,̂ M(LΛ-1)®M])-:(Λn_1®M, [Jl(LΛ-l)®M])=(LΛ-l®M®M*,
[JL(Ln^}]) =-\ as desired.

Now Jl(Ln^)®M: Q^Ω2Ln-l®M^(Ω2Ln-2®LΛ®U')®M^LΛ-l®M-+Q
is the ^47?-sequence <A(Mn-^) modulo projectives, where U' is projective or 0.
Thus we get Ln®M^Mn (mod projectives).

Corollary 3.5. (1) Suppose that p is odd. Let M be an indecomposable

kG-module with vertex P and S a P-source of M. Suppose that dimk S=2. Then
tensoring with M induces a graph isomorphism from ΔQ onto the connected com-
ponent containing M.

(2) Suppose that p=2. Let M be an indecomposable kG-module with ver-
tex P and S a P-source of M. Suppose that dimkS=3. Then tensoring with M
induces a graph isomorphism from Δ0 onto the connected component containing M.

Proof. The result follows from Corollary 2.7 and Propositions 3.1 and
3.3.

Proposition 3.6. Assume (#). Let M be an indecomposable kG-module
with pXdΛmkMy and let Θ be the connected component containing M. Suppose
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that M satisfies the following conditions.
(1) M lies at the end of Θ.

(2) Af®M*e*fc0(0f Wt), where each Wt is indecomposable andp\dimkWt.
Then tensoring with M induces a graph isomorphism from Δ0 onto Θ.

In order to prove Proposition 3.6, we need the following.

Lemma 3.7([22, p. 16, Konstruktionslemma]). Let M and N be non-
projective indecomposable kG-modules and

<?:0->Ω2M M->0

an exact sequence. Suppose that a: Ω2M—>ΛΓ and β: N-+M are irreducible maps
and NJf N'. Then 6 is the AR-sequence Jί(M).

Proof of Proposition 3.6. Let T: M=M1<-M2<r-M3< *-Mn< be a
tree in Θ with Θ^ZT. We will show that Ln®M^Mn (mod projectives) and
the tensor sequence <Jί(Ln)®M is the AΛ-sequence <Jl(Mn) modulo projectives
for all n>\ by induction on n. Clearly L1®M=k®M1^M1. By Theorem
1.3, the tensor sequence <Jί(K)®M is the A7?-sequence Jl(M) modulo projec-

tives. Hence L2®M^M2 (mod projectives).
Suppose then that L ®M^M{ (mod projectives) for all i with \<i<n— 1

and the tensor sequence o#(L, )®M is the AΛ-sequence ^(M.) modulo pro-
jectives for all / with \<ί<n~2. We will show that the tensor sequence

Jl(Ln^®M is the ^4.R-sequence <Jί(Mn-^) modulo projectives.
Now JL(Ln-2)®M: ι

and Jl(£l2Ln-2}®M: 0-

0 are the -472-sequences cJ!(MΛ_2) modulo projectives and <^?(Ω2MΛ-2) modulo
projectives respectively. Let a: Ω2LΛ_1->Ω2LΛ-2 and β: Ω2Ln-.2-*Ln~l be irre-

ducible maps. Then a®idM\ Ω2Ln-ί®M-*Ώ2Ln-2®M is an irredicible map
Ω2MΛ_1-»Ω2MΛ_2 plus some split map from the projective part of Ω2Ln-ι®M to
the projective part of Ω2Ln_2®M, and β®idM: Ω2LΛ_2®M-»LΛ_1®M is an ir-
reducible map Ω2MΛ_2->MΛ_1 plus some split map from the projective part of

n-2®M to the projective part of .

Consider the tensor sequence

β®idM

Ln®M
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Here Ω2Mn-2J'Ln®M: Assume not. Then Ω2MΛ_21 Ln®M and Ω2Mn_2®M* |
Ln®M®M*. Now by the inductive hypothesis LM_2(g)M^MΛ_2 (mod projec-

tives) and Ω?Ln-2(£)M^Ω2Mn-2 (mod projectives). Thus the condition (2) im-

plies that Ω2Mn-2®M*G*Q?Lu-2®(@t W't], where each Wf

t is indecomposable
and p\dimkW't. Also the condition (2) implies that LΛ®M®M*s*Ln®

(Φ* W't')9 where each W" is indecomposable and p\dimkW't'. This implies
that Ln^Ω2Ln-2, a contradiction.

Now the tensor sequence <Λ(Ln-^)®M satisfies the assumption in Lemma

3.7. Thus <_^(Ln_1)®M is the ^Λ-sequence ^(M^ modulo projectives.
This implies that Ln®M^Mn (mod projectives).

Corollary 3.8. Assume (#). Suppose that M is an endotrivial kG-module.

Let Θ be the connected component containing M. Then tensoήng with M induces

a graph isomorphism from ΔO onto Θ.

Proof. Let Jί(k): O^Ω2β^L2®t/->&-»0 be the AR-sequence. Here

L2 is non-projective indecomposable and U is projective or 0 by our assump-

tion. By Theorem 1.3, the tensor sequence Jl(k)®M is the AR-sequence
<Λ(M) modulo projectives. Since tensoring with an endotrivial module preser-

ves the number of non-projective indecomposable direct summands, the pro-
jective-free part of L2®M is indecomposable. This implies that M lies at the
end of Θ. Hence M satisfies the conditions in Proposition 3.6 and the result

follows.

REMARK. In [6], Bessenrodt studied endotrivial modules in the Auslander-

Reiten quiver. She showed that without the hypothesis (#), if M is an endo-
trivial &G-module, then tensoring with M induces a graph isomorphism from
the connected component containing the trivial &G-module k onto the con-

nected component containing M ([6, Theorem 2.3]).

4. ZΆ"-Comρonents of Dihedral 2-Groups

Throughout this section we assume that

k is a field of characteristic 2 and a Sylow 2-subgroup P of G is dihedral
of order at least 8.

Let ΔO be the connected component containing the trivial &G-module k.

Then ΔO is isomorphic to ZAZ by Theorem 1.2. It is known that all modules
in ΔO are endotrivial &G-modules (see, e.g., [6]).

Proposition 4.1. Let M be an odd dimensional indecomposable kG-module.
Let Θ be the connected component of Ts(kG) containing M and Δ0 the connected
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component containing k. Then Θ is isomorphic to ZAZ and tensoring with M in-

duces a graph isomorphism from Δ0 onto Θ.

Proof. Let TQ , Vn V-+k^L<-L be a tree in Δ0

with ΔQ^ZTQ. Since tensoring with an endotrivial module preserves the num-

ber of non-projective indecomposable direct summands, the projective-free part

Mn (resp. Wn) of Ln®M (resp. Vn®M) is indecomposable and odd dimension-

al. Therefore the tensor seqences <JL(L^)®M and Jl(Vn}®M are the AR-

sequences <Jl(Mn) and <Λ(Wn) modulo projectives respectively by Lemma 1.5.

Thus we obtain a tree T: ••—*WM-* >W2-+M*—Mo<-M3< *-Mn< with

Corollary 4.2. Let M be an odd dimensional indecomposable kG-module

and Θ the connected component containing M. Then all modules in Θ have the

same vertex P.

Proof. By Proposition 4.1, the tree class of Θ is A~. Therefore all mo-

dules in Θ are odd dimensional by Lemma 1.9(1). This implies the result.

5. Zlλo-Components of Semidihedral 2-Grouρs

Throughout this section, we assume that

k is an algebraically closed field of characteristic 2 and a Sylow 2-subgroup

P of G is semidihedral.

Let ΔO be the connected component of Ts(kG) containing the trivial

kG-module k. Then Δ0 is isomorphic to ZD^ by Theorem 1.2 (see [7, p 76 II.

10.7 Remark]). Thus a part of Δ0 is as follows for some indecomposable kG-
modules L2, L3 and I.

Ω,2k

Let P=<x9y;a*=y*-=l, yx=y-^'2y and £={<*>}. Let

fe-*Ό be an ϊ-projective cover resolution of the trivial &G-module k. Con-
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cerning some basic facts on relative projective cover, we refer to [15], [19] and
[18]. The following result is due to Okuyama.

Theorem 5.1([18]). With the same assumption and notation as above,
(1) I^Ω,(Ω,£k) and I is an endotrivial kG-module.
(2) 7 is self-dual and odd dimensional.
(3) If Γ is self-dual, odd dimensional and indecomposable, then Γ^k or I.

Lemma 5.2. Let M be an odd dimensional indecomposable kG-module.
ThenM^M®!.

Proof. Assume contrary that M\M®I. Then M®I^M (mod projecti-
ves), since tensoring with an endotrivial module preserves the number of non-
projective indecomposable direct summands. Moreover it follows by Theorem
1.4 that k\M®M*\(M®M*)®I. This implies that 7|M®M*.

Since 2/|/dimΛM, k is a direct summand of M®M* with multiplicity one.
If an indecomposable &G-module W is a direct summand of M®M*, then W*
is also a direct summand of M®Λf*. Let M®M*^£070(0f(IFf0IF?))0
(®j Tj) be an indecomposable direct sum decomposition, where Wi is not self-
dual and Tj is self-dual. Since M®M* is odd dimensional, some Tj is odd
dimensional. By Theorem 5.1(3), this Tj must be isomorphic to 7. Hence we
get 707|M®M* and &0&|(707)®7 |(M®M*)®7^M®M* (mod projec-
tives). But this contradicts that the multiplicity of k in M®M* is one.

Theorem 5.3. Let M be an odd dimensional indecomposable kG-module
and Θ the connected component of Ts(kG) containing M. Then Θ is isomorphic
to ZDoo and M lies at the end of Θ.

Proof. We continue to use the same notation as above.
Let JL(k)\ Q-*Ω,2k^m(k)-+k-*Q and JL(I)\ 0->Ω27-^m(7)->7->0 be the

AR-sequences terminating at k and 7 respectively. Note that L2^m(k)^m(I)
(mod projectives). By Theorem 1.3, the tensor sequence ^Λ(k)®M is the AR-
sequence <JL(M) modulo projectives. Since 7 is an endotrivial &G-module, the
projective-free part M' of I®M is indecomposable. Hence by Lemma 1.5, the
tensor sequence Jl(I)®M is the AR-sequence <JL(M') modulo projectives. Note
that M' is not isomorphic to M by Lemma 5.2.

We claim that the projective-free part M2 of L2®M is indecomposable:
Assume not. Then we have Xl®X2\L2®M for some non-projective indecom-
posable &G-modules X1 and X2. Note that Xl is not isomorphic to X2 by Theo-
rem 1.1. Since X1φX2\m(M) and X1®X2\m(Mf)ί where m(M) and m(M')
are the middle terms of Jl(M) and Jl(Mr) respectively, we get a part of Θ as fol-
lows.



154 S. KAWATA

M

But this is a contradiction since Θ can not have such a subquiver by Theorem

1.1.
Consequently we have m(M)^M2 (mod projectives) and m(M')^M2 (mod

projectives). This implies that Θ^ZΆ*, and M lies at the end.

Lemma 5.4. Let M be an odd dimensional indecomposable kG-module

and Θ the connected component containing M. Then all modules in Θ have the
same vertex P.

Proof. By Theorem 5.3 and Lemma 1.9(2), Θ is isomorphic to ZZλo and M
lies at the end of Θ. Since M is odd dimensional, a Sylow 2-subgroup P of
G is a vertex of M. The result follows from [20, Theorem 4.3].

Lemma 5.5. Let M be an odd dimensional indecomposable kG-module and

Θ the connected component of Ts(kG) containing M. Let
T:M+-M2+-M3<-Mt+- <-Mn+— be a tree in Θ with Θ^ZΓ. Let S be a

M'

P-source of M and H the connected component of Ts(kP) containing S. Then we

have P-sources S' and Sn of M' and Mn (n>2) respectively and a tree

r: s*-s2+-s3+— <-sn<- with s^zr.
I
S'

Proof. All modules in Θ have the same vertex P by Lemma 5.4. Thus
applying the similar argument in the proof of Proposition 2.3, Steps 1 and 2,

we may assume that P is a normal subgroup of G and G is the inertial group of

H. Since the order of G/P is odd and B is isomorphic to ZZXo, G acts on Ξ
trivially. Therefore we may also assume that every module in B is G-invari-
ant. Applying Lemma 1.11, we get the result.

In the rest we consider tensoring Δ0 with an odd dimensional indecompo-

sable &G-module.

Proposition 5.6. Let S be an odd dimensional indecomposable kP-module
and B the connected component of Ts(kP) containing S. Let Λ0 be the connect-
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ed component of Ts(kP) containing the trivial kP-module k. Then tensoring with
S induces a graph isomorphism from Λ0 onto B.

In order to prove Proposition 5.6, we need the following Lemmas 5.7 and
5.8. Let TQ:k*-H2<-Hz+-—*-Hn*— be a tree in Λ0 with Λo^ZΓ0. Let

v

/o

Lemma 5.7. Hn \(xy^k®k (mod projectives) for all n>2.

Proof. Use induction on n. Since all modules in Λ0 have the same vertex
P, the AR-sequences Jl(k)rJl(I^) and Jl(Hn) split on restriction to <X>. Hence
(AΘΩ^JI^^mίΛJi^^ί^l^^iifί/oJi^^ί/oΘΩ2^)^,). Thus we get /Ol<*>^
k (mod projectives), Ω2/0J,<X>^& (mod projectives) and H2\^x^k®k (mod pro-
jectives). Also Jl(H2): Q-*Ω,2H2-*H3®Ω?k(&Ω2I0-^H2-+Q splits on restrictio to
O>. So we have (H3®Ω?k®ΩU0)l<,>*(Ω*H2®H2)l,<β> and H3[<x>^k®k (mod
projectives).

Suppose then that .//f4<*>=&0£ (mod projectives) for all i with 2<i<# — 1.
Since JL(Hn-^ $-*ΩΉn-l-*Hn®εiΉn-2-*Hn-l-+Q splits on restriction to <#>,

we have (JΪMφΩWn_2)|<Λ>^(Ω2ίίΛ_10ίίn_1)kΛ> Tnis implies that Hn\<x>^
(mod projectives).

Lemma 5.8. Let S be an odd dimensional kP-module.
(1) The trivial kζxy-module k is a direct summand of S j<Λ> with multiplicity

one.
(2) Hn is a direct summand of Hn®S®S* with multiplicity one for all n>2.

Proof. (1) The statement follows from [7, p 73. Lemma II 10.5].
'(2) From (1) we have (S®S*) J,<»^& (mod projectives). Hence (Hn®S®

(mod projectives) from Lemm 5.7. Thus we have

xy> which implies the result.

Proof of Proposition 5.6. Let T: 5^-52<-53̂ -54<-- ^-5n<— be a tree
I
S'

in n with E^ZT. Since k®S^S and 70®5^5", it suffices to show that
Hn®S^Sn (mod projectives) for all n>2. We proceed by induction on n.

From the argument in the proof of Theorem 5.3, we have H2®S~S2 (mod
proejctives) and Ω2H2®S^Ω2S2 (mod projectives). Also we have (S ,̂ \Jl(H^)®
S])=(H2®S, [JL(H2)®S])=(H2®S®S*, [Jl(H2)])=l since the multiplicity of
H2 in H2®S®S* is one by Lemma 5.8(2). This implies that the tensor se-
quence Jl(H2)®S:Q^Ω2H2®S^(H3®Ω2k®Ω2I0)®S^H2®S->Q is the AR-
sequence ^Λ(S2) modulo projectives by Lemma 1.7(1). Thus we get
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(mod projectives).

Suppose then that H^S^Sf (mod projectives) for all i with 2<i<n— 1.

Using Lemma 5.8(2) again, we have (Sf

n-1, [Jl(Hn-l)®S])=(Hn-l®S®S*,

[Jί(Hn^)])=l. Thus the tensor sequence Jί(Hn^)®S: 0->Ω,2Hn^®S-^(Hn®

Ω2Hn-2)®S-*Hn-l®S-*Q is the AR-sequence <J!(SW-1) modulo projectives.

Therefore we get Hn®S^Sn (mod projectives).

Proposition 5.9. Let M be an odd dimensional indecomposable kG-module

and Θ the connected component containing M. Let Δ0 be the connected compo-

nent containing the trivial kG-module k. Then tensoring with M induces a graph

isomorphism from Δ0 onto θ.

Proof. Let S be a P-source of M. Let H and ΛQ be the connected

components of Ts(kP) containing S and k respectively. Then tensoring with S

induces a graph isomorphism from Λ0 onto Ξ by Proposition 5.6. Using an

argument similar to the one in the proof of Proposition 3.1 (use Lemma 5.5 in

place of Proposition 2.3), we get the result.
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