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1. Introduction

We consider the large time behavior of the solutions for the following
Cauchy problem:

#, = u"),,—v"u" in RX(0, o)

v, = (v"),,—u"v" in RX(0, o)

(1.1)

with initial conditions
(1.2) #(+,0)=1wuyand v(+,0) =v,0n R.

Here, m>1 and n>1 are real numbers. Throughout this paper, we assume
that m>1 and n>1.

By [10], the following properties are shown:

When the reaction arises among some reactions, for each reactant the equa-
tion for reaction-diffusion takes the form

ac _ div D grad C+¢’,

ot

where C is the concentration, D is the diffusion coefficient and ¢’ is the amount
of material formed through chemical reactions per unit volume per unit time.
When a reaction arises among # molecules of a substance 4 and # molecules of a
substance B and does not reverse, that is to say, when the reaction is written as

nA-+nB 7> product,

then ¢’ of both equations for 4 and B are proportional to —C?% C%, where C, and
C; are the concentrations of the substances 4 and B, respectively. That is to
say, the concentrations C, and Cj satisfy the equation

__aCA = div D, grad C,—kC?% C%
(1.3) i
: aCB

ot = div Dy grad C;—kC% C7%,
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where % is a positive constant. Here we omit the equation of the concentration
of the product, since the concentration does not need to study C, and Cj; in our
situation.

In this paper we consider (1.3) in case of D,=C7%! and Dp=C7%"'. Then
equations (1.1) are equivalent to the equations (1.3). We make the following
assumptions (A.I.) on the initial data %, and v,:

(A.I) (1) The functions %, and v, are nonnegative and continuous on R,

(2) they have compact support and are not identically zero on R.
Moreover, in this paper, we assume that every function is bounded and nonnega-
tive.

If uy=v, on R, the solutions % and v of (1.1) and (1.2) would coincide in RX
[0, o0) and satisfy the following Cauchy problem with p=2n:

(1.4) u, = (u"),,—u? in RX(0, o)
(1.5) u(+,0)=1u, onR.

As for the study of the large time behavior of solution for (1.4) and (1.5),
it is important to investigate the large time behavior of supports and L*-norms
of the solutions. Therefore many authors have studied on supports and L>-
norms of the solutions (See [1], [5], [7]-[9], [11]-[13] etc.).

The support and L=-norm of the solution % of (1.4) and (1.5) have the fol-
lowing properties:

If 1<p<m, then U 5, supp #(-, t) is bounded in R.

—inf {supp (-, 2)}, sup {supp u(-, t)} ~logt if 1<p=m.
—inf {supp u(-, )}, sup {supp u(-, t)} ~##-m/C-D if max (1, p—2)<m<p.
—inf {supp (-, t)}, sup {supp #(-, )} ~tV*D if l<m<p—2.
log(|u(+)t)]|wp)~—t ifl=p<m.
[#(+) 8) | pg~t"Y®Y  if max (1, p—2)<mand 1<p.
|#(e) 2) | g~t VD if l<m<p—2.

Here a(t)~b(t) means that there exist two positive constants ¢, and c, satisfying
¢, a(t)<b(t)<c,a(t) for any sufficiently large t.

In this paper, for the initial data %, and v, satisfying the following assump-
tion, we consider the solutions of (1.1) and (1.2),

(A.IL.) uy, =7, on Rand 0<y,<v,on R.

The purposes of this paper is to investigate whether the large time behavior of
the solutions for the system (1.1) differs from the behavior of the solutions for
the equation (1.4).
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The following is our main theorem.

Theorem 1.1. Let m>1 and n>1 and suppose that u, and v, satisfy (A.1)
and (A.IL).

The initial value problem (1.1)~(1.2) has a unique pair of solutions u and v
which are nonnegative. Then, the support and L=-norm of u and v have the follow-
ing properties:

U <o SUPP %( -, £) is bounded in R, if 2n—1<<m.

—inf {supp (-, t)}, sup {supp u(-, )} ~log t if 2n—1=m.

—inf {supp u(-, )}, sup {supp u(-, £)} ~/DO-(m-DIE-D)a-a/(mw+1)}
if 2n—2<m<2n—1.

—inf {supp (-, t)}, sup {supp u(+, t)} ~t¥»*Y if m<2pn—2.

log |u(+, t)|w g~ —tm/("*tD ifn=1.
() 8) | g ~t-CHB-D =M if 252 <m amd 1<n.
[#(+) £)| o g ~t~Y(mtD if m<2n—2.

In all of the above cases, the solution v satisfies
—inf {supp v(-, 2)}, sup {supp v(-, )} ~gV(m+D
and
[9(¢5 2) |, g ot 0"
Therefore, the behavior of v is independent of the behavior of u.

By Theorem 1.1 we see that the large time behaviors of # and v in our case
are different from the behaviors in case of #,=v,. That is to say, the behavior
of solutions for the system (1.1) is essentially different from one for the equa-
tion (1.3).

And we remark that the solutions v and # is similar to the solutions of (2.2) in
Section 2 and (5.1) in Section 5, respectively (See Lemma 5.2).
In particular, we have:

Corollary 1.2. Under the assumptions of Theorem 1.1, the supports of u
and v of the system has the following properties:

If 2n—1<<m, then U <, supp u (. t) is bounded in R.

If 1<m<2n—1, then U ., supp u(-,t)=R.

And, for all of the above cases, U <, supp v(+, t)=R.

Acknowledgement. The autor would like to express his gratitude to
his referee and Professor H. Tanabe for their kind advices.

2. Notations and definitions

Throughout this paper, we use the following notations and definitions.
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For any measurable subsets E of R or RX [0, o), the usual norms of the spaces
L*(E) for 1 <g<oco are denoted by |- |, ; and Cy(E) is the space whose elements
are compactly supported continuous functions in E. As for the other function
spaces, we use the notations and the definitions in [14].

Next we shall define the solutions of (1.4) and (1.5). For p>1 and x>0,
the operator B®™ is defined with the domain

D(B®) = {weLX(R): (|u|""u),, €L (R)}
by
B®Myw=(lw|"'w),,—p |w|?tw for weD(BM).

By [2], it is shown that B® is m-dissipative in LY(R). Therefore, by [6], it
is shown that a contraction semigroup 7™)(¢) on LY(R) is defined by

T®(t)w = lim(1—AB®™) Mg
ANO
for t>0 and we D(B®) ,

where [-] is the Gauss function. Then, for w,&L'(R) we define the solutions
w of (1.4) with w(-, 0)=w, by

(2.1) w(e, 1) = TO(t)w,.
We also consider the equation:
(2.2) 2= (2"),, in RX(0, =),
with initial condition
(2.3) 2(+,0)==2, on R.
For z,&LY(R), we define the solution of (2.3) and (2.4) by
(2.4) 2(+,t) = TO(t) 2,.
For a positive constant M we see

(2.5) é(x, t; M) = t-l/(m+1)(a2_bm £-2(m+) xZ)i/(m—l)
for (x,t)eRXx (0, o0)

where a=a,, M("-Y/(»*) with a certain constant a,, and b,,=(m—1)/(2m(m-1)).
We call the function (2.5) the self-similar solution or the explicit solution (of (2.2)).
We can observe that the self-similar solution satisfies (2.2) in RX (0, o) and
that the corresponding initial condition is M §,, where §, is the delta function.
The Banach space 2¥ denotes (L*(R))? with the norm

(%, v)|x = |uli,zgt+ vl for (u,0)EX
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We shall define an operator 4 with the domain
D(A) = {(w, v) €2 (lu|"'u),,, (|07 0),, €LY(R)}
by
A, v) = ((lu| " )~ o] [u]*u, (Jo| "7 0)— [u]"[0]" 0).

By Lemma 3.3 in [16] it is shown that (1 is m-dissipative in 2 and that a con-
traction semigroup S(z), >0, on X is defined by

SHV= Iim(l—)n A) MY for t>0and VEX.
>0
Then, we define the solutions u and v of (1.1)—(1.2) by
(26) (u(+,2),v(+,2) = S(t) (%0, 7)0) .

3. The existence and the uniqueness of generalized solution
In this section we shall consider the following Cauchy problem:
(3.1) w, = (w"),,—Pw? in RX[0, o)
(3.2) w(+,t)=w, on R

where ¢>1, P is a function on RX [0, c0) and w, is a continuous function on R.
Throughout this section, we assume g>1.

Definition 3.1. We say that w is a generalized solution of (3.1) if w belongs
to C([0, o0); LY R)) NL=(RX [0, o)), and for %, ¢, a.e. ¥, and a.e. x, such that
0<t,<t,, xy<<x,, the following integral identity holds:

(3.3) 10 f, ) = | {7 4" furtw fiPo' f} dvdt
[ ara] [ [r e =0,
for f eC*Y(E) satisfying

f(%, 2) =f(x,2) =0 for tE[ty, 2],
where we set E=[x,, x,] X [to, £,].

Definition 3.1 is slightly different from ones in [9] and [11]-[13]. That
is to say, they have assumed that the solutions are continuous in RX [0, o0),
while we do not assume such a continuity.

Remark 3.2. Under (A.I), the solutions of (1.1) and (1.2) defined in Sec-
tion 2 are generalized solutions. Since this is shown by the following Lemma
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3.3-3.5 and the standard argument, we omit the proof.

Lemma 3.3. Let PC*(RX[0, ))NL=(RX[0, 0)) and w,=C,(R).
Then there exists a unique generalized solution w of (3.1)—(3.2). Moreover, w is
continuous in RX [0, oo) satisfying

0<w(x, t)<Z(x,t+1; M), |wy|wr in RX][0, o),
where Z(x, t; M) is the self-similar solution such that
wy(+)<z(+,1;M) onR.

Proof. Let K=|w|. z+1. Then we can see that there exists a sequence
of smooth functions w,, satisfying the following properties:
(1) 1/n<wy,(x)<K for x&(—n, n),
(ii) w0n(in)=K,
(iii) @y, is strictly monotonically decreasing with respect to # and uniform-
ly converges to w, in any finite intervals as n—oo.
We shall consider the following boundary value problem of the form

(34 w, = (@"),,—Pw® in Q, = (—n,n)X(0,n),
(3.5) w(+n,t)=K on[0,n),
(3.6) w(+,0)=w,, on[—n,n].

Due to Theorem 4.4 in [14], we see that the problem (3.4)—(3.6) has a unique
classical solution w, €C(Q,) N HE:*1+2(Q,) (0<a<1) satisfying

(3.7) 0<w,(x,t)<K for (x8)€Q,.

By the comparison theorem and (3.7), it follows that the sequence of the solu-
tions w, is monotonically decreasing with respect to n. Therefore, for (x,f)E
RX[0, o), there exists lim w,(x,t). Denote w the limit. For #,, £,, %y, x, with

0<t,<t;, xy<x, and for fFEC»([xg, %] X [20, t1]) with f(x,, £)=f(2,, £)=0, w,
saitsfy the integral identity
I(wmf’ [xO) xl] X [to’ tl]) =0 ’

and hence, w satisfies the integral identity

(3.8) I(w, f, [%9, %] X [t0s 1;]) = 0.

By a similar argument to the proofs of Theorem 6 and Theorem 8 in [12], we
can prove that w belongs to C(RX [0, c0)). By a similar argument to the proof
of Theorem 3 in [12], w satisfies moreover,

0<w(x, t)<Z(x,2+1; M) and 0<w(x, t)< |w,|w p for (x,t)ERX]0, o),
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where Z is the self-similar solution such that
wo(x)<Z(x, 1; M) for x=R.

Therefore, w is a required generalized solution.
To prove the uniqueness we let @ be another generalized solution of (3.1)
and (3.2). Set (cf. Theorem 2 in [13])

Ay = A,(x,t) = S:m {0w,+(1—06) w}»-1do
and
Cpo=Cyx,8)= S: qP {0w,+-(1—0) @} d6 .
Let T' (0, n) and let 7&(0, 1) be a point where
I, f, [—r,r]X[0,T])=0
holds for f €C?Y[—r, ] [0, T]) with
| f(£r,)=0 for t[0, T].
Then w, and # satisfy
69 [[ twm 0601 s a]
= [ [ @ )" @0, 0 £, 0 x|
T[T o ) ko Cols 1)} o0,y i

T
0

By (3.7), there exist two sequences of smooth positive functions A4,,(x, ) and
Cir(%, ) with the following properties:

Eim A (%, t) = A, (%, t) a.e. in [—r, r] X [0, T'],

% 8,, SAnkr(x’ t) SKI»

for k>1 and a.e. in [—7, 7] X [0, T'],
lim Cp(x, t) = Cy(x, ) a.e. in [—7, 7] X [0, T,
k>0

and
0<Cpir(, 1) <K,,
for k>1 and a.e. in [—7, ] X [0, T'],
where

8, = { min w,(x, )},
»,nHed,

K = 2m [max {|w, |« pxio,) | @] pxto,} ]
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and
K,, = 2q [max {lwnlw,nx[o,w)» lew,nx[o,m)}]q—l |P|°°,R><[O,°°) .

Then the first boundary value problem

ft+Ankrfxx—anrf= 0 in [—1‘, T]X [O! T] ’
f(, T)=f+) on[—r,7],
Fl4r,8)=0 on [0, T

has a unique classical solution f=f"*, here f, is an arbitrary smooth function
such that

Suppfoc(—r’ r) and Ifg'm.Rgl .

Substituting the function f=f** into (3.9), we observe that
D {w, (% £)— @ (%, )} f(x, t) dx]:
= [ [} @ @, )" Sl e |
] A ) () ., i
+H | Cw—C) @~ ) fandt

Taking the limit as B— oo, #—>c0 and r—>co in this order we get by Lemma 3.6
in [12],

SR {w(x, T)—w(x, T)} fo(x)dx =0,

which implies w(+, T)=a®(-, T') a.e. on R.
Since T is arbitrary, we conclude w= a.e. in RX [0, o). Q.E.D.

Lemma 3.4. Let w, (i=1, 2) be functions on R with compact support and
let w(i=1, 2) be generalized solutions for

w, = (w"),,—P; w? in RX[0, o)
with w -, 0)=w, o, where P,(i=1, 2) are functions on RX [0, o). Then, we have
l20y(+5 &) —wy(+, ) |1, e < | W10~ W20 | 1R
t
AN ODEI OB JOPET GBI
for te[0, o).

The proof is given in a quite similar way as in the proof of uniqueness part
in Lemma 3.3 and omitted.
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Combining Lemma 3.3 with Lemma 3.4 and using approximation procedure
we can prove the following.

Lemma 3.5. Let P be a function on RX[0, o) and let w, be a compactly
supported function on R. Then, there exists a unique generalized solution w of (3.1)
and (3.2) and w satisfies

0<w(x, t)<Z(x, t+1; M), |wy|w g,
for t>0and ae. xR,

where Z is the self-similar solution such that

0<wy(+)<z(+,1; M) ae.on R.

4. Comparison theorems

In this section, we shall define the generalized supersolutions and the
generalized subsolutions and give some comparison results.

By the same argument as in the proof of Lemma 4.1, 4.2 in [16], we can
show the next lemma, the proof being omitted.

Lemma 4.1. Let uy, v,, %, and , belong to L(R) N L*(R) and satisfy
0<u,<#,<9,<v, ae.on R.

Let (u,v) and (@, D) be two pairs of solutions of (1.1) with initial data (v,, v,) and
(@, Dy), respectively. Then, the functions satisfy, t >0,

0<u(-,t)<é@(-,t)<0(-,t)<v(+,t) ae.onR.

DErFINITION 4.2.  Let G be a connected open subset of RX (0, o). A func-
tion @ belonging to C([0, o0); L} R)) N L=(R X [0, o)) is called a generalized su-
per (sub) solution of (3.1) in G, if for ¢, t;, a.e. %, and a.e. ¥, such that 0<¢,<#,,
%<, and [%, %,] X [2,, t,] C G, the following integral inequality holds (see (3.3)):

I(w, f, £)<0
(>0)
for f eC?YG) with f(x,, t)=f(x,, £)=0, t,<t<t,, where we recall E=[x,, x,] X
[to, tl]‘

Lemma 4.3. Let P and w, be functions in L>(RX [0, <)) and Co(R), res-
pectively. Let w be a generalized solution of (3.1) with w(-, 0)=w, and let @ be a
generalized super (sub) solution of (3.1).  Then, if

w,<W(+,0) ae. onR,
(zw(-,0))
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we have, for t >0,

w(s, )<@W(:,t) ae.onR.
(za(-, 1))

Proof. By a quite similar argument obtaining uniqueness part in Lemma
3.3 we can prove

(4.1) [, @ -, ) i) ds<0

for any function fy(x), which yields the desired result. The details are omitted.
Q.E.D.

For T>0, let I be a smooth function in [T, co) such that
I(T)>0 and [I'(+)>0 in[T, o0).
and let
G={x1t):t>T and xe(—I(),Il{®)}.

S; and S_; denote the subsets {(I(¢), ); t&[T, o)} and {(—I(2), t); t&[T, o)}
of R [0, o) respectively.

Lemma 4.4. Let w be a generalized solution of (3.1) with w(-, 0)=w,&
Cy(R) and let @ be a generalized super (sub) solution of (3.1) in G that belonging to
C(G).

P in (3.1) satisfies that

(SiUS_;)Nsupp P=¢,
Then w is Holder continuous in some neighborhood of S;U S-,. Moreover, if

w(+, T)<@(+, T) a.e. on [—I(T), [(T)]

(=w(-, T))
and if
w(l(t),t) <w((),t) for t>T,
(>w((2),))
w(—I@), )y<w(—I(t),t) for t>T),
(>@(—1(2), 1))
then we have

w(x, )<W(x,t) for t>T and a.. xe[——l(‘t), .
(=@(, 1))
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Proof. Let an arbitrary constant 7,>T be fixed. There exists a con-
stant §=§(T, T}, P)(0, T) such that

(EsV(t) UES () Nsupp P= ¢ for te[T, Ty,

where, for §>0 and t>T, E{*)(¢) and E{™(t) denote [I(2)—3, I(t)+ 8] [t—8,
t+8] and [—1(2)—8, —I(t)+8] X [t—3&, t+ 8] respectively.

Then, there exists a sequence of smooth functions P;EL>(RX [0, o)) such
that

[P;| e, rxl0,00< | Pl pxlo,y for j>1,
lim Pj(x, t) = P(x,t) for a.e. (x,t)ERX[0, o)
jroo

and

(E&ow(2) U EGeys(t)) Nsupp P = ¢
for j>1 and te[T,TY].

Let w,, satisfy the properties (i)~(iii) in the proof of Lemma 3.3. For
j=1, let w,, be the classical solutions of

w, = ("),,—P;w’ inQ,

with (3.5) and (3.6), where @, denotes (—n, n) X (0, n).

Then, since w,, are positive in Q, w ;» are smooth in @,.

Now, we shall show the uniformly Holder continuity of the solutions =,
in E§j7(t) and E§)(t).
We shall omit (+4) and (—) from E{*)(-) and E{7)(+), respectively.

We fix t, [T, Ty] and (x,, t,) E E,y5(t,) arbitrarily.

Let +Jr, be a smooth function such that

=1  on[—1,1]
Yo(*) 1 €(0,1) on (=2, —1)U(1,2)
=0 on(—o, —2)U(2 ),

and we set

v 1) — 1= t&—(5/6)8) , (x—x
Vil ) ti— (t,—(5/6) 8) 1”°<3/24)

in RXR.

We set also
¢(y) = Ny(2—y) for y>0,
with N=(4m|(m—1)) (|w,|», zg+1)"".
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Let an arbitrary j>1 and an arbitrary n satisfying Esy(t,) C @, be fixed.
We shall omit j and 7 from w;, and P;. Setting (m/(m—1)) w™"'=¢(g), we see

0<¢<1/4 and
Sb 2 ¢

4.2 m—1) ¢q,.+| (m— 1¢ A

(4.2) = ( ) $4. [( ) ](4) Y

in (—n, n)X [t°—% 3, o0)

with B8=(m-+n—2)/(m—1) and A=m((m—1)/m)?.

We differentiate (4.2) with respect to x, multiply by g, and consider
a point (x,, £,) of E;3 where the functon 2=(g,1Jrs)* attains a maximum in [—n, n]
X [t,—(58/6), o0). Since we may assume #,>#,—(58/6) without loss of gene-
rality, we observe that

Ry(%5 1) 20, 2,(x5, 2) = 0 and  z,,(x,, 2,)<0.
Then, at such a point we have the following inequality:
@3 [-me—m—1 (L) v
¢,
<[Vrs Yrart3(m—1) d(Yra.)'— (m—1) Pyrs Yra,.] (4:)?
[0 r26m-1 6 L7 s vadar

Set
@y = |Yrar| o Beoserntte) B2 = |Porloo pigserstte) 20d B3 = |Vraee| oo peopenntto) -
Note that
Oggﬂﬂin[—mﬂxm—%&”)
and
(4.4) 0 s% N<¢'(9<2N, ¢"(q) = —2N

and |‘fb |<_ in [—n,n]x[to——g—b‘, o) .

By (4.3) and (4.4) we obtain
Vi(9:) <Cy(¢:)*+Co Vsl g: 12,
with

Cy=_— (a,—i—N(m—l) a;+3N(m—1) ad),

= _% —1).
C, 3Nm(7m )



DEGENERATE QUASILINEAR PARABOLIC SYSTEMS 863

Therefore we have
C3
z(x’ t) S lz ' ”,E(g/g)s(fo)sz Cl+ ——2—> fOr (x) z) EE<ﬂ3)a(t0) ’
and hence,
2
(+5) | @, ) 12<8Ne (¢ )
m—1 2
for (x,t) EE qan(to) -

By (4.5) and Theorem 8 in [13], for j>1 and # such that U, crr,7,1 Esass(to) S @
the solutions w,, satisfy

(4’6) <wjn>§‘f£3/2(fo)+<w]n>(fa;/53§/2(fo) S C8 ’ for tO € [T’ Tl] ’

where a=min (1, 1/(m—1)) and C; is a positive constant depending only on
[%o] e gy | P oo, gxio,) and 8. Set EM=U ety 7,1 E§f2(L) and EO=U ety
E§;)(t,). By (4.6) and Ascoli-Arzela theorem, for each j=1, a subsequence of
the solutions w,, uniformly converges to w; on E E(-) as n—oo. Moreover,
we obtain

(4.7) @O @, <Cy for =+, — .
By Lemma 3.3. Lemma 3.5, Lebegue’s convergence theorem and Gronwall’s
inequality, we have

4.8) lim sup |w/-,t)—w(+,%)],z=0.

j»o te[o0,T+38]

By (4.7), (4.8) and Ascoli-Arzela theorem, there exists a subsequence of the
solutions w; which uniformly converges to w on EMYE®O,

Therefore, the generalized solution w is Holder continuous in E E(),

Let @ =C(G) be a generalized supersolution in G.

There exists a positive constant » which has the following property; For
any sufficiently large z and j, w , satisfy that

(4.9) W (%, ) <W(x, 1)
for t€[T, Ty] and |x| €[I(t)—n, I(2)]
For any integer H >1 and =0, 1, 2, ---, H—1, we set t{’=T+(T,—T) h|H
and G{=[—I(#™), 1(£{)] X [, t§].
We fix a large H such that

0<I(HE)— () <y for h=0,1, ., H—1.

Repeating the same argument obtaining uniqueness part in Lemma 3.3 we can
prove
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(4.10) [t t)—a(x 1)} fi(w) dz<0

"l(to)

where f €C%Y(G,) be an arbitrary function such that f(4-1(z,), t)=0 for t&[t,, ,]
and consequently

(4.11) S'_‘:‘z @(, 1)~ (%, 1), d<0.
By (4.9) and (4.11) we have
(4.12) w(+, ) <W(-,t,) a.e.on[—I(t),l()].

From (4.12), the same argument yields
w(=, t)<W(-,t,) a.e. on[—I(2,),I()].
Repeating this procedure we arrive at
w(e, TY)<w(-, Ty) a.e. on[—I(Ty), [(T))].
Since T,>T is arbitrary, we conclude
w(+,t)<wW(-,t) for t>T and a.e. on [—I(2),I(2)].
Q.E.D.

Lemma 4.5. Let w, in (3.2) belong to Co(R).
Let w be a generalized solution of (3.1) and (3.2). And let @ be a generalized
supersolution of (3.1) in G and be continuous and positive in G. Suppose that:

w(, T)<@(-, T) a.e. on[—I(T), (T)],
supp wN(S;US_;) = .
Then, w and satisfy
w(x, 1) <W(x, t) for t>T and a.e. x[—I(t),(2)] .

The proof is given in a quite similar way as in the one of Lemma 4.4 and
omitted.
Finally, we state for following.

Lemma 4.6. Let I(t)=I, on [T, o).

Let P in (3.1) and w, in (3.2) belong to L=(R X [0, o)) N C>(R X [0, o)) and
Cy(R) repsectively.

Let w be the generalized solution of (3.1) and (3.2). And let @ be a generalized
subsolution of (3.1) in G and be continuous in G.

Suppose that:

w(e, T)>w(+, T) on [—L, ]
w(ly, ) > (ly, t) and w(—1Iy, £)>@(—1y, t) for t>T.



DEGENERATE QUASILINEAR PARABOLIC SYSTEMS 865

Then, w and @ satisfy

w>w in G.

The proof is standard and omitted.

5. The large time behavior of the solutions for
w; = (wm)xx—h(t‘f‘l)—"/(mﬂ) w"

In this section, we consider the large time behavior of solutions for the
following equation:

(5.1) w, = (™), —A(1+2)""™*D " in R (0, o)
with initial condition
(5.2) w(+,0)=w, on R.
where A >0 and w, satisfies (A.1.) in Introduction.
In order to investigate the large time behavior of the generalized solution

for (5.1), we shall derive an estimate of |(w”"?),(+, )|~ z. The following is
proved similarly as in the proof of Lemma 3.1 in [8].

Lemma 5.1. Let w be the generalized solution of (5.1)~(5.2). Then we
have

(@™, (+) )0 g SC (M w(-, 22) | ZR)* for £>0,
where C is a positive constant independent of t and w,.
Our main result in this section is as follows.

Lemma 5.2. Let py=nm/(m-+1—n). Let w, satisfy the assumptions (A.1.)
and w be the generalized solution of (5.1) and (5.2). Then, the support and L>-
norm of w have the following properties:

U 0 Supp w( -, 2) is bounded in R, if 2n—1<<m.
—inf {supp w(-, t)}, sup {supp w(-, )} ~logt if m=2n—1.
—inf {supp w(-, )}, sup {supp w(+, £)} ~tPs=m/2t+-2
if 2n—2<m<2n—1.
—inf {supp w(-, £)}, sup {supp w(+, &)} ~t¥"+D  if m<2n—2.
log(|®(+, &) |mg) ~— ™D if n=1.
[20( ) £) |, g ~EY®D  if 2n—2<m and n>1.
[w(+, t) | g~t ) 4f 1<m<2n—2.
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Proof. For simplicity we assume that w,(0)>0.

(I) Case: n=1.

Let @ be a generalized solution of (2.2) with initial condition @(., 0)=w,.
We set for t>0

Mgze@(—xY0+¢Mwﬂm)
[}
and
ﬂﬁ:YMmﬂﬁ.
0
Then, we can observe
w(x,t) = p(t) W(x, v(t)) for (x t)eRX(0, o),
and the result follows from [17].

(II) Case: 2n—1<m and n>1.

Let w* be a generalized solution of (1.4) with p=p, and with w*(-, 0)=w,.
In Introduction we describe the estimate of supp w*(-,%) and |w¥*(-, )|« g,
which is the required one also for w(z). Suppose that A is so large to satisfy:

(5.3)  w¥(w, £)-DImHL-m <\Ua(] L ACDImHD  for  (x, £) & RX (0, o).

For such a constant ), since w is a generalized subsolution of (3.1) with
P=g*®#-b/(m+1-m and g=n we obtain by Lemma 3.3, Lemma 4.3 and (5.3) that
w*>w in RX[0, o0). Let a and b be positive constants satisfying a™-!§?=1
and set @(x, t)=aw (bx, t) for (x, 1) RX (0, o). Then @ is a generalized solu-
tion of the following equation:

w, = (Aw”')“—)\.al“”(l—-}—t)""/(’"“) wn in RX(O, OO) .

Therefore, we obtain the upper estimates of supp w(+, t) and |w(+, £)|« g
Let %,&(0, 1) and let % be the solution of the following Cauchy problem:
{ (B = w(k"—h) on (0, )

0) = ky, £'(0) = 0, wh = \#-D/n-1) m+1 en
7(0) = Jio, '(0) = 0, where u = w—4xm+1—m)

It is easy to observe that % has a zero point, and let § be the first zero point
of . Then, there exists an nontrivial and nonnegative solution 4 for

{ ”‘(h”—-h) = (hm)zz on (—8, 8) ’
h(8) = h(—38) = 0

such that

54 wy=>h on (—3§,9).
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Let 7 be the solution of the following Cauchy problem:
7'(t) = —A(142)™™™*tD 2" on (0, o),
{ 7(0) =70,
where 7,=min{l, (m+1)/(A(n—1) (mn—n+1)))~¥*-D},
Then, we observe that
(5.6) (S () —A (L) (k) i (—3, 8)X (0, o0).

By (5.4), (5.6) and Lemma 4.6, we get that Ar<w in (—8, 8)X(0, o).
Moreovet, the decay rate of 7 in # is equal to the one which we want to show.
Therefore, we have a lower estimate of |w(+, t)|w, g

(III) Case: m=2n—1.

Let ¢c>0and set A=A(m—1)=+#-2/(m-1)_ We consider the Cauchy Problem:

{(q“)”+cQ'+q—iq” =0 on [0, 5)
g(0) = A V=D 0<g<AY*-D ¢’<0 on [0, ),

(5.5)

(5.7)

where % is a positive constant. This problem has a solution for some >0 and
the behavior of it is known (See[1].). Using this we can construct desired
generalized supersolutions and subsolutions (See [5].).

(IV) Case: 2n—2<m<2n—1.
Set

(5.8) wy(x, 8) = A(14t)~4(D—x*(14-1)~8)im-
for (x,t)eRXx(0, )

where a=1/(px—1), b=(px—m)/(px—1) and 4 and D are positive constants.
Then we obtain that

L(to) = 03— (@) st ML +-1) 0 a0
= —A(m—1)71 &*(14-£)=em=2 (- m+D(m-1)
X (4(m—1)"'mAm-1—b(14-¢)om-D+b-1)
—A(1+2)=o7 2 Yl m-D(qg—2 (m—1) "t mAm-Y(14-£)~a(m-D-s+1
_)\'Au-l(l_I_t)-a(n-1)+1-n/(m+1) ,‘P,(n-l)/(m-l))
for (x,t)eRx(0, o).
Since a(m—1)-+b—1=0, we have
(5.9) L(wy) < —A(m—1)"1 22(1+-1)~em=2 yfp(=m+D/(m-1)
X (4(m—1)"mAm-'—b)— A (1+¢)=e~1 pM(m=D
X(a—2(m—1)" mAm~ —NA""1 Y= D/(m=D)
for (x,t)eRX(0, ),
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where Jr=nr(x, t)=(D—x*(1-+12)7%),. Since 2a>b, there exists a positive con-
stant 4 such that 2a>4m (m—1)~! A»-'>b. Let such an A be fixed. More-
over, there eixts a sufficiently small constant D >0 such that a—2 (m—1)"1mA""!
— A1 DE-DIm=D>(0 and wy(x) >A(D—%)3™=D on R and we shall fix such a
constant D. Then we have L(wy)<0 in RX(0, o0). Since wy,, (w%),,E
LY{Rx[0, T]) for T>0, wy is a generalized subsolution of (5.1). Therefore, we
have by Lemma 3.3 and Lemma 4.3, that w, <w in RX (0, o0). Thus, we ob-
tain the lower estimates of supp w(-, t) and |w(+, )|« g

Let wy be a solution of (5.5) with the initial condition @w*(+, 0)= || z.
By Lemma 3.2, there exists a smooth function / in [0, o) such that

1(0)>0, I’>0 in [0, o),
supp w(+, t)C(—I(t), I(t)) for t>0.

Set G={(x,t): t>0 and x=(—I(t), [(¢))}. Since w* is a generalized super-
solution of (5.1) in G, we find by Lemma 4.5 an upper estimate of |w(-, ?)]|w g
On the other hand, we see by Lemma 5.1.

(5.10) [(@™ ) (¢, 2) | o, g S Ct=WDCHmM=D/Pe=1)

By a similar argument to one which is used for the porous medium equation, we
can show that supp w(-, ) is an interval (§,(), £,(2)) for large ¢ and that

(5.11) Si(t) = ;ﬁi (w™1),(L,(2), t) for large t,i=1,2.

By (5.10) and (5.11), we see
(5.12) |E4(2) | S Ct-WDa+m=DIGe=1)

where C is a positive constant. Integrating (5.12) from O to , we have the
desired estimates of |£y(#)| and |£,(2)].

(V) Case: m<<2n—2.
We set again

wy(®, t) = A(14+8)"(D—a*(1+t)"2)Y "D for (x,f)eRX(0, ).

We put for £>0
Y(m-1)

(5.13) a= 1/(m+1)+&b=2/(m+1)—&(m—1), A = (2,,,%:—1)

D = (\"1A"g)m-D/-D  and E = ADY»-D,
Then, for any sufficiently small £>0, we get
(5.14) wo(x)ZEX[_Dx/ztDllz](x) for xR,
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where X is a characteristic function. We fix such an €>0. By (5.9), (5.13)
and (5.14), we see that w, is a generalized subsoluiton of (5.1), and w>wy in
RX[0, ). Set Ty=(&xn"*A-"27Y)~%—1, which ¢=(2n—2—m)/(m+1)>0.
Then we see

w(x, T) 2 A(1+T7)~*® (D(1)—a(1-+T)*®)¥=-» on R,
with a(1)=1/(m+1)+&/2, b(1)=2/(m+1)—&@m—1)/2 and D(1)=D(1+

Ty)~t=-D2_ Setting
Wexn(¥, t) = A(14£)~*D (D(1)—a*(1+£) D) m=D in R (0, c0).
We see
L(wn) <0 in RX[Ty, o)
and
Wekne (When)ss ELRX[0, T]) for T>0.
Thus, wy(x, t) is a generalized subsolution of (5.1) in RX[T}, o), and we
have by Lemma 4.3 w4, <w in RX[T}, o).

For any positive integer j, we put a(j)=1/(m+1)+827, b(j)=2/(m-+1)—
&(m—1)277, T;=(en"1 A*"27)"¥1—1 and D(j+1)=D(j) (1+Tj)"(""1’z""l.
Setting

Wekn(*, 1) = A(1+2)7°D (D (j)—a*(1+2)"*P) " in RX (0, o).

We get similarly w>w ) in RX[T);, ). Therefore, we get for &[T}, T ;4]
j=1,

(1+2)7 4D inf {supp w (-, )} | 2D (j)A(1+T4) 227,

(1-+2)¥m* D |sup {supp w (-, 1)} | 2D () A(1+T;4) """,
and

(L) o (+, 1) | o g2 AD (Y D(A+T ;)™

Since }im D(j)=D(o0)>0 and &im (1+Tj+1)“’2'j =1, we obtain the lower esti-

mates of supp w(-, t) and |w(+, f)|w g.

Let w* be a generalized solution of (2.1) with initial condition w*(-, 0)=w,.
Then we can show that @w* is a generalized supersolution of (5.1). Therefore,
we obtain the upper estimates of supp w(+, ¢) and |w(+, t)|« & Q.E.D.

6. Regularity and semiconvexity of the solution for (1.4) and (1.5)
in case of inf, ., w(x)>0

In this section, we let the function w, belong to C(R) N L>(R) and satisfy
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(6.1 in£ wy(x)>0.

We shall consider the regularity and the semiconvexity of the solution for
(1.4) and (1.5) under this assumption.
By Theorem 0 in [8], we know the following proposition.

Proposition 6.1. Let w,=C(R)N\L>(R) satisfy (6.1). Then, there exists
a unique classical solution of (1.4) and (1.5), and the solution is smooth in R X (0, oo).

Now we shall show main results of this section.

Lemma 6.2. Let wy=C(R)NL=(R) satisfy (6.1) and let w be the classical
solution of (1.4) and (1.5). Then, w satisfies

I(wm_l)x( * t) |°°,R SDn,m Dl(t—l_DZ)_(m—l)/(z'—l)-l
X {Dzm-D/@-D_ (4 D)-(n-D/Cm-D} =12 for (x, )& RX (0, 00),

where D, ,, is a positive constant depending only on m and n,

[Wo|w g \@rtm-2/2 . _ -
D =( . > % {2 (inf 2+l “2n+lyin
1 of e () of o p () { (}En wy(x)) [owo| 7R}

and

D,—

57 G wg(x)) 7.

Proof. Set W=(m/(m—1))w”-!. Then, W satisfies the equation:
W, = (m—1) WW, + | W, |>*-AW*? in RX(0, ),
with f=(2n+m—2)/(m—1) and A=mP-}(m—1)".
By the comparison theorem, we have
(6.2) w(E+C*)~m-/@-H > (x, t) > u(t+Cy)~"~D/=D in RX][0, o),

with = {M(2n—1)/(m— 1)} ~m=D1@-D C\ = (21— 1)~Y(inf , p wo(x))2*! and C*
—(@n— 1) |y 2.
Set

Q(x, £) = (E+2C)*(W (%, t)— p(t-+2Cy)~"=D/@=-1) in RX [0, o0),
where a=(2n+m—2)/(2n—1).
Then, @ is positive in RX [0, o) and we obtain the following estimates:

m—1 (g&

(6.3) Qw)<py — A

)‘” (2C4—C*) in RX[0, o)

and
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—1

m .
1 Cx in RX[0, o).

(6.4) Qx, t)>p

Setting
7(s) = ((2C4)'"*—(a—1) 5) ==Y on [0, S)
with Sy=(2Cy)-*(a—1)"%, we find
{r' =7 on (0, Sy)
7(0) = 2Cy .
Using 7(s) we set
Q(x, 5) = Q(x, r(s)—2Cy) in RX(0, Sy).
Then
(6.5) Qs = (m—1) (Q+p7) Qus+ | Q1>+ 2p r*

_7\'## r¢(1+ﬂ-x r-1 Q)B+ar“1 Q
in Rx(0, Sy).

Set N=8u(m—1)(2n—1)"1(2C4/C*)*(2Cx—C*) and ¢(y)=Ny(1—y). By a
quite similar argument obtaining (4.5), since we can prove

(6.6) | Q(x, 5)| 23—’]’% for (x,5)eRX%(0,Sy).

Therefore we omit the proof of (6.6).
Since

== 1 1-a__ 1-0
§= (a-—l) {(ZC*) (t+2C*) } ]
it follows from (6.6) that
I Wx(x? t) l SDn,m ('%‘)d (ZC*_C*):luz {(ZC*)I_'——(ZC*_}_t)l-a} -12
%
X (t4-2C4)-* in RX(0, 00),

for a certain D, ,>0. Q.E.D.

Lemma 6.3. Let m>2n. Let w,cC(R)NL"(R) satisfy (6.1) and let w
be the classical solution of (1.4) and (1.5). Then, the solution w satisfies the fol-
lowing inequality :

(@ )lt, 2 — K (1 D) en-0es b
X {Dz"=D/@=_ (4 D,)~(m=-b/@n-D} -1
in RX(0, o),
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with K=max ((m—1)/(m(m-1)), ﬁ,,,,,, D?), where D, and D, are the constants in
Lemma 6.2 and D,,.,,, is a positive constant depending only on n and m.

Proof. We differentiate the equation in (6.5) twice with respect to x and
set P=@,, to get

(6.7) P, = (m—1) (Q+ ur) P,,+2mQ, P,+(m+1) P?
—-ar"‘l{(l—l-,,," r-1 Q)ﬂ-l_l} P
_(B_ 1) aﬂ-l ra-2(1 + ”‘-1 r-1 Q)p—z (Q;)z

in RX(0, Sy).
We shall consider the differential operator:
(6.8) L) = 0,—(m—1) (Q+ pr) 0,,—2mQ, ,—(m+-1) 6*

Far* {1+ r 1 Q)F1—1}0 in Rx(0, Sy).
Then from (6.4), (6.6) and (6.7) it follows that

LP)=—(u=% Co) 2 (g—1) ar=i(ur Q) (147 QP

in Rx(0, Sy).

Let k>0 and 0<7<Syx. We substitute P= —Fk[(s—=) into (6.7) to get (note
that 1<B<2)
LiPy< k ___(M+1)k2_'3__1 ar* Y p ' r 1 Q) (14-p1r1Q p-2_k
(Bt o= TN (D i @ (e @t K
in RX(17, S*).

If the positive constant k& satisfies

(,.b m—1 C*)-INSkS(m-I—l)kZ,

2n—1 m
we have
(6.9) L(P)>L(P) in RX(y, Sx).

By Theorem 5.1 in Chapter 7 of [14] P is bounded in R X[, (Sx+%)/2] and
there exists a positive constant &, such that

(6.10) P>Pin RX(y, 7+&).

Thus, choosing
1 m—1 -IN
e ()]
P 1 won=1 %) m
we have
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P>B— —;i_ in RX(z, Sy).
-7

Since 7 is an arbitrary constant such that 0<5<<.Sy, we get

Q,,}_—% in RX(0, Sy).

Therefore it follows that
T (@7 2 — (84-2C4) ™ R[(2C4) " (t+2C4) ]

in RX(0, ).
Q.E.D.

7. The estimates of v in (supp u)°

In this section we shall consider the estimates of v in (supp %), where u
and v are the solutions for (1.1) and (1.2). Throughout this section, we assume
2n—2<m and that u, and v, satisfy (A.I.) and (A.IL.). Setdy=(b,) "2 @,(|%o|1,r
— |ty ] 1, )™~ D/™*D | where a,, and b,, are the constants in (2.5).

For d €(0, d,), we set h=h(d)=>by{"-V(dt—d*Vm-b,

Lemma 7.1. Let u and v be the solutions of (1.1) and (1.2).
For d=(0,d,) and (0, dy—d) such that h(d-+&)>(3/4) h(d), there exists
a positive constant Ty=T\(d, &) satisfying the property:

supp u(+, ) C[—% U m+y % t‘“’"”’] for t>T.

Moreover, for t>T,, there exist x,=x,(d, &, t) [dt"™*V, (d+ &) /D] and x,—
xy(d, &, t) E[—(d+ &) tVmtD, —dtV(m V] sych that

v (%, t)}_% R(d) t=Yw) for i=1,2.

Remark 7.2. For (0, &), we put
G = {(x, 1): 2Ty, xE[—(d-) BV, (d-pr) B D]} .
Applying Lemma 4.4 to the solution v, we see that v is continuous in
{(x, £): t>T,, x&[—(d+&) tVm+D | —dg/om=-D] [dtV(m+D, (d+ &) t/ D]} |

Proof of Lemma 7.1. For A>0 and (f,, g,) €2 such that f(x) and go(x) >0
a.e. x€R, we put (f,, 8)=T—AA)" (fo, &), where A and ¥ are the operator
and the space in Section 2 respectively. Since (|f,|” ' f):: and (| g™ 1 2)):x
belong to L}(R), we have that
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[ a@ar—| fwar=| awa—{ fwas.

R R R R

Therefore, by the definition of the solutions # and v in Section 2, we get that
(7.1) [o(+s ) ly,e— lu(, )|y g =M for £>0,

where M= |vy|y,p— |t |1, 5
Let w be the generalized solution of (1.4) (p=2n) with w(-, 0)=u,. Then,
since 2n—2<m, the solution w satisfies the following properties:

lim |w(-, #)|;,z =0
t>o0
and there exists a positive constant T, such that
(7.2) supp w(-, t)c[—% pn+D), % PURD] for 3Ty .

Therefore, by Lemma 4.1, the solution u satisfies that

(7.3) supp u( -, t)C[—% tUm+y % tl/(”‘“)] for t>Ty
and
(74) lim u(+, 8)l1,5= 0.

By (7.4), there exists Tpu=Ty4(E, d)> Ty such that

(7.5) (-, t)|1.R<2l4 h(d)e for t>Th.

Let v* be the generalized solution of (2.2) with v*(-, Ty)=v(+, Tpx) in
RX [T, o). From Lemma 4.1 it follows that

(7.6) v(x, t)<v*(x,t) for t>T,, and ae.xER.

By [7] and [15], the solution v* satisfies that

(7) sup {supp 0*(+, 1}, —inf {fsupp o¥(+, 1)} ~ottcmtD
and
(7.8) lim Y+ |o*(., £)—0(+, t)|w g} = 0,

-y

where 0(x, £)=2(x, t; |v(+, Tax)|1,z) and Z is the self-similar solution ((2.5)).
From (7.7) and (7.8), it follows that

(7.9) lim |v*(-, £)—0(+, )|, = 0.
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Now we shall show the existence of the point x,.
By Remark 7.2 and (7.3), the negation of our conclusion is as follows:

There exist a constant £€(0,d,—d) and a sequence of the points
t,&[Tpy, o) such that

h(d+e)_>_% h(d), lim ¢, = oo
and
2 —1/(m+1,
(7.10) o (%, t,,)<? h(d) t;m+D
for n>1 and xe&[dt/mD, (d4-E) tifm+D]
From (7.6), (7.8) and (7.10), it follows that
(711) |v("t")|l.R<S ﬂ(x, tu) dx‘*"lv*(': tn)_v(':tn)ll.n_i_gh‘s’
R\Ilt,) 3
where
I(2) = [dt™*D, (d+ &) /D] for t>0.

For any positive constant & such that 4(d+- &) >(3/4) h(d), the function 0 satisfies
that

(7.12) o(x, ) 2% h(d) t-Vem+D
for t>0 and x€I(t).

Since any generalized solutions 2 of (2.2) conserve the total mass:

Iz(', t)ll,R = !2’(-, O)ll,R ’
it follows from (7.1) and (7.5) that

1
7.1 ot —h
(713)  lo( Dlatog e
>|ov(e, Tox) i, = |0*(-, 8)|,g forany £>T.
By (7.12) and (7.13) we have

3
(7.14) oot la>] 06 t)det 3 he
—lo¥(, t)—0(, t,,)|,,3—%h£ for n>1.
From (7.11) and (7.14) it follows that

(7.15) [o%(, 2,)—0(-, t,,)|,',,>zl§ he for n>1.
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The property (7.15) contradicts with (7.9). Thus, for any sufficiently large ¢,
there exists a point x, having the required property.
By the similar argument, we can show the existence of the point x,.

Q.E.D.

In the proof of the following lemma, since we shall use the scheme employ-
ed in the proof of Lemma 3.1 in [8], we omit the proof.

Lemma 7.3. For d=(0,d,), there exist two positive constants T,=T,(d)
and Cy=Cy(v,, d) such that '

[(@™), (x, )| KC, t=m ™D for ¢t>T,
and a.e. xE(— oo, —dt/(mO] Y [dtYmD, o)

By Lemma 7.1 and Lemma 7.3, we can show the following lemma.

Lemma 7.4. For d<(0,d,), there exists a positive constant Ti=T4(d, v,)
such that

o (D, gy o (—deimrD, t)>% h(d) t-Ym+D

for t>T,.
Proof. Fix d (0, d,) and choose
(7.16) &= % { (% h(d))m—l—<% h(d))'”"} cr,

where C, is the constant in Lemma 7.3. Let Ty=max (T}, T,). Then, it fol-
lows from Lemma 7.1 and (7.16) that

.vm—l(dtl/(m+l)’ t) 27)"'_1(”1, t)—Cz t—m/(m+1)(x1_dt—1/(m+l))
>(_2__ h(d) t—1/(m+1))m—1__(:'2 St (m-1l(m+1)
A3
><% h(d) t1/<"'+1>)m_1 for t>T;,

where x, is the point in Lemma 7.1.
By a similar argument, we obtain

.vm—l(__dtl/(m+l)’ t)><% h(d) tl/(m+1)>m_l for t>T,.
Q.E.D.

8. Proof of Theorem 1.1.

Part I (Case m<<2n—2.).
Let w* be the generalized solution of (2.2) with w*(-, 0)=v,. By [17], itis
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shown that the solution w* satisfies

(8.1) |@*(+ £) | g ~t=Ym+D
and
(8:2) sup (supp @*(, t)), —inf(supp w*(+, £)) ~2/"*D .

Let w be the generalized solution of (1.4) (p=2n) with w(-, 0)=v,. By the
result stated in Introduction, the solution w satisfies

(8.3) loo(+, 2) |, g 27V,
and
8.4) sup (supp w(+, t)), —inf(supp w(+, £)) ~V*+D |

On the other hand, by Lemma 4.1 we have

(8.5) w(x, t) <ov(x, ) <w*(x, f)
for t>0 and a.e. xeR.

It follows from (8.1)—(8.5) that
(8.6) |9(¢) 2) |, g ~E~VmD
and
sup (supp v(+, £)), —inf(supp v (-, t)) ~e/m+D

Therefore we have the estimates of [v(+, f)|w p and supp (-, ).
By (8.6), there exists a positive constant A such that

(8.7) (v(x, 2))" <A (14-£) - (mtD
for t>0and ae. xER.

For such a A, we let u4 be the generalized solution of (5.1) with wuy(-, 0)=u,.
By (8.7), the solution uy is a subsolution of (3.1) with P=v¢" and ¢g=n. Hence,
by Lemma 4.1 and Lemma 4.3, we have

(8.8) uy(x, t) <u(x, t)<w(x, ) in RX[0, o).

By Lemma 5.2, the solution u,, satisfies

(8.9) [x(+ ) | oo, g ot~V *D

and

(8.10) sup (supp #x(+, £)), —inf(supp uy(, t)) ~/"+H

From (8.3), (8.4) and (8.8)—(8.10), we obtain the required estimates of |u(+, )|« 5
and supp u(-, 2).
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Part IT (Case of 2n—2<<m.).
The following lemma gives some lower estimates of v in a subset of

(supp #)".
Lemma 8.1. Let
£(t) = {§° wm BT i 2 km,
L &o(log(#)). if 2n=m,
k(t) = A(H-K)/mD4-0(2) for t>0
and let

_— 1/(m—
o (x, 1) = (Zm”(lm—}l—l)) 0 g 42— (r— k() £ ) LD i RX[O, 00).

Then, u and v satisfy
supp u(+, ))C[—£(2), E(@®)] for t>T,
and
v(x, t), v(—=x, £) >0 (x, £)
for t>T, and a.e. x&(— oo, AtVim+D]

for certain positive constants k, &, and T,.

Proof. Let w be the generalized solution of (1.4) with w(+, 0)=u,. Then,
as is noted in Introduction, it holds for sufficiently large &, and T4 that

supp w(-, £)C[—E(2), £(2)] for t>Ty.

By Lemma 4.1, we have also

(8.11) supp u(+, £)C[—E(2), £(2)] for t>Tyx.
We set
(8.12) A= (2"4-1)"14,,

where d, is the constant in Section 7. By Lemma 7.4, (8.12) and 2n—2<m,
there exists a positive constant Tp,= T,y (A) > T4 such that

(8.13)  w(AN™HD, £) o(— AgemtD, t)>%h(A) £V for £ Thy

and

1

8.14)  suppu(-,t)C [—% Aplond, L ApM] for 12T,

where % is the function in Section 7.
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Here, we take
(8.15) K=2"T,,
and set
Gr,, = {(x, t); t> Ty, xS[— AtV fVm+D]) |

We shall compare the function 2§’ in this lemma and the solution v in Go,,.
By (8.15), the function v§’ satisfies

(8.16) oP(x, Toe) = 0 for xe[—ATY™D, ATH™+].

Since
k(t)>At=+)  for t>0

we have

(8.17) oP( A+, t)<% R(A) Vo) for 13T,
(8.18) OP(— AtV ) = 0 for t>Tpy

and

(8.19) oz, 1) >0

for t>T, and a.e. x&[— A/, A/ (m+D]
By (8.11), the solution u satisfies
(8.20) (supp #) N(supp v§’) = ¢ in Gy, .

Since the function ((m—1)/(2m(m--1)))¥m-1 ¢-Vim+D( 2 x? g-H(m+Dh)\/(m=]) gt~
isfies (2.2) a.e. in RX (0, o), we obtain by (8.19) and (8.20)
(8.21) V5 —(V§") 0" 0

= o{)(—k'(t))<0a.e. in Gp,,,

That is, v’ is a subsolution of (3.1) with P=9" and ¢=n in Gy,,. Thus, by
(8.13), (8.14), (8.16)—(8.18) and Lemma 4.4, we conclude v§’<v in Go,,.
Q.E.D.

Lemma 8.2. There exist a positive constant T, and a positive function
p defined on [T,, o) such that

v(x, £)>p(t)>0
for t>T, and a.e. x&[— A+, AVm+D] |

where A is the constant in Lemma 8.1.
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Proof. Case: 2n—2<m<2n.

Let w be the generalized solution of (1.4) with w(-,0)=u, Then, by
[8], [9], [12] and [13], there exists a nonnegative constant T4 such that for each
t>Ty, {x< R: w(x, t)>0} is an open interval in R containing x=0. By Lemma
8.1, there exists a constant Ty >max (T, T}) such that

(8.22) v(, 1) > @y(x; 1)
for t>T, and a.e. x&[—AMm+h | Jp/miD] |

where

m—1 \V(im+1) A? 2 Y(m~1)
;t ={ - = t—l/(m+l) (_____ _“ Atll(m+1) Zt—2/(m+l))
o ) = (gt ) (2 )

and A4 and T, are the constants in Lemma 8.1.

For each s>T,, let w(-, +;s) be the generalized solution of (1.4) with
w(-, s; $)=max {w(-, s), @o(+; )} in RX[s, o0) and let @(-, +;5) be the gene-
ralized solution of (1.4) with (-, s; )=@(+;s) in RX[s, o). Then, by (8.21),
Lemma 4.1 and Lemma 4.3, we have
(8.23) (3, £ 5) <w(, £;.5) <v(, )

for §s>T,, any t>sand a.e. xER.
We observe by [9], [12] and [13] that for each t>s, {x&R: ¢(x, t; §)>0} is an
open interval in R.

Since m<2n, the result in Introduction implies that there exists a constant
T34(= Tp4) such that

+

{xeR: w(x,t)>0t N {x=R: p(x,t;5)>0}+¢d for t>Ty.

Let E(t)={x=R: w(x,t)>0}, E(t)={xcR: @(x,t;5)>0} and Ey(t)=
{xe R: v{(x, t)>0}, where v§’ is the function in Lemma 8.1. Since E(t),
Eg(t) and E(t) extend as ¢ increases we obtain by [9], [12] and [13] that

(8.24) E(OUE)U(_Y | E(0)DI0, 4ve]
se[r, ot
for t>T4 .

Since [0, At/*1] is compact there exists a finite sequence {5} /.1 C [T, #] such
that

(8.25) Et)DE(t)U( U E,,(2)210, Atvewt]

By Lemma 3.3, w and ¢(-, «; ) are continuous in RX[0, o) and RX[s, o)
respectively. When we put
P+(t) = min {max (w(x) t)) v(ﬂp(xy t)’ (p(x, t; sl)7 B
@(x,t;57)): x[0, A/} for ¢>Tay,



DEGENERATE QUASILINEAR PARABOLIC SYSTEMS 881
Lemma 4.1, (8.23) and (8.25) imply that the function p, is positive in [T, o)
and satisfies

(8.26) o(x, 2. ()
for t>Ty and a.e. x€[0, 4tV»+D],

By a similar argument, we find a positive constant T, and a positive function
p- defined on [Ty, oo) such that

(8.27) v(x,t)>p-(t) for t>T, and a.e. xs[—AtVm+D (].

Case: m>2n.
By a result stated in Introduction and Lemma 4.1, there exists a positive
constant b such that

(8.28) supp u(+, §)C [—%, %] for 0.
By (8.28) and Lemma 4.4, v is continuous in (R\(—2b/3, 2b/3))X [0, o).
Hence, by Lemma 8.1, there exist two positive constants @ and T;4 such that

(8.29) v (%, £)>at=m/(m+D(m-D)
for t>T;4 and |x| >b.

For T'>0, we let w(x, t; T') be the solution of
(8.30) w, = (w"),,—Aw in RX(T, oo)
with

w(, I3 T)=9(-,T) on R,

where A= |7,| ¥

By Remark 3.2, Lemma 3.5 and 4.1, we have
lu”(’, t) 7}"_1(’, t)l»,gS)\, for tZO ’

and hence, by the comparison theorem,

(8.31) w(+,t; T)<v(-,t) for tand Twitht>T2>0.
If we can show
(8.32) U U (supp (-, #; T))*D[—b, 8],

720 £T

this together with (8.32) will give the desired result. In fact, for x,&[—b, b]
there exist #(xy) > T'(x,) such that

w (%o, £(%0); T'(%))>0.
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Then, there exists an open interval I(x,) such that

xo &I () C (supp w(+, £(%0); T'(%)))° -

Since supp w(-, t; T'(%,)) is monotonically non-decreasing with respect to ¢, we
get

1(x0)  (supp w(+, 25 T'(%)))°
for t>t(x,).

Since there exist finite points {x;}/..C[—, 5] such that U/.,I(x;)D
[—b, b], we obtain

v(x, ) >h(t)>0

for any x&[—b,b] and any ¢>t*, where t*=max?(x;) and k(t)=min max
w(x, t; T(x,)). ! ’
In order to show (8.32), we assume

rgo :Br(supp w(.’ £ T)) :D[_b» b] .
Then there exists a point x, &[—b, b] such that
w(%g, t; T) = 0 for t and T with t>T7>0.

Therefore, v, and %, satisfy vo(x4)=1uy(x4)=0. Note that

(8.33) r vg() dy>$: u(y) dy

or
S:ﬂ v(y) dy> Si‘ uy(y) dy .

We assume (8.33) without loss of generality.
Let

Vo = Ug X(-co, 243V Xz, 00) »
Uxo = U
and let v, and uy be the solutions of (1.1) with u#y(+, 0)=vy, and uy(+, 0)=uy,.
Then, by Lemma 4.1 we have for >0
(8.34) 0 (%5 1) >0y(x, 1) >uy(x, t) >u(x, £)>0
forae. xR.

For T'>0, we let wy(+, «; T) be the solution of (8.30) with wy(-, T'; T)=ov4(-, T).
Then, since T>0 w(+, +; T)>wy(+, +; T) in RX (T, o), we get
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Wy(Xx, t; T) = 0 for ¢ and T with t>T>0.

For T>0, we let z4(+, -; T) be the solution of (2.2) in RX(T, o) with
z*(” T, T)='0*(', 7).
Then, we have

(8.35) wi(x, t; T) = 7D 2, (x, S"’ e~(n-0%s do; T) .
0
By the comparison theorem and (8.35), 2, satisfies
1
8.36 s+ T3T) =0 for se(0,
(8.36) 2y (%, s+ ) or s 1) 7\.>

and for t>T,
(8.37) 24(,2; T)>v4(+,t) a.e. on R.
For each T'>0, let

V(s 3 T) = 24(*, 3 T) Xy o0 -

Then, we shall show that o,(-, «; T') is the solution of (2.2) in RX(T, T+
1/(Mm—1))) with vy(+, T'; T)=vy(+, T) X[, «). For this we take ¢, t,e(T, T+
1/(\M(m—1))] with ¢,<<?, and %, x;E R with x,<x,.

For >0, we set

() = {eXp(~(32—(x—(x*+8))2)“) if |x—(xx+8)| <8,
PR =0 if |x—(ae+8)| =8

and
) = {_pu2)dy.
For f&C%([t,, t,] X [%0, ,]) With f(x, t)=f(x,, £)=0, 24 satisfies
I (24, fha, [to, 1] X [0, %,]) = O
Since there exists a constant C=C(%,, ;) such that
|3+ T) | <C for 1<ty 8],
we have
0 = I (2, fhs, [to, t1] X [%o, %1])
= o Dot oo bt dsae
[ #x haf sy,

and, letting §—0,
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(8.38) I (24 Xpzy, 000 [0 61X [x, 2]) = 0.

Therefore vy(-, +; T) is the solution of (2.2) in RX (T, T+1/(A(m—1))).
Let w be the solution of (1.4) with w(-, 0)=u, and let v,=w X(-. »,3. By
Lemma 4.1, we see

Vg%, t)>w(x,t) for t>0and ae. xR,
and hence, by (8.36) and (8.37),
w(xg,2) =0 for t>0.

By a similar argument we can show that v, is the solution of (1.4) (p=2n) with
Vy(*, 0)=1ty X(- o 2,1-

For T>0, let #(-, «; T)=vy(, +; T)+v, and let #=v,. Then 9(-, «; T)
and # are the solutions of (1.1) in RX (T, T41/(M(m—1))). First we take T'=0.
Since

9(+,0;0) = vyo>uyo>%(+,0) a.e.on R.
we have by Lemma 4.1 that for £&[0, 1/(A(m—1))]
(8.39) (e, 2;0)>04(+, ) >uy(+,t)>d(-,t) a.e.on R.

Since #=10 if x<<®y Vy=1uy in (— o0, 23] X [0, 1/(A(m—1))].
By induction, we conclude

Vg = Uy = WX (o £, 1IN (— 00, 24] X [0, 00) .

By a result stated in Introduction, U ,»,supp %(, t) is bounded in R, while
U 120 SUPP Vs(*» £) X(-w,+,1 18 not bounded in R by Lemma 7.1. 'This contradicts
to the above equality and (8.32) is now proved. Q.E.D.

For T, N>0, we shall consider the following boundary value problem:
(8.40) w, = (w"),,—»” in QF,
(8.41) w(E£NE (), t) = 4~V on [T, o),

where Q= {(x,t)ERX [0, ): t>T, x&[—NE&(t), N¢(#)]} and ¢ is the func-
tion in Lemma 8.1.

Lemma 8.3. If 2n—2<m<2n, there exist two positive constants Ts, N
and a positive classical solution w, of (8.40) and (8.41) in QF, such that

u(x, t) Swy(x, ) <o(x, t)
for t>T;and ae. x&[—NE(t), NE(2)],
o(£NE(2), £)>5t7YY 4n [Ty, o),
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supp w(+, )|~ £@, L £@) | for 2Ty,

where w is the generalized solution of (1.4) with w(-, 0)=u,.

Proof. By a result in Introduction, there exist two positive constants N >2
and Ty, such that

(8.42) supp w(+, §)C [—% ¢(8), % £@)] for t>Th -

Hence, there exists a positive constant Ty >max (7T}, T}) such that
(8.43) vQ(NE(2), 8)>5¢Ye=Y  for t>Tyy,

where T; and v’ are the constant and the function in Lemma 8.1, respectively.
By (8.42), Lemma 4.1 and Lemma 4.4 v is continuous in R X [T, °)\QF4
and we have by (8.43) and Lemma 8.1 that

(8.44) o(NE(2), 8)>5¢YC0  for t>T)y .

Let Ty =max(Ty, T,), where T, is the constant in Lemma 8.2. Then, by
Lemma 4.1, Lemma 8.1 and Lemma 8.2, v satisfies

(845) 0(%, Tye) =max (%, Tar), 09(—2, Tox)y p(To)
w(x, T} for ae. x€[—NE(Tow), NE(Toa)]

where A4 is the constant in Lemma 8.1 and p is the function in Lemma 8.2. By
Theorem 0 in [8] w is smooth in {(x, {)€ R X (0, «): w(x, )>>0} and by (3.42),
(8.44), (8.45) there exists a positive function wy, & H**8([—N§(Tsx), NE(Tax)]),
0<B<1, such that

(8.46) w (%, Tox) Swgy(x) <v(x, Tax)
for a.e. ¥€[—NE(Tee), NE(Toi)]

and that wy, satisfies the compatibility condition of first order for (8.40) and
(8.41) in QF,,.

Since wy, is positive on [—N&(T'sy), NE(Tsy)], we can show by Theorem 6.1
of Section 5 in [14] and the change of variables the existence of the positive
solution w, EHEL:FPAQY ) of (8.40) and (8.41) with w,(+, To)=wg in QF,..
Since w, is a generalized solution of (1.4) in Q%,,, we obtain by (8.42), (8.46).,
Lemma 4.1 and Lemma 4.5 that

(8.47) u(x, t) <w(x, t) S<wy(x, 1)
for t>T;y and a.e. x&[—NE(t), NE(2)] .

Thus, w, is a subsolution of (3.1) with P=u" and g=n in @¥,, and by (8.43),
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(8.46), (8.47) and Lemma 4.4 we have

(8.48) u(x, t) <wy(x, ) <v(x, t)
for t>Ty and a.e. x&[—NE(2), NE(2)] -
Q.E.D.

Lemma 8.4. If 2n<<m, there exists a positive constant b such that
supp %(-, t)C[—%, —IZ’—] for t>0.

Moreover, suppose that for such a constant b, there exist three functions @, v and
w*e HLPE[—b, b] X [T,, ), 0<B<1, T,>0, satisfying the following pro-
perties:

@ is a generalized supersolution for w,=(w"),,—v" w" in [—b, b]X[T,, =), v
is a generalized subsolution for w,—=(w"),,—u" w" in [—b, }] X [T, o) and w* is a
generalized solution for w,=(w"),,—w™ in [—b, b] X [T,, o),

1t YD <L, ) SwH(Eb, ) <o(kb, )

<L27VE-bH<o(4b,t) for t>T,,
u(x, T)<u(x, T,)<w*(x, T)<v(x, T,)
<v(x,T,) forae x&[—b,b],
u(x, t) <w*(x, t)
for t>T, and a.e. x[—b, b],
O<a<w*<vin [—b, b]X[T,, ).

Then, those functions satisfy that

u(x, t) <a(x, t) <w*(x, t)<v(x, t) <v(x,t)
for t>T, and a.e. x[—b, b] .
Proof. We know already that there exists a positive constant b such that

supp u(+, t)C[—b/2, /2] for t>0. Let us fix such a constant 5. We shall con-
sider the following initial boundary value problems:

(849)  Lw;q) = w—(@"),t+q" w'=0in [, B]X[T,, 0,
(8.50) w(b, t) = w(—b, t) = _;_ £-1E-D on [T,, o0),

(8.51) w(x, T,) = w4y, on [—D, b]

and

(8.52) L(w; g) = 0in [—b, 5] X [T}, o0),

(8.53) w(b, t) = w(—b, t) = 2t=Y@D on [T,, ),
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(8.54) w(x, T,) = vy on [—b, b]

where ¢ is an arbitrary function belonging to L=([—b&, b]X[T,, ©0)), vpp=
2T 7YY and u,, is the convolution of max {u(-, T}), (1/2) T¥**-b} and an ap-
propriate mollifier. Therefore, u, and vy, satisfy the compatibility condition of
first order for (8.49)—(8.51) and (8.52)—(8.54), respectively.

Let uy=v,=w¥*. Then there exist two sequences of the positive functions
u; and v, € HZPPA[—b, b] X [T, o0)) satisfying the following properties:
For j>1, v, is the classical solution of L(w; u;-,)=0 with (8.53) and (8.54) in
[—b, b] X [T}, o) and u; is the classical solution of L(w;v;_,)=0 with (8.50)
and (8.51).

We can prove that there exist ljim v(%, t) and lim u;(x, ) in [—b, b] X [T}, oo).

00 jroo

Setting v(x, £)=lim v (, £) and w,(x, £)=lim u(x, t), we can obtain
jroo } jroo
(8.55) u(x, 1) Suy(x, 1) <w*(x, t) <v,(x, ) <v(x, 1)
for t<T,and a.e. x&[—b, b].

Let 4y=v and let #4;=u. Then, for any j >1, 4, is the classical solution for
L(w; 4;_,)=0 with (8.50) and (8.51), 9, is the classical solution for -L(w; #;_,)=0
with (8.53) and (8.54). We can prove that there exist lim (x, ) and lim % (x, ¢)

in [—b, b]X[T,, o0). Setting dy(x, £)=Iim 9 (x,¢) and Gy(x, )=lim &(x, t), we
obtain e e

(8.56) <ALV, < | Vg | o f-5,51 in [—, B] X [T, ).
Therefore we can observe that

(8.57) Ay(x, t) = wy(x, t) for t>T, and a.e. x[—b, b],
(8.58) Oy(x, t) = vy(x, 1) for t>T,and a.e. x&[—b, b] .
From (8.55)—(8.58) we conclude

u(x, t)<u(x, t) <w*(x, 1) <v(x, t) <v(x, 1)
for t>T,and a.e. x&[—b, 8] .
Q.E.D.

Let T>0 and let
Gr = {(x, t)ERX[T, o0): x&[— AtV A/ (m+D]} |

where 4 is the constants in Lemma 8.1. Let us consider the following initial
boundary value porblem (I.B.):
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(v, = (o™),,—u"v" in Gy,

u,= (u"),,—o"u" in G,

(IB.) v (LA, 1) = '2_ (z—ﬁm:_%l—))wm ? Am=1) g=Ym+) on [T, o),
u(£ Atm+D §) = t-Vm+D-2 o [T, co),

v(+, T) = vy on [—ATVm+D ATYm+1]

#(+, T) = uy on [—AT VD, ATI/(mﬂ)] .

First, we shall construct some convenient initial functions.

Lemma 8.5. There exist a positive constant Ty and two positive functions
v and & such that

v(+, 1), 8(+, t)SHB([— AtV m+D, JUm+D])
for t>T;, .

v(x, 1) >0 (x; 1) >0(x; ) >w(x, t) >u(x, 2)
for t>Ty and a.e. x[— A, Ag/(m+D] |

8 [ m—1 V=D
Atll("""l); t) = o (—AtVrtD; ) = = (__) A (m=1) =Y (m+1)
o )= )= 5 (Gt
for t>T;,
1 m—1 \Ym-D
B(AVY; ) = g(—ANOEY; f) = g YmID -2 —)
( ) ( ) 9 (Zm(m—}—l)

A¥m=1 t-Um*d - for ¢>T;,
1

min {o(x; t); xS [—AVm+D, AVmtH]L (__u)l/("'_” Aim=1) g-U(m+D)
T 2 \2m(m+-1)

>max {#(x; t); x &[— AV, g/ mtD]}
for t>T; _
and for T>T; u(+; T) and v(+, T) satisfy the compatibility condition of first order
for (I.B.), where A is the constant in Lemma 8.1 and w is the generalized solution
of (1.4) with w(+, 0)=1u,.

Proof. Case: 2n—2<m<2n.
Let a be the solution of the Cauchy problem

{a’ = am*#-1_qg™ in (0, o)
a(0) = (1/2)¥=-
Then, the solution « is monotone decreasing with respect to ¢ and satisfies
(8.59) a(t) ~tves-n
We set

Wy(x, t) = a(t) exp(x® a®'(t)) .
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Then it follows that

(8.60) Li(y) = Wyy— (W) s+ W
< —exp(«* a®?) {(2m—1)—(2n—1) @™ 4%} a1
+a®™ exp (x* a?*~1) {exp((2n—1) #* @*~)—1—(2n—1) x* a®~}
in RX(0, o).
By (8.59) and (8.60), there exists a positive constant Ty, such that L(@)<0
for t>T4+T; and x[—NE(¢), NE(2)] and that
(8.61) wy(%, £) > Wy(x, 1+ Tiy)
for t>T;and x[—N{(¢), NE(2)],
where T, N and w, are two constants and the function in Lemma 8.3 respec-
tively and & is the function in Lemma 8.1.
Let us fix the positive constant T, satisfying (8.61) and let wy(x, t)=
W (%, t4Ty)-
By (8.61), Lemma 8.3 and the comparison theorem,
we obtain
(8.62) wy(x, £) Sw,(x, t) <v(x, t)
for t>T;and a.e. x&[—NE(2), NE(2)] -
On the other hand we see by Lemma 4.5 and Lemma 8.3 that
(8.63) w(x, t) < (2n—1)"YE-H(t4-d,)~YE-D
for (x,2)€Q7,,
with di=(2n—1)"Y(|w(+, T3)| w g) 2 —T,.
By (8.63), Lemma 4.1 and Lemma 8.3 we obtain
(8.64) u(x, t) <(2n—1)~V@n-1(¢4-d,)- V=D
for t>T,and a.e. xER.
By (8.62) and (8.63), there exists a positive constant Ty > T such that
(8.65) u(x, 1) <(2n—1)"V-(t4-d)~Vr-Y < ot (t-+ T14)
Swy(x, t) <wy(x, ) <v(x, t)
for t>T,y and a.e. x&[—N¢(2), NE(B)] .
Here, let
8 (’”_—1_>1"""1’ AHm=1) g=1m+D
9 \2m(m--1)
og(wit) = 4 if |x] S[ABO*D_1, oo)
o (x, 1) if |x| E(INE(2), At¥m+D—1)
wx(x, t) if (x| [0, NE(2)]
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and let

*(x; t) = max {w(x, ), 172V +D}
Then, by Lemma 8.1, there exists a positive constant T’y > T, such that for
t> T v4(+ 3 t) and @%(-, ¢) satisfy the properties of this lemma except these re-
gularities.
Let vy4(-; t) be the convolution of v4(-;t) and an appropriate mollifier and let

7(-; t) be the convolution of #*(:;?) and an appropriate mollifier. Then, for
t>Ty, v(-;t) and #(-;£) satisfy the properties of this lemma.

In case of 2n<m.
Let p be the function in Lemma 8.2.
Let T,y be the positive constant such that

Ty>T)and T,,

i (_ﬂiyl(m_l) A (m-1 t—l/(m+l)>(2n__ 1)—-1/(21:—1) t-1(n-1)
9 \2m(m--1)

for any t>T,,,

where T, and A4 are the constants in Lemma 8.1 and T, is the constant in Lem-
ma 8.2.
We set

(8.66) w(x) = max fw(x, Toy), min(p(Tey), (2n— 1) T3/ca-n)}
for x€R.

By Theorem 0 in [8], there exists a unique positive classical solution w* of (1.4)
with w*(+, Ty)=w§ in RX [Ty, o) satisfying the following properties:

(8.67)  (2n—1)~Ver-D(t4-dy) V=D Kgu¥*(x, t) < (2n—1)~Vr-D ¢-1E-D
for (x,t)ERX [Tk, ),
where
dy = (2n—1)7" {min(p(Ts), (2n—1)7V@=D TR fCa-D)} =21 Ty .

By Lemma 4.1 and the comparison theorem, the solution w* satisfies

u(x, ) <w(x, t)<w*(x, t) for t>Ty
and a.e. xR,

and w* is a generalized subsolution of (3.1) with P=4" and g=7 in G;,,. Then,
by (8.66), (8.67), Lemma 4.4 and the definitions of p and T4 we have

(8.68) u(x, t) <w*(x, t)<ov(x, t)



DEGENERATE QUASILINEAR PARABOLIC SYSTEMS 891

for t>T* and a.e. x&[—AVr+D, gV m+D] |

Now, by a result in Introduction, Lemma 4.1 and Lemma 8.1 there exist two
positive constants b and Ty > Ty such that

supp #( -, t)C[—%, %] for t>T;y,

AT+ V>p>1,
v (%, £)>5t~V=D
for ¢> Ty and x[— A/, —b]U [b, AtVm+1]

We set

(m—2n)/(2n-1)
&0 =2 () -2,

1) = (@—E@®)™,

with P=2Kb*(T+1)m-2m/@-D1 2 where T'>T,4 K and S are constants chosen
later.
We set further

W(x, ) = —— (w*(x, )1,
m—1
Ux, t) = n% (w*(x, )™ Y(1—1(x—E)%)
and
V(x, t)= Jii (w*(x, D)"Y 1+-I(x—E)T).
m_
Now, let us consider the differential operator:
M(F; H) = F,—(m—1) FF,,—(F,)*>4 \H"(m-1) F®tm-2/(m-1 |

with A=m((m—1)/m)Cr+m=Dlm-1)
Then we observe that

(8.69) MW; W) =0 in RX (T, ).

We shall find T, K and S such that

(8.70) M(U; V)=>0 in [—b, ] X [T, o0),
(8.71) MV; U)<O0 in [—d, b] X [T, o).

First, we shall consider (8.70).
We see
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(872)  HU(U; V) = [W(1—L(x—E))—(m—1) WW,(1—I(x—E)5)?
—(W. ) (1—l(x—&)2)
AW @m0 lm-(1 4 [ (x— ) PYMm=-D(1—] (x— E)T)+m-d/m-1)]
HW A=V (x—E)T+PIE (x—E) i} — W2 P2 IH(x— )57
+(m—1) P(P—1) W2 [(x— &) (1—1(x—E£)7)]
+[2m Pl(x—&) 7 WW (1—1(x—E)})]
— I+IT+1IT in [—b, b]X [T, ).

Let S>1. Then, we see for y&[0, 1/5]
(8.73) (1__y)(ﬂ—l)/(m—l)(l+y)n/(m—1) 1>(1+ ) (m—2)/(m-1)(1_ )(ﬂ—l)l(m—l)—l

1 2n 2
X{——(1—
{m—l(

—(2n—1) )}
Let
C.n(S) = (1+l)-<m—2)/(m—1)(1_ l)(»-x)/(m-n-z

1 2n 2
{1 - 2n—1 }
{m—l ( —(2n— ) )
and let S be a constant such that

(8.74) Can(S)=

By (8.69), (8.73) and (8.74) we have

Z(m 1)’

(8.75) I> {Z(m”_l) W entm-2ln=b_{_(m—1) WW,,-+(W,)}

X1l(x—E)F(1—1(x—&)%) in [—b, b]X[T, o),
and hence, by (8.75) and Lemma 6.3, there exists a positive constant T'>T},
such that

(8.76) I>0 in [—b, b]X[T, o).

To treat II we observe

(8.77) I'(t)<0.

Then, we have

(8.78) II>(m—1) 1:(P—1> H—E)22 W "f:(H(—T(FT) lx—8)?
—(m— 1)(P-1) W(x-—E)+2b (21;——1,‘) (T 1ymmenie=s
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(1) v=amiensn=tl in [, )X [T, e0)

Here, by choosing T larger, if neccessary, we have

679 Wenz(5 ) I @ e e
m__

for t>T.

Now, we choose S, K such that

2
8.80 >3(14+—=—
o (1,2
and
(8.81) K2(3)7 3 @u a1,
2 m

Then, by (8.78)—(8.81) we obtain
(8.82) 1 2% (m—1) P(P—1) l(x—E)2 2 W
in [—b, ] X [T, ).
It follows from (8.80)~(8.82) that
1 m | W,

(8.83) II+III>(m—1) P(P—1)l(x—E)* W* {7—m W }
in [*—b, b]X[T’ oo) .

By choosing T larger, if neccessary, it follow from Lemma 6.2, (8.79) and (8.83)
that

(8.84) II+III >0 in [—b, b]X[T, o).
Thus, from (8.76) and (8.84) we conclude (8.70).
If we choose S satisfying (8.74), (8.80) and

(8.85) s>(1—(3)" ) @y,

then by (8.79) we have that

(886)  U(xb > (-é )’"‘1 (21— 1)~n=0lzn=1) g=Cn=Din-1
—

in [—b, )] X [T, o).
By the definitions of the functions / and &, we see

(8.87) Ve, T)y=U(x,T)= W(x, T) on [—b,b].
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By a quite similar argument obtaining (8.70), since we can prove (8.71), we
shall omit the proof of (8.71).
Further, (8.67) and (8.85) we have

(8.88) V(+b, t)y<2m-r T 7 (20— 1)7nmDICeh bl
m._
for t>T.

Thus, (8.68), (8.70), (8.71), (8.86)—(8.88) and Lemma 8.4 we obtain
(8.89) u(x, t)S(Z”;l U, t))”(""l’ <wH(, 2)
m

_ /(m—
S("’_l V(x, t))I 7 <o, 0)
m
for t>T and a.e. x[—b, b] .
Similarly, setting

U, 1) = W(x, t) (1—1(—x—E(#))
and

V(x, t) = W(x, £) 1+1(—x—E)L),
these have the same estimates as U and V, respectively, and we obtain

(8.90) u(x, z)g('”—;i O (x, t))ll‘"’_” <w*(x, 1

g(’”—-‘l V(x, t) )1/(,,:-1) <v(x, t)
m

for t>7T and a.e. x&[—b, 8] .

By the definitions of the functions [ and £, there exists a positive constant Ty
such that

@91 -0z (50) " (4)
_ % (%)P in [0, 5] X [Tex, o) .
Here, let

i (L_—l—) Hom=b A (m=1) g=U(m+1)
9 \Zm(m+1)

if lx| E[Atll(mﬂ)_l’ oo)
v (x, t) if x| E(b, AtV TH 1)

w*(x, ) <1+% (%)P)vw-n if |x| 0, 8]

V(%3 1) =

and let
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2V i | x| &[b, o)

a¥(x;t) = {w*(x, f) (1_% (116)?)1/(”_1) if |x|€[0,8d).

Then, by (8.68) and (8.91), there exists a positive constant 7> Ty such that
for t> T,y vs(+;t) and #*(-; t) satisfy the properties of this lemma except these

regularities.

Let v(-;t) be the convolution of v4(+;?) and an appropriate mollifier and
let #(-;¢t) be the convolution of #*(-;¢) and an appropriate mollifier. Then,
for t> Ty, v(+;t) and #(-; t) satisfy the properties of this lemma. Q.E.D.

Lemma 8.6. Let T be the constant such that

1 2n-1 1
T > T , 1 , T(m+2-—-2n)/(m+l) (—H) > - ,
e=>max {75, 1}, T§ 3 ml

1 1
T=Yim+)~2_~ - H, 2T =28+m/(m+1) :’—1 ,
6 <9 m—+1> 6 |90l =R
AT YD >N (Te) and b,

where A, N and b are the constants in Lemma 8.1, Lemma 8.3 and Lemma 8.4
respectively, ¢ is the function in Lemma 8.1 and H=((m—1)/(2m(m-1)))/-D
AU m-1)

Let the constant T in (I.B.) be Ty and set uy==0(-; Ty) and vy=2v(+; Tg) in
(I.B.), where © and v are the functions in Lemma 8.5.

Then, there exists a unique pair of positive classical solutions w, and v,&
HZBWY(G L) of (I.B.), satisfying the following properties:

u(x, t) <wuy(x, t) <v,(x, t) <ov(x, f)
for t>T; and a.e. x&[—AtVm-b, AtVim+D]
and there exists a positive constant hy, such that
(%, t) >y t~VmFY
for t>Tg and a.e. x&[— AV, /(4] |
where u and v are the solutions of (1.1) and (1.2).

Proof. Since #(-; Tg) and v(-; T¢) are positive functions satisfying the
compatibility condition of first order for (I.B.), then by Theorem 7.1 of Section
7 in [14] and the change of variables there exists a unique pair of positive clas-
sical solutions , and v, € H 1 P**P4(Gp,) of (I.B.).

Let us consider the following initial boundary value problem:

(8.92) w, = (w"),,—w* in Gy,
(8.93) w(L AtV ) = -%—Ht"’(’”*” on [T, o),
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(8.94) w(+, To) = wy, on [—AT YD, AT Hm+D] |

There exists a positive function wy,EHXB([— AT §/(m+, AT {m+D]) satisfying
the compatibility condition of first order for (8.92)—(8.94) and the following

property:
(8.95) (-5 T) <wy<v(+; Te) on [—AT ", AT /*0].

Then, by Theorem 4.1 of Section 4 in [14] and the change of variables, there
exists a unique positive classical solution w,&H iP"*P%(G ) for (8.92)-(8.94).
By Lemma 8.5 and (8.95) we see

w(e, Tg) Swy on [—AT D AT Ym0]
and hence, by Lemma 4.5,
(8.96) w<w, in Gy, .

Let L(p; q) be the differential operator defined in (8.49).
By Theorem 4.1 of Section 4 in [14] and the change of variables there exists
a unique positive classical solution v,& H:P"**%(G )

(8.97) L(w; w;) = 0 in Qg,
(8.98) w (L AtmD, g) — %Ht‘”""*” on [Ty, ),
(8.99) w(+; Ty) = v(~; Tp) on [—AT Y+, AT Y]

Since v, is a subsolution of L(v,; 4)=0 in G, Lemma 4.4, Lemma 8.1, Lem-
ma 8.6, the comparison theorem and (8.95) give
(8.100) wy(x, 1) <vy(x, t) <v(x, £)

for t>Tg and a.e. x&[—AtVmD 4Vm+Dd]

By a similar argument, there exists a unique positive classical solution #,&
248,
HEPW5(GL) of

(8.101) L(w;v) =0 in G,
(8.102) w(FAtVM¥D ) = g-Vm¥D-2 on [T, 00),
(8.103) w(e, Tg) = (+; Tg) on [—ATm+D, AT/ m+0],

By (8.100) %, is a supersolution for -L(,; v)=0 in Gr, and Lemma 4.5, Lemma
8.6, the comparison theorem and (8.96) give
(8.104) u(x, t) Suy(x, t) <w,(x, t)

for t>T, and a.e. x&[—AtV*d 4/ (m+D] |



DEGENERATE QUASILINEAR PARABOLIC SYSTEMS 897

By a similar argument, there exist two sequences of positive functions u; and
v; EH PG ) satisfying the following property:
For each j>2, v; is a unique classical solution for L(v;;u;-,)=0 with (8.98)
and (8.99)in G, and u; is a unique classical solution for L(u;; v;)=0 with (8.102)
and (8.103) in GTG.

By (8.100), (8.104), Lemma 4.4, Lemma 4.5 and the comparison theorem
we see

(8.105)  u(x, t) <« <uy(x, t) Suy(x, t) <w,(x, t)
Loy, 1) <vy(x, 1) <+ <v(x, 2)
for t>Ts and a.e. x&[—AVm+D g m+D)]

Similarly as in (8.57), (8.58) we can prove
(%, 1) = }im vy(x,2) for (x,t)EGy,,

uy(x, 1) = }EB ux,t) for (x,2)€Gy,,

and
(8.106) u(x, t) <uy(x, t) Swy(x, 1) <v,(x, 1) <v(x, t)
for t>T and a.e. xS[—AtV+D AVm+D]
Setting
ﬁ(y, S) = etlmth) 'vb(e’/("'ﬂ) Y e,)
and

ﬁ(y, s) — es/(m+1) ub(el/(m+l) y’ el) s
we see that the functions 9 and 2 H 2+"'““’”([—~A, A] X [log Ty, o)) satisfy

" 7 D — pS(mt2=2m)[(m+1) HB Hn
( )yy+ + 1 y+ + 1 e ﬁ

in [—A4, A]x[log T, o),

= ™ S(m+2-2n)/(m+1) 0»! 0;;
= (4"),,+ +1a,+ +1a e

in [—A4, Al x[log Tg, ),
D(+A,s) = %H on [log Ty, o),
#(+A4,s)=e* on [log Ty, ),
8(y, log T) = TH*) o(yT¥m+; T,) on [—4, 4],
4(y,log Tg) = T/ a(yT=+; T,) on [—4, 4] .

Let S* be an arbitrary positive constant such that S*>log T; and let A be an
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arbitrary positive constant such that

(8.107) 1— > emmth, 2 pmt2-2mN(mh |
m+1 "
A2ne(m -21!+2)S'/(m+l)( |‘vo I - ezs'/(m+1))2n—1 <1.

Let S;=xj+log Ts. Then, there exists a finite sequence of positive classical
solutions v,(+, S;) € H**([—4, A4]), j=1, -, [A"{(S*—log Tp)], of the problem

(8.108) B S)=AE(+s )= g 0l S)
— ’7:_'_1 B+, S;) = By(+, S,-1)— he(w+ -8 l(n+D
X O+, S;-1) W+, S;-;) on [—4, 4]

with

(8.109) 8(+A, ) = % H,

where 9, (-, Sg)=0(+,S;) on [—A4, A]. Also, for j=1, -, [A"Y(S*—log Ty)],
there exists a positive classical solution 4,(+, S;)€ H**#([—4, A)] of the problem

m A
(8.110) (o1 SNy (41 8))— 2 (- 5))
A 2 .
—mﬂ"(" Sy = ACH Sj-1)— e a2 S/t
XO%(+, 8j-1) B(+, S;-1) on [—4, 4]
with
(8.111) A(+4,S;) = e,

where #,(+, So)=4(-, S,) on [—A4, 4].
In fact, by (8.109), se see
D,(y, Sp)—nem+2-mmSy/mD) fr(y SN A%(y, Sp)>0 for ye[—A4, 4],
,(y, Sp) —nem2=mmS/mtD r( g S da(y, So)>0 for ye[—A4, 4]
and
0<,(y, So) <Oy, So) < | Vgl o g T/ for ye[—A4, A].

Hence by Theorem 5.1 of Section 8 in [18] and the comparison theorem we
find a required unique positive classical solution b,(-,S)), #,(-, S,)SH**?
([—4, A]) satisfying

0<t\(3, S) <Oy(y, S <eN™D |5 p THD
for ye[—4, 4] .
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By induction, there exist two finite sequences of the positive classical solutions
#(+, S;) and 9,(+, S;)€ H**¥([—A4, A]) with the property
(8.112) 0<ty(y, S <O, S)
<L eN/(mt1) | V6] oo ® Té/(m*-l)
for j=1,2, «+, [A"Y(S*—log T()]
and ye[—A4, 4].

Further, we can show

(8.113) EXCEAIINSWESS

for j = 0,1, -+, [\ "(S*—log Ty)]

Indeed, setting E,= [2,(-, S;) e t-4,41 for j=0, 1, «--, [N"Y(S*—log Ty)], we see
by (8.109), (8.112), Lemma 8.5 and the definitions of T that
1
EISTZ_H’

and by induction, we have (8.113).
For each j=0,1, -, [A"Y(S*—log Ty)], we set d,=min{f\(y,S,): y&

[—4, A]}.
We shall show that
(8.114) d;—E;>8, for j=0,1, ., [A"Y(S*—log T¢)],

where §,=min(d,—E,, 7H/18).
Let ¥, and y¥ be the points satisfying d;=90,(y,«, S;) and E;=#,(y¥, S,), re-
spectively.

In case of y¥ and y,;4 €(—4, 4), we observe by (8.109) and (8.112) that

8115 (¢—E) (12
®115) (4B (1—-25)
2((1,-1—7\,8("'“'2")/(”'“)31' E%_, d'}_l)—(E]-_l—7\.8(’"“'2")/("“)51
Xdj 1 Ej)=d;-—E;,.
In case of y4 =4, we get by (8.113)

8 1 7
8.116 d—E>SH- -~ H-—"_H
( ) i 7=y 2 18

In case of y;x €(—4, A) and yf=4A4, we have by (8.112) and the definitions
of A and T,

+2-2n ” -
em eIt )S; 4 (3, S ) B, (x, S,;,)
SZe("""z-z")’("'“)s/—x e=25;-1" |‘Z’o|i",11e Tgn—l)/(m+ 1) ez(n-l)/(m+1)(sj_l-loxTe)
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<1 for ye[—4, 4]

m+1
and that B, ;>e™1-1>¢"%; = E;

Then, since

"f(l“%)zd;—x— A2em /w3081 (g |2k dy
m

>d,_,(1—’_n_7”ﬁ),

we have
(8.117) dj—E]>dj-l_Ei>dj—l_E;‘l
By (8.115)—(8.117) we conclude (8.114).
For j=1, 2, «--, [N"}(S*—log Tg)], let
S;
= @y 9—ily.5)ds
+M(m—2n+2)1(m+1)s, {ﬁn( ¥, S,'—l) ﬁn( ¥, Sj—l)
_ﬁ”(y! Sj) 0”(3’: S,)}
and let
S
60 =1 @9~y 5)
+Xe(m-2u+2)/(m+1)s, {05(% Sj"‘l) ﬁn( ¥, Sj—l)
—ﬁ”(y, Sj) ﬁ”(y’ Sj)} .
Then we observe that for ye[—A4, 4]
m A
B118) 0 S)=A(I,(, )= 20505, )

A e
_m_+—-1 0(}’) S’) = ﬁ(y, Sj—l)—M( 2n+2)/( +1)sj

XAy, S;-1) 0"(y, -0+ {3)
for j= 1, 2: RE) [)"_I(S*—log TG)]
and
n py
(8.119)  2(y, S,)—A(@"),,(», S,-)—m—+—1yﬁ,(y, S;)
__mi\'l—l Ay, S;) = A(y, S;-1)— e -2t DS; § (g S, )

XAy, S;-)+g () -
Let
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J —1 for ye(—,0],

11
by for ye[ -1, ],
ey for y P

1
1 f e[—, ) .

I or y&|
We subtract (8.108) from (8.118) and multiply 4(d(y, S;)—8,(», S;)). We shall
denote by (8.120) the resulted equation. Similarly we subtract (8.109) from

(8.119) and multiply @ (%(y, S;)—#%,(y, S,)). We shall denote by (8.121) the
resulted equation. Adding (8.120) and (8.121) and integrating over [—A4, 4]

we have

oY) =

[* 00 8)—000 S) 203, S)~b(5, S )) ay
+2 00, S)—0(5, 5) @i(, S)— (3, S,) dy

A \!

+ lﬁ(', Sj—l)—ﬁx(" Sj—l) ll,[—A,A]}

-1
+(1—-;n—z\‘ﬁ) {1 f;lt-a,00t 1 851 1,0-,42 -

Letting k— oo, we have that

(8.122)  |9(+, S)—05(, Sy t-a,at 14(+, S)—2(+, S)l1p-a,41
<(1-2) 08 8,00, S e
+14(+5 Sj-)—%(+» S;-1) 1,1~ 4, a3}

-1
+(1_7ﬁ) {lfjll.[—A,A]+ |gj|l,[—A,A]} .

Setting
LO = max {lﬁlg-?.)ﬂxnog T, S*D Iﬁléz——tﬂ)zl]x[]og T,,s*]} .
We obtain by (8.107) that

2L
| fili-a,43 15l l,[—A,A]S;.A ATHER
1—!—7

+4n Ae(m—2n+2)/(m+1)s* Lgn thLXH-(ﬁ/Z) ,

(8.123)

where

L=2 (1+§)'1 Loy A-t-4netn=2+21nt05* [28(m { 1)1=B0 4.
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By (8.107), (8.122) and (8.123) we have

(8.124) M(-, Si)_ﬁx(': Sj)ll,[-A,A]+ Iﬁ('» Sj)—ﬁx(°) Sj) ll,[-A,A]
<28* S [NP2 for j=1,2, v, [NH(S*—log Ty)] .

Letting A—0 we have by (8.114), (8.124)

min {0(y, 5): yE[—A4, A} — |4(+, )| o t-a,m
>8,>0 for s>log Ty.

Thus, by changing the variables eS=t, yeS/(m+*h=x, we conclude

min {o,(x, 2): xEI()} — |us(+, ) | oo, 200
>8, ¢t~V for any t>T,
where I(t) = [—AtV/m+D, Ag/om+n] |

which proves the lemma. Q.E.D.

By Lemma 8.1 and Lemma 8.6, there exists two positive constants %, and
h* such that

(8.125) by tVD <oy (x, £) <h* £-VmtD
for t>T, and a.e. xEsupp u(-,1).

Let u¥ and 4y €Cy( R) be the functions such that

0 <wpu(x) <u(x, To) <uf(x) for a.e. xR,
Uy 0 in R.

Let u* be the generalized solution of
(8.126) uf = (u*m),,—(h* Ym0y y*n in RX [T, o)
with
u¥(.,Tg) =uf in R

and let uy be the generalized solution of
(8.127) Uiy = (UR)ex— (s 7YY e in RX [T, oo)
with

Ug(+y Tg) = 4y in R.

By (8.125) u is a subsolution of (8.127) in RX [T, o) and a supersolution of
(8.126) in RX [T, o), and we obtain by Lemma 4.3
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ug(x, t) <u(x, t) <u*(x, t)
for t>T;and a.e. xER.

Therefore, by Lemma 5.2, we arrive at the desired estimates of |%(+, )] and

supp #(+, 2).
By Lemma 8.1, we obtain also the desired estimates of |v(+, #)|« z and supp

o(s, t).
The proof of Theorem 1.1 is now complete.
Q.E.D. of Theorem 1.1.

9. Proof of Corollary 1.2
It suffies to prove
U ssosupp #(+, 2) = R in case of m = 2n—2.
There exists a positive constant z* such that
v(x, t) <h*(t+1)-Y»*D for t>0and ae. xER.
Let u, be the generalized solution of
Ugey = (U)o —H*"(¢+1)""" D 4 in RX[0, o0)
with
Uy(+, 0) = min(%y(x), 1) in R
Let uy4 be the generalized solution of
thiokt = (W) es— ¥ (1) 0w in RX [0, o0)
with
Uss(+, 0) = min(uy(x), 1) in R,
where fi=n—1/4.
By Lemma 4.3, we obtain
9.1) Ugene(%, 1) Stg(x, 1) <u(x, t)
for t>0andae. x€R.

Therefore, by Lemma 5.2 we have U ;5o supp #4x(, t)=R, and by (9.1) we con-
clude that U ;5 supp #(+, t)=R. Q.E.D.

References

[11 D.G. Aronson: Density Dependent Interaction-Diffusion Systems, Proc. Advanc-
ed Seminar on Dynamics and Modelling of Reactive Systems, Acad. Press, 1980.



904
[2]
[3]
[4]
[5]

(6]
[7]
[8]

[91
[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

T. SENBA

Ph. Bénilan, H. Brezis & M.G. Crandall: A semilinear equation in L'(R"), Ann.
Scuola Norms. Sup. Pisa, Serie V2, (1975), 523-555.

P. Bénilan & M.G. Crandall: The continuous dependence on ¢ of solutions of
u,— Ap(u)=0, Indiana Univ. Math. J. 30 (2), (1981), 161-177.

H. Brezis & M.G. Crandall: Uniqueness of solutions of the initial-value problem for
u,— A@(u)=0, J. Math. Pure et Appl. 58 (1979), 153-163.

M. Bertsch, R. Kersner & L.A. Peletier: Sur le comportement de la frontiere
libre dans une équation en théorie de la filtration, C.R. Acad. Sc. Paris 295 (1982),
63-66.

M.G. Crandall & T. Liggett: Generation of semi-groups of nonlinear transforma-
tions on general Banach spaces, Amer. J. Math. 93 (1971), 265-293.

A. Friedman & S. Kamin: The asymptotic behaviour of a gas in n-dimensional
porous medium, Trans. Amer. Math. Soc. 267 (1980), 551-563.

M.A. Herrero & J.L. Vazquez: The one-dimensional nonlinear heat equation with
absorption : regularity of solutions and interfaces, SIAM J. Math. Anal. 18 (1), (1987),
149-167.

A.S. Kalashnikov: The propagation of disturbances in problems of nonlinear heat
conduction with absorption, Zh. Vychisl. Mat. i Mat. Fiz. 14 (4), (1974), 891-905.
F. Kamenetskii: Diffusion and heat transfer in chemical kinetics, Nauka, Mos-
cow, 1967.

R. Kersner: On the behavior when t— oo of generalized solutions of a degenerate
parabolic equation (Russian), Acta Math. Acad. Sci. Hangaricae 34 (1979), 157-
163.

R. Kersner: Degenerate parabolic equations with general nonlinearities, Nonlinear
Analysis TMA 4 (6), (1980), 1043-1062.

B.F. Knerr: The behavior of the support of solutions of the equations of nonlinear
heat condition with absorption in one dimension, Trans. Amer. Math. Soc. 249 (1979),
409-424.

0.A. Ladyzhenskaja, V.A. Solonnikov and N.N. Vral’ceva: Linear and quasi-
linear equations of parabolic type, AMS Translations, 1969.

0.A. Oleinik, A.S. Kalashnikov and Yui-Lin Chzou: The Cauchy problem and
boundary value problems for equations of the type of nonstationary filtration, 1zv.
Akad. Nauk. SSSR, Soc. Mat. 22 (1958).

T. Senba: On the support properties of solutions for some degenerate quasilinear
parabolic systems, Nonlinear Analysis TMA 14 (9), (1990), 789-805.

J.L.. Vazquez: Asymptotic behavior and properties of the one-dimensional flow
of gas in a porous medium, Trans. Amer. Math. Soc. 277 (1983), 507-527.

0O.A. LadyZhenskaja and N.N. Vral'tseva: Linear and Quasilinear Elliptic equa-
tions, Moscow, Nank, 1968.

Department of Applied Mathematics
Faculty of Science

Fukuoka University

Fukuoka, 814-01

Japan





