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0. Introduction

By a good (3, \)-manίfold pair (M, L) (or a good 1-manifold L in a 3-manifold
M)y we mean that M i s a compact connected oriented 3-manifold and L is a
compact proper smooth 1-submanifold of M such that any 2-sphere component
of the boundary dM meets L with at least three points. For a compact connect-
ed oriented 3-manifold Ey let d0E be the union of all tori in dE and 81E=dE—
dQE. Let int E=E— dE and int0 E=E—d0E. A compact connected oriented
3-manifold E is said to be hyperbolic if int £ (when dιE=ψ) or the double
D (int0 E) pasting along dγE (when dλE 4= 0) has a complete Riemannian structure
of constant curvature — 1. Then we define the volume Yo\E of E to be the
hyperbolic volume Yo\(mtE) (when dλE=0) or the half hyperbolic volume
Vol (D(int0 E))β (when d1E=^0)y and the isometry group Isom E of E to be the
hyperbolic isometry group Isom (int E) (when dλE=0) or the quotient by T of
the following subgroup {/elsom (D(int o £)) |/τ=τ/} (when dλE^0)y where T
denotes the unique isometry of D(into2?) induced from the involution of
D(int0 E) interchanging the two copies of into£'(cf. [22]). By Mostow rigidity
theorem (cf. [23], [24]), Voli? is a topological invariant of E and IsomZ? is a
unique (up to conjugations) finite subgroup of the difΐeomorphism group Diff E.
Furthermore, there is a natural isomorphism IsomE^Outπ1(E)=Autπ1(E)l
Inn πι(E) and for any finite subgroup G of Diff E there is a natural monomorp-
hism G^Out πι(E), so that G is isomorphic to a subgrpup of Isom E. In a
previous paper [8], for each good (3,l)-manifold pair (My L), we have construct-
ed an infinite family of almost identical imitations (M, L*) of (M, L) such that
the exterior £(L*, M) of L* in M is hyperbolic. In this paper, we shall streng-
then this result from the viewpoint of regular branched coverings.*}

DEFINITION: A good (3,l)-manifold pair (M,L) has the hyperbolic cover-
ing property if for any component unions LOy Lx (possibly, 0) of L with L1=L—LOy

*) By coverings, we will mean connected coverings.
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any finite regular covering space E(LOy M) of the exterior E(LOy M) of Lo in M
branched along Lλ is hyperbolic after spherical completiony that is, after adding
a cone over each 2-sρhere in dE(LQy M), where we understand that E(LOy M)=M
when L o =0.

The spherical completion of E(LOy M) is denoted by E(LOy M) Λ . The cov-
ering transformation group of E(L^y M) acts on E(LOy M)A by a natural ex-
tension. Let q: (M*, L*)-^(M, L) be a normal imitation. For component
unions Liy i=0y 1, (possibly, 0) of L with L1=L—LOy let Lf=q~\Li)y i=0y 1.
Then the imitation map q induces a normal imitation map qE: E(L*yM*)-^>
E(LOy M) by the definition of normal imitation. For any regular covering
p: E(LOy M)-+E(LOy M) branched along Lx with covering transformation group
denoted by G, we see from [7, Property IV] that qE is a normal imitation map
and p* is a regular covering map branched along Lf with covering transforma-
tion group G in the following commutative diagram pulling back the covering
map p and the imitation map qE:

E(L$y M*) i E(L0, M)

ή . V

over

Since qE is 3-diίfeomorphic G-map, we can extend qE uniquely to a G-map

(qE)A:E(Lt,M*)A^E(L0,M)Λ

the spherical completion, which is still a normal imitation map.

DEFINITION: The covering map p* is the lift of the covering map p (by
the imitation map qE). The imitation maps qE and {qE)r\ are the lift and
spherical completion lift of the imitation map qE (by the covering map p), respec-
tively.

The main result of this paper can be stated as follows:

Main Theorem. For any good (3Λ)-mainfold pair {M,L), there exists an
infinite family $ of almost identical imitations (M, L*) of (My L) with hyperbolic
covering property. Further, if we denote the imitation map (M, L*)-+(M, L) by
q, then for any positive number C and any positive integer N, this family can have
the following properties:

(1) There is a number C+>C such that Vol E(L*, M)<C+ and

(2) Let Lo, LI be any component unions (possibly 0) of L with L1=L—L0.
For the spherical completion lift (qE)A: E(L$, M)A-+E(LθJM)A of the
imitation map qE\ E(Lf, M)-+E(L0, M) (induced from q) by any regular
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covering p: E(L0, M)->E(L0, M) branched along Lλ with covering trans-
formation group, G, of order< N, the group G, which is regarded as a
subgroup of Diff E(Lf, M)A, is isomorphic to Isom E(LΫ9 M)A. In par-
ticular, IsomE(L*,M)={l}. Further, when Lλ=0 (i.e., L0=L), we
can take N== + oo.

When Li=0, (2) implies that G is conjugate to Isom E(L$, M)A in Diff I?
, M)A, since E(L*> M) is hyperbolic. If we use Thurston's announcement

result in [23, p. 379], [25] for the case Li=t=0, we see that the isomorphism
E(Lfy M)A in (2) can be always replaced by the following (2'):

(2)' G is conjugate to Isom £(Lf9 M)A in Diff E(Lff M)A.

To state a property occurring from our construction, we need the following
definition:

DEFINITION: For a good (3, l)-manifold pair (M, L), a tangle (i.e., a proper
1-manifold without loop component) t in a 3-ball JScint M is a basic tangle for
(M, L) if t=B Π int L and each component of L contains a component of t and t
has at least 3 components. The good (3, l)-manifold pair (M', L')=(M— int B,
L—int t) is the complement of (J5, i).

The imitation map q: (M, L*)-^(Λf, L) in Main Theorem has the following
property:

(3) There is a 2-sphere Saint M which splits the imitation map q: (M, L*)
-^(M,L) into two almost identical imitation maps qB: (B,t*)->(B,i)
and q'\ (Mf, L'*)-+(M', L') such that (B} t) is a basic tangle for (M, L)
and (Mr, L') is the complement, and (B, t*) and (M',L'*) have the hy-
perbolic covering property. Further, we can previously take any basic
tangle for (Λf, L) as (B, t).

Before concluding this introduction, we remark that we shall alter the de-
finition of almost identical imitation in [6], [8] into a slightly more improved de-
finition. In § 1 we discuss when branched covering spaces of a 3-manifold are
simple and semi-simple. In §2 the improved definition of almost identical
imitation is stated. In §3 we construct an almost identical imitation with hy-
perbolic covering property of a tangle in a 3-ball, which is generalized, in §4,
to a good (3,l)-manifold pair. In §5 we prove Main Theorem. In §6 some
applications are given. This manuscript has been prepared since 1987 and the
present version has been written up during the author's visit to University of
Melbourne in March-April 1991 under an exchanging program. The author
would like to thank this exchanging program, particularly Professor Junzo Tao,
for making his visit possible and Department of Mathematics, University of
Melbourne, particularly Professor J. Hyam Rubinstein, for various hospitalities.
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1. Basic lemmas for branched coverings. A graph Γ in a 3-mani-
fold M is said to be good if the pair (M, Γ) is obtained from a good (3, l)-mani-
fold pair (MOy L) by spherical completion associated with some 2-spheres in dM0

(cf. [8]). For an integer n>3, we denote by vw(Γ) the set of vertices of Γ with
degree n. Let.v(Γ)= U n>z v,(Γ).

DEFINITION: A smooth 2-sρhere S in int M or in dM is an n-pointed sphere
in (My Γ) if S meeets Γ-v(Γ) transversly with just n points and *S(Ίv(Γ)=0.
Further, it is essential if SE=S ΓϊE(TyM) is incompressible and non-3-parallel
in the exterior E(Γ, M) of Γ in M.

DEFINITION: Let D be a proper disk in M or a disk in dM. D is an n-
pointed disk in (M, Γ) if int D meets Γ-v(Γ) transversly with just n points and
D Π v(Γ)=3Z> Π Γ = 0 . Further, it is essential if DE=D Π E(Γ, M) is incompres-
sible and non-3-parallel in E(T, M).

A good graph Γ in M is trivial if it is on a smooth proper disk or 2-sρhere.
A good graph Y in a 3-ball B is called a trivial Ύ-graph if | Y Π dB | = 3 and there
is a diffeomorphism of B sending Y to a cone over the set Y Π 35. A good graph
H in a 3-ball 5 is called a trivial H-graph if the pair (5, H) is diffeomorphic to a
pair obtained from two copies of the pair (B, Y) of a trivial Y-graph Y in B by
identifying the two copies of a 1-pointed disk D in (5, Y) with DcdB.

Lemma 1.1. Let Γ be a good graph in a 3-manifold M. If a finite regular
covering space M of M branched along Γ is a 3-manifold, then vw(Γ)=0 for
all τz>4. Further, if M is a 3-ball and Γ is a trivial good tree graph, then M
is a handlebody.

Proof. Let (F, Γ Π V) be a cone pair over an /z-pointed sphere with n>3
in (M, Γ). Since M is a 3-manifold, the lift of V to M consists of disjoint 3-
balls. By the Riemann/Hurwitz formula (on a regular covering of S2) (cf. Scott
[21]), we have n=3. To see the latter half, we consider a handle decomposition
of M consisting of 0-handles A? and 1-handles h) such that A? ΠΓ is a trivial arc
or trivial Y-graph in A? or 0 for each /, and h) Π Γ is a core of the 1-handle h) or
0 for each/. Then M has a handle decomposition consisting of 0-handles being
the lifting components of the hfs and 1-handles being the lifting components of
the hι/s. Since Mis connected, it is a handlebody. This completes the proof.

Let ai9 z=l , 2, •••, r, be disjoint arcs in S1. Let Do be a disk in the interior
of a disk D. For two points/)!, p2 in int DQy we consider a link L in the solid torus
S1 X D2 obtained from the link S1 X {ply p2} by replacing, in a{ X Do, the standard
trivial 2-string tangle Λ,.χ {plyp2} with a trivial (i.e., rational) 2-string tangle for
each i.
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DEFINITION: This link L in SιxD is called a Montesinos link in S1xD.
When we identify S1xD with a soild tours V in a lens space M such that £ " =
cl (M— V) is a solid torus, we call this link L i n i l ί a Montesinos link in M.

In case M=S3, the Montesinos link L is a link considered by Montesinos

L e m m a 1.2. Let M be a regular covering space of a closed 3-manifold

branched along a good graph Γ. If M is an irreducible Seifert manifold and the

exterior E(Γ, M) is hyperbolic, then we have one of the following:

(1) M has a spherical or Euclidean geometry (i.e., has S3 or S1xS1xS1 as

a finite unbranched regular covering space).

(2) M is a lens space except S1 X S2 and there is a Montesinos link L in M such

that LdT and Lc=cl(Γ—L) is a \-manifold with at most one loop

component or 0, and the covering M->M is the composite of a double

covering M2->M branched along L and a regular covering M-+M2 bran-

ched along the lift L% of V to M2 where M2 is a Seifert manifold over S2

with each component of LI a fiber.

Proof. Assume that the Seifert manifold M has no spherical or Euclidean
geometry. Then we show that (2) is satisfied. By a result of Meeks/Scott [15],
the covering transformation group G of M preserves the fibers of the Seifert
fibration. Hence G acts on the base space F of the Seifert manifold M. If the
orbit space F=F/G is closed, then we see that M=M\G is a Seifert manifold
over F with Γ a set of fibers, so that the exterior Z?(Γ, M) is a Seifert manifold,
contradicting that it is hyperbolic. Hence F has a boundary. We take a collar
N of any boundary component C in F so that N—C is disjoint from the image
of Γ under the natural projection M->F and the images of the points in F re-
presented by the exceptional fibers of M under the projection F->F. Let N be
a connected component of the lift of N in Fy which is an orientable surface.
Let GN= {g^G\gN=N}. Then there is an index 2 subgroup G'N of GN acting
on N orientation-preservingly, so that N/GN is an annulus and the group GNjG'N
acts on the annulus N/G'N as a reflection in a center circle. Let MN be the
Seifert submanifold of M with base space N. Note that the orbit space M'N of
MN by G'N is a Seifert manifold over the annulus NjG'N with action of GNjG'N
orientation and fiber preserving. Let MN be the orbit space of M'N by GNjG'N.
Note that the projection MN->M'N is a regular covering branched along a set of
fibers. Let β be the image of the set of fibers in MN. Then we see that MN is
a solid torus and the projection M'N->MN is a double covering branched along a
Montesions link LN and β consists of arcs (cf. Dunbar [2]). Let TN—Tf)MN

and T=dMN. Since M'N is a Seifert manifold over an annulus, meaning that it
is irreducible and 3-irreducible, with the lift of β a set of fibers and T Π Γ = 0 ,
the torus T is incompressible in MN—LN and MN—TN. Let ME=d (M—MN).
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Using that E(Γ, M) is hyperbolic, we see that T is compressible or 3-parallel in
E(Γ, M)y so that ME is a solid torus with MEf]T being 0 or a core. This
means that F is a disk and F is an orientable surface. Let G2 be the orientation-
preserving index 2 subgroup of G on F. Then F2=FjG2 is a 2-sρhere and
ΛΪ/G2~M2 is a Seifert manifold over F2 and the projection M->M2 is a regular
covering branched along a set of Seifert fibers. Note that the solid torus ME

lifts to two solid tori in M2. Let L=LN. Then we see that the projection
M2->M is a double covering branched along L and Lc—cl (T—L) is a 1-manifold
with at most one loop component whose lift to M2 is a set of fibers (unless it is 0).
Further, since some meridian of the solid torus MN lifts to a regular fiber of M2y

M is a lens space except S1xS2. This completes the proof.
For a good (3, l)-manifold pair (M, L)y we consider a finite regular covering

space ΛΪ of M branched along L. Let G be the covering transformation
group. Let^ Λ : MΛ->MΛ be the G-equivariant extension map of the covering
projeation p: AΪ-^M by spherical completion. Let M+=pA(]\ίA). Then the
m a P PA defines a covering p+: MA-^>M+ with covering transformation group G
and with branch set L+ obtained from L by adjoining trivial Y-graphs (cf. Lemma
1.1).

DEFINITION: For w>3, a good 1-manifold L in a 3-manifold M is w-
prime if there is no essential n-pointed spheres in (M, L).

A 3-manifold E is semi-simple if E1 is irreducible, 3-irreducible and any
proper annulus in E is inessential (that is, compressible or 3-parallel), and
simple if E is irreducible, θ-irreducible and any torus in int E is inessential (that
is, compressible or 9-ρaralle). Thurston's hyperbolization theorem [23] means
that a Haken 3-manifold is hyperbolic if and only if it is simple and semi-
simple.

Lemma 1.3. If a good 1-manifold L in a 3-manifold M is 3-prime and the
exterior E(Ly M) is semi-simple, then i0"Λ is irreducible and d-irreducible.

Proof. Suppose MΛ is reducible. Then by the equivariant sphere theorem
(cf. Meeks/Yau [16], Plotnick [19]), M Λ has a G-equivariant incompressible
sphere S such that F=p+(S) is diffeomorphic to the 2-sphere *S2 or the projec-
tive plane P2 or the disk D2 and intFf]v3(L+)=0. Let Gs=ίg^G\gS=S}.
Then F^S/GS. For F^S2 or P2, we have m=\FΠL+\< + oo. Since
E(L+, M+)^E(L, M) is irreducible, we have wΦO. For F^S2, we have m=2
or 3 by the Riemann/Hurwitz formula. By our assumption, F bounds a 3-ball
B in M+ with ΰ ί l l + a trivial arc or a trivial Y-graph, so that S is compressible
(cf. Lemma 1.1), a contradiction. For F^P2, we have m=ί by the Riemann/
Hurwitz formula. Let N be a normal bundle of F in M+

y diffeomorphic to the
projective 3-space P3 with an open 3-ball removed. Since dN—L+ΠdN is
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incompressible in N—L+f]N and N is not a 3-ball, Br=M+—int N is a 3-ball
with L+ ΓiB' a trivial arc by our assumption. Then we have MA^S3 and S is
compressible, a contradiction. When F^D2

y we have F Γ\L+ZDdF and by
Riemann/Hurwitz formula, | F Π L + — 3 F | < 1 , contradicting that E(L+, M+) is
semi-simple. Hence MA is irreducible. Next, suppose MA is 9-reducible.
Then by the equivariant loop theorem (cf. Meeks/Yau [16]), MA has a G-
equivariant essential disk D. Since 2?(L+, M+) is 3-irreducible, GD= {g^G\gD
=D} is non-trivial. We have F^DjGD is a disk such that ί1 Γ\L+ is a point in
int JF or an arc in dF, contradicting that E(L+, M+) is semi-simple. Hence MA

is 3-irreducible. This completes the proof.

DEFINITION: For a good (3, l)-manifold pair (M,L) such that dxM con-
sists of 3-pointed spheres and d0M Γ\L=0> L is 2-semi-prime in M if there is no
essential 2-pointed disk D in M with 3Dc3 0M.

Lemma 1.4. For a good (3, l)-manifold pair (M, L), assume that QYM
consists of 3-pointed spheres and d0M Π L= 0. i/" the exterior E(L, M) is hyperbolic
(i.e., simple and semi-simple) and L is Z-prime, \-prime and 2-semi-prime in M,
then we have the following (1), (2) or (3) for any non-trivial finite regular covering
p+: MA-*M+ branched along L+:

(1) MX is a simple, semi-simple and non-Seίfert 3 -manifold,
(2) MA is a closed Seifert manifold having a spherical or Euclidean geometry,
(3) M+ is a lens space except S1xS2 and there is a Montesinos link L o c L +

with LQ=CI(L+—LQ) a 1-manifold with at most one loop component or
0 and the covering MA-^M+ is the composite of a double covering Mt~>
M+ branched along Lo and a regular covering MA-^Mt branched along
the lift (Lco)2 of Lc

0 to Mi where Mi is a Seifert manifold over S2 with
each component of (LQ)2 a fiber. In particular, the exterior E([LQ)2, Mi)
is a Seifert manifold.

REMARK 1.5. In (1), MA is hyperbolic by Thurston's hyperbolization theo-
rem in [23] if it is a Haken manifold. Further, Thurston announces in [23,
p. 379], [25] that a simple, semi-simple non-Seifert manifold with orientation-
preserving non-free periodic map is hyperbolic.

Proof. By Lemma 1.3, MA and, when 32 M Λ Φ0, the double D} MA of MA

pasting along dx MA are irreducible and 3-irreducible. Let G be the covering
transformation group of MΛ. We prove the folloiwng later:

Assertion 1.4.1. MA has no G-equivariant essential torus or annulus.

We proceed the proof by dividing into two cases.

Case(a): 3XMA=:0.
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If MA is neither Seifert nor simple, then MA has a G-equivariant essential
torus, contradicting Assertion 1.4.1, by the torus decomposition theorem due to
Jaco/Shalen and Johannson theorem (cf. [5]) and the equivariant torus theorem
[3]. This imples that MA is either simple, semi-simple and non-Seifert or Sei-
fert, since a simple non-semi-simple 3-manifold is Seifert ([5]). If MA is a bound-
ed Seifert manifold, then SϊA^S1xS1xI9I=[—l, 1], for otherwise MA would
have a G-equivariant essential annulus, contradicting Assertion 1.4.1, by a result
of Kobayashi [12]. We prove the following later:

Assertion 1.4.2. MA is not diffeomorphic to SιxSιX I.

If MA is a closed Seifert manifold and has no spherical or Euclidean geo-
metry, then by Lemma 1.2 we have (3) for (M+, L+).

Case(b): dλMA^.

Let Z2 be the reflection group of Dx MA along dx MΛ. If Di MA has a
G X 2Γ2-

equiv a ria nt essential torus, then MA has a G-equivariant essential torus
or annulus, contradicting Assertion 1.4.1. Hence Ώ1 MA is either simple, semi-
simple and non-Seifert or Seifert by the torus decomposition theorem [5] and
the equivariant torus decomposition [3]. We show the folloiwng later:

Assertion 1.4.3. D2 MA is not a closed Seifert manifold.

If Dx MA is a bounded Seifert manifold, then Dx MA has a G X Z2-equivariant
essential annulus by [12]. Hence M"Λ has a G-equivariant essential annulus,
contradicting Assertion 1.4.1, because D2 MA is not diffeomorphic to S1xS1Xl
by 3j M Λ Φ0. This completes the proof of Lemma 1.4 except for the proofs of
Assertions 1.4.1, 1.4.2 and 1.4.3.

PROOF OF ASSERTION 1.4.1. Suppose MA has a G-equivariant essential
torus T. Let GT={g(=G\ gT=T} and F=p+T. Then F^T\GT and intί1

Πv3(L+)=0. When F is a torus, Klein bottle, annulus or Mϋbius band,
we have intFΓ\L+=0 by the Riemann/Hurwitz formula. Since E(L+, M+) is
simple and semi-simple, such a case can not occur. When F=S2, we let m=
\Ff]L+\. Then m=3 or 4 by the Riemann/Hurwitz formula. Since L is 3-
prime and 4-prime in M, we see that T is compressible or 3-parallel in ΛUfΛ, a
contradiction. When F=P2, we may consider that FdM. Let m= \ F Π L+ \.
By the Riemann/Hurwitz formula, we have m=2. Let N be a normal bundle
of F in M. Note that dN is a 4-pointed sphere for (M, L) and dN—L Π dN is
incompressible in N—LΠN and each component of {p+)~ι N is diffeomorphic
to S1 x S1 x/. E=cl (M+-N) is a 3-ball or diffeomorphic to S2X /. When E is
a 3-ball, £ Ί Ί L + is a trivial 2-string tangle or a trivial H-graph, so that each
component of (ρ+)~ι E is a solid torus by Lemma 1.1. When E is diffeomorphic
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to S2 X /, each component of (p*)'1 E is diffeomorphic to S1 X S1 X /. Thus, MΛ

must be a lens space or diffeomorphic to S1xS1xI by Lemma 1.3 and T is
compressible or 3-paralle, a contradiction. When F is a disk, we have dFczF Π
L+. Let m= IFΠL"1"—3^1, which is finite. We can see from the Riemann/
Hurwitz formula that m<2 and for m=2, dF Π v3(L+)=0. The case m< 1 does
not occur since E(L> M) is semi-simple. If m=2, then we consider a 3-ball
neighborhood N of F which is a bicollar of a disk F + with F e i n t F+. Then 9iV
is a 4-pointed sphere for (M, L) and ΘN—L Π 3ΛΓ is incompressible in N—L Π ΛΓ
and each component of (p*)'1 N is diffeomorphic to S1χS1xI. By the same
reason as that of the case F=P2, MA is a lens space or S1xS1xI and J1 is
compressible or 3-ρarallel, a contradiction. Thus, we see that MΛ has no G-
equivariant essential torus. Next, suppose that MΛ has a G-equivariant essential
annulus A. Let GA={g<BG\gA=A} and F=ρ+A. Then F^A/GA and
(int^U^+(3^))nv 3(L+)==0. By the Riemann/Hurwitz theorem, when JF is a
disk with/>+(3^4) a union of two disjoint arcs, annulus or Mόbius band, F f]L+

has no isolated point, and when F is a disk with p+(dA) an arc, F Γ\L+ has just
one isolated point. These cases can not occur by the semi-simpleness of
E(L+, M+)^E(L, M). Thus, F is a disk with p+(8A)=dF. Then F Π v3(L+)
= 0 and IF Π L+ \ =2. Since L is 2-semi-prime in My dF must be in a 3-pointed
sphere component S of dM+. Hence dF bounds an τz(<l)-pointed disk D in
S. Since each component of (p+)~ι D must be a disk, we see that A is com-
pressible in MΛ, a contradiction. This completes the proof of Assertion 1.4.1.

PROOF of ASSERTION 1.4.2. Suppose M Λ = SιxSιx I. If all elements of G
preserve the components of 3MΛ> we see from a result of Bonahon/Siebenmann
in [1] that (M+, L + ) ^ ( S ί l x 5 1 x / , 0) or (S2, 3 or 4 points) x/, which contradicts
the semi-simpleness of E(L, M). If an element of G changes the components
of 3MΛ, then M+ is the orbit space of S1xS1xI or S2 XI by an involution
changing the boundary components, which is diffeomorphic to S1χD2 or the 3-
ball B\ respectively. When M+^SιχD2, we see that (M+,L+)-(Λί, L) and
L is a link. Considering a minimal intersection of L with meridian disks for M,
we see from the Z2-equivariant loop theorem [16] that there is a meridian disk
D for M with | D Π L \ =2. Let (ΛΓ, L') be a (3, l)-manifold pair obtained from
(M, L) by splitting along D. Then M' is a 3-ball and since the double covering
space of M branched along L is S1 X S1 X /, we see that the double covering
space of M' branched along L' is a solid torus. This mens that (M, L) =
(Z>, 2 points) X S1. This contradicts that E(L, M) is semi-simple. When M+^
β3, we note that L+ is a union of a circle and the orbit space of {3 or 4 points}
Xl(dS2xI). Since E({3 or 4 points} X/, S2XI) is a handlebody, we see
from the Z2-equivariant loop theorem [16] that E(L+, M+)^E(L, M) has an es-
sential disk or an annulus, contradicting the semi-simpleness. This completes
the proof of Assertion 1.4.2.
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PROOF OF ASSERTION 1.4.3. Suppose ΐ>xM/\ *s a closed Seifert manifold.
We let (DΛf+, ΌL+) be the double of (Λf+, L+) pasting along (9Λf+, L+ Π ΘΛf+).
By Myers gluing lemma (cf. [8]), E(DL+, ΌM+) is hyperbolic. Since dx MAΦ0,
Di M/\ can not have any spherical or Euclidean geometry. By Lemma 1.2, the
base space of the Seifert manifold Dj M"Λ is orientable, and by [5, VI.34] M"Λ

is a trivial /-bundle Fxl over a closed orientable connected surface F of
genus >2. Moreover, G preserves this /-boundle structure, because GxZ2 pre-
serves the fibers of the Seifert manifold Dj MΛ by [15]. By Lemma 1.2, DΛf+

is a lens space except S1 X S2, so that M+ is a 3-ball. Further, there is an index 2
subgroup G2 of G preserving each component of 3MΛ such that the orbit space
^ihjG2—M2 is a trivial /-bundle over S2 with a line-fiber preserving action of
GjG2 and the projeation MA—>M2 is a covering branched along three or more
line-fibers. Let J ϊbea G/G2-invariant compact exterior of these line-fibers in
M2y which is a handlebody. By the equivariant loop theorem [16], E(L+, M+)
has an essential disk or an annulus. This completes the proof of Assertion 1.4.3.

The following lemma is useful to construct a tangle with hyperbolic cover-
ing property:

Lemma 1.6. An r(>3)-string tangle t in a 3-ball B has the hyperbolic
covering property if the exterior E{t, B) and the double covering space B(t)2 branch-
ed along t are hyperbolic.

Proof. For any component union *'(Φ0) of t and t//=t—tr , let (Λf, L) be
the double of (£(*", 5), t'). Note that E(L, M) is hyperbolic by Myers gluing
lemma. Since each component of L is a null-homologous loop in Λf, L is 3-
prime in M. To see that L is 4-prime in M, suppose there is an essential 4-
pointed sphere for (Λf, L). Then there is an essential 4-pointed sphere for (5, t)
or an essential ra(<2)-ρointed disk D for (5, t) with dDddB—dt, contradicting
that B(t)2 is hyperbolic. If there is an essential 2-ρointed disk D for (Λf, L)
with dD a component of L, then there is an essential 4-pointed sphere for (Λf, L),
contradicting the 4-primeness of L in Λf. Let M be the double of any finite
regular covering space of E(t", E) branched along /' which is a finite regular
covering space of M branched along L. We apply Lemma 1.4 to M(—MA).
Since the surface F=dE(t">B) lifts to an incompressible surface in M each
component of which is of genus > 2 by the Riemann/Hurwitz formula and B(t)2

is hyperbolic, we see from Lemma 1.4 that M is hyperbolic. Using that E(t, B)
is hyperbolic, we conclude that (B, t) has the hyperbolic covering property.
This completes the proof.

Here is a criterion for a link in S3 to have the hyperbolic covering pro-
perty:

Lemma 1.7. If the double covering space S\ of S3 branched along a link
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L is hyperbolic and there is a closed connected surface F in S3, disjoint from or trans-

verse to L such that a component, F2 of the lift of F to S\ is incompressible, then

(S3, L) has the hyperbolic covering property.

Proof. By [4, Corollary 2.1J, the hyperbolicity of Si means that E(L, S3)
is hyperbolic. Let Lo, Lλ be any component unions of L with Lι=L—L0. It is
an easy exercise that L1 is 3-ρrime, 4-prime and 2-semiprime in EQ=E(LOy S3).
Then by Lemma 1.4 all finite regular covering spaces Eo of Eo branched along
Lx are hyperbolic unless Lo=0, i.e., E0=S3. Let S3 be any finite regular cover-
ing space of S3 branched along L. Let F be a component of the lift of F to S3.
Since S3

2 is hyperbolic, the genus of F2 is >2, so that the genus of F is > 2 by
the Riemann/Hurwitz formula. Suppose F is compressible in S3. By the
equivariant loop theorem, there is a compression disk D for F in S3, equivariant
under the covering transformation group of S3. Note that the image, D of D
under the covering S3-*S3 is a disk such that D Π L is 0 or one point in int D or
an arc in dD. This means that the lift of D to S3 gives a compression disk for
F2 in Si, a contradiction. Thus, F is incompressible in S3. Using further that
any Eo with LoΦ0 is hyperbolic, we see from Lemma 1.4 and Thurston's
hyperbolization theorem that S3 is hyperbolic. This completes the proof.

2. A slight alteration of the notion of almost identical imitation.
Let / = [ — 1, 1]. For a (3, l)-manifold pair (M, L), a reflection a in (Λf, L)xl
is standard if a{x, t)—(x, —t) for all (x, t)^MxI, and normal if a(x, t)=(x, —t)
for all (xy f)e9(Λfx/)U ULxI for a neighborhood UL of L in M. The term
'a{xy t)' in [8, p.744 line 25] should be reas as \x> t)\ which is a typographical
error. A reflection a in (M, L)xl is said to be ίsotopically standard if hah"1 is
the standard reflection in (M,L)xI for an AeDiffo((M, L)xl, re l9(Mχ/)Π
ULxI) for a neghborhood C/L of L in M. The term ζrdd(MχI)\jULxΓ
stated here has been written as 'rel d((M,L)xl)' in [8, p.744 line 27] and only
this point is our alteration. For a good (3, l)-manifold pair (M, L), a reflection
α in (ikί, L) X / is said to be isotopίcally almost standard if α is isotopically stand-
ard in (M,L—a)χI for each connected component a of L. The letter ζφy in
[8, p.744 line 29] should be read as 'α', a typographical error. A smooth embed-
ding φ from a (3,1)-manifold pair (M*, L*) to (M,L)xI with φ(M*,L*)=
Fix (α, (M, L) X/) is called a reflector of a reflection α in (M, L)x/. (M*, L*)
is an imitation (or a normal imitation, respectively) of (M, L) if there is a reflector
φ: (M*, JL*)->(M, L)XI of a reflection (or a normal reflection, respectively) a in
(M, L) X 7, and the composite

q=pxφ: (M*, L*) ̂ >{M,L)xlh (M, L)

is the imitation map, where pλ denotes the projection to the first factor.
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DEFINITION. A (3, l)-manifold pair (M*, L*) is an almost identical imita-
tion of a good (3, l)-manifold pair (M, L) if there is a reflector φ: (Λf*, £,*)-»
(Λf, L)xl of an isotopically almost standard normal reflection α in (Λf, L) X /,
and the composite q=pt φ: (Λf*, L*)->(M, L) is the imitation map.

In this definition, (M*, L*) is also a good (3, l)-manifold pair and q gives
a diffeomorphism from a neighborhood C/̂  of L* in Λf * onto a neighborhood
t/£ of L in Λf. For any components #*, α of £*, £ with q(a*)=a, there are
neighborhoods UL*-a*y UL-a of L*—«*, L—β in Λf*, Λf, respectively, such that
the restriction of q to (Λf *, £/L*_α*)->(Λf, t/L_α) is homotopic to a diffeomorphism
by a homotopy relative to 9Λf * U UL*-a*. By identifying Λf * with Λf so that
^ I dM is the identity on 3M, we denote any almost identical imitation of (Λf, L)
by (M,L*). Note that if (Λf, £*) is an almost identical imitation of (M,L)
and (M, L**) is an almost identical imitation of (M, L*), then (M, L**) is an
almost identical imitation of (Λf, L) (cf. [7, Prop. 2.1]).

Proposition 2.1. 4̂// results of [8] o/z almost identical imitations still hold
under the above definition of almost identical imitation.

Proof. It suffices to prove Lemma 5.5 of [8] when we use the term 'isoto-
pically standard 'in the present sense. We show the assertion that the reflection
a£ in (BA,Tfr)xI extending aλ defined in [8, p.755 line 24] is isotopically
standard in the present sense. Then aλ must be normal, and our proof will be
completed because we can take this aλ as a in [8, Lemma 5.5] with the term
'isotopically standard' used in the present sense. To show this assertion, note
that £ appearing in [8, p.755 line 7] is in Diffo(5Λx/, rel9(jBΛx/)U C/FΛUF/Λ)

for a neighborhood UpA ΌF,AoϊFA\J F'A in BA X /. This implies that

hf = dAh-1f(dA)~1 = dAgf-1g-1f(dA)-1

belongs to Diffo(J?ΛX J, rel Uτ£xl U d(BAχI)) for a neighborhood J7ΓΛX/ of T^X
/ in BAX /. Since a£=dA h'1 a£ h{dA)~ι and /, dA are α^-invariant, we see that

Thus, a£ is isotopically standard. This completes the proof.

For the remaineder of this paper, we will adopt the present definition of
almost identical imitation.

3. A construction of an almost identical imitation with hyperbolic
covering property of a trivial tangle. We consider an almost identical
imitation q: (B> t*)->(B, t) such that t is a trivial tangle in a 3-ball B with strings
aiy i=ly -.., r, and q\dB=the identity and E(t*, B) is hyperbolic (cf. [8]). Let
af=q~1(ai),i=ly 2, « ,r. We consider a smooth embeddeing / from the dis-
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aι

ί\''

a2

. . .

Λ"'1
Fig. 1

joint union U '-i Ixli of r copies /x/ f , / = 1 , 2, •••, ry of /x/, / = [ — 1 , 1], to B
such that/(/x 1,)=*, and/(/x /,) Π dB=f((dI) X /,.). Then we call the tangle,
*', in £ with strings a'i=f(Ix(— 1),), ί = l , 2, •••, r, a parallel tangle of t on the
support 5>= U ί-i ^ , 3>i=f(lxli). Let £/*, C/ be open neighborhoods of ί*, *
in JB such that q~\U)=U* and #| C/*: U*-+U is a diffeomorphism. We as-
sume that fi>c£Λ Let 3>* = j- 1(S )), ί'* = ?-1(ί/), βί* = ί ' 1 M » i = L 2 . " ^ ^
We illustrate a figure of the trivial tangle t\Jt' inB in Fig. 1. Let F be a disk
in dB containing daΊ and just one point of 9fl, for all ί, as it is indicated in Fig.
1. Let N, N' be disjoint tubular neighborhoods of ί, t' in C/, respectively, and
JV*= ί-i ΛΓ, N'x^q'1 N'. Let i ^ = c l ( F - ί 1 Π (JV* U AT7*)), a disk with 3r open
disks removed, and E*=E(t*Όf*,B)=d(B-(N*\jN'*)) and Fe

E=d(dE*-
FE), a disk with r open disks removed.

Lemma 3.1. For r(>3),we have the following:
(1) £ * is irreducible and FE, F% are incompressible in E*,
(2) £ * has no incompressible torus,
(3) There is no essential annulus A in E* with dA Π dFE=0.
(4) There is no essential disk D in 1?* with dD Π FE one arc,
(5) There is no essential ^-pointed sphere for (B, t* U t'*),
(6) There is no essential 2-pointed disk D for (B, t* U f*) with dD Π dFE=0,
(7) There is no essential l-pointed disk D for (By t* U *'*).

REMARK 3.2. The conditions (l)-(4) show that (£*, FE) has Property B' of
[18], but the support 3>f for the parallel string a'>* of the string af gives a non-
9-ρarallel proper disk DfdE* with 8Dff]FE a union of two disjoint arcs and
hence (2?*, FE) does not have Property C' of [18]. This makes more or less our
argument complicated.

REMARK 3.3. Let E be a compact connected oriented 3-manifold and F> a
compact surface in dE. In the arguments of [18], the following is a good exer-
cise: (E, F) has Property C if and only if the double ΌF E of E pasting along F
is simple and semi-simple (so that ΌF E is hyperbolic by Thurston's hyperboliza-
tion theorem).

PROOF OF LEMMA 3.1. We use that the manifold obtained from £ * by
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removing open collars of the proper disks Df(ZE*y i=ί} 2, •••, r, in Remark 3.2
is diffeomorphic to the hyperbolic manifold E(t*> B). We can remove isotopically
the interseations of the disks Df with a sphere in int £*, a disk DaE* such that
dDaFE and a torus in intE*. Hence we have (1) and (2) (The incompres-
sibility of F% is clear). For (3), suppose there is an essential annulus A in E*
with 9^4ΓΊ9i^=0. If dAf)FE^0 and dAf)Fc

E*0, then we see from the
hyperbolicity of £(**, B) and £(£'*, B) that A splits B into two regions BA> B'A
such that either BAZ)t*, B'AZ)t'* or BA is a tubular neighborhood of a com-
ponent αf of £* in JS with BAZlt'* and i^Z)**—αf. In this latter case,
we obtain a new essential annulus A1 in E* with 9̂ 4 ' c int FE such that
BA'ZDt*,B'A' Dt'* by sliding the loop dAf]FE along a tube in 9£* around αf.
If 9̂ 4 C int i^, then 4̂ also splits B into two regions BAy BA such that BAZ)t*,
BA Dί'* by the hyperbolicity of E(t'*, B). Suppose there is an essential annulus
A in £ * with dA ΓidFE=0, BA^>t* and B'AZDt'*. Then since FE and i ^ are
incompressible in i?*, it follows that after an isotopic deformation of A, the
intersection A Π ίP* consists of proper arcs connecting the two loops in dA and
each circle in 9̂ 4 intersects each arc of dDf Π FE with an odd number of points
transversely. This means that E(t*, B) has an essential disk, a contradiction.
This proves (3). For (4) suppose there is an essential disk DaE* with dD ΠFE

one arc. dD can not meet any tube (ZdE* around any #/*, since E(t'*,B) is
hyperbolic. dD can not also meet any tube dE* around any a* with an arc,
since E(t*>B) is hyperbolic. If dD meets a tube CJ5* around some a* with
two disjoint arcs, D must be 9-parallel by (3), a contradiction. This proves (4).
If there is an essential 4-pointed sphere S in (B, t* U £'*), then we consider the
intersection S ΠίP*. After an isotopic deformation of S in (B, t*\Jf*)9 the 3-
ball Bs bounded by S in B meets ίP* with one improper disk or two disjoint
improper disks. If Bs Π ίP* has two disks, then S is not essential, a contradic-
tion. If Bs Π 3** has one disk and S meets only one component of t* U */ίlί,
then S is not also essential. Thus, S must meet af and αί* for some i so that
5 5 Π 3?* is a disk. Since af is a trivial arc in B, we see that Bs Π (α? U «ί*) is a
trivial tangle in Bs, contradicting that S is essential. This proves (5). (6) is
also proved by a similar method except a possibility of the existence of a 2-
pointed essential disk D for (B, t*{Jt'*) such that dDdF and D meets two
components cιf,af(i=^j) of ί*, and t'* is contained in the 3-ball BD(ZB, sur-
rounded by D and a disk in F. Such a disk Z) does not also exist by the reason
that for the complement Eitj of ί* (J *'*—(a* U Λ?) in B, F Π £,,,• is still incom-
pressible in E{ j and D would be a compressible disk in E{tj for r > 3 .
This proves (6). For (7), suppose there is an essential 1-pointed disk D for
(5, t* U *'*). Let at be the component of t* U ί7* meeting D. Since the tangle
£*U f*—at is still a non-separable tangle in B, there is a 3-ball 5^, surrounded
by D and a disk in dBy such that 5^n(i*U t**)=BDria% and it is a 1-string
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tangle in BD. Since a% is a trivial arc in B, BD Π a% is a trivial tangle in £2?
D is 3-ρaralle, a contradiction. This proves (7). We complete the proof of
Lemma 3.1.

Using the normal imitation q: (B, ί* U t'*)^(B, t U t') and the disk Fez 95,
we prove the following:

Lemma 3.4. For an r(>3)-string trivial tangle t in a Z-ball B, there is an
almost identical imitation q: (B, **)->(#, t) with (B,t*) hyperbolic covering
property.

Proof. Let q: (By I* U ?'*)->(£, t U ?'^be another copy of q: (B, ί* U if*)
-»(J5, t U t'). Let F be the copy of F in 95. By identifying F with P as it is
indicated in Fig. 2, we have an r-string trivial tangle tb with strings b~a{ U ΰ'i U
αίuβί, ί = l , 2, - , r, in the 3-ball Bb=B[jB.

a2 ar

Fig. 2

Then q and ξf define an almost identical imitation qb: {Bby ff)^>{Bby tb). Let
bf=qϊ1(bi)=af UHi*U «?*Uaf, ί = l , 2, - , r. We denote the disk F\adB) by
i<V Let ^ j : (5 r f, tf)->(Bd, td) be an almost identical imitation obtained from two
copies of qb: (Bb, tf)->(Bby tb) by taking the double pasting along the disk Fb.
Clearly, td is an r-string trivial tangle. We show that (Bd, tf) has the hyperbolic
covering property. Let Ef=E(tf, Bb)y Fξ=E(tf, Bb) Π Fb. We may consider
that Ef=E(tf, Bd) is the double of Ef pasing along Ff. Clearly, Ef, Ef are
irreducible. If there is an essential disk flc£f, then by Lemma 3.1 (1) the
intersection DΠFE, where FE=FΓ)Ef, consists of proper arcs after an isotopic
deformation of D, which contradicts Lemma 3.1 (4). Hence £f is 9-irreducible.
Since Fb is incompressible in Efy Ef is also 9-irreducible. By Lemma 3.1 (1),
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(2), (3), Ef has no essential torus and no essential annulus A with dA Π dFf=0,
so that Ef has no essential torus. By the same reason, Ef has no essential an-
nulus A with dA Π dFf= 0. Since Ef is 3-irreducible, we see from this obser-
vation and an argument on the intersection of Ff and a proper annulus A in Ef
that Ef has no essential annulus. Thus, Ef is hyperbolic by Thurston's hyper-
bolization theorem [23]. Next, we can see from Lemma 3.1 (4), (5), (6), (7) that
(Bb, tf) has no essential 4-ρointed spheres and no essential 2-ρointed disk and
no essential 1-pointed disk. It is similar for (Bdy tf). Then the double (M, L)
of (Bdytf) is 4-ρrime. Since M^S3

y (MyL) is 3-ρrime. By Myers gluing
lemma [8, Lemma 5.3], E(L, M) is hyperbolic. Let M2 be the double covering
space of M branched along L. Since by Lemma 1.3 the 2-sphere dBd lifts to a
closed incompressible surface of genus r—1(>2) in M2y we see that M2 is not a
Seifert manifold over S2 (cf. [5,VI.3.4]). By Lemma 1.4, M2 is hyperbolic.
Hence the double covering space (Bd)2 of Bd branched along tf is hyperbolic.
By Lemma 1.6, (Bdy tf) has the hyperbolic covering property. This completes
the proof.

4. The existence of an almost identical imitation with hyperbo-
lic covering property of a good (3, l)-manifold pair.

Lemma 4.1. Let (M, L) be a good (3, l)-manifold pair such that dM has
no 3-pointed spheres. Then there is an almost identical imitation (M, L*) with
hyperbolic covering property of (M, L).

Proof. We can obtain the 3-manifold M from two handlebodies Hiyi=
1, 2, of the same genus g by pasting two compact connected surfaces
such that for each i,

(1) Fci = d (dHi—Fi) is a planar surface,
(2) t~L Π Hi is a trivial ^-tangle in Hi with £+s, > 3 ,
(3) Any component of L meets both Hx and H2,
(4) Any disk component of FΊ necessarily meets at least two strings of t{.

Our assumption that dM has no 3-ρointed spheres needs for (4). Since
H{ is the exterior of a trivial ^-tangle in a 3-ball, we obtain from (2) and Lemma
3.4 an almost identical imitation (Hiy tf) with hyperbolic covering property of
(Hi9 ti). By (3), the imitation maps q{: (Hiy tf)->(Hif *,), ί = l , 2, define an al-
most identical imitation map q: (M, L*)-^(M, L) with L*=tf\Jtf. We show
that (My L*) has the hyperbolic covering property. For any component unions
Lt, Lf of L* with Lf=L*-L$, let E=E(L$, M), E^EΠty and Ff=EDFi.
Let £ be a finite regular covering space of E branched along Lf, and Eiy Ff,
the lifts of E{> Ff, respectively. Each component of E{ is hyperbolic by the
hyperbolic covering property of (Hiy tf). By (1), (2) and (3), Ff has no disk,
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annulus, torus component. By (4), (Ff)c=dE-int Ff has no disk components.
Then we see from Myers gluing lemma that E is hyperbolic. This completes
the proof.

Let an arc a be in S2. Regarding S2 as the 3-fold cyclic covering space of
S2 branched along day we obtain three arcs aiy / = 1 , 2, 3, in S2 as the lift of a.
These arcs divide S2 into three disks Diy i = l , 2, 3. Let R=S2xIy Λ~Z) f.x/,
i = l , 2, 3, and / = [ — 1 , 1]. Let bi=pixl for a point p{ in intD i for each i and
/ be an r(>3)-comρonent proper 1-manifold in R without loop component and
with 3/cS2X 1 so that / .=/ Π-R,- and biy i = l , 2, 3, are illustrated in Fig. 3. Let

Lemma 4.2. Γfore ά α normal reflection a in {R3 l\jtb)xl such that
(1) For each component a of I, the restriction of the reflection a to (R, {I—a)

\Jtb)xI is ίsotopically standard,
(2) Fix (a, (R, IUtb)xI) ^(R, I* Όtf) and the double ( Ϊ F , # U # ) of

(R, /* U tf) pasting along S2 X 1 Π (R, /* U if) has the hyperbolic covering
property.

h
R2 R3

Fig. 3

Proof. First we take an isotopically almost standard reflection a\ in (Riy /,.)
X/ such that Fix (α', (Riy li)xI)^(Riy li) has the hyperbolic covering property
and the restriction of α to a boundary collar of R{xl is the standard reflection.
By taking the point p{ close to 9Z),, α ' is also a normal reflection in (Riy l{ U bt) XI
with Fix (aί9 (R{, h U b{) X /) = (/?,, li U bs). Next taking an almost identical imi-
tation (Riy Ifϋbf) with hyperbolic covering property of (Riy li U6t ), we have a
normal reflection α,. in (Riy!{U δf )X/ with Fix (aiy (Riy U U b{)XI)-(Riy If U bf)
such that the restriction of a{ to (Riy (/,—βt ) U #,) X/ for any component a{ in /t

is isotopically standard. The normal reflections aiy i=ly 2, 3, constitute a nor-
mal reflection a in (R, l\jtb)xl with property (1). Let lt=l* U t$. We show
that (IF, If) has the hyperbolic covering property. Let S be any 3-pointed
sphere in (Wy If). Since each component of 1% is a null-homologous loop in W
and hence intersects S in even points, S must intersect a component of f£ in
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odd points. Then we see that S intersects each component of t* in just one
point and does not intersect /$. Using that (WA9 1$) has the hyperbolic cover-
ing property by Myers gluing lemma and (W9 t$)£*(S2, 3 points) x/, we con-
clude that S is 3-parallel in E{1%9 W) and (W, /$) is 3-ρrime. Let S be any
4-ρointed sphere in (W, /f). Then some component b% of t% does not meet S.
Note that the double covering space of E(b$, W) branched along l*—b$ is hy-
perbolic by the hyperbolic covering property of (Ri9 If U bf) and Myers gluing
lemma. Hence S is not essential and (W9 /+) is 4-prime. Next, we show the
following:

(#) There is no disk D in W such that dD is a component of /$ and int D

meets 1% transversally with 2 points.

To see (#), suppose there is such a disk D. We consider D in WA=S3.
Since /* is an (almost identical) link imitation of a trivial link, the linking num-
ber of any two components of /* in S3 is 0. By Myers gluing lemma, note that
(S3,1%) has the hyperbolic covering property. Then int D must intersect only
one component of 1% with 2 points. The double covering space E2 of the exterior
E—E(dDj Sz) branched along l$—dD is hyperbolic with boundary of two torus
components. Since D'=Df)E lifts to an annulus A in E2 spanning the two com-
ponents of dE2, which contradicts the hyperbolicity of £ 2 This establishes

Let Ity If be any component unions of 1% with lf—1%—1%. Let Et=
E(l$y W). By the 3-primeness and 4-primeness of 1% in W and (#), If is 3-
prime, 4-ρrime and 2-semi-prime in Ef. Note that E(l%, W) is hyperbolic by
the hyperbolic covering property of (Ri9 If U bf) and Myers gluing lemma. We
show that for any finite regular covering space Et of E$ branched along If, the
spherical completion (Ef)A is hyperbolic. It is obvious when lf=0. Let
/*Φ0. Then we can apply Lemma 1.4 to (E$)A. By Lemma 1.3, note that
(Ef)A is a Haken manifold with an incompressible surface lifting S2 Π E$9 whose
component is not diffeomorphic to any sphere, disk, torus or annulus. By this
reason the case (2) of Lemma 1.4 does not occur. If (3) of Lemma 1.4 occurs,
then for some l0 containing a component of t%, the double covering space of Ef
branched along If must be a Seifert manifold. But it is hyperbolic by the hy-
perbolic covering property of (Ri9 If U bf) and Myers gluing lemma, which is a
contradiction. Thus, (E$)A is hyperbolic and (W, If) has the hyperbolic cover-
ing property. This completes the proof.

Lemma 4.3. For any good (3, \)-manifold pair(M,L) there is an almost
identical imitation (M, L*) with hyperbolic covering property of (M3 L).

Proof. By Lemma 4.1 we may consider that dM has 3-pointed spheres.
Let Sj,j=l, 2, •••, k, be the 3-pointed spheres in dM. For eachy, we choose a
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boundary collar Nj of 5 y in M so that (Nj9 L}) with L~N (\L is diffeomorphic
to (R, l\Jtb) appearing in Lemma 4.2 with some r > 3 and each component of L
contains a component of L ; not meeting Sj. Let M'=cl (M— Uy-i Nj) and
L'—LΓ\M'. By Lemma 4.1., we have an almost identical imitation (M'yL'*)
with hyperbolic covering property of (M', Z/) We also have a normal imitation
(iVy, LJ) of (iVy, Ly) corresponding to (R, I* U tf) in Lemma 4.2. Then we have
an almost identical imitation (M, L*) of (M, i ) with L * = L ' * U (U *-i i f ) . Let
(L*)o, (L*)i be any component unions of £* with (L*) 1 =L*-(L*) 0 . Let (I,'*),.
= L ' * Π (L*)i9 (Lf)~Lf Π (£*),-, i=0, 1. We denote by_£, £', £ y the exteriors
of (L*)o, (L'*)09JLf)0 in M, M', ΛΓ., respectively. Let S—dNj-Sj and Fy=
Sj Π £"y. Let -E be a finite regular covering space of E branched along (Z/*)^ and
E', Ej, F. be the lifts of £", Ejy Fj to E, respectively. By Lemmas 4.1 and 4.2
(2), (£' , U U Fj), (U J«i(£y)Λ> U }.i ^ y ) have the property C of [18] (cf. Remark
3.3). Hence by the original Myers gluing lemma in [18], the spherical comple-
tion EA of E is hyperbolic. This completes the proof.

5. Proof of Main Theorem. The following shows that for any given
good (3, l)-manifold pair, there exist infinitely many almost identical imitations
of it with hyperbolic covering property and with mutually non-diffeomorphic
exteriors.

Lemma 5.1. Let (M, L) be a good (3, l)-tnanifold pair. For any positive
real number C, there are a positive number C+>C and an infinite family $ of al-
most identical imitations {M, L*) with hyperbolic covering property of (M, L) such
that

Vol E(L*9 M)<C+ and sup Vol E(L*9 M) = C+ .
(M,L*)<EΞ%

Proof. Let (B, t) be a basic tangle in (M, L) with complement (M'f L').
Let On be an w-component trivial link in int B—L. Let (JB, ί*UθΛ) and
(M\ L'*) be almost identical imitations with hyperbolic covering property of
(J5, t[JOn) and (M',L')> respectively. Then these imitations define a normal
imitation (M,L*Uθn) of (M,LUO"), where ZΛ=ί*UL'*. By Myers gluing
lemma, (M, L*U On) has the hyperbolic covering property. By taking the \\m-
Dehn surgery of B and M along each component of On, the imitations
(B91* U 0n)->(5, t U O"), (M, L% U On)-*(M, L U On) induce almost identical imi-
tations (B} t%)-+(B, t), (M, LZ)-+(M, L), respectively. By an argument of
[8, §5], there is an n with Vol£(L*U Ow, M)>C which we denote by C+, and
fixing such an n, we have a positive integer m0 such that for all m>m0, E(L%, M)
is hyperbolic with Vol E(L%9 M)<C+ and sup w ^ 0 Vol E(L%9 M)=C+. If we
take mQ as a further large number, E(t%> B) and the double branched covering
space B(t%)2 of B branched along t% are hyperbolic for all m>m0. By Lemma



318 A. KAWAUCHI

1.6, (By t%) has the hyperbolic covering property for all such m. By Myers glu-
ing lemma, (M, L%) has the hyperbolic covering property for all such m. This
completes the proof.

The following lemma is similar to Kojima's Lemma in [13, Lemma 5.2]:

Lemma 5.2. Let E be a hyperbolic 3-manifold with a torus boundary com-
ponet T and Ef=E\j f SιxD2 be the adjunction 3-manifold by a diffeomorphism
f: S1xdD2-^T. Then Ef has no orientation-reversing diffeomorphism except f
such that f(pχdD2), p^S\ represents a finite number of homology classes of Hλ

(T Z).

Proof. Since Isom E is finite, there are only finitely many (up to isotopies)
orientation-reversing self-diffeomorphisms g{ of E, ί = l , 2, •••, r, such that gi(T)
= T and gi*(ei)=Si eiy £,— db 1, for some indivisible element e{ ̂ .Hλ(T\ Z). Take
an element e\ of Hλ(T\ Z) so that {eiy e\\ forms a basis for Hλ(T\ Z) with inter-
section number Int (eh e'i) = 1. Then we have gi*(e'i)=mi ej—Sj e\ for some inte-
ger w£. By Thurston's hyperbolic Dehn surgery [23], [24] (cf. [13, Lemma 5.1]),
Ef is hyperbolic with S1 X 0 the shortest geodesic except / such that f(p X 3D2)
represents a finite number of homology classes of Hλ(T\ Z). We consider any/
such that f(p x 3D2) does not represent this exceptional homology classes and
has [f(pXdD2)]=bt e^bWi in HX(T;Z) with # Φ 0 and άf./ftίΦ~6|.ιifί/2 for all
i. Suppose such an Ef has an orientation-reversing diffeomorphism. Then by
Mostow rigidity [23], [24], Ef has an orientation-reversing isometry T. Since
τ ( S 1 x 0 ) = 5 1 x 0 , T is isotopic to a diffeomorphism g with g(T)=T and
gf(p X dD2)=f(px 3D2), gIE is isotopic tog{ for some i. Then g^fa e{+bi e[)
=6'i(bi e^b'i eft for some ^ = ± 1 , so that £t i r +6ί m—S'i b{ and €{ bri = —Si bl
Then b'i=0 or bjbi = — £, mf /2. This is a contradiction and completes the proof.

Lemma 5.3. For a good (3, \)-manifold pair (M, L), α>£ assume the follow-
ing (1), (2) and (3):

(1) i λαs no arc component and there is a double covering space M2 of M
branched along L,

(2) There is a family 2 of mutually disjoint 4-pointed spheres Sh £=1, 2, •••,
w, which split (M, L) into good (3, \)-manifold pairs whose exteriors and
whose double branched covering spaces associated with the covering M2—>
M are hyperbolic 3-manifolds,

(3) There are a subfamily Σo of Σ and a finite group G acting on (M, L) such
that each S, GΣ 0 splits (M,L) into mutually non-diffeomorphic two good
(3, \)-manifold pairs andgS{ is isotopic to *Sf in (My L)for allg^G.

Then there is an isotopy of (M, L) sending Σo to a family Σ* such that gSf=

Proof. Let E=E(L,M) be a G-equivariant exterior and Fi=Sif]E be a
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surface diffeomorphic to S2 with 4 open disks removed. We apply a least area
surface theory in [3] to the family Φ of surfaces Fiy i=l, 2, •••, m. For this pur-
pose, we choose a G-equivariant Riemannian metric on E such that the mean
curvature vector of dE is zero or inward pointing. By (2) note that F{ is incom-
pressible and 9-incompressible in E and does not split E into two components
one of which is a twisted /-bundle of P2 with two open disks removed. Then
by [3] there is a family φ*={Ff, Ff, •• ,iΓ*} such that Ff is a least area
(imbedded) surface in the isotopy class of F{ in E. For iΦj, FfΓ\Ff=0 since
F{ and Fj are disjoint and not isotopic in E by (2). By (1) and [1], any finite
family of mutually disjoint essential 4-ρointed spheres for (M, L) is isotopic, in
(MjL), to a family whose members are disjoint from St for all £=1,2, •••,;«.
This means that Φ* is a G-equivariant family and isotopic to Φ in E. Then we
have a G-equivariant family Σ* of mutually disjoint 4-ρointed spheres Sf, i~
1, 2, •••, m, for (M, L) extending Ff, which is isotopic to Σ in (M, L). Let Σ*
be the subfamily of Σ* sent to Σo by the isotopy from Σ* to Σ. For any
Sf^τf and any g^Gy gSf=Sf or gSf f]Sf=0. " In the latter case, (3) means
that gSf is disjointedly parallel to Sf and Sf splits (M, L) into two non-
difϊeomorphic good (3, l)-meanifold pairs. Since g is periodic, this is impos-
sible. This completes the proof.

DEFINITION. Let (M,L) be a good (3, l)-manifold pair. A 2-string tan-
gle t in a 3-ball B is apiece tangle of a component a of L in (M, L) if (B, ί)C
(int My int α) and ΰΠ(L-fl)=C) and there is an arc component e of α-int t such
that deddB and £ is trivial in the complement of int B U (L—int e) in M. This
arc e is an extra arc of the piece tangle (B> t).

Lemma 5.4. Let (MiL)=(S2

> 3 points) x/. For a component b of L,
let B=E(b, M)y a 3-ball and Lb=L—b. Then there is an almost identical imi-
tation of(M,Lb\Jb)=(M,L), written as (M,L$\Jb) suck that (B,Lf) has the
hyperbolic covering property and has no periodic map.

Proof. Take two disjoint piece tangles (Biy ί, ), £=1, 2, with disjoint extra
arcs of a component a of Lb in (B,Lb). By Lemma 5.1, we have two almost
identical imitations of (M, L) with hyperbolic covering property and with non-
diffeomorphic exteriors, written as (M, L'b\Jb), (M9Ll'\Jb). Consider (B,Lb),
(B, LI') as almost identical imitations with hyperbolic covering property of
(Bi, *i), (B2,t2), respectively. Let M0=M—(intB^intB2) and L0=M0Γ)L.
Since (Mo, Lo) is a good (3, l)-manifold pair, we take an almost identical imita-
tion with hyperbolic covering property (Mo, L*) of (Λf0, Lo). Replacing (Bly ίx),
(B2y t2) and (Mo, Lo) with (B, L'b), (B, LΓ) and (Mo, Ljf), respectively, we obtain
an almost identical imitation (M, L*Ub) of (M,L). For a trivial knot O in
M—(Lf U b)y let (M, Z# U b U O) be an almost identical imitation with hyperbolic
covering property of (M, L\\Jb\JO). By Thurston's hyperbolic Dehn surgery
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[23], [24] and Lemmas 1.6, 5.2, there is a positive integer m0 such that for all
m>mOy the 1/τw-Dehn surgery of M along O produces an almost identical
imitation (M, Lf U b) of (Λf, Lf U *) (and hence of (Λf, L)) such that (J5, Lf) has
the hyperbolic covering property and the core O' of the solid torus used for the
Dehn surgery is the shortest geodesic in the complete hyperbolic manifold B—Lf
with d(B—Lf) totally geodesic and E(Lfy B) has no orientation-reversing dif-
feomorphism. Suppose (B, Lf) has a periodic map /, which must be orientation-
preserving. By Mostow rigidity, the restriction of / to B—L* is isotopic to an
isometry φ with the same period as /. Then we have a periodic map / ' on
(B, Lf) with the same period as/which coincides with φ outside a small tubular
neighborhood of Lf in B. Since <p(O')=O', we have f'(O')=O'. By the
(—l/w)-Dehn surgery along O', we obtain from/', which is orientation-preserv-
ing, a periodic map / " on (B, L*b)^(By Lf) with the same period as /. Any two
of (By Lΐ), (By L'b') or (Mo, Lf) are not diffeomorphic, so that by Lemma 5.3 we
may have/"(B, L'b)=(By Li) and/"(B, LΪ)=(Bf L'b'). This means that/" pre-
serves orientation-preservingly the component a* of L\ corresponding to a in Lb.
By Smith theory, we have Fix (/", 2?)=α*. T h e n / " must act on the arc com-
ponent L%—c? freely, which is impossible. Thus, (B, Lf) has no periodic map.
This completes the proof.

PROOF OF MAIN THEOREM. By Lemma 5.1, we may consider that (M,L)
has the hyperbolic covering property and Vol E(L, M)>C. Let (B, t) be a
basic tangle for (M,L) with complement (M'yL'). Let O be a trivial knot in
B—t and (Bo, t0) be a piece tangle of O in (B, t U O). Let B'=B—int Bo and
(t u θy=Bf Π (t U O). We take the 2-string tangle (5, Lf) appearing in Lemma
5.4 as an almost identical imitation of (Bo, t0). Replacing (BOy t0) by (By Lf) and
(B'y (t\J 0)') by an almost identical imitation with hyperbolic covering property
(B'y (ίUOy*) of it, we obtain an almost identical imitation (By ί'LJO) of
(By t(JO). Further, replacing (B, t U O) by (£, t*U O) and (AT, Lf) by an almost
identical imitation with hyperbolic covering property (M', L'*) of it, we obtain
a normal imitation (M, L*Uθ) of (M,LUθ). By Myers gluing lemma,
£(L*U O, M) is hyperbolic. Let C+=Vol E(L*\J O, M). By Lemma 1.6 and
Myers gluing lemma and Thurston's hyperbolic Dehn surgery, there is a positive
integer m0 such that for all m>m0 the 1/m-Dehn surgery along O produces from
the imitation map (M,L'l jO)-»(M,iUO) an almost identical imitation map
qm: (MyL*)-^(MyL) with (My Li) hyperbolic covering property. Then C+>
Vol E(L%y M)>Vol E(Ly M)>C (cf. [23], [24]), for there is a normal imitation
map E(L%y M)->E(Ly M)y which is a 3-diffeomorρhic degree one map. Note
that given iV< + oo) we have only finitely many regular covering maps p:
E(LQ, M)->E(LOy M) branched along Lx with covering transformation group of
order <iV for all component unions Lo, L1 of L with L^L—LQ. Letp%: E*->
Et be the lift of this covering map p: E(LOy M)->E(L0, M) by the imitation map
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ql\ E*=E((L*)Oy M)^E(LOy M) induced from qm. Let O'dE* be the core of
the solid torus used for the Dehn surgery. By a property of imitation, pt lifts
O' to E% trivially and, in the spherical completion (E£)A of E%y any component
of the lift O' of O' is null-homologous and any two components of O' has the
linking number zero. By the finiteness of the coverings py we have an integer
nii>tn0 such that Of consists of the shortest geodesies in the hyperbolic 3-mani-
fold (E%)A for all such p and all m>_mλ. By Lemma 5.2, we have an integer
m2>m1 such that the exterior of O'—O[ in (E%)A has no orientation-reversing
diffeomorphism for any component O{ of 0r and any m>m2. Let G be the
covering transformation group of E(LOy M) and G*=Isom (E%)A. By Mostow
rigidity, we have a monomorphism G-+G*. Suppose | G | < | G* | . First, we
show that the action of G* on (E%)A is orientation-preserving. To see this,
note that G translates the components of 0' transitively and g*(O')=0' for all
£*E=G* and by Mostow rigidity each element of G is isotopic to an element of
G* in the exterior of O' in {E%)A. Then if G* is not orientation-preserving,
then we see that there is an orientation-reversing element gf of G* with gf(Oί)
= O{ for a component O[ of O'y which contradicts our choice of tn2. Hence G*
acts on (E%)A orientation-preservingly. Then G* acts on a pair ((Z?*)Λ, O), ob-
tained from the pair ((E%)Ay 0') by the G-equivariant (—l/m)-Dhen surgery
along all components of 0'. Clearly, (E*)A is obtained as the spherical comple-
tion of the covering space JE* over £"* whose covering map p* is the lift of the
covering maρ/>: E(LOy M)->E(LOy M) by the imitation map qξ: E*=E((L*)Oy M)

-^E(LOy M) induced from the imitation map (M, L*U O)->(My L\JO). Further,
O is obtained as the lift of O(ZE(L*y M)cE* by p*. Note that {{E*)Ay 0) splits
into \G\ copies (J5,L?)t ( l ^ / ^ IG|) of (ByLf) and one good (3, l)-manifold
pair (Xy Lx)y not diffeomorphic to (By Lf). Since O is split from L in My the
covering monodromy π}(M—L)->G extends to an epimorphism πi(M—(L\JO))
-^GχZ2 sending a meridian of O to 1EZ2. From the Myers gluing lemma and
the hyperbolic covering property of (B'y(t U O)'*), (M'y Z/*) we see that E(LXy X)
and the double covering space of X branched along Lx are hyperbolic. Since
IGI < IG* I, by [1] there are a non-trivial element £ * e G * and an index / such

that g*(By Lf)i is isotopic to (5, Lt\ in ((J? )Λ, 0). By Lemma 5.3, (By Lf) has
a periodic map, which contradicts Lemma 5.4. Hence | G | = | G * | and the
monomorphism G->G* is an isomorphism. Since s u p ^ ^ Yol E(L%y M)=C+

y

we complete the proof of the case when iV<-f oo. When Zq=0, we have that
O' consists of the shortest geodesies in (E%)A for any finite regular covering map
p: E(LOy M)-^E(LOy M). Since we used N only for this assurance, we can take
JV== + oo. This completes the proof of Main Theorem.

REMARK 5.5. In the above proof, the sphere S=dB for the basic tangle
(5, t) satisfies (3) of Main Theorem.
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6. Applications. We call (M, L) a good pair if (M, L) is either a good
(3, l)-manifold pair or L=0 and M is a £0orf 3-manifold (i.e., a compact con-
nected oriented 3-manifold with MA=M). (M, L) is called a^ood G-pair if G
is a finite group acting faithfully on a good pair (M, L) and orientation-preserv-
ingly on M and the G-orbit set, (F(G, M) UL)/G of the G-set F(G, M) \JL is a
good graph or 0 in the G-orbit 3-manifold, M\G of M, where F(G, M) de-
notes the union of the fixed point set Fix (g, M) for all non-trivial elements g
of G. M is called a good 3-manifold with G-action if (M, 0) is a good G-pair
(i.e., M is a good 3-manifold and G acts on M faithfully and orientation-preserv-
ingly).

DEFINITION. A good G-pair (M*, L*) is a normal (or an almost identical,
resp.) G-imitation of a good G-pair (M, L) with G-imitation map q: (M*, L*)->
(M,L) if q is a G-map and the orbit map q\G\ (M*/G, (F(G, M*)UL*)/G)-^
(M\G, (F(G, M) UL)/G) of the G-map q: (M*, F(G, M*) U L*)^(M, F(G, M)
U i ) defined by q is the spherical completion of a normal (or an almost identi-
cal, resp.) imitation map between good pairs.

When (F(G, M*) (JL*)/G is a graph, q\G is called a graph imitation in [8].
By a general property of imitation in [7], a normal G-imitation is a normal imi-
tation. If q: (M*, L*)->(M, L) is an almost identical G-imitation, then the
orbit map (q | M*)jG: M*IG->MjG is homotopic to a diffeomorphism. Further,
if LctF(G, M), then q\M*: M*->M is G-homotopic to a diffeomorphism and
we can write (M*, L*) as (M, L*). We first consider a good 3-minifold with
free G-action.

Theorem 6.1. For any good 3 -manifold M and any positive number C,
there are an infinite family $ of normal imitations M* of M and a number C+>C
such that

(1) M* is a hyperbolic Haken manifold with

Vol M*<C+ and sup Vol M* = C+,

(2) If G is the covering transformation group of any finite regular (unbranched)
covering M-^M, then G is conjugate to Isom M* in Diff M* for the lift
q: M*-*Mof the imitation map q: M*->M by the covering map M-+M.

Proof. Let O be a trivial knot in int M. Take an almost identical imita-
tion q: (M, O*)-*(Mf O) such that (M, O*) has the hyperbolic covering property
with Vol £(O*, M)>C and has the property (2) of Main Theorem. Let C+=
Vol£(O*, M). Let qm\ M%->M be a normal imitation map obtained from q
by the 1/m-Dehn surgery along O* and O. By Thurstons' hyperbolic Dehn
surgery argument, there is a positive integer m0 such that M% is hyperbolic with
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the core O% of the solid torus used for the Dehn surgery the shortest geodesic
and linwo Vol M*=C+ with Vol M*<C+, for all m>m0. Let gm: ΛΪ*-+M
be the lift of qm by any finite regular covering M-+M with covering transfor-
mation group G. Let G*=Isom M%. By Mostow rigidity, there is a mon-
omorphism G->G*. Since the lift 0% of 0% consists of shortest geodesies, G*
acts on (M"*, <5)*), so that G* acts on £(<3*, M*). By (2) of Main Theorem,
Isom E(0%, Aϊi)B*G. By Mostow rigidity, there is a monomorpbism G*->G.
Hence the monomorphism G-+G* is an isomorphism. We can previosly as-
sume that M is Haken, so that M% is Haken for all m>m0. This completes the
proof.

By taking G={1} in Theorem 6.1, we obtain a hyperbolic version of a
Haken manifold with no periodic map in [11]:

Corollary 6.2. For any good 3-manifold M and any positive number C,
there are an infinite family ^ of normal imitations M* of M and a number C+>C
such that M* is a hyperbolic Haken manifold with no periodic map and

Vol M*<C+ and sup Vol M* = C+.

Kojima showed in [14] that any finite group can be realized as the (full)
isometry group of a hyperbolic 3-manifold. We can obtain a similar result:

Corollary 6.3. For any finite group G and any positive number C, there
are an infinite family ^ of hyperbolic Haken manifolds M* and a number C+>C
such that

Isom M*^G, Vol M*<C+ and sup Vol M* = C+ .

Proof. For any finite group G, taking M to be a connected sum of some
copies of S1xS2, we have an epimorphism πι(M)->G, so that G is the covering
transformation group of a regular unbranched covering space M over M. Then
the proof is completed by Theorem 6.1, since V o l M * = | G | VolM* for the
lift M*->M* of the covering map M-^M by a normal imitation map M*-^>M
with M* hyperbolic.

Corollary 6.4. For any integer N>1, there are N normal imitations of
S1xS1xS1 which are hyperbolic 3-manifolds with the same volume but with mut-
ually non-isomorphic isometry groups.

Proof. Let Gu(p9 q, r)=ZnP®Zn*@Znr for integers n{>2),p(>0), 9 ( > 0 ) ,
r(>0). Let n be fixed. If an integer m is sufficiently large, then there are at
least N mutually non-isomorphic groups among the groups Gn{p> q> r) with
m=p-\-q-\-r. Let M=S1 X S1 X S1, and M* a normal imitation of M in Theorem
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6.1. Taking a regular covering M-+M with covering transformation group

Gn(py q, r)y we obtain a normal Gn(p, q, r)-imitation M * of M^S1 X S1 X S1 with

IsomM*^Gn(/>, q, r) and Vol M*=nm Vol M*. Since a normal Gn(p,q,r)-

imitation is a normal imitation, we complete the proof.

Next, we consider a good 3-manifold with non-free G-action.

Theorem 6.5. For any good 3-manifold M with non-free G-action and

any positive number C, there are an infinite family 2? of almost identical G-imita-

tions M* of M and a number C+>C such that

(1) M* is a hyperbolic Haken manifold with

Vol M*<0+ and supVolM* = C + , and

(2) G is isomorphic to Isom M*.

Proof. Since (M/G, F(G, M)jG) is a spherical completion of a good (3, 1)-

manifold pair (M\ L'), we apply Main Theorem to (Λf', L') with N taking that

N> IGI. Then we obtain an infinite family 3f of almost identical G-imitations

M* of M with G = IsomM*. On volume, we can previously assmue that M

is hyperbolic with Vol M>C by an argument of [8, §5] (cf. Lemma 5.1). Then

the proof of Main Theorem assures that Vol M*<supM*e8 VolM*< + oo and

we can call this last number C+. By (3) of Main Theorem, M* is Haken.

This completes the proof.

Riley [20] observed that for any hyperbolic knot k in S3 the orintation-

preserivng subgroup Isom+ E(k, S3) of Isom E (k, S3) is a dihedral group Dd of

order 2d or a cyclic group Zd of order d for some d>l, according to whether

k is invertible or not. As a consequence of Main Theorem, we obtain the fol-

lowing realization result of these groups:

Corollary 6.6. For any positive integer d and any positive number C, there

are two infinite families S J S ' °f almost identical knot imitations O* with hyper-

bolic covering property of a trivial knot O in S3 and numbers C+, C'+>C such that

(1) Each O * e ^ is an invertible knot with

Isom+ £(O*, S3) - Isom £(0*, S3) « Dd ,

and

Vol E(O\ S3)<C+ and sup Vol £(0*, S3) = C+ ,

(2) Each O * e $ ' is a non-irlvertible knot with

Isom+ £(0*, S3) == Isom £(0*, S3)
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, S 3 ) < C ' + and sup Vol £(O*, S3) = C'+ .

Proof. Let O be a great circle of S3. Let Dd and Zd act on (S3, O) linearly
so that OctFXA,, S3) and Of]F(Zdy S3)=0. Then note that if (S3, O*) is an
almost identical Z>rf- or Z^-imitation of (S3, O), then O* is an almost identical
knot imitation of O. By Main Theorem and an argument of [8, §5], we have
infinite families $, 3»' of almost identical knot imitations O* of O and numbers
C+, C ' + > C auch that E(0*, S3) and the double covering space of S3 branched
along O* are hyperbolic, and Isom£(O*, S3) and Vol£(O*, S3) have (1) or (2)
stated above, according to 0 * e ^ or 0*e3ί ' . Then each 0*^3? is invertible
and by Mostow rigidity, each O* eQί' is non-invertible. By (3) of Main Theorem
and Lemma 1.7, each O*e3ίU3f' has the hyperbolic covering property. This
completes the proof.

Wielenberg [26] constructed, for any integer ΛΓ>1, N hyperbolic links in
S3 whose exteriors have the same volume. We have a similar result regarded
as a link version of Corollary 6.4.

Corollary 6.7. For any integer N>1, we have N links in S3 with hyper-
bolic covering property which are normal link imitations of a fixed link in S3, a split
union of a Hopf link LH and a trivial link, and whose exteriors have the same vol-
ume and mutually non-isomorphic isometry groups.

Proof. Let L be a split link in S3 of LH and a trivial knot. Apply Main
Theorem to (S3, L). We obtain an almost identical imitation (S3, L*) with
hyperbolic covering property of (S3,L). Let Gn(p,q)=Znρ(BZn<i for integers
n(>2)yp(>0), q(>0). For a fixed ny let m be a large positive integer such that
there are at least N mutually non-isomorphic groups among the groups Gn(p, q)
with m=p-{-q. Let (53, L)->(S3, L) be a regular covering branched along LH

with covering transformation group Gn(p, q). Then L is a split union of LH and
an ft^-component trivial link, whose link type is independnet of a choice of py q
with m=p+q. The amost identical Gn(py ^-imitation (S3, L*) of (S3, L) lifting
the imitation (S3, L*) of (S3, L) has the property that L* is a hyperbolic link
with Isom E(l*, S3)^Gn(p, q) and Vol E(l*, S3)=nm Vol E(L*y S3). Further,
by the hyperbolic covering property of (S3, L*), the double covering space of
S3 branched along Z* is hyperbolic, since it is a regular covering space of S3

branched along L* (with an abelian covering transformation group). By (3) of
Main Theorem and Lemma 1.7, (S3, L*) has the hyperbolic covering property.
This completes the proof.

We remark here some results in [10] which may be interesting in comparison

with Corollaries 6.4, 6.7. Namely, for any good G-pair (M, L) with F(G, M) U

LΦ0 and any integer iV>l, we have N almost identical G-imitations (M*, L*)
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(with M*=M if LΦ0) of (M, L) whose exteriors £"(£*, M*) are mutually non-
diffeomorphic hyperbolic 3-manifolds with the same volume and with isometry
group isomorphic to G. For any good 3-maϊiifold M with free G-action and
any integer N>1, we have N normal G-imitations M* of M which are mutually
non-diffeomorphic hyperbolic 3-manifolds with the same volume and with
isometry group isomorphic to G.
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