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1. Introduction

The concept of sutured manifolds was introduced by Gabai, and it has
been playing an important role in the 3-manifold theory ([3]-[7]). On the
other hand, in [2], Casson and Gordon defined Heegaard splittings of compact
orientable 3-manifolds with boundaries by using compression bodies. We
note that this enables us to define Heegaard splittings for sutured manifolds.
In this paper, we study complementary sutured manifolds for Seifert surfaces
from the viewpoint of this Heegaard splitting.

Firstly, we give the definition of Heegaard splittings for sutured manifolds
following [2]. A compression body W is a cobordism rel @ between surfaces 0, W
and 9_W such that W=0,WxI U 2-handles U 3-handles and 0_W has no
2-sphere components. It is easy to see that if 9_-W=¢ and W is connected,
W is obtained from 9_WxI by attaching a number of 1-handles along the
disks on d_Wx {1} where 0_W corresponds to 8.Wx {0}. We denote the
number of these 1-handles by A(W). Let (M, v) be a sutured manifold such
that Ry(vY)UR_(v) has no 2-sphere components and T(y)=¢. We say that
(W, W') is a Heegaard sphitting of (M, v) if both W and W' are compression
bodies, M=W U W’ with WNW'=0,.W=0, W', 0_-W=R(v), and 8.W'=
R_(v). Assume that R,(7v) is homeormorphic to R_(v). Then we define the
handle number h(M, 7v) of (M, 7v) as follows:

h(M, v) = min {k(W); (W, W') is a Heegaard splitting of (M, v)}.

Note that &(M, v) corresponds to the Heegaard genus of a closed 3-mani-
fold.

For the definitions of a 2z-Murasugi sum and a complementary sutured
manifold, see Section 2. Let R be a Seifert surface in S* obtained by a 2a-
Murasugi sum of two Seifert surfaces R, and R, whose complementary sutured
manifolds (M, v;) (i=1, 2) are irreducible. Let (M, ) be the complementary
sutured manifold for R. In this paper, we consider the relations between 7
(M, v;) (i=1, 2) and h(M, «v). In fact, we prove:
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Theorem 1. Under the above notation, we have
R(M,, 1) +1(My, 12)—(n—1) <M, v) <h(M,, 71)+h(Mp, 7e) -

We say that an oriented surface R in S* is a fiber surface if 9R is a fibered
like with R a fiber. Then we have:

Theorem 2. If R, is a fiber surface, then h(M, v)=h(M,, 7»).

Note that R is a fiber surface if and only if A(M, ¥)=0. Thus as a con-
sequence of Theorem 1, we obtain the next fact.

Corollary ([3], [15]). If R, and R, are fiber surfaces, then R is a fiber sur-
face.

Theorem 2 means that A(M, v)=h(M,, v,)+h(M,, 7v,) if R, is a fiber
surface. Moreover in Section 5, we give examples to show that the inequality
of Theorem 1 is best possible for any n. We note that Theorem 1 corresponds
to the additivity of the Heegaard genus under a connected sum proved by Haken
([8], [10]). In fact, it is proved by using Haken type results for a disk properly
embedded in a sutured manifold (see Section 3).

I would like to express my gratitude to Professor T'suyoshi Kobaysahi and
Professor Makoto Sakuma for their helpful suggestions and constant encourage-
ments.

2. Preliminaries

Throughout this paper, we work in the piecewise linear category and mani-
folds are oriented. For the definitions of standard terms of 3—dimensional topo-
logy, see [9]. For a topological space B, #B denotes the number of components
of B. Let H be a subcomplex of a complex K. Then N(H;K) denotes a
regular neighborhood of H in K. Let N be a manifold embedded in a mani-
fold M with dim N=dim M. Then Fr,N denotes the frontier of N in M.

We recall the definition of a sutured manifold [4]. A sutured manifold
(M, 7v) is a compact 3-dimentional manifold M together with a set v(C9M) of
mutually disjoint annuli A(vy) and tori T(7). In this paper, we treat the case
of T(v)=¢. The core curves of A(v), say s(v), are the sutures. Every compo-
nent of R(v)=0M—Int A(7y) is oriented, and R.(y)(R_(v) resp.) denotes the
union of the components whose normal vectors point out (into resp.) M. More-
over, the orientations of R(7) must be coherent with respect to the orientations
of (7).

We say thata sutured manifold (M, ) is a product sutured manifold
[6] if (M,v) is homeomorphic to (FxI, 0FxI) with R.(v)=Fx{l},
R_(v)=Fx {0}, A(v)=0F x I, where F is a surface and [ is the unit interval
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[0,1]. Let L be an oriented link in S* and R a Seifert surface for L. The
exterior E(L) of L is the closure of S*—N(L; S%). Then RN E(L) is homeomor-
phic to R, and we often abbreviate RNE(L) to R. (N, 8)=(N(R; E(L)),
N(0R; 0E(L))) has a product sutured manifold structure (Rx I, 9RxI). (N, d)
is called the product sutured manifold for R. 'The sutured manifold (N°, §)=
(cI(E(L)—N), cl(0E(L)—8)) with R,(8°)=R_(8) is the complementary sutured
manifold for R. Let R be a Seifert surface in S°® and (M, 7v) the complementary
sutured manifold for R. Then R is a fiber surface if and only if (3, ) is a pro-
duct sutured manifold, that is, (M, v)=0.

Sutured manifold decomposition is an operation to obtain a new sutured
manifold (M’, ¢') from a sutured manifold (M, v¥) by decomposing along an
oriented proper surface S (see [4]). The notation for this operation is as fol-
lows:

(M, v) > (M, ")

This paper focuses on a very special type of a sutured manifold decomposi-
tion (see Figure 2.2) . A properly embedded disk D in (M, ) is a product disk
if dDN A(7y) consists of two essential arcs in A(y). A product decomposition

(M, ) ket (M', v') is a sutured manifold decomposition along a product disk D.
Note that each compression body W can be regarded as a sutured manifold with
A(v)=0(0-W)x 1. In this sense, we define a product disk and a product
decomposition for (W, v) in this paper.

Next, we recall some definitions of Casson and Gordon [2]. Let W be a
compression body. If W is homeomorphic to 0-W X I, we say that W is trivi-
al. A complete disk system D for a compression body W is a disjoint union of
disks (D?, 8D?) (W, 8, W) such that W cut along D is homeomorphic to either
a 3-call or 9_Wx I according to whether d_W is empty or not. In this paper,
we treat the case of a_W +¢.

Let (M, v) be a sutured manifold and (W, W’) a Heegaard splitting of
(M, v). We say that W N W'=F is a Heegaard surface of (W, W'). Then 0F=
30(0.W)=0(0+W")=s(7).

The next theorem follows from [2].

Theorem ([2]). Let (M, ) be a sutured manifold such that R.(v)UR_(7)
has no 2-sphere components and T(y)=¢. Then (M, y) has a Heegaard splitting.

ExamPLE 2.1. Let R be an unknotted annulus in S* with n-full twists and
(M, v) the complementary sutured manifold for R. Then M is homeomorphic
to a solid torus and A(vy) is the union of two annuli which wrap 0M long-
itudinally z#-times and meridionally once.

Case 1: n=1.
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In this case, dR is a Hopf link and it is easy to see that (M, y)=<(R.(y)X
I,0R.(v)xI). Hence (M, v) is a product sutured manifold and A(M, y)=0.

Case 2: n>2.

In this case, firstly we show that (4, v) is not a product sutured manifold,
so that A(M, ¥)>0. Let a be a generator of = (R.(v)) and B a generator of
m(M). If (M, v) is a product sutured manifold, the homomorphism between
fundamental groups iy : 7,(R..(7)) = (M) induced by the inclusion i: R, (y)
M is an isomorphism. However, ix(a)=8" or 87" (n>2), a contradiction.
Hence h(M, v)>0. Now we split M into two components as follows. Take an
essential arc a on R_(7v) and push a a into M so that 0aC R, (7).

R.(y) /

[ T T T[T TTT 4w [ T T T T T T 11

R(y) a % (

Figure 2.1

Let X=N(R.(v)Ua; M), Y=cl(M—X), then (X, A(y) N X) and (Y, 4(7)
NY) are homeomorphic to (AnnulusX I U l-handle, 8(Annulus)x ). Hence
(X, Y) is a Heegaard splitting of (M, v), and we have A(M, v)=1.

A surface R(CS?) is a 2n-Murasugi sum of two surfaces R, and R, in S?
if:
(1) R=R, U, R,, where D is a 2n-gon, i.e., 0D=p,U»,U - U p, U, (possibly
n=1), where u,(v; resp.) is an arc properly embedded in R,(R, resp.).
(2) There exist 3-balls B;, B, in S® such that:
(i) B,UB,=S* B,N B,=0B,=0B,=5?; a 2-sphere,
(i) R,CB, R,CB,and R,NS?*=R,NS?*=D.
When D is a 2—-gon, the Murasugi sum is known as a connected sum. When
D is a 4-gon, the Murasugi sum is known as a plumbing.

Let R be a 2n-Murasugi sum of R, and R,, and let (M, v), (M,, v,) and
(M, 7v,) be the complementary sutured manifolds for R, R, and R; respectively.
By the definition of a 2n-Murasugi sum, there is a 2-sphere S? along which R
is summed and the summing disk D. Let S be the 4n-gon S-(IntDU
IntN(9R)), then we have:
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Lemma 2.2. (cf. [5]). (M, vi) and (M, v,) are obtained from (M, )
by the sutured manifold decomposition along S with an appropriate orientation.

Figuae 2.2

Proof. View S?as R?2U oo where @R N S%is a set of evenly spaced points
Xy, **+, Xy, ON the unit circle and S is the disk in R%-Int N(ORN R?; R?). Let
a,(v)=s(v) NS be a point for x;(7=1,2, -+, 2n). View N(S?; S%) as S?X I with
S§2—=52x {1/2}, S*x {0} C B,, N(S?; S*) NOR=(0R N S?) x I. We can take R, X I
so that R X {1} N S?=D and R, x {0} N(S*xI)cS?x {0}. For the sutured
manifold (M), v;), we can regard that M, is cl(El—R1 xXI)Ug B, and s(7;) is ob-
tained from s(v) N B, by attaching the subarc of the unit circle connecting a,(7),
a;41(7) for 7 odd by choosing a cyclic ordering of x/s well. Similarly, for (M,, v,),
we can regard that M, is cl(BF2 R, xI)Usg B, and 5(72) is obtained from s(v)N
B, by attaching the subarc of the unit circle connecting a,(7), a;1.(v) for 7 even.
Note that cl(B, R xINUs B, is homeomorphlc to cl(B1 R, x1I), and cl(Bz
R,xI)Us B, is homeomorphic to cl(B,—B,xI). On the other hand, we see
that the sutured manifold obtained from (M, v) by the sutured manifold decom-
position along .S with an appropriate orientation is equivalent to the disjoint
union of (cl(B,—R,xI), v;) and (cI(B,—R,xI), v,). This completes the proof
of Lemma 2.2. (see Figure 2.3)

In this paper, we call S in Lemma 2.2 a cross section disk.

Let P be a properly embedded surface in a compression body W. P is
called boundary compressible toward 0, W if there exists a disk D in W such that
DN P=a; an arc in 8D and DN3,.W=g; an arc in 8D, with aNB=0a=
08, aUB=0D, and either « is essential in P or « is inessential in P and the
boundaries of all disk components of cl(P—e) intersect d(0_-W)x1. If P is
not boundary compressible toward 9., then we say that P is boundary incom-
pressible toward 0, W.

Now, let P be a connected surface properly embedded in a compression
body W such that each component of dPN3(0-W)X1I is an essential arc in
0(0-W)x 1.
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Figure 2.3

Lemma 2.3. Assume that d9PN8.W=¢ and P is incompressible and
boundary incompressible toward 0. W. Then P is either
(1) an annulus such that one boundary component is contained in 0. W and
the other is contained in 3_W.
(2) a disk whose boundary component is contained in 9. W, or
(3) a product disk in W.

Proof. Firstly, we will show the special case.

Claim. Assume that W is trivial, then P is either (1), (2) or (3).

Proof. If 0P is contained in only 8, W and 0-W, (1) or (2) occurs by the
proof of Lemma 1.1 in [2]. 'Thus we suppose that there is an arc component in
0PN 0o.W. By moving P by an isotopy, if necessary, we may suppose that each
component of 9P N9(0-W)x I is a vetical arc with respect to the product struc-
ture of W. Let @, be a component of PN9(0-W)x1, and B a component of
PNA_W such that BNa;+¢. Then there is another component e, of PN
8(0_-W)x1I such that a,NB+¢. We note that &, UB U, is an arc properly
embedded in cl(@W—0,W). Let ¢, and ¢, be the components of Fryop-s,m)
N(a,Ua,NB; cl(0W—0.W)), and A; a product disk in W such that ¢; is con-
tained in 04;(:=1,2). Each component of 4; N P is a circle or an arc such that
the boundary is contained in 8. W. Since W is irreducible and P is incompres-
sible and boundary incompressible toward 9. W, we can suppose that 4;N P=
¢(i=1, 2) by standard innermost circle and outermost arc argument. Then we
have conclusion (3) of the claim.

Let D be a complete disk system for W. By standard innermost circle
and outermost arc arguments, we see that P is isotopied so that DN P=¢ (cf.
[2], [10]). Then we have the conclusion of Lemma 2.3.
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Similarly, we have:

Lemma 2.4. Let (W,v) be a sutured manifold and (W',7") the sutured
manifold obtained from (W,v) by a product decomposition. Then (W,v) is a
compression body if and only if (W', v") is a compression body. Moreover, (W)=
W).

3. Haken type results for disks properly embedded in sutur-
ed manifolds

Let (M, 7v) be an irreducible sutured manifold such that R.(v)U R_(7) contain
no closed surfaces and 7T'(v)=¢. Let (W, W’) be a Heegaard splitting for
(M, v) and E a properly embedded disk in (M, ) such that each component of
90E N A(v) is an essential arc in A(7) and F a Heegaard surface of (W, W’).

The purpose of this section is to show the next proposition.

Proposition 3.1. We can assume that each component of ENW' is a pro-
duct disk by moving F by an isotopy rel 0.

S
\J

Before the proof of this proposition, we give a lemma and definitions.

Figure 3.1

Lemma 3.2. By moving F by an 1sotopy rel 3, we may suppose that every
component of ENW' is a disk as in Figure 3.2.

Proof. Letay, «++, a, be arcs embedded in W’ such that each «; is obtained
from a core of 1-handles of W’ by extending to 8- W’ x I vertically (hence 0a;C
8_W'). F is isotopic to Frys N(O_-W'U(Ue;); W’) rel 3. Then we may sup-
pose that N(O_W'U(Ua;); W)NE=N((8-W'U(Ua;))NE; E). Hence every
component of ENW’ is a disk as in Figure 3.2. This completes the proof of
Lemma 3.2.

Let B, -+, B,, be the components of E N W’ which are contained in Int E,
and B,,41, ***, Bu+n be other components of EN W’ such that 8B, NOE, -,
0B,,+, NOFE are on O in this order (see Figure 3.2) and o;=Fr; B;, Z=Ilo;.
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Figure 3.2

Let O be ENW and a an arc properly embedded in Q with daC=. We say
that « is an #nnessential arc in Q if it is homotopic to an arc in % rel 8. If ¢ is
not inessential, then it is essential. Suppose that « is an essential arc in Q. We
say that « is of type I (type II resp.) if o joins a component of = (two different
components of % resp.). Let {a,, -, a,} be a system of mutually disjoint
essential arcs in Q. {ay, -+, a,} is a complete system of arcs for Q if the closure
of each component of OQ—(UN(e;; Q)) is a disk. Set @=Ua; and let o be a
component of %. We say that o is a distinguished circle related to @ if each
component of @ meeting o is of type II.

Proof of Proposition 3.1

Let D be a complete disk system of W and D’ a union of product disks in
W such tht that DN D'=¢, (30 N8_W) N D’'=¢ and each component of cl(W—
N(DUD")) is a 3-cell. By using a standard innermost circle argument, we may
suppose that each component of QU(DUD’) is an arc since M is irreducible.
We denote the system of arcs Q N (DU D’) by & and we suppose that #(E N w’)
is minimal.

Assume that some component of EN W’ is contained in IntE(i.e., m>1).

Claim 3.3. We may assume that & is a complete system of arcs for Q.

Proof. By replacing DU D’ if necessary, we can suppose that each compo-
nent of @ is an essential arc on Q (cf. [13]). By the irreducibility of M and
the minimality of #(E N W’), we see that Q is incompressible in W. Then
we have this claim.

We can easily verify the following

Claim 3.4. There exists at least one distinguished circle o(i=1,2, -, m)
in X related to a.
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For the proof of the next claim, see [13].

Claim 3.5. If at least one of the circles oy, -+, ap 15 a distinguished circle
related to @, then there exists a disk E' in M with $(F NE')<m-+n—1 such that
E’ is isotopic to E and that each component of E' N\ W' is a disk.

If some component of EN W’ is contained in IntE, it contradicts the mi-
nimality of #(E N W’) by Claims 3.3, 3.4 and 3.5. Then we have Proposition
3.1.

4. Proof of Theorems

The purpose of this section is to prove Theorems stated in Section 1.
Proof of Theorem 1

Case 1. Connected sum.

Let F be a Heegaard surface of (W, W') which realizes (M, v) and S the
cross section disk. By Proposition 3.1, we may assume that S N F consists of an
arc. Let W, (W1 resp.) (i=1, 2) be the components obtained by cutting W (W’
resp.) along SN W(S N W’ presp.). Then W, and Wi(i=1, 2) are the compres-
sion bodies by Lemma 2.4. Therefore, we can assume that (W;, W1{) and
(W, W1) give a Heegaard splitting of (M, 7v,) and (M, v,) respectively. Then,
we have h(M, v)=h(W))+h(Wy) > h(M,, v,)+h(M,, ;). By a similar argument,
we have h(M, v)<h(M,, v,)+h(M,, v;). This completes the proof in Case 1.

Case 2. Other cases.

Firstly, we will show that A(M, v)<h(M,, vi)+h(M,, v;). Let S be the
cross section disk as in the proof of Lemma 2.2. Since (M), v,) and (M, 72)
are obtained from (M, v) by a sutured manifold decomposition along S, we
call M; in M the part of M;(i=1,2). Let Sy(S, resp.) be the component of
FryN(S; M) in the part of M, (the part of M, resp.). Then we may suppose
that N(S; M)=SxI, S=Sx {12}, S;=Sx {0} and S,=Sx {1}. Moreover
we can suppose that each componnet of s(v) N.N(S; M) is of the form a; X1,
and set aj=aq; X {0} and a?=a;x {1} (1=1, -+, 2n). (Fotr a;, see Lemma 2.2.).
In the following, we identify (M, ;) ((M,, ;) resp.) with the component of
the sutured manifold decomposition from (#, ¥) by decomposing along Sy(S,
resp.) which contains the part of M;(M, resp.). Further we assume that each
component of S, Ns(v,)(S;Ns(7,) resp.) joins a?, a?,i(ai, ai, resp.) for ¢ odd
(for 7 even resp.).

A Heegaard surface F(F;(j=1,2) resp.) is said to be a nice Heegaard surface
of (M, v)((M;, ;) (j=1, 2) resp.) if it satisfies the following conditions:

(1) SiNF(S,NF; resp.) consists of arcs joining a; and a}., for 7 even
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(2) S,NF(S,NF; resp.) consists of arcs joining &} and af,, for 7 odd
(3) FN(SXI)(F;N(SXI) resp.) is a disk.

Figure 4.1

A 0-compressing hierarchy for a properly embedded disk E, in a com-

pression body W is a finite sequence
BBl 2,

of boundary compressions toward 9, W for which
(1) each D; is a boundary compressing disk toward 9. W for E;_,,
(2) E; is obtained from E;_, by boundary compression toward 9. W along D;,
(3) each component of E, is boundary incompressible toward 0., W.

The length of a 0-compressing hierarchy is the number of boundary com-
pressing disks D;.

Let (W, W1{) ((W,, W3) resp.) be a Heegaard splitting of (M,, v,) (M,
7,) resp.). We denote a Heegaard surface of (W;, W1) (W, W3) resp.) by
F\(F, resp.). We may assume that each component of S;N W,(S;N W, resp.) is

a “product disk”, then each component of S; N W,(S,N W, resp.) is a product
disk too as illustrated in Figure 4.2.

Lemma 4.1. The Heegaard surface F(j=1,2) is ambient isotopic rel
v;(j=1, 2) to a nice Heegaard surface.
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s,

S

(M) (M,,Y2)

Figure 4.2

Proof. We prove this lemma for (W, W{). Put E,(=SNW]{. Then E,is a
properly embedded disk in W{ such that dE,N0_W{ consists of z arcs. Hence,

. . . Dl D2 Dn—l
by Lemma 2.3, there is a 0-compressing hierarchy E,— E, — - — E,_,.

(Note that the length of the 8-compressing hierarchy is n—1 since $E;,,=#E;+1
for each i.) We denote E,_;N D; by ; and we can assume that &; Na;=¢ by
an isotopy. Hence we may consider that «,, -+, @,_, are arcs properly em-
bedded in SN W{. We can assume that D; N(SX[0, 1/2]) is of the form a; X
[0, 1/2], where S corresponds to Sx {1/2}. Let B; be an arc D, N(S;N W) on
D; corresponding to ¢;, and D} be a subdisk of D; such that D{=cl(D;—D;N
(Sx0, 1/2])). Since a;Na;=¢, we may suppose that B;NB;=¢. Then

{, =+y D;_, determines a 8-compressing hierarchy for S; N W{. Do the 8-com-
pressing hierarchy of Dj, -++, D;_, for S, W1, but in this case, we consider that
we move F; by compressing along D/, i.e., slide F;N D} across D} and pass G;.
Then we can see that the final surface is a nice Heegaard surface.

Now suppose that (W, W1{) (W, W}) resp.) satisfies h(W,)=h(M,, 7,)
(h(Wy)=h(M,, 7,) resp.). By Lemma 4.1, F, and F, are nice and we may
assume FyNN(S, M)=F,NN(S, M). Thus F,UF, forms a surface F in M
as illustrated in Figure 4.1.

We show that F is a Heegaard surface of (M, v). Let W and W’ be the clo-
sure of the components of M—F as illustrated in Figure 4.1. Then W(W’
resp.) can be naturally regarded as a sutured manifold, and S,N W(S,NW’)
is a disjoint union of # product disks of W(W’ resp.). The sutured manifold
obtained form W by decomposing along S, W is a disjoint union of W, and
Wé:Wéﬂcl(Mz—N(S ; My)). Note that ¥, and W} are compression bodies,
since W} is a component of the sutured manifold obtained from the compression
body W3 by decomposing along the product disks S,N W (see Lemma 2.4).
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Hence, by Lemma 2.4, W is a compression body, and h(W):h(Wl)—l—k(VT/é)z
h(W))+H(W,). Similarly, W’ is also a compression body and therefore (W, W’)
gives a Heegaard splitting of (A, 7). Thus we have (M, v)<HW)=h(W))
+h(Wy)=h(M,, ¥1)+h(M,, 7).

Next, we will show that A(M,, v\)+h(M,, v;)—(n—1)<h(M, 7). Let
(W, W’) be a Heegaard spl,tting of (3, 7).

Lemma 4.2. Suppose that (W, W') be a Heegaard splitting of (M, )
which has a nice Heegaard surface. Then (W, W') induces Heegaard splittings
(W, W) of (M, ;) (=1, 2) such htat h(W)=h(W)+h(W,).

Proof. Since (W,W’) has a nice Heegaard surface, we may suppose that
each component of W NS, and W'N.S, is a product disk. Let W,(W{ resp.)
be the submanifold of W(W’ resp.) obtained by cutting along S, such that the
part of M, is contained in W;U W{. By using Lemma 2.4, we see that both W,
and W1 are compression bodies, and therefore (W;, W1) is a Heegaard splitting
of (M, v,). Let Wy(W} resp.) be the submanifold of W(W’ resp.) obtained
by cutting along S, such that the part of M, is contained in W,U W}. Simi-
larly, (W,, W3) is a Heegaard splitting of (M,, ;). Since FN(SXI) is a disk,
h(W)=h(W,)+hW,). Then we have the conclusion of Lemma 4.2.

By Proposition 3.1, we may suppose that every component of SN W and
SN W’ is a disk as in Figure 3.1 and that each component of SNF joins a;,

a;+ for 7 even (see Figure 4.3).

D, D, D, . .
Let SN W be E; and E,— E, — :-- — E,_, be a 0-compressing hierarchy.

S,

S,

Figure 4.3
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We assume that the part of M, is defined for S before the boundary compression.
If D; is contained in the part of M,, we say that D; is good, and if D; is contain-
ed in the part of M, we say that D; is bad. Let a; be the arc E;_;ND,. If
N(a;; D;) is contained in the part of M, and D; is not good, we say that D; is
semi good . If N(a;; D;) is contained in the part of M; and D; is not bad, we
say that D; is semi bad. If Dy, ---, D,_, are all good, we say that this 9-com-
pressing hierarchy is good.

We denote E;_;N D; by a; and we can assume that @;Na;=¢ by an iso-
topy. Hence we may consider that a, «*-, @,_, are arcs properly embedded
in SNW.

By the proof of Lemma 4.1, we have:

Lemma 4.3. If SNW has a good d-compressing hierarchy, (W, W') has a
nice Heegaard surface.

We suppose that D; is bad or semi bad some 7. Let F be a surface ob-
tained from F by attaching 1-handles in the neighborhood of «; contained in
the part of M, for all bad or semi bad disks D; as illustrated in Figure 4.4, and
let W, W’ be the closure of the components of M—F corresponding to W, W’
respectively.

-
P

S

~

I

\

=G
s

«; 1- handle

Figure 4.4
Then we have:
Claim 4.4. (VT/, 1717') is a Heegaard splitting of (M, ).

Proof. Since W’ is obtained from a compression body W’ by attaching
1-handles on 8, W', W' is a compression body. So we have only to prove that
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W is a compression body. Let D;, ++, D (i,< -+- <i;) be the bad or semi bad
disks and H,, --+, H, by be the corresponding 1-handles. Put F;=F and let
F,(1</<t) be the surface obtained from F,_, by attaching the 1-handle H,. Let
W, be the closure of the component of M—F, corresponding to W. Then we
have F,=F and W,:W. For each D;, there is a 3-cell C; such that C; is home-
omoiphic to D; X I with; D, corresponds to D; X {1/2} ; a; X IC.S; cl(dD;—et;) X
ICF. Then we may suppose that for j>7, each component of D; N C; (if exists)
is of the form D; X {a point} in C;. In this case, we say that a subdisk of D; is
parallel with the trace of D;. Moreover we may suppose that D; intersects each
of the attaching solid 1-handle (= D?*x I) in disks of the form (arcs)XI. Now
we show inductively that W,(1</<t) is a compression body. Let D, be a disk
obtained from D;, by extending «;, to H, vetically in SxI. Cut W, along D,,
then we get a compression body homeomorphic to W. Hence W, is a compres-
sion body. Assume that W,_, is a compression body. Then we attach the /-th
1-handle in a neighborhood of «; - If D, ’ is semi bad, we have two cases, i.e.,
whether D, contains subdisks which are parallel with the trace of bad or semi
bad disks D (< j<i,) or not. If D, is a bad disk, or a semi bad disk which
does not contain subdisks which are parallel with the trace of bad or semi bad
disks, W, is a compression body by the same argument in case of W,. If D; . is
a semi bad disk which contains subdisks which are parallel with the trace of bad
or semi bad disks, let By, :-+, B,, be disk components of D; tﬂ(solid 1-handles)
and D, , be a disk obtained from D, by extending to a;, to H, vetically in SX I
and D! l:cl(D,- ,—D;,). Let D/ be the component of cl(D;,— U B,) which con-
tains ;. 'Then Int Di/ N(1-handles)=¢. Let D be a disk D; U Di]. Cut W,
along D, then we get a compression body homeomorphic to W,.,. Hence W, is
a compression body. Then we have the conclusion.

Claim 4.5. SNW has a good 0-compressing hierarchy.

Proof. If D, is bad or semi bad, let D; be the disk as in the proof of Claim
4.4 and let D} be a disk cl(D;—D,). Replace D, by D/, then we get a good
boundary compressing disk D} toward F. If D, is semi good, D; contains sub-
disks which are parallel with the trace of bad or semi bad disks D;(1<j<).
Let B,, ---, B, be disk components of D;N(1-handles). Let D! denote a sub-
disk of D; where Df is the component of cl(D,— U B,,) which contains «;. Then
D! is a good boundary compressing disk and replace D; to Df{. Then it is
clear that these boundary compressing disks constitute good 8-compressing
hierarchy.

Lemma 4.6. h(M,, v,)+h(M,, v,)—t<h(M, 7v), where t is the number
of the bad or semi bad disks.
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Proof. Suppose that (W, W’) is a Heegaard splitting of (M, 7) such that
R(W)=h(M, v). By Claims 4.4, 4.5, and Lemma 4.3, (W, W) has a nice He-
egaard surface. Then (W, W') induces Heegaard splittings (Wl, I/T/{) of (M, 7v,)
and (W,, W3) of (M, v;) such that h(W)=h(W,)+h(W,), by Lemma 4.2.
Since h(W)=t+h(W)=t-+h(M, v) and h(W,)>h(M,, v,) (i=1, 2), t+h(M, v)>
MM, v))+h(M,, v,). Hence we have the conclusion.

By Lemma 4.6 and the fact that SN W has a 8-compressing hierarchy
of length n—1, we have h(M,, v,)-+h(M,, v;)—(m—1)<h(M,v). This com-
pletes the proof of in Case 2.

Proof of Theorem 2

We note that the idea of the proof of Theorem 2 is due to ([6] proof of
Theorem 3.1). Let E=S%—Int D, where D is an attaching disk and S? is a
2-sphere of a 2n-Murasugi sum, and 7' the surface obtained by summing R,
and R, along E. After a tiny isotopy, we may suppose that RN T=¢ (see
Figure 4.5).

R

N

S~ - -

Figure 4.5

T is a properly embedded in (M, ¥) and 0T=s(y). We assume that+
side and —side of R and T are as in Figure 4.5. R and T separates (M, )
into two sutured manifold (', v") and (M”, v”), where M'(M" resp.) is the
closure of the component of M—T between T' and R_(v)(R.(Y) resp.). Let
vY'=yNM'(y"=yNM") and D}(D} resp.) be the product disks in (M’, v")
((M”, 9"") resp.) corresponding to w; X I(v; X I resp.) for 1<¢<m. Then the
product disks UD}’ decompose (M”,%”) into a product sutured manifold
(R,—IntN(D))x I, 9(R,—Int N(D))xI) and a sutured manifold homeomor-
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phic to (M, v,). Since R, is a fiber surface, (M, 7,) is a product sutured mani-
fold, and hence (M”, 9”’) is a product sutured manifold by Lemma 2.4. Hence
(M', v")=(M, v). The product disks UD} decompose (M’, ') into a pro-
duct sutured manifold ((R,-Int N(D))x I, 8(R,—Int N(D))xI) and a sutured
manifold homeomorphic to (My, 7v,). Thus by the proof of Theorem 1 for the
case n=1, we see h(M',v')=h(M,, v;). Hence we have h(M, v)=h(M,, 7,).
This completes the proof of Theorem 2.

5. Examples

In this section, we give examples of Murasugi sums for which we have A(M,, v,)
~+h(M,, v2)—(n—1)=h(M, 7) for any n.

Let L be the pretzel link L=P(4,4, -+, 4) in S* and R a Seifert surface for
L as illustrated in Figure 5.1.

Figure 5.1

Let R be a Seifert surface obtained from two copies of R by a 2n-Murasugi
sum as in Figure 5.2.

Figure 5.2

Let (M, v) and (M, ¥) be the complementary sutured manifolds for R
and R respectively. Then we have:
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Claim 5.1. (M, v)=n—1.

Proof. Note that M is a cube with (z—1) handles, since the product sutur-
ed manifold for R is a cube with (r—1) handles normally embedded in S At
first, we show that A(M, v)=n—1. Let (V, 8) be a product sutured manifold
for R and we take the free basis 4, -*+, ,-;, my, **-, m,_, of H,(0N) and the free
basis ay, -+, a,-, of H)(R_(8)) as illustrated in Figure 5.3.

Figure 5.3

Let I; be the elements of Hy(M) represented by m(1<i<n—1). Then
{I, -+, I,_;} is the free basis of H,(M), and we have a,=4l,—21, a,=—2I,_,+
41,—21,,(2<i<n—2), a,_,=—21,_,+4I,_,. Now, assume that h(M, v)<n—
2, then M =R, (v)XIU (n—2) 1-handles U (n—2) 2-handles. Since H (R (7))~
<ay, *++, an—1>) we have HI(M)%<a1) oty Qg By ooy By |1y o0, 7,20, Where hx(l <
i<n—2) is a generator corresponding to attaching 1-handle and r,(1<j<n—2)
is a relation arising from a 2-handle. Then, H\(M)/ixH,(Ri(7))~<hy, -+*, by—s
|71, ***, ¥u_z>, and this abelian group is generated by (#—2) elements. On
the other hand, H,(M)/Kay, -, a,,_1>~<712, ey I, |40, —21,, —21,+41,—21,, -+,

—21,_o+41,_,—21,_,, —2I,_,+4l,_>~ G_BZzéBZz,,, and this abelian group cannot
be generated by less than (n—1) elements by the fundamental theorem on the
abelian group. This is a contradiction, and hence A(M, v)>n—1.
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Next, we show that A(M, v)=n—1. We consider properly embedded arcs
ay, *++, &,y in (M, 7v) such that da; C R_(v)=R.(9) as illustrated in Figure 5.4.

Figure 5.4

Put X=R_(v)xIUN(a;; M), then X is a compression body with A(X)=
n—1. On the other hand, Figure 5.5 shows that cl (M—X) is also a compres-
sion body with A(cl(M—X))=n—1. Then A(M, v)=n—1.

Cut

Figure 5.5



HEEGAARD SPLITTING 39

Claim 5.2. A(M,7)=n—1.

Proof. We assume that +side and —side of R are as in Figure 5.2. Let
(N, 8) be a product sutured manifold for R and «,, -+, x5,_, the free basis of
H (R () as illustrated in Figure 5.6.

X

Figure 5.6

We consider properly embedded arcs By, -**, B,-; in (M’, %) such that 083, C
R.(5)=R_(5) as illustrated in Figure 5.6. Put X=R.,(¥)xIUN(B;; M), then
X is a compression body with A(X)=n—1. Put Y=cl(M—X), and let d, be a
properly embedded disk in Y corresponding to the dual of N(B;; M) (1<i<n—
1). We may choose d; so that x,(1<i<n—1) crosses transversely d;(1<i<n—1)
once. Then cutting M along d; and moving by an isotopy, we can assume that
Xy, *+, %,-; do not cross other meridian disks in /7 and we can see that x,(n<i<
2n—2) crosses transversely a meridian disk of A once. By an argument similar
to the proof of Claim 5.1, Y is homeomorphic to R_(¥)XI U (zr—1) 1—handles.
Thus we have h(M, ¥)<n—1, on the other hand, by Theorem 1, n—lSh(M, ¥)
<2n—2. Hence we have h(M, ¥)=n—1.
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