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1. Introduction

In this paper, we consider the heat equation for the 3-Neumann problem.
This is an initial boundary value problem whose boundary condition includes
an imaginary directional differentiation. In [7], Mallivain constructed the solu-
tion of the heat equation on a domain by using a method of singular perturba-
tions and pointed out that a method related to the Fourier transform can be
applied to this problem. On the other hand, a strongly pseudoconvex Siegel
domain is well known as one of the most fundamental complex manifolds with
boundary. This domain D can be regarded as the product of a Heisenberg
group H, and R*: D=H,XR*. In [4], Gaveau constructed explicitly the heat
kernel for Kohn’s Laplacian on H,, by combining a probabilistic method and the
Fourier transform. In this paper, by referring their works, we construct the

heat kernel for the 8-Neumann problem on the Siegel domain D explicitly in
terms of the theory of generalized Wiener functionals by Watanabe [13]. For
the heat kernel on this domain, Stanton gave an explicit formula in the (0, ¢)-
form case (¢>0), by using methods of the partial differential equations [10], [11].
We here consider the general (p, ¢)-form case. The main part of our discussion
is the proof of well-definedness of the heat kernel. In [12], our main results
(Theorems 2.1 and 2.2 below) were announced.

We briefly explain our methods. The equation we consider is the follow-
ing:

:—tF(t, X)= —0OF( X), >0, XeD,
(1.1) ltmol F(t, X) = f(X)€ A4%D), uniformly on D,

PF(t, X)= 0 (—6-— 'i) F(t, X)—=0on D,
or Ou
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where

2
0= Bxi-7 (gt ae)HiO
For the notations see Section 2 below. Except for the term ¢3/0u in the boun-
dary condition this equation has the same form as the d-Neumann boundary
condition case that Airault [1], Ikeda and Watanabe [5] (see also [9]) considered.
Hence, as in the d-Neumann case, we may expect the heat kernel of (1.1) can
be expressed as

(12) WX, X") = E[m(s) M(t) K(t) 82(X(0), U)—id(2), RE#))]

where (X(#), U(t), R(?)) is the diffusion process generated by 1/4 3332, X5+1/2
(0%/0u?+-0%/8r%), (%) is the local time of the diffusion {R(¢), #=0} at 0 and 8- is
the Dirac § function on D. m(t) and M(#) are operator valued functionals for
—i(n—2C) 0/0u and 3L, A;/\/ 2 X,+B, respectively (see (2.12) and (3.4)).
K(t)=I—PI{min,s,=; R(s)=0} is the functional for the boundary condition. How-
ever the process (X (¢), U(¢¥)—i¢p(¢), R(£)) does not lie on D. Hence we do not
know how to give a mathematical sense to the right hand side of (1.2).

Now we note that the metric, the differential structure and the complex
structure of our case are comstant in the direction that we must consider the
imaginary directional differentiation. By using these facts, we can use the inde-
pendence of the above processes and Fourier transform effectively. Then we
can formally rewrite the expression (1.2) as

h((x, u, 7), (', 4', 7))

(1.3) — El; S:o d et -0 E[e"'"‘“(‘) m(t)]

X 03(x, x") E[e™® K(£) | R(t) = r'] ri(r, ")

where
u(t) = U(t)—u—S,(2),
Or(x, 27) = E[e™ M (2) 8,(X(2))],

$.(0) = 3 2 || (x)0dx(0)— Xs)odx ()

and 7,(r, r’) is the transition probability function of R(#). We prove that this
is the heat kernel for (1.1). In (0, g)-form case, M(t)=I and 6}(x, x’) is rewrit-
ten more explicitly ((2.18) below). However, in (p, g)-form case, we can not
rewite 0}(x, x") explicitly as in (0, g)-form case. Then it is difficult to show
the exponential decay of @}(x, x') in A, which is necessary to show the well-
definedness of the right hand side of (1.3). Now we note that §}(x, x) is, as a
function of (¢, x, x'), the heat kernel for the operator [J} defined by (5.26) below.
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By using the semigroup property of this heat kernel, we can prove the exponen-
tial decay of @}(x, »") which is sufficient to prove the convergence of the right
hand side of (1.3). This decay of §}(x,x’) is an interesting property of the
oscillatory integral over the Wiener space. Furthermore, by using the
Malliavin calculus, we can prove the smoothness of (1.3). We note that we need
not the partial Malliavin calculus used for the boundary value problem (e.g., [9]),
because of the independence of the processes.

The organization of this paper is as follows. In Section 2, we first for-
mulate the problem by following Stanton [10] and then state our main theorem.
In Section 3, we give a probabilistic explanation of our formula (2.15) of the
heat kernel; we give a few lemmas by which we expect the formula (2.15). In
Section 4, we prove Theorem 2.2 below. This theorem plays a crucial role in
this paper. In Section 5, we prove our main theorem, Theorem 2.1. In Sec-
tion 6, we consider the short time asymptotic behavior of the heat kernel on the
diagonal. Finally, in Section 7, we generalize the above results to certain
domains with nondegenerate indefinite Levi forms.

2. Preliminaries and Main theorems

In this section, first of all, following Stanton [10], we review the formulation
of the heat equation on a strongly pseudoconvex Siegel domain. The strongly
pseudoconvex Siegel domain is defined by

D = {(z,w)eC"XC, Imw>|z|%} .

We consider the Hermitian metric for which {Z), Z,, +-+, Z,,,} is an orthonormal

basis of T"%(D), where

0 Loi 8 . e
@1)  Zy=A2E o, =12, Zun=iVZ

We note that the volume form for the metric is the restriction of 2" times the
standard Euclidean volume element on C**!. The differential forms given by

i 7. wir_ 1 V5 e
(2.2) o=d¥, o —i—\/?(dw 2317 d2)

form the dual basis for T o) (D).

We now introduce several spaces of differential forms and several operators.
Let A$%(D) be the space of C* (p, q) forms with compact support in D. Let
&8*4(D) be the space of (p, g) forms on D whose coefficients relative to o/ Aw’
can be extended to rapidly decreasing functions on C**!' and L$%(D) that of
square integrable (p, q) forms on D. Then 3 maps $*¢(D) to §?***((D) and has a
smallest closed extention to L4%(D). For simplicity we also denote by 3 its clos-
ed extension. Let 8* be the adjoint of 3 on L¥?(D). We define the 8-Laplacian
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O by
0 — 304343,
(2.3) Dom [ = {f€L%%D); f€Dom 9N Dom 3*,
3f=Dom 3*, 3* f&Dom 8} .
Then the operator [] is a positive selfadjoint operator on L$4(D) (Folland-
Kohn [3] Proposition 1.3.8).

To express the above operators explicitly, we prepare several notations.
For o€ T*DQC, let ext(w) be the exterior multiplication, i.e.,

ext (o) = wA7y for »€A(T*DQC),

and int(w) be interior multiplication, i.e., the dual operator of ext(w). This
int(w) is complex linear in @. We note that in some literature, e.g., Folland-
Kohn [3], int(w) is conjugate linear in . The condition for f €S5?9(D) to be in
Dom 3* is

int(w**) flsp =0,
where 4D is the boundary of the domain D. Thus the condition for f € $*4(D)
to be in Dom [] are
2.4) int(@*) flp =0, int(0™)3fsp=0.

These mean the §-Neumann boundary conditions. For a differential operator
A, we define 4 to be the operator acting only on the coefficients of o’ A/, i.e.,

A(S fi7 o' ANo') = 3 (Afr7) ' N .
Since dw’=08a’=0a""'=0 for j=1, 2, -++, n, and

n+1 \/22ij

in terms of the above notations, 8 and 9* can be represented as follows:
=5 ext(@) Z,+v/ 2 )y ext(w’) ext(@’) int (a**) ,
(2.5) = =
B* — — :E;,lint(wj) ZA4V72 :g ext (&™) int (o) int (a"),
= =1
on 8*¢D).
We use as coordinates on D (2, u, r) where #=Re w and r=Im w— | 2|? for

wE&C. Then we can regard D as the product of the boundary 4D and R*. We
identify D with the Heisenberg group H,. The group law on H, is

(26) (z,’ u,) (z’ u) = (z,+z, u'+ut2 g (x"”'j x'—x" xn+i))
for (2, 4'), (2, u)€H,,
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where 2/=x’-+ix**/. 'The metric we gave is the product metric of an invariant
metric on H, and the standard metric on R*. In terms of these coordinates,

— 16 ; — 1_ 2 2.
e z=L4irl jo1,2mn Zin— \/7<ar+z )

zf ou
Then we have

Z; = 12(X;—iX,4;)
where

8 ) 9 3
2.8 X, =0 1o x _ 0 5,0
(2.8) I e T o T e Bu

We also define the projections P and Q by
P = ext(a") int (™), O = int(w*"?) ext(@"?).

Then the 3-Neumann boundary condition (2.6) is rewritten as follows:
—o(9_;8 —
29) Bfti =0 (2~ )t =0

for feS*YD). Now we see that this condition is similar to the absolute boun-
dary condition except the term 70/0u (cf. Ikeda-Watanabe [5]).
The operator [] is expressed on S#¢(D) as follows:

@) O-=-13x-1(L4D)i20) 25 A5

62

1
4
where
C=4q0+(¢-1)7P,
A; = ext(o**') int (@) —ext (o) int (@), j = 1,2, =+, m
Ays; = iext(o™) int (@) +ext(o’) int (@), j = 1, 2, =+, n,
B = —2 3 ext(o) ext(a) int (o) int (a*)
k=1
23 (int () ext (@')—ext(e’) int (@) ext (w™*?) int (@"*") .
ji=1
Remark. 2.1. If p=0, 4;=A4,,;=B=0 and [J acts diagonally on (0, ¢)
forms. If p=4=0, [J does not act on diagonally but 4;, 4,+; and B commutes

with P and Q. Thus [J preserves the orthogonal decomposition A?4(T* D)=
Ran P@Ran Q.

A fundamental solution of the heat equation is a one parameter family of



872 N. Uexkt

bounded operators H,, t>0, on L5%(D) such that for f € Aj4(D),

(i) fori€[0, T, ||H, fI|<C where C is independent of
¢ but may depend on T and f;
(ii) H,f is differentiable in t;
(2.11) (iil) H,f€Dom [J;
(iv) (8/ar+00) H,f=0;
(v) Hf—fin Ly D)ast— 0;
(ivy OH,f=HOf.
Then we obtain the following results (Stanton [10]):

Proposition 2.1. There is a unique fundamental solution H,. Furthermore,
H, is the semigroup generated by —[].

Stanton proved this proposition in (0, ¢)-form case. Her proof is applica-
ble to general (p, ¢)-form case.

Before we state our main theorem, we prepare a few notations. Let (W3", P)
be a 2n-dimensional Wiener space, i.e.,

Wit = {(x*(+), #%(+), *-, ¥**(+)): [0, o0) — R**: continuous, x(0) = 0}

and P is the Wiener measure. For any £€>0 and mEN, we define the
End (A?YT* D))-valued process Mu(t) by the solution of the SDE

AM(t) = M) dEL (@),

(2.12) M) — I

where

e LI . &

Ew(t)=> —F—=4;%(t)+—Bt.
iV 'm m

When m=1, we omit the subscript m: Ei(f)=: E(#), Mi(t)=: M*(#). When

m=E=1, we also omit the superscript &: Ei(t)=: E(#), Mi(t)=: M(t). For any
a€R, N\eER and (x,u)=H,,

(2.13)  Filx u,2) = Lexp(i)w—t)w)E]Ze“"“o(” M(t)s, Lﬁ)]
2 V2
where

(2.14) So(t) = 3 S: (@i(s)odx (s) —x'(s) oda*(s)) .

ji=1

Here, odx’(t) means the Stratonovich differential. The right hand sice of (2.13)
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is well defined as a generalized expectation of a generalized Wiener functional
[13]. Then our main theorem is stated as follows:

Theorem 2.1. The unique fundamental solution H, of the heat equation
for the 3-Neumann problem on (p, q)-forms on D has the following smooth kernel:

ht((x’ u, 1), (', u',7"))
(2.15) = Py (%, u)™t (%', u')) ex(r, 7") P
+pi7*((%, w) 7 (o, w) €8 (r, 1) Q
+-a37%((x, u)™ (x', '), r+1') O

where
Pi(x,u) = sw d\ F3(x, u, \) exp (—é 7\.z> ,
(2.16) - 5 (= .
A —_ = . o A _p2
a0, = — S_w ANAFY(x, 1, \) Sv,—/mmd”’ e
and

er(r,r') = \/;_”t {exp <——(r——z—t’i)z):|:exp (__(r_—;tr’_)z>} .

ReMARK 2.2. In the case of p=0, M(¢#)=1I and so
(e, u,\) = i exp (IAu—iner) E [e—ixso(:) S, ( \x/ %)] I

= fy(x, u,\) I

(2.17)

where

o _ 1 LAY .
(2.18)  f¥o(x,u ) = 2 <sinh (t)\.)) exp (Au—ina— |x|* A coth(t))
([5])- Now we see that the %, in (2.15) coincides with the heat kernel obtained
by Stanton [10].

In our proof of Theorem 2.1, the most essential part is to show the converg-
ence of the A-integration in the right hand side of (2.16). For this purpose, we
show Theorem 2.2 below. Before we state the theorem, we prepare a few not-
ations. We use the multi-index notation: @=(a;, &, **, Ay)EZY, |a|=a,+

@ 0 \*
Oyt-+oo 4y a®=aft aGr-az for a=(ay, a, -+, @) ER™ and 0= ~—)

_ ox!
6 @y ( 6 L2 . ~ . b /
ey . F A: A P t /\ J lnt /\ 7
(6“2 0" )7 E nresagemg T @ AT @A)
€End (Ap'q(T*D))’ we set
“A” = ( E IA"I/],lz)llz

LIred(p),J,J'€9(q)
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where d(p)={I=(i1, 1y, *++, 1,); 1SH,<i,<++-<i,Z2 (n+1)}, ie., ||4]| denotes
the Hilbert-Schmidt norm. Then we obtain the following:

Theorem 2.2. (i) For any §>0, o, BEZY and kE Z,,

log sup, 1+ 62 B [S(1)* -5 21(1) 8, (X))

o<eseo

m ——
(2.19) )\—n:na[ |
<-—n.

(i) For any §>0,a, BEZY and ke Z,,

~—

L log sup [1+% 8% E[S1)* 0 (M'()—D) 3, (x(l

20 )1l

= 1
m
(220)  A»ie M|

0<B$e
=—n.

By using scaling property of Brownian motions, we can easily prove the
following:

Corollary. For any a, BEZY and ke Z,,

— » k g=iASy(t) x(2)
2.21) )\1-];2}0 Sup, |7\'| logxsellltp” [1x? 87 E[S(2) M) 8, (\/ )]”
<—n.

3. A formal construction of the heat kernel

The purpose of this section is to show that 4, in (2.15) is a candidate for
the integral kernel of H,. We first consider the initial value problem (1.1). Let
(WD, P) be a 2(n+1)-dimensional Wiener space, i.e.,

WD = {@(-), #(:), -+, #%(-), u(-), 7(-)): [0, o) — B**D: continuous,
(2(0), #(0), 7(0)) = O}
and P is the Wiener measure. Then the diffusion process Z(#)=(X#), X*(z),
-, X*(t), U'(¢), R'(t)) defined by

Xi(t) = o'+ i‘/(i) =1,2, e, 2n
(3.1) U/(6) = u-tau(t)+S,(0),
R'(t) =r+1(2),

8.0 = 33 [{ v Zx(0)edei)— X (s)eda(s)

b

is a solution of the following SDE on H, X R:
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— _1_ & odx’ ﬁ o i odr
62y | Z0= 5 BXZ0r@ 0L Eoran L @,
Z(0) = (1, &7, -, 4®, u, 7).
R(t):=|r+7(t)| has the following decomposition by Skolohod:
(3.3) R(t) = r+B(t)+¢(2)

where

B(t) = S: sgn (r-+7(s)) dx(s)

and

¢(0) = lim oL | I (r4r(s) ds
n Yo

N0

is the local time of R(f) at 0. We define the End(A?%T*D))-valued process
m(t) by the solution of the SDE

dm(t) = m(t){—i(n—2C)} du(t),
(3.4) { m(0) = I
and define the End (A?¢(T*D))-valued process K(t) by
(3.5) K(t) = Iesn Q+1ie>n

where o=inf {s: R(s)=0}. Then we have the following lemma:

Lemma 3.1. Let G(t, X) be a smooth form on [0, c0)X D such that G(t, +)
€8?D) for each t=0, uniformly with respect to t&[0, T] for any T>0, i.e.,
any seminorms of G(t, +) are bounded in t&[0, T for any T>0. Then it holds
that

m(t) M (t) K (2) e~ Sl & G(s, X(2), £, R(t) dt
—K(0) e S; ¢ G(0, x, £, ) dt
(3.6) — martingale +S; m(s) M(s) K(s) e
X Sl Y {@6%— DG} (s, X(s), &, R(s)) dtds
+S: m(s) M(s) K(s) e

x 5: gy {%%——i %_3} (s, X(s), &, R(s)) dEde(s),

where X(t)=(X(t), X*(), -+, X?(2)) and U(t)=U'(t)—ip(2).
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Proof. By using It6’s formula and noting that m(t), M(¢t) and K(z) are
commutative, we have

m(t) M(t) K(t) e~ ™ G(t, X(2), £, R(t))
— m(0) M(0) K(0) = g% G(0, X(0), £, R(0))
— g: m(s) M(s) K(s) e~ g%
X {—i(n—2c+N) G(s, X (s), &, R(s)) du(s)
+ 3(4,6+522) (6 x(9. £, R ')

—inG(s, X(s), £, R(s)) dS. (s)+ (s X(s), ¢, R(s)) dB(s)}

3.7) +S m(s) M(s) K(s) e ew{ 41 15 (———217\.X"+’(s)>

T z‘.( ”+1+217xX’(s)) — G+;aar2G —A(n—2C)G

52 (i_mxn+z(s)) G+3 \/;:( ”+J+21?»X’(s))

1-BG} (s, X(s), &, R(s)) ds+S’ m(s) M(s) K(s) e=W® gt
{aaG xG} (s, X(s), &, R(s)) db(s) -

Since G is assumed to be smooth and rapidly decreasing in X, by integraring
in & variables, exchanging the order of integration and using the integration by
parts, we obtain (3.6) from (3.7). [

If the solution F(t, X) of (1.1) is smooth in (t, X) and rapidly decreasing in X
unifromly with respect to tE[8, T for any 0<<8<T, by Lemma 3.1, we have

e~ S; dte™ F(T, x,8,7)
= E[m(T) M(T) K(T) e |7 _ate fX(T), £, R(T) |

and so

F(t,x,u,r)
@38 _ 2_1” (" arEme) Moy K@y e (7 azen f(x), &, R
Now we set

H,\((x,u,7), (x',4',7"))
GO s = L B[ mte) My Ky e |7 a2 80,00 (X (0,8, RO

2 —e
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= €0 B[N0 ()] E[e40 M(t) 8 X (D)
X E[e™® K(t)|R@E) = )71, 7"

where 7,(r, 7’) is the probability density function of R(¢). We can rewrite this
H, \((»,u,7), (x',u', ")) as follows:

Lemma 3.2. H,,((x,u,7), (x',u’,7")) is expressed as follows:
H; (%, u,7), (2", u’,1"))
— £ (g, u) (', u'), \) exp (—% 7&) ei(r,r) P

(3.10) +F14 (2, w) " (&, 1), \) exp (__;_ )\.2> ei(r,7') O

— M ) ), 0 e dp exp(—?) Q

where ef(r,r’) and {(x, u, \) are defined in (2.13) and (2.16), respectively.

Yila(r/t+2)

Proof. Since

m(®)Q = exp (—i(n—20) u)+(n—297 1) 0,

(3.11)
m(t)P = exp (——i(n—-Zq-i—Z) u(t)+(n—2g+2)° —%) P,
we have
y £
E[e™® m(#)] O = exp (L A—tn(n—29)) O,
(3.12) ( 2 )

E[e=™® m(t)] P = exp (_g xz_tx(n—2q+2)> P.

We also have
E[e~?: M(t) 8,/(X(t))]

(3.13) = exp(—in ]2:1 2(x" x'i—xf 2'"))E l:e—mso(t) M), (%):I .

By using Lemma 3.3 below, we obtain

E[e™® K(8)|R(t) = r'] r(r, 7")
- alen (577 e (57)

= - 2(r+r'+b) _(r4r'+b)?
+So doe V23 exP( 2t )Q

- Jhalor (e (57

(3.14)
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gt (0 e (K5 0

—S db ne™™ \/gzt exp ( (—r—ﬂ%ﬂ’)—z) 0.

By (3.12), (3.13) and (3.14), we conclude (3.10). [

Lemma 3.3. (¢f. Ito-McKean [6] p. 45) Let r(+) be a 1-dimensional Brow-
nian motion. For r=0, we set

R(t,r) = |r+r(t) [
o(t,7r) = hm 0 S Ty my(r+7(s)) ds,
7
a(r) = mf {t=0, R(t,r) = O}.
Then the joint distribution of (R(t,r), (2, 7)) is
PR(t,r)Eda, d(t, r)Edb, o(r)<T)

2(r+-a+b) __(r+a+bd)?
G15) V2ap p< 2 ) dads,

P(R(t, ) Eda, $(t, 7)E db, o(r)>1)

_ v;:m {exp (—(L;ta—)z)——exp (-i’_;t_‘ﬁ)} 54(6) dadb,

a,b=0.
By (3.8) and Lemma 3.2 we can expect that (2.15) holds.

4. Proof of Theorem 2.2

In this section, we prove Theorem 2.2. First we prepare a few lemmas.
The main idea of the proof of Theorem 2.2 is to use semigroup property of a
kernel as follows:

Lemma 4.1. For any m& N and >0,

sy emsoros, ()]
_ R

b Th =k Ry e Ry
(0 o, (o)
X+ *(1) )]

4.1) X LG dx,E[<SL;’(ll_)) 0 Ma(1)3,, (2L

X oee X SRZ” A%y E[(S,,,.m_z(l)> "L giAS, M) Mi(1)
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)

XEI:('lS'i";;—(l))km €55, O M2(1) 8, (xm_l_i_\’;(zl_')’_z)] .

Proof. By using scaling property and Markovian property of the Brow-
nian motion, for any {ER, we have

% (z§) E[So(l)' ¢S ME(1) 8, (\x/(_%)]
_ E[ei(m)\+§)so(l) Me(1) s, ( %c/(_ﬂ )]

- E[ i+ m M2 (1m) § ( \9;(;”) )]

- nfemmscos, ()]

4.2) % ngu dx, Eliei(mglm)s,lu) M1y s, (xl + \9;(2%)]
X oer X Snﬂ dxyy E[e"("*?’""sz,,.-z“) M) 5., . (x,,,_z—l— \’;(21}[)]

B

[(B0) o arzy o, (300
e B (35 50 b1 3, (1430 )]

X8sp_y (x,,,_z + j(z%)]

o E[ ( w)m ™50 ® Ma(1) 8, (x,,,-ﬁ—\f% ] .

=0 [ leeel],

e
8

X

Since { is arbitrary, we obtain (4.1). [

In the followings, we write C(&,, &, ***, &,) a constant which depends only
on the parameter &, &, +*+, € but may vary at each hand of the equations. We
suppress the dependense on #. The next two lemmas give the necessary esti-
mates in Malliavin calculus:

Lemma 4.2. For any p>1 and s€ Z,,
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(+3) IMOIL,.=C (2,9 exe {(=) €209}
and
(+4) M)~ 1,,=C(2,9) S exp {( ) CC2r9))

where || +|,,, is the Sobolev norm on the Wiener space (see e. g. [13]).

Proof. For any continuous adapted Hilbert space valued process N(-)
and 0=<¢=<1, by using the inequality of Burkholder (Ikeda-Watanabe [5] The-
orem III-3.1), we have

]

E[“ [, M) amas)

[N 4, £ avi(s
0 m

’] (2n4-1)P

(4+5) +5[|[| 0 BE || @n+1
=con 5 8[(f, vora e £ a)” ]
+&[ [{ N enBIe £ ds |-y
<co) (&) |, BNl as.

On the other hand, let H be the 2zn-dimensional Cameron-Martin space ([13]).
It is easily seen that

DELs) [ = 31 -5 A4(s) for heH,
FiVm
DEuWs)=0 for r=2.
Then we see that

(4.6) E[”S:N@)d(DEf»)(s)

Since, by (3.2),

Nscw () [ Enmee as.

D’ Ma(t) = 8,0 I+ S: D" ML(s) dE&(s)+ 5: Dt ME(s) d(DEw) (s) ,

we have

“7) ZEND MeN=Ce,9(1+35 (=) [ 21 Mol ).
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By using the equivalence of the Sobolev norms ([5] Theorem V-8.4), (4.7) is
rewritten as follows:

(48) 2 =C(p, 9 (1+( =) [, IMal0 ).
m/ Jo
By using the lemma of Gronwall, we obtain (4.3) easily. Similarly we obtain
“44). O
Lemma 4.3. For any kREN, a € ZY and g>1, there exists s€ N such that
(4.9) sup (1-+|x])* |18* 8.(x(1))llg,-s= oo .

reR™

Proof. For any #>0, there exists sEN such that
A+ 1-1=A8)" (M= C(s, I+ |- | =A)"$(-)ll: for PES(R™)

where ||+||» and ||+||, are the Lo-norm and L,-norm on R?¥, respectively. By
combining this with Theorem 2.1 of [13], we have

18* 8,(x(1))llg,-s=C(g, s, DI+ | - | =)0 8.(+)Il2 -
Furthermore the L,-norm is estimated as follows:
A+ 1= NA+ -1 —A)™ 8% 8.+l
= (Ll sup [ (B89 07 8.6) 5(6) 48

llezll =1
= sup |(1+]#|%)* 83(1+ | *|*—A,) ™ g(x)|

R2"

eigz
R2" (2”)”
” k 2 -k A 2 v

=csup(| , 10+1g1ya—a e+ 1EP— a0 2@)1* )

E*(1+1E1*—Ag)™ £(8) d&|

= sup [(1+ |x]% |

<Coup({ . 10+ 11—y e=n- ge) 1 ag)”

for some x(k, &, n)=0 determined by %k, a and n. Thus, if « is large enough,
we have

(4.10) Q41213 18% 8. (x(1))l,,-s=C(g, s, k, @) .
Hence we conclude (4.9). [
Now we prove Theorem 2.2.

Proof of Theorem 2.2. We prove the theorem as A—>—oco only. The
case as A—>--oo can be proved similarly.
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We consider (i). We take mEN arbitrary. We exchange the order of
differetiations and integrations in (4.1) formally:

" k gimASyD) Jfe x(1)
it 0 E[So(l) ® Mr(1) 3, = )]

smz-)m—n Ay Aoy Phw,p(M, N, Xy, ***, Xpo1y X)

where

q);,a.ﬂ(m: Ay Xy 000y xn—l’ x)

B B 2 (L)

#12) x| ‘S“(—l)) 0 w(1) 8, <x‘+\j§_)>]

x---xE[( St D) o000 M2(1) 8, (et AL )

o 5[ ( S ) 0203 e S )]

We will estimate the right hand side of (4.11). Let ||+|| be the Hilbert-Schmidt
norm defined in Section 2. By using a property of 8-functions and making the
change of variables \/2m x;,—>x;,

S(Rz")""l dxl'"dx,,_l ”q);,a,ﬂ(m) Ny Xy 00y Koty x)“
R
I:l+ “Fkm=k Ryl k !
So(1)\ s, pze Sy :I“ "
><S(R”)m_ldx1 By E[(_m_> €50 ME(1)8vzme (x(1)) || 2m)

x | B (S )" o 113(1) B/ 2 -5(1) ] 2y
X oee X llE[(M)“”“ e M (1)
m

(4.13)  X8vzms,_(V ﬂx..-frx(l))] ﬂ (2m)"
R o)

_ _klm*
kl+ Fkm=h kl «k,!
S 1 ky i e
e s B (SAD) 00 b3 1), o1 |

SECED R
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e[| (St D)7 s b (1) 8t (1) |
o (g s o ()
Since
(4l l) = (14 g1 | ) oo+ (L |y =200 | ) 2 14 | 5]
for any j=1, if we set R”:SRz.(I'I_ |x])~21 d,

the right hand side of (4.13)

klm*

=lrl+'"+"”'=" kl!"'km! S(RZIl)m—l

x| (Ll preasssnsa gl (SUDY gnoss pr2(1) 5, (a(1)

dxl'"dx,,,_l

% “(1_}_ | sty — gy | w+2e+1al +181+1 EI:(mTSa%))_z)k, e
1

XMA(L) 8.yo+a(1) |

(14 | gy — g | P20 HIBIHIBI 4L E[(M)k,,_,

4.14 X oo X
(44) m(1+ | %z | )?

x eS® (1) S,M_,(xm-2+x(1))] H

% ” 1+ |x:_c’:|)lw|+m| 9° E[(m—f(’—l"q_‘—ll‘/—;—:f—l)y)h St g ®
a0

v
X 1 . 1 ves 1
(14| )2”1 (T4 oep—21 | )** (14 | Koy — Xy e+
k!mt
e Thmh byl By |
X {':1;[: R, sup ’ (14 | &' — x| j2wt2r+ial+iBI41 E[(_m‘zs("i/ﬁill))z )"’

X S J15(1) 8,/(x—l—x(l)):|“}

o (0]

The middle factor under the summation in the right hand side of (4.14) is esti-
mated as follows:
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[I(14- [/ — x| 2w 2ktlal +iB1+1 E[( Sapvzm(l) )’ £ASHM

m?(1-+ | x| )?
X M (1) 8.(x+x(1)]II

. (14|’ x|)|2n+2k+|w|+|ﬁ|+l P I(W"H 1j x,x,,ﬁ.,)l
SE h\(I—h)! ( Vmm(1+ [x] ) )

<o (i)~ e prmaserm |

( ) 1+ |x x|)2n+3k+|d|+lﬁl+l
' E[(_S"(l)) €250 J1%(1) 3,,(x+x(1))]”.
m
On the other hand, since

% E[@8,(-+x(1))] = (—a)'*! E[D0° 8,(x-+x(1))]

(4.15)

h=0

for any >0 and a = Z%,

8%, El:( Sz/‘fz‘ﬁ(l) ) Mz /vam® Mf,,(l) S, (x+x_(1) )]

m(1+ x| ) V'2m
_ 4 1A o) \/7 2?_1(90’”'" x'j—xj x';ﬁ-i) h
o riay=a 25 TII—R)] o2 (T %] )

X 072 exp (ixﬁ S (" x x'”*j)) (—1)! %! (2m)»+1251/2
j=1

So(1) =k s e ]
B (S B D15(1) 8% Svamar(®- (1)) | -
T A COLLE )
Thus the last factor under the summation of the right hand side of (4.4) is esti-
mated as follows:

: TN - , fetg!
g‘”ﬁ%%a:”:o h!(ll—!h)! ( EA ) (2\/2n|x| | % l) (\/27\,|x|>

T+1al) \"wf 1+ 1xyF / Uit (a]
I-h

§21u1+2k+n mriel/2 nk 7\,'“'(1—{— |\/2m x'—xl )lﬂl+k

x 3 E[(S_:’(}))" A5 11%(1) 0 avm(erx(l))]H.
o=

By combining (4.14), (4.15) and (4.16), we obtain

SI}P s dxl"'dxm—l ”¢;,w,ﬂ(m: x) X1, °tty xﬂl—l, x)”

(Rzn)m— 1
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k k
< 3 klm (4) 2ol +2k+s8 ypntiwl/2 yk 3 18]
T kretkm=k Ryl I\

<{TL R, S sup | @t Ll pmrasneneame gl (SUDY

xenss M3(1) 8,6:(1) ||}
(4.17) x{ 3, sup (1+lxl)‘ﬂ'+"E[(§1§71‘))hem°“’ M(1)

0<h<km
o’'<o

T 8,(x(1)):| ”}

§21u|+4k+n mu+k|ul/2 Xlal nk
% {Rn é sup ” (14 | x| )wtarHiar+ipia E[(So(l))h &S
h=0 = m
xMa(1) 8,61 ]|}
e 7| (SoDY* ias,m
x{, 2, swp ety ] (D)
o/<a
X M(1) 8¢ a,(x(l))] \}
§2|u|+4l:+n mn+k+|a|/2 del nk

X {C sup [ (14| x| )P*otri=iv1P14L E[e™5® §,(x(1))]]

+C(p, 5) lle™%® (Mu(1)—1)ll,,0
XS}}P (1+ | xl )2u+3k+|m|+|ﬁ|+l Hsz(x(l))”q'_‘

9,8

X sup (14 | x| )w+3e+iar+pi+1 ll8,(x(1))||,,-,}"—1

{5 (S0 ooy

0.8
1Bl+k Qa’
X 2sup (1+]x])P++0 ||8,(x(1))||,,_,}
where p, ¢>1, 1/p+1/g=1, s€N. Furthermore,

e ® (M (1) =D«
=1e™50D |y, |M (1) — I35,
S C(p) MO |1M (1) —Illz,e

where N(s) is an integer which is determined by the number s. Similarly,

[1So(1)* €256 M (1)l = C(p, B) WV [|M a(1)l,,, -

885
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Thus by Lemma 4.2, we have

(418) 10 (M), S 3 (o, 9 exp { () o, 9)

and
(419) 111 X5 ML), =N Clp, 5 exp {( =) €29}
By applying lemma 4.3, (4.18) and (4.19) to (4.17), we have

Sup dxl"'dxm—l ”ng,u,ﬂ(m: )" xl: °tty xm—l: x)“

§21w|+4h+n mr-ktlell2 ) 1al yk

(4.20) X {C'sup |(1-+ || P+3H1o1+18141 B[S0 8 (a(1))]

zeR?

—}—\/ AE C(p, s, a, B, k) exp (( ) C(p,s))
+ Lo e, s a8 pen () cooh™
X {A¥) C(p, s, a, B, k) exp (( \/_) C(p, s))

Since the right hand side of (4.20) is finite, the exchanging of the order of
differentiations and integrations in (4.11) is justified and we obtain

sup ||xf 8% E[Sy(1)* emA5o® M¥(1) 8, (x(l) >] I
R, 0<es8,
< Qlal+aktn yynthtlalf2 ) la] 4k

(4.21) x {C sup [ (14| x| )2r+srlai+iBid BleAS® § (x(1))]]

zER
4L e C(p,s,a, Bk, &)}
v'm
X AN C(p, s, @, B, k, &)} -

If we replace (A, m) with (AS/[A], [A]) where [A] is the integral part of A,

sup || 8% E[Sy(1)* €™® M¥(1) 5, (f/(—%)] I

eR™,0<8<8,
Il
< Dlal+iken [ etk A ) k
ey )
(4.22) X {C sup | (1 |x|) 3+ HBIH B2SD § (x(1))]]

2R

1 (A )@ N-1
75T <[T] £)" Clp,s, @, B8, B €}
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<[x] é‘) C(P’ S, &, 18; k’ 80)} .
Hence we have

}gn — log sup |8 8% E[Sy(1)* &5 M¥(1) §, (x(l) >] I

zeR™

hm log {C Sup |(14- |x|)2n+3k+|u|+|t3|+1 E[e"‘CSo(l)/["] S (x(l))]l
(4.23) o #

L (A L\
+"\7ﬁ <—[7\¢_] é’) C(P, S, &, BJ k: 60)}
log hm {C sup l(l_]" lxl )2n+3k+|w|+|B|+1 E[e.)\gso(l)l[}\] S (x(l))] l}’

2R

Since A coth A=1 for VAER,

sup |(14-|x])* E[e*0® 8,(x(1))]|

reR™

620 —mp it (o) () oo (S e 3)

- ()(smh(x)y

and so

- log_ sup ls? 0 E[S(LF e 111 5, (X))

Areo ), CzeREM0<ls 2

<log C(¢, @, 8) lim (Qn%%/%[ip

— log C(k, a, ﬁ)( o~ §>

Consequently we obtain

FmLlog  sup a0 E[So(1)* 2 M(1) 3,(%)]”

Are )\, TreRM0<e<e,

887

<Iim lim 1 log sup ||xP 8% E[Sy(1)* &% M¥(1) 8, x(l)>]”

groe Aree £, *ER™,0<e<e

1 ”
(+25) <[ log (k. 8)( - C)

= Im 7 log C(h, o, B)( hC)

= —n

which completes the proof of (i).
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For the proof of (ii), we use the following (4.26), instead of (4.1): for any
meE N and €0,
E LimASo() (Nf2(1)— x(1)
ELS(1* s ()1 8, (1)1
» k!

byt hm=k 1= 1k1 k!

x| g @ EI(S0)" e a2y 3, (0L

V2m
(4.26) Waee X SRZ” dx,-lE[( - 2(1)) ¢35, M(1)
x84,y (¥1-a j(zl—))]

xSRanx,E[( - 1(1)) ¢S, ® (M(1)—T)

<8 (1200

N 532" dxpi E[ ( Sz,,,’;:(l))k"‘"eixs,m_za)
X 8s,,_, (x,,,_2—|—\;(2_1');)]
< E[ (Sz,,,’;;(l))km e, ® 3:;( _1+ x(l) )]

This identity is easily proven from (4.1). [

5. Proof of Theorem 2.1 and properties of the heat kernels

In this section, we prove Theorem 2.1. Furthermore we prove some pro-
perties of the kernel. We name the right hand side of (2.12) as follows:

h((%,u,7), (%", u’,7"))
— B ) (' 0) €5, ) P B 07 (8 0) € 7) 0
G.1) (e u) (¥, '), ) O
=: h{((w, u, 1), (&', ', 7)) +RP (%, u, 7), (', ¥, "))
+hD (%, u, 1), (%', u', 7)) .

First we prove that A{" has the following good regularity properties.

Proposition 5.1.  If i3 or g=0 (resp. i=3 and q=0), h(X, X') is the
restriction to D of a rapidly decreasing function of X for eack fixed (t, X')&(0, o)
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X D (resp. (0, co)X D) and the restriction to D of a rapidly decreasing function of
X' for each fixed (t, X)E (0, co)X D (resp. (0, o) x D) uniformly with respect to
tE [, t,] for any 0<t,<t,. Morevoer h{’(X, X')is a smooth function of (t, X, X')
€(0, )X DXD.

Proof. For any B, yEZ?Y and ky, ky, ks, k,E Z,, we exchange the order of
differentiations and integrate by parts in @, formally:

563 0%

x" w1 rk2 9B
Oufs Qrks

ai(x, u,r)

(5.2) = a linear combination of {Sb° dN N1 exp (Au—iaa)

—c0

¥ 58 1, ,=iAS,(t) —x(t)> 1 mS“ -2
x & 82 B[S,z e M(t) 5, ( ) DECT I P

S"_" AN exp (iAu—nar) & 88 E[Sy(f) e 5e® M() 5(%‘%) ]

Iy orA t 4 2
Xrisegtexp | —— [—+A
2\t 0lo, 1z, I3Sk

=:4(%,4,7),

where k=1+4k,+k,+k;+k,. By using (2.21), the right hand side of (4.2) is
estimated as follows:

Sup 1 ”gt(x’ u, r)”

(x.u)ERzn
r>ry

t€[t0s4]

< C(k, t,, tl) - Sw dn- I)\.’ll sup {exp (—tra)
l 2 3

(5.3) xsup [1s" 02 E[S, (0 e M(2) 3, ( 2011
1ER?
13 orA ” d —u2 (____ < )
Xg}z Irlse <SV72(r/t+A) pe”t" F-exp +x ) }
éC(k, Y5 18’ ty, b, €, 1’0) 2 [SN dn\h sup {e"”\&
o<ty g ig=<zk |LJo te[tot]

Xek(—n+e)t exp <_% XZ)}

+So - ( 7\’)11 sup {e e prod o=A(= n+e)t}]
= tE[t0,4]

for any 7,=0 and €>0. The right hand side of (5.3) is finite if and only if a<n
or a<m and r,>0. In this case the formal computations in (5.2) are justified
and @%(x, u, r) is the restriction to R?**! X [r,, o) of a rapidly decreasing function
uniformly with respect to &[4, #,] for any 0<#,=<t%, and a smooth function of
(2, x, u,)E(0, o) X R®1 X [r,, 00). By similar methods, we can prove that
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DPi(x, u) is a rapidly decreasing function of (¥, #)E R**! and a smooth function
of (¢, x, u)E(0, c0) X Rt []

Now, for any f € L5%(D), we define

sy FCNEw0= [ W w0), (0, M) f( ' ) a5 ' &'
(%, u, r)Eﬁ, 1=1,2,3.

For this H{”, we have the following (cf. [10] [11]):

Theorem 5.1. H{, i=1,2,3, are bounded operators on L3*D). Fur-
thermore, for fixed f & A§4(D), the following holds:

(i) for T>O0, there is a constant C depending only on f and T such that for

te(0, T, IH fll<C, i=1,2,3;

(i) H{® f—Pf, HP f—>0f, H® f—0 in L3(D) and uniformly as t—0;

(iii) H f,i=1, 2, 3, are the restrictions of rapidly decreasing forms;

(iv) HPf,i=1,2,3, are differentiable in t;

(v) H,f:=H® f+HP f+H® feDom [];

(vi) (8/0t+00) H,f=0;

(vii) OH,f=H,[Of.

Proof. For any 7,20, we set D, :={(x,u,r)ED;r=r}. Then, for any
70=0 and f € L$4(D), we have

[, axiaEen ol
gf oy X S aY|Ir(X, Yl S ay|IE(X, LA
65) s avimecx, i) |, avisoie §, aximec, vl
§<xsé‘z?j [, avimocx, ¥1) (sup §, aximcx, vit) { avinseoie

=({,, avmo, viI) | avisoe.

Hence Hf" is a bounded linear operator from L}“(D) to L3*(D, ) if 7,>0 or
(¢,9)=*(3,0). Especially, if (7, ¢)=#(3,0), H{” is a bounded linear operator on
L59D). In the followings, let f€ A D). We will prove (i)—(vii) in order.
(i): From (5.5), it is enough to show that
(5.6) sup g A0, Y| d¥ <oo .
1Jp

e,

To do this for =1 and 2, it is enough to show that

(5.7) sup SR o (, )] ddu< oo

ee(0,7]
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for any a=Z. We use scaling property of the Brownian motion and make the
change of the variables (x—&x, u—>&u, EA—>N):

S ey 1PE(%, w)|| dxdu
= S dxdu ||S dn L exp (ixu—em—l“i)
Rzn+1 —o0 2

X E[e-%® e(1) 3, (x(l) )] I

=C_sup, (14 |31+l |*_dnexp(ira—era—2)
(5.8) X B[ Me(1) 8, (x(l) )i
oo . 82

— 2\2n iuf 1___ Y

C_sup,  (1+]x])] (" anen( av)

X {exp (— em—%z) E[em%® M1e(1) s,(f/Ll)] HI

=c@1+8) |7 o+ exp(—era—2)
X 2 Supﬂ(1+|x|2)2"HE[So(1)k e~ eAS (1) ME(I)S ((_%):IH
<C@,T).

The last inequality follows from Theorem 2.2 (i). From (5.8), we obtain (5.7).
For =3, we use the following inequality instead of (5.5): if R is the distance
from supp f to 4D,

69 uEEALsC(| ., dedu | arligr ) 1Oflk

As in (5.8), we use scaling property and make the change of variables (x—&x, u—
Eu, r—>Er, EA—>A):

waldxdus dr |la%(x, u, 7)|

=1 S dxdur dr||g°° AN\ exp (IVu—Ea)
R2n+1 Rie —c0

n.n+3/2

- . 1 . -
X E[em 0 Me(1) 8, (f/(—%ﬁ e S(7+A)/V— dpel

gcj” dr sup (1 |x]HP(1+ad)] S” dA-) exp (Mu—Era)

R/e (,,u)enzn.l

—igASy(1) N e %(1) A -2
X B0 MX(1) 8, (\/7)] ¢ S(r+)\)/"'z‘ dpe"l
oo Py . 82
. — 1 2\2n S d)\, iAu (1_ by —eAa
(5 10) ¢ SR/! dr(x,j:gz“'l( + lxl ) II - ¢ 87\.2) { ¢
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<ot a0 (N e
=C(a)(14-8) S:/ dr(147%) Sldx(l'}’)“z) e

2 1 22 || E[Sy(1)* &% I1e(1) 8, x(1)
x 53 sup (14|l IE[S(1)'e ma, (X

« 2 1
A - - 2
e q(rﬂ)/ﬁ ape +eXp< 2 () ))
<C(a, T, ) S“’/ dr(147) g“’ N1\ exp (—Era—E|\| (n—7)
R/e —o0
< 2 1
— 1 2
) ([ e +exp (=3 0427))
for any n>>0. The last inequality follows from Theorem 2.2 (i). Futhermore,
S"/ dr(147%) S“’ A1) exp (—Ena—E|\ | (n—n)+70)
R/e ~o0
X exp (——;— (1))
RZ)
< —_
=C(a) T) 77) €Xp ( 4¢2 ’
and

S“/ dr(1-47%) S: ANM(14N?) exp (—Ena—E|\|(n—n)+7)
R/e

S
XS(r+/\)/V? e

R2
< 0
<Cle, T, m)exp (—5).

For 0<y<R/T? and a<mn, we have
S“’/ dr(147%) s" AM1422) exp (—Era—E |\ | (n—n)--rr) S" dpe*
R/e —o0

(r+2))VZ

— " artyexp (—2) | du exp (—wi—v/ Zr0)
X S: dN(1+42?) exp (—Z;i—l—h(\/?y—{—e(a——n—}—n)))

<ce 7,y | art+exo(—2) [ dwexo (v Zu(el@—ntn)—)
+£ @—n+a))

<C(a, T, ) f:, dr(147) exp (—%2) S: dp exp (— V2 u (%—71))
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<C(a, T, R) % S:/ dr(14-7) exp (—g)

<C(a, T, 7, R) exp<—4£;) .
Hence if o <n, we have
(5.11) S dxduS dr|1a%(x, u, )| <C(a, T, R) exp (_Bi)
B 4¢

for any £€[0, T']. 'This lead to (i) for 7=3.
(if) To prove (ii) for =1 and 2, it is enough to show that

[, Ze 0 e, o exp () fw, ) dvawar

(5.12)
- f(x’ u, r)
and
(5.13) [, 25 07w ) i exp (DY) fo ', ) ' s ar

-0

in L%*%(D) and uniformly as #—0. We set

pre(x, u): = Sj an f2*(x, u, \) exp(_% 7\'2) ,

Py (%, u): = pi(x, u)—py*(x,u) I.
As in (5.5), we have

—_ 1/ 0 1 _(r:l:1")2

[, 1, 27w w)) o exp (0577

(5.14) Xf(x"u' r')dx" du' dr'|]? dx du dr
<C({ ...IprGn wll dxau) 1111

On the other hand, it is easy to see that

sup “SDP,—,a((x’ u)—l(x )) P( (T:tf )2)

(x,4,r)ED

(5.15) Xf(x', w',r') dx’ du' dr'||
<. oo 107, )]l s | 1.

If we set t=& as in (5.8), we have

SR2’1+1 ”pe_z'“(x, u)“ dxdu
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2 220 k g=iASy(D)
(5.16) <C(T,@) 3} sup (14 |« || E[S(1)t e

Me(1)—1I x_(g)
x e )—Ds, (Z)11
<C(T,a)¢
for 0<6<T. Here we used Theorem 2.2 (ii). Hence
— - o 1 "2 . , , ,
(5.17) [, e e w) o exp (D) o ) '
-0

in L2.4(D) and uniformly as #—0. The following facts are proved in Stanton
[10]:

[, 2t 07, w) o exp (L) fot, ) v ' '

(5.18) 2t

= fx,u,1),
and

Dr((x, )™Y', u")) 1 exp _(rtr'y f(x' u',r')dx' du' dr'
(5.19) ) V2t 2t

-0

in L34D) and uniformly as ¢t—0. From (5.16-18), we conclude (5.12) and
(5.13).
Next we will consider H{®f. If R is the distance from supp f to 4D,

(3)
(520)  oSBETN (w1l

< ® (n—24) ) .
(] s e | arllae=20, 011 ) _sup_ 1107, 5,7
Thus, by (5.9) and (5.20), to prove (ii) for =3, it is enough to show that
(5.21) S o v | drase, u >0 as 10

R 7+ 1 R

for a<n. We set t=&% and calculate like (5.10). Then for @ <#n and 0<€=<T,
we have

“ R?
2 o —
(5.2..,) S - dxdu SR dr ||q,2(x, u, r)|| SC(a, T, R) exp( 2) ,
which proves (5.21).

(iii) (iv): Since f has compact support, we can easily prove (iii) and (iv)
by using Proposition 5.1.
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(v): From (5.1), we easily see that
(5.23) h§((%, u, 0), (x',u',7")) = 0.
On the other hand,

(o750 L (oo (57 e (<0570

X S” dn-Fi(x, u, 1) exp (—% 7\.2>

_ 2 ® ] (r+r")A —#2]
(5.24) V7 S— dx Xf (x % 7\.)8 S t/2((r+r')/l+k)dﬂe [rso
=0
Hence we have
(5.25) (-6:—1 )(h<2>+h<3>) (% 1, 0), (&', ', 7)) = 0.,
or Ou
(vi): By Feynman-Kac formula, we see that
626 2, w0 = —OH(w )7 0, )
where
e l i_ N LAz : 0 )2}
DA = 4 2. {<ax’ 217\.x >+< xﬂ"'f
- _a__ n+J S An+1
2=} 2( 2\ x ) gﬁ(a +J+217\,x’)
+B+Aa

By using the fact that £§((x, #), A) has good regularity, we have
2 W ), (0, 1)
= —Oh"(x, u, 1), (', 0, 7)), t>0, (x,u,7r)ED,

for each (x',u’,7')€D and i=1, 2,3 ((»', w',7")ED for ¢g=0 and i=3).
(vii): By using Markovian property of the Brownian motion, we can prove
that

(5.27)

D:S £2((x, )N, '), \) (', w') dx’ du’
(5.28) 1,
= SH 2((%, w)™ (", w"), N) O g(x', w') dx'du’

for any rapidly decreasing section on H, to A*4(T*D) |y where (]} is that of
(5.26). Then we can esaily prove (vii).
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Finally we prove that H{ is a bounded operator on L§°(D). By the above
(i-vii) and the proof of Proposition 2.1, we see that

(5.29) H,f=e"Of for feAy(D).

For any 7,>0, since both H, and ¢™*J are bounded operators from L5%(D) to
L3%D,,), we have

Hf)(X)=("f)(X) ae. XED

7o
for any f€L$%(D). Hence we have
(5.30) H,f=eOf forany feL{YD).

Since ™Y is a bounded operator on L$%(D), H, is also a bounded operator on
L(D). O

By Proposition 5.1 and Theorem 5.1, we see that the integral operator
involved by the kernel %,(X, Y) satisfies the conditions of a fundamental solution
in Section 2. Hence we conclude Theorem 2.1.

6. Short time asymptotic behavior

In this section, we examine the behaviour of %, on the diagonal of Dx D

as t—0 (cf. Stanton [11] §6, Beals-Stanton [2]). By (5.1), we have

t((x’ u, r) (%, u, 7’))

= pl~u+2(0) T P exp ( 2;2 P
(6.1) +P1(0) Q+ (0) i exp ( 2o
\/ 2xt \/ t

+a:7%(0, 2r) O
=: Ki~%+(0) P—K;™%(r) P
+E(0) O+ Ki~(r) O+9174(0, 2r) Q

where

Ei(r) = p¥(0) \/2— exp *%’—)

We examine the behaviour of k%(r) for a = Z and @5(0, 2r) for a <n as t—0.

Proposition 6.1. For any ac Z,
1

2”n+1

(6.2) lim ##+1 £5(0) = I.

Proof. k%(0) is decomposed as follows:
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1
& 0 — @ O =
(6.3) #0) = pi0) 77
1 1
= p9*(0) —=— I+ p7*(0) —=—.
P )\/Zn't e )\/27zt
As in Stanton [11] Proposition 6.1,

(6.4) lim ##1 ()L — 1
t>0

27t - 2"t

For the second term of the right hand side of (6.3), we take =& and use scal-
ing property of the Brownian motion and Theorem 2.2 (ii): for any €€ (0, T7,

1
52("+1) _2"0
I p; ()_—\/——27:82”
e 7 1 (__ oy, E 2
(6.5) —|l€ S_m ar o exp (—ena—En )
Xl (o)1) & (XL )11
<C(T)é&.
Hence we have
) 1
6.6 lim #*! p7*(0)——— = 0.
9 in 20 7

By (6.4) and (6.6), we conclude (6.2). [
Next we consider the boundary correction term:
Proposition 6.2. For any acZ,r>0 and ke Z,
(6.7) 1‘1301 thky(r)=0.

For any a<n, r>0 and kE Z,

(6.8) lim # @%(0,2r) = 0.
t->0
Proof. We easily see that
2
(6.9) 1) = ki(0) exp (—2)

and lim,,, #* exp (—27%/f)=0. Thus we conclude (6.7) from (6.2). Since

exp (—Z—'J) Sw due ",

VE2A
-2
an Svm@mm due™ =<

oo

2
exp <—77+\/717\) S due™*,

VE72(r/V24\)
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we have
|12%(0, 27)||
< C{exp (—27¢t) so dnen 1730, M| Ivt_m due*
rz ° 17 J—
(6.10) hexp (—7) S_m dn- (=) lIF3(0, M)l exp (v/27 A)
- -2
X S‘/iﬁ(flvz_tut) dﬂe }

<C’exp (—é) {S: dn 170, M)l exp (_ %\,’)
+S°—w dne(—0) [|F3(0, M| &2} .

As in (5.15), we take t=€%<T?) and use scaling property of the Brownian
motion and Theorem 2.2 (i): for any €€ (0, T,

- . &N
So dnn |20, A)|] exp <_T>

<C(T, a) g2
For 0<y<<y/27/T? and a<n,
[}
[ ez e
(6.12) = & S‘:“ d?\.’(—)\,) et ||E[e""ez>~so(2) M'(l) 84 (\x/(_%) ] Il evZrh
=<C(a, T, 5) ¥t
Hence, if o <n, for any k€ Z,
|I2* @3(0, 27)]|
(6.13) <C(T,a)exp (——?) gDtk 5 () as £ —>0.

O

Next result suggest the short time asymptotic behaviour of the trace of the
heat semigroup by Beals and Stanton [2]:
Proposition 6.3. (i) For any ac Z,

1

(6.14) lim 42 S: dr ki(r) = N I.

(ii) For any a<n,
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lim £++1 S" dr 430, 27)
)]

>0

(6.15) 1 Sw dT( T ) .

271 Jo sinh 7

Proof. (i) follows from (6.2) and (6.9). We consider (i), 2%(0,2r) is
decomposed as follows:

(6.16) a3(0, 2r) = ¢9*(0, 2r) I4+-a;7-*(0, 27) .
As is shown in Stanton [11] Theorem 2.2 (i),

: at1 (7 0,0 __~I_S°° T >” T
(6.17) ltl-r»?t So dr g*(0, 2r) = 27" Jo dr (sinh'r e

On the other hand,

1[; ar a7, 20
=c|™_anlire i

L VI[2h—tN2
X S d,u,e"‘zg dret™
0

VE[ZA
(6.18) =c|" annrr=o, 01
vV _t oy (7 -n2
XITexp( 27\) Svmxd'u'e |

gC’{S: dn-exp (—% 7\.2) HF =0, M
+[_anliereo, 0.

Now we calculate as in (6.11) and (6.12) by using Theorem 2.2 (ii): for €€
[0, 71,

°° & 2 - ~2n
(6.19) So d)\-exp (”7{ A ) [IF 220, MI|=C(T) &
and
(6.20) S"” an IF 0, WIS C(T) &1 .

Hence we have
(6.21) T S‘” dr 4740, 2| <C(T) /T =0 as 0.
0

From (6.17) and (6.21), we conclude (6.15). [
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7. The analogue of the Siegel domain with a nondegenerate
indefinite Levi form

For 0=<«=<n, let D,={(z,w)€C"XC: Im w>3}}. &;|2’|?} where &;=
1 for 1ISj=«and §;=—1 for k<j=<m. This is an analogue of the Siegel do-
main D with a nondegenerate indefinite Levi from having « positive and n—=«
negative eigenvalues. In [10], Stanton states that her results also apply to this
domain in the (0, g)-form case. In the general (p, g)-form case, we need a few
remarks to apply our methods (cf. Remark 7.1 (i) below). Our main theorem is
Theorem 7.2 bellow.

We consider the Hermitian metric for which {Z}, Z,, -+, Z,+;} is an
orthonormal basis of T9(D,), where

0 . ;0 . . /5 0
(7.1) zj.:QJrzzejzfa_w, j=1,2,-,n, z,,“:z\/z%.

The dual basis is given by

. C 1 ) i
(7.2) o =d¥, o™= i\/—é(dw—Zz 33 €77d) .
Then 9 and 0* can be represented as follows:

9= ’i‘: ext (5f)Zj—}—\/§$ §; ext («’) ext (@) int (@),
(7.3) o
% — > int (@Z;+V Eg} &; ext (0" int () int (&),

on S?»¢(D,).
We use as coordinates on D, (2, #,7) where u=Re w and r=Im w—
1-1&;|2'|%. Then we can regard D, as product of the boundary 4D, and R*.
We identify 5D, with the Heisenberg group H,. The group law on H, is
(=", u') (2, u) = (2'+2, u'+u+t2 2"} E(x"Hx! —x'ixm7))
(7.4) i=1
for (2',u'), (2, u)€H,,

where 2/=x’+ix**/. 'The metric we gave is the product metric of an invariant
mectric on H, and the standard metric on B*. In terms of these coordinates,
9 ,..-; 0 . 1/0 ,.0
75) Z,= 0 4ied 0 1,2, m Zy,— —_<— z—) .
(73) 4= ot EF g "=\ ou

Then we have
Z; = 1/2(X;—iX,.))

where
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9 ati O 0 ; 0 .
(7.6) X] = W—I—Ze]x +’a—u, X”+j = ——ze-x"a, ] == 1, 2, cecy n.

axn+f 7
If we define the projections P and Q by
P = ext (") int (0**') and Q = int (@) ext (&"*"),

the 9-Neumann boundary condition can be rewritten as

@D Ple=O( 22 ) f =0 for feS(D).

The -Laplacian [] is expressed on $*4(D,) as follows:

_ 1 oxe 1(0 PN 0 SAiy
78) O=— 2% z< +6r2)+ ou AV B

where
U = 3 &,[int(o’), ext(@')],

A; = &;(ext(o**) int(e’) —ext(w’) int@"*)), j=1,2,,n
Aye; = i€ (ext(o™) int(@’) —ext(e’) int@™), j=1,2, -, n

B= _2.215 & ext(o’) ext(@’) int(w*) int(a*)
-2 g (int(w’) ext(a’)—ext(ew?) int(@’)) ext(w™*?) int(a"*1) .

RemMARrk 7.1. (i) The coefficient U of 8/0u in (7.8) does not commute
with 4; and B. This is the only difficult point of the problem in the domain
D, (cf. Lemma 7.2 and Theorem 7.1).

(i) As in Remark 2.2, [ acts diagonally on (0, g)-forms and generally
preserves the orthogonal decomposition A?4(7T*D)=Ran P@Ran Q.

Now we consider the heat equation (1.1) for D,. Let (W§*™ P) be a
2(n—+1)-dimensional Wiener space as in Section 3. We consider the following
diffusion process (X(2), U(z), R(t)):

()
V2’
U(t) = u+u(t)+S:(t)—id(2),
R(t) = r+B(t)+9(2)

X/(t) = &'+ j=1,2, -, 2,

(7.9)

where
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S =316 S: V(X (s) o di(s)— X(s)odxi(s)) ,

B(t) = s: sgn (r--7(5))dr(s)
and
80 = lim - [ Lo (o).
mo 29 Jo

We define the End (A?%(T*D,))-valued process M(t, x(+), u(+)) by the solution
of the SDE

(.10) {dM(t) = M(t)dE(t),

M@O)=1I
where

H(t) = ——iUu(t)—{—;V_,‘:l A(t)+Bt .

Let K(t) be the End (A?9(T*D,))-valued process as in (3.5).
Then the heat kernel %, is expected to be represented as follows

(7.12) h(X, X') = g"; ANH, (X, X)

where

Ht,h((x’ U, 1‘), (.X,”, u,, f’))
(13) = b e B0 B M, (), - X(2)]
X E[e™® K()| R(2) = r'ry(r, ")

where E* is the expectation with respect to the 1-dimensional Brownian motion
u(+) and E® is the generalized expectation of the generalized Wiener functional
with respect to the 2n-dimensional Brownian motion x(-).

For any €>0, meN and AR, we define the End (A?9(T*D,))-valued
processes mp(t) and My*(¢) by the solutions of

A . A _A_
714 {dmr»(t) =m0,
and
(7.15) {dM#’(t) = Mx*()dEx"(),
| My 0)=1
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respectively, where
Ewt(t) = _A x’(t)—]——Bt x—Ut

When m=1, we omit the subscript m: E*(f) = : EM*(¢), M1*(t) = : M™¥(¢), mi(¢)
=:m*(t). When m=&=1, we also omit the superscript &: E}'(¢)=:EN¥),
M) =: MX(?).

Then H, (X, X') is rewritten as follows:

Lemma 7.2. H,,(X, X') is expressed as follows :
Hy\((%, u, 1), (', 0',77))
= £l 0 w0 exp (— ) et )P

(7.16)
+F (e, w) N, u'), N) exp(—%)&z) ei(r,7)O
— 2 ((, )", u"), N)e™ S due ™0
N D Vil2(r/t+2) -~
where

1

i 3) = o B 50m 08, (1.
v/

V2

Proof. Generally for a square integrable continuous o(x(s), #(s): s=¢)-
adapted process @(+), it holds that

EB: @(s)dxf(s)] - S: E“[®(s)]dx(s), 1= j <2n.
Then, by the uniqueness of the solution of (7.15), we obtain
(7.17) MAE) = E*[e=™® M2, a(+), u(+))] exp (%v) :
Hence we have
E*[e OB [em™® M(2, (- ), u(+))] 8:(x(t))]

_ N TS IS N AN
(7.18) = exp ( i 3126, (lx'l—alx'r*) 2x)

X E[e S50 M),/ _x<\5 )>]

By combining (7.13),(7.18) and (3.14), we conclude (7.16). [

We first note the following theorem (cf. Theorem 2.2).
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Theorem 7.1. We take a, BE Z%", ke Z, and £,>0 arbitrary.
Q) If g=n—x,

hm I% IOg sup ”xpawa E[e—tASK(l)M?sﬁz 3(1)8 <_(__22)]Q”
A>-oo =R
(7.19) oo,
= -2.
Generally
i —L log sup [1#02-0Ben550 avx(1)s, (LD )
g20) I aeme oM V2
oge<e,
<0.

(i) If gEn—r,
fim —log sup |3 82 0 B[e-si0 (MMete(1)—mA(1)) a,(.\"/(_l_))] o/éll
(7.21) A>-e |\ R on 2
o<ese,
<_2.
Generally,
fim | log sup ||+ 03 O, B0 Mee(1)—mX(1)) 8, (___))]/en
(.22) M om0 V2
o<ese,
<0.

Corollary. We take o, BE Z%* and &, arbitrary. If g+n—k,

lim sup log sup ||xf 87 — o* _Ele ms"(t)MX(t)g (x(ﬁ)] oll
(7.23) A= rost=ht|N] 7 sepm N V2
=-2.
Generally,

6

lim sup ——1—log sup ||x? 87
G20 ] S
=0.

""so("M"(t) s, V(t) )] I

The proof of Theorem 7.1 proceeds just like the proof of Theorem 2.2,
using Lemmas 7.3 and 7.4 below: we omit the details.

Lemma 7.3. For any me N and >0,
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ey, ()

(7.25) T )
X SR” dx, E[e ASE (MmN (1) 8, <xl+\/(2—m>]
Xeee X S AXpy—y E[e’.}‘sx s (1)/m M:’/ez,g(l)
Rzn
X sxm—l (xm—2+ x(l) )]

X Efe M5, O/ Y1) 8, (st 3L,

Lemma 7.4. (i) For any p>1,s€Z,, he Z, and \>0,

(7 26) ” M)\Ie2 g(l)llp:SC(Py s, k) mk eXp{C(p, S) ( ( )1’/2+< IXI ))}

m

and
(7.27) av g1y —m(),.
=C(p s, W+ exp 1C(p, 5, 1) (£ )7+ (12 2Ly

(i) If g=n—r,

(7.28) " (1) Oll < Cm* exp {M}

6 N m

for any A=<0. Generally,
0" - [n|7
(7.29) 12 (DIl < Cm exp {7} .

By using Theorem 7.1, we can prove the following theorem:

Theorem 7.2. The unique fundamental solution H, of the heat equation
for the 8-Neumann problem on (p, q)-forms on D has the following smooth kernel:

hy((x, u, 7), (2", u'y "))
(7.30) = p(x, w)(x', u')) €5 (r, ") P+py((x, )"} (x', u")) e (r, ") O
+a,((x, w) Y(x', u'), r+7") O

where
Di(x, u) = S” an (%, u, \) exp(——t— 7\.2) )
e 2

¢ — _L S” . 28 SW —p2
a9,((x, u), r) = v Ve dANNT(x,u,\) € T du e,
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and f(x, u, \) is defined in (7.16).

As in Section 5, we can state properties of the heat kernel more precisely.
We set

EO((x, u,7), (2, u', 7)) = p((x, w)"Y(x', u')) ex(r, ') P,
(7.31) hP((x, u, 1), (2, 0', 7)) = D(%, u) "Y', u')) ef (r,7") O,
B (e, u, 1), (2", 0’y 7)) = @((x, w)" (%", @), r+7") O .

Then we have the following:

Proposition 7.1. If i=3 or g=n—« (resp. i=3 and g=n—«), K{’(X, X")
is the restriction to D, of a rapidly decreasing function of X for each fixed (¢, X')E
(0, )X Dy (resp. (0, ) x D,) and the restriction to D, of a rapidly decreasing
function of X' for each fixed (t, X)E (0, o)X D, (resp. (0, )X D,) uniformly with
respect to tE[1,, t,] for any 0<t,<<t,. Moreover h{’(X, X') is a smooth function of
(¢ X, X)e(0, 00)X DX D,.

For any f€ L54(D,), we define
(H ) (X): = S KO(X, Y)f(Y)dY, XD, i=1,23.
Dy
For this H{”, we have the following theorem:

Theorem 7.3. H{’,i=1,2,3, are bounded operators on L%%D,). Fur-
thermore, for fixed f = A§*(D,), the followings hold:

(i) for T>O, there is a constant C depending only on f and T such that for

tE(O, T], “H(t‘)fllé(‘; 7':11 2’ 31

() HP f—=Pf, H? f—0f, H® f—0 in L5y*(D,) and uniformly as t—0;

(i) H f,i=1,2,3, are the restrictions of rapidly decreasing forms;

(iv) H f,i=1,2,3, are differentiable in t;

(v) H,f:=H{P f+HP f+H® feDom [];

(vi) (8/ot+[) H, f=0;

(vii) OH,f=H,Of.

Finally we investigate the behavior of %,(X, X’) on the diagonal of D, x D,
as t—0. Asin (6.1), we have

(7.32) hi((x, u, 7), (%, u, 7)) = k,(0)—k,(r) P+k,(r) O+a,0, 2r) O

where

ki(r) = pi(0) \/;? exp (-%’_2) .

Let L be the Levi form on bD, and L? be its extension to AY(7™% D, N
CT,(bD,)) (cf. Beals-Stanton [2] p. 407):
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:I\’(le/\ "'/\Ziq’ Zkl/\ ot /\qu) = ( 1_21 2811) 8j1k1.“8jqk¢
for 1S j5<-<j,<mand 1=k, <---<k,<n. Then we have the followings:

Proposition 7.3. (i)

o 1
(7.33) lim #4414 (0) = o 1.
(ii) For any r>0 and kE Z,
(7.34) lim # k,(r) = 0
t>0

and
(7.35) lim # €,(0,2)Q = 0.
(iif)

(e 1
(7.36) lim ¢+ SO & k) = g L
(iv) When q=+n—«, we have

lim 742 S: dr-tr[4,(0, 27) O]
B n+1> 1 S°° e

(7.37) — ( 2 ) g |, e lesp (—r L]

Xexp (—7 tr-L) det{r|L|(1—e " )1} .

where tr~L is the sum of the negative parts of the eigenvalues of L and |L|: =
(LFLY= (L2,

Proof. The proofs of (i), (i) and (iii) are similar to the corresponding
results in Section 6. As in Proposition 6.3 (ii), we can prove the following: when

g+n—«,

3 n+1 .
739 lim ¢ So dr 4,(0,2r) O

= by 1 Sm dr ( T )ﬂ e~ ("m0 )

ovee+emsisene 2721 Jo sinh 7 ~

where Q, is the projection onto the space
Span {Ejjl/\ .../\ajl/\mk1+1/\ vor /\—ajkq
|jb "',j1§K<k1+1, ) kqén} .

By taking the trace of the both hand sides in the equality (7.38), we have (7.37).
U
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