ANALYTIC SEMIGROUPS GENERATED BY ELLIPTIC OPERATORS IN LI AND PARABOLIC EQUATIONS

Gabriella Di BLASIO**)

(Received July 19, 1990)

0. Introduction

Parabolic equations in L^{p} spaces have been studied both by potential theory and by abstract methods mainly when $p>1$. In this paper we want to continue our previous researchs on the L^{1} case ([4], [5]) by using a semigroup approach.

Let Ω be an open bounded subset of \boldsymbol{R}^{n} with smooth boundary $\partial \Omega$. We denote by E a second order elliptic operator in Ω and by A_{1} the L^{1} realization of E with homogeneous Dirichlet boundary conditions. Then it is known (see Amann [1], Pazy [11] and Tanabe [14]) that A_{1} is the infinitesimal generator of an analytic semigroup in $L^{1}(\Omega)$. We set $X=L^{1}(\Omega)$ and denote by $S(t)$ the semigroup generated by A_{1}.

In this paper we establish some new properties for the semigroup $S(t)$. Moreover we give a characterization in term of Besov spaces for the interpolation spaces $D_{A_{1}}(\theta, 1)$, between the domain of A_{1} and $L^{1}(\Omega)$, defined as (see Butzer and Berens [2] and Peetre [12])

$$
\begin{equation*}
\left.D_{A_{1}}(\theta, 1)=\left\{u \in X: \int_{0}^{+\infty}\left\|A_{1} S(t) u\right\|_{X} t^{-\theta} d t\right)<+\infty\right\} \tag{0.1}
\end{equation*}
$$

This characterization allows us to find new regularity results for the solutions of the following Cauchy problem

$$
\left\{\begin{array}{l}
u^{\prime}(t)=A_{1} u(t)+f(t) \tag{0.2}\\
u(0)=u_{0}
\end{array}\right.
$$

where $f \in L^{1}(0, T ; X)$ and $u_{0} \in X$. For the connection between the regularity properties of solutions of (0.2) and the interpolation spaces $D_{A_{1}}(\theta, 1)$ we refer to [4].

The plan of the paper is as follows. In section 2 we prove that the semigroup $S(t)$ satisfies the following estimates, for some $M^{\prime}, M^{\prime \prime}>0$ and $\omega \in R$,

$$
\begin{equation*}
\sqrt{\bar{t}}\left\|D_{i} S(t)\right\|_{L(X)} \leq M^{\prime} \exp (\omega t) \quad i=1, \cdots, n \tag{0.3}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
t\left\|D_{i h} S(t)\right\|_{L(X)} \leq M^{\prime \prime} \exp (\omega t) \quad i, h=1, \cdots, n \tag{0.4}
\end{equation*}
$$

\]

where we have set $D_{i}=\partial / \partial x_{i}$ and $D_{i n}=D_{i} D_{h}$. Properties (0.3) and (0.4) give precise information about the behavior at $t=0$ of the spatial derivatives of semigroup $S(t)$ (and hence about the solutions of (0.2)).

In section 3 we use these estimates and prove, in a very direct way and without using the reiteration property, the following characterization of the interpolation spaces $D_{A_{1}}(\theta, 1)$, for each $0<\theta<1$

$$
D_{A_{1}}(\theta, 1)=\left\{\begin{array}{l}
W^{2 \theta, 1}(\Omega), \quad \text { if } \quad 0<\theta<1 / 2 \tag{0.5}\\
u \in B^{1,1}(\Omega): \int_{\Omega}(d(x, \partial \Omega))^{-1}|u(x)| d x<+\infty, \quad \text { if } \quad \theta=1 / 2 \\
W^{2 \theta, 1}(\Omega) \cap W_{0}^{1,1}(\Omega), \quad \text { if } \quad 1 / 2<\theta<1
\end{array}\right.
$$

Here $W^{2 \theta, 1}(\Omega)$ denotes the Sobolev space of fractional order, $B^{1,1}(\Omega)$ denotes the Besov space and $d(x, \partial \Omega)$ the distance from x to $\partial \Omega$. This characterization has been given by Grisvard [6] for the case $p>1$. If the operator E has C^{∞} coefficients and $\theta \neq 1 / 2$ the characterization (0.5) can be deduced by a result of Guidetti, [8], obtained by complex interpolation methods.

Finally in section 4 we obtain a quite complete description of the regularity of the solutions of the following problem (for which (0.2) is the abstract version)

$$
\left\{\begin{array}{l}
u_{t}(t, x)=E u(t, x)+f(t, x), t>0, x \in \Omega \tag{0.6}\\
u(t, x)=0, t>0, x \in \partial \Omega \\
u(0, x)=u_{0}(x), x \in \Omega
\end{array}\right.
$$

where $f \in L^{1}(] 0, T[\times \Omega)$ and $u_{0} \in L^{1}(\Omega)$.
These results for parabolic second order differential equations extend to the case $p=1$ the classical theory for parabolic equations developed by Ladyzenskaja, Solonnikov and Ura'lceva [10] and others, for the case $p>1$.

1. The spaces $D_{A}(\theta, p)$ and $(D(A), X)_{\theta, p}$

In this section we recall some definitions and properties concerning interpolation spaces which are needed in the sequel.

a) The spaces $D_{A}(\theta, p)$

Let X be a Banach space with norm $\|$.$\| and let A: D(A) \subseteq X \rightarrow X$ be a linear closed operator which generates an analytic semigroup $\exp (t A)$ in X. By this we mean that there exists $\omega \in \boldsymbol{R}, \varphi \in] \pi / 2, \pi\left[\right.$ and $M>0$ such that the set $Z_{\varphi}=$ $\{z:|\arg (z-\omega)|<\varphi\} \cup\{\omega\}$ belongs to the resolvent set of A. Moreover for each $z \in Z_{\varphi}$ we have

$$
\begin{equation*}
|z-\omega|\|R(z, A) x\| \leq M\|x\| \tag{1.1}
\end{equation*}
$$

where $R(z, A)=(z-A)^{-1}$. For convenience we assume that A satisfies (1.1) with $\omega=0$ (so that $\exp (t A)$ is a bounded semigroup). This can be always be achieved by replacing A by $A-\omega I$ and $\exp (t A)$ by $\exp (-\omega t) \exp (t A)$.

In what follows we denote by $D_{A}(\theta, p)$ (for $0<\theta<1$ and $1 \leq p<\infty$) the space of all elements $x \in X$ satisfying

$$
H_{\theta, p}(x)=\left(\int_{0}^{+\infty}\left(t^{1-\theta}\|A \exp (t A) x\|\right)^{p} t^{-1} d t\right)^{1 / p}<+\infty
$$

It can be seen that $D_{A}(\theta, p)$ are Banach spaces under the norm $\left\|\|x\|_{\theta, p}=\right\| x \|+$ $H_{\theta, p}(x)$. Moreover

$$
D(A) \hookrightarrow D_{A}(\theta, p) \hookrightarrow X
$$

The spaces $D_{A}(\theta, p)$ were introduced by Butzer and Berens [2] and by Peetre [12]. We refer to [2 Chapter 3.2] for a more detailed description of the properties of these spaces.
b) The spaces $(X, D(A))_{\theta, p}$

For our pourposes it is convenient to incorporate the spaces $D_{A}(\theta, p)$ in the theory of intermediate spaces. Let X, X_{1} and X_{2} be Banach spaces such that $X_{1} \hookrightarrow X, i=1,2$. We denote the elements of X and X_{i} by x and x_{i} and their norm by $\|$.$\| and \left\|x_{i}\right\|_{i}$, respectively.

In what follows we set for $t>0$ and $x \in X_{1}+X_{2}$

$$
\begin{equation*}
K(t, x)=\inf _{x=x_{1}+x_{2}}\left(\left\|x_{1}\right\|_{1}+t\left\|x_{2}\right\|_{2}\right) \tag{1.2}
\end{equation*}
$$

Moreover we denote, for $\theta \in] 0,1[$ and $p \in[1,+\infty[$

$$
\begin{equation*}
\left(X_{1}, X_{2}\right)_{\theta, p}=\left\{x=x_{1}+x_{2}:\|x\|_{\theta, p}<+\infty\right\} \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\|x\|_{\theta, p}=\left(\int_{0}^{+\infty}\left(t^{-\theta} K(t, x)\right)^{p} t^{-1} d t\right)^{1 / p} \tag{1.4}
\end{equation*}
$$

It can be seen that $\left(X_{1}, X_{2}\right)_{\theta, p}$ are Banach spaces under the norm $\|x\|_{\theta, p} ;$ moreover we have

$$
X_{1} \cap X_{2} \hookrightarrow\left(X_{1}, X_{2}\right)_{\theta, p} \hookrightarrow X_{1}+X_{2}
$$

The spaces $\left(X_{1}, X_{2}\right)_{\theta, p}$ where introduced by Peetre in [12] and are extensively studied. We refer to [2, Chapter 3.2] for a detailed description of the properties of these spaces. Here we are interested in the case where $X_{1}=X$ and $X_{2}=D(A)$ where $D(A)$ is the domain of a linear closed operator which generates an analytic semigroup in X. In this case the following results can
be proved.
Theorem 1.1. Let $A: D(A) \subseteq X \rightarrow X$ be the infinitesimal generator of a bounded analytic semigroup on X. Then we have

$$
D_{A}(\theta, p) \cong(X, D(A))_{\theta, p}
$$

Proof. For a proof see e.g. [2, Theorems 3.4.2 and 3.5.3].
The following result turns to be useful in many applications.
Theorem 1.2. Let A and B generate bounded analytic segmigroups in X. If $D(A) \cong D(B)$ then we have

$$
D_{A}(\theta, p) \simeq D_{B}(\theta, p) .
$$

Proof. The result is an immediate consequence of Theorem 1.1 and of the definitions (1.2), (1.3) and (1.4).

2. Analytic semigroups generated by elliptic operators in Ω

Let $\Omega \subseteq \boldsymbol{R}^{n}$ be a bounded set of class C^{2} and let E be the second order elliptic operator geven by

$$
\begin{equation*}
E u=\sum_{i, j=1}^{n} D_{j}\left(a_{i j}(x) D_{i} u\right)+\sum_{i=1}^{n} b_{i}(x) D_{i} u+c(x) u \tag{2.1}
\end{equation*}
$$

Here we have set $D_{i}=\partial / \partial x_{i}$; moreover $a_{i j}, b_{i}$ and c are given functions satisfying

$$
a_{i j} \in C_{1}(\bar{\Omega}) ; \quad b_{i}, c \in C(\bar{\Omega}) .
$$

Moreover let $A: D(A) \subseteq L^{1}(\Omega) \rightarrow L^{1}(\Omega)$ be the operator defined by

$$
\left\{\begin{array}{l}
D(A)=\left\{u \in C^{2}(\bar{\Omega}): u(x)=0, x \in \partial \Omega\right\} \tag{2.2}\\
A u=E u
\end{array}\right.
$$

We denote by A_{1} the closure of A in $L^{1}(\Omega)$

$$
\begin{equation*}
A_{1}=\bar{A} \tag{2.3}
\end{equation*}
$$

In what follows we set $X=L^{1}(\Omega)$ and denote by $\|\cdot\|_{1}$ the norm in X. Then we have (see [1], [11])

Theorem 2.1. There exist $\omega^{\prime}, M^{\prime} \in R$ and $\left.\varphi^{\prime} \in\right] \pi / 2, \pi[$ such that setting

$$
Z_{\varphi^{\prime}}=\left\{z:\left|\arg \left(z-\omega^{\prime}\right)\right|<\varphi^{\prime}\right\} \cup\left\{\omega^{\prime}\right\}
$$

we have that $Z_{\varphi^{\prime}}$ belongs to the resolvent set of A_{1}. Moreover for each $z \in Z_{\varphi^{\prime}}$ we have

$$
\begin{equation*}
\left|z-\omega^{\prime}\right|\left\|R\left(z, A_{1}\right)\right\|_{L(x)} \leq M^{\prime} \tag{2.4}
\end{equation*}
$$

where $R\left(z, A_{1}\right)=\left(z-A_{1}\right)^{-1}$.
The following theorem establishes further properties of the resolvent operator.

Theorem 2.2. There exist $\omega \geq \omega^{\prime}, M \geq M^{\prime}$ and $\left.\left.\varphi \in\right] \pi / 2, \varphi^{\prime}\right]$ such that for each z verifying $|\arg (z-\omega)|<\varphi$ we have

$$
\begin{equation*}
|z-\omega|^{1 / 2}\left\|D_{i} R\left(z, A_{1}\right)\right\|_{L(X)} \leq M . \tag{2.5}
\end{equation*}
$$

Proof. Assertion (2.5) can be proved using the results of [13] and an argument similar to the one used in [3, Lemma 4.3].

In what follows we assume that A_{1} satisfies (2.5) with $\omega=0$ (if this is not the case then A_{1} is replaced by $\left.A_{1}-\omega I\right)$. As a consequence of (2.4) (with $\omega=0$) we have that A_{1} generates a bounded analytic semigroup $S(t)$. Then there exist M_{0} and M_{1} such that

$$
\begin{gather*}
\|S(t)\|_{L(X)} \leq M_{0} \tag{2.6}\\
t\left\|A^{1} S(t)\right\|_{L(X)} \leq M_{1} \tag{2.7}
\end{gather*}
$$

Moreover from (2.5) we can establish further properties for the semigroup $S(t)$. We have

Theoerm 2.3. There exists M_{2} verifying

$$
\begin{equation*}
t^{1 / 2}\left\|D_{i} S(t)\right\|_{L(x)} \leq M_{2} . \tag{2.8}
\end{equation*}
$$

Proof. Let φ be given by Theorem 2.2 and set $\Gamma=\Gamma^{-} \cup \Gamma^{0} \cup \Gamma^{+}$, where

$$
\Gamma^{ \pm}=\{z= \pm r \exp (i \varphi), r \geq 1\}
$$

oriented so that $\operatorname{Im} z$ increases, and

$$
\Gamma^{0}=\{z=\exp (i \psi),-\varphi \leq \psi \leq \varphi\}
$$

oriented so that ψ increases. We have for $t \geq 0$

$$
S(t)=\frac{1}{2 \pi i} \int_{+\mathrm{r}} \exp (z t) R\left(z, A_{1}\right) d z
$$

Setting $z^{\prime}=z t$ we get

$$
S(t)=\frac{1}{2 \pi i} \int_{+\Gamma} \exp \left(z^{\prime}\right) R\left(z^{\prime} / t, A_{1}\right) t^{-1} d z^{\prime}
$$

Therefore from (2.5) (with $\omega=0$) we get

$$
\left\|D_{i} S(t)\right\|_{L(x)} \leq \text { const } \int_{\Gamma} \exp \left(\operatorname{Re} z^{\prime}\right)|t z|^{-1 / 2} d\left|z^{\prime}\right| \leq \text { const } t^{-1 / 2}
$$

and the result is proved.
To study the spaces $D_{A_{1}}(\theta, 1)$ we use a further property of the semgiroup $S(t)$ which is established by the following lemma. Using Theorem 1.2 we assume for simplicity that the operator E takes the form

$$
\begin{equation*}
E u=\sum_{i, j=1}^{n} a_{i j} D_{i j} u+\gamma u \tag{2.9}
\end{equation*}
$$

with $\boldsymbol{\gamma} \in \boldsymbol{R}$ (here $D_{i j}=D_{i} D_{j}$).
Theorem 2.4. For each $T>0$ there exists $M_{3}=M_{3}(T)$ such that for $t \in$ $[0, T]$ we have

$$
t\left\|D_{i j} S(t)\right\|_{L(x)} \leq M_{3}
$$

Proof. Since $\partial \Omega$ is of class C^{2} for each $x_{0} \in \partial \Omega$ there exists an open ball V_{0} centereed in x_{0} such that $V_{0} \cap \partial \Omega$ can be represented in the form

$$
x_{l}=g_{0}\left(x_{1}, \cdots, x_{l-1}, x_{l+1}, \cdots, x_{n}\right)
$$

Now cover $\partial \Omega$ by a finite number of balls $V_{h}(h=1, \cdots, m-1)$ and add an open set V_{m} such that $\bar{V}_{m} \subseteq \Omega$ so as to obtain a covering of Ω. Moreover denote by $\left\{\varphi_{h}\right\}$ a partition of unity subordinate to this covering. Furthermore fix $\sigma>0$ and denote by u the solution of the problem

$$
\left\{\begin{array}{l}
u^{\prime}(t)=A_{1} u(t) \tag{2.10}\\
u(0)=S(\sigma) u_{0} .
\end{array}\right.
$$

Setting $u_{h}=\phi_{h} u$ we see that u_{h} satisfies the problem

$$
\left\{\begin{array}{l}
u_{h}^{\prime}(t)=\varphi_{h} A_{1} u(t)=A_{1} u_{h}(t)+B_{h} u(t) \tag{2.11}\\
u_{h}(0)=u_{0, h}
\end{array}\right.
$$

where

$$
u_{0, h}=\varphi_{h} S(\sigma) u_{0}
$$

and

$$
\begin{equation*}
B_{h} u=--\sum_{i, j=1}^{n} a_{i j}\left[D_{i}\left(u D_{j} \varphi_{h}\right)+D_{i} \varphi_{h} D_{j} u\right] . \tag{2.12}
\end{equation*}
$$

Now let $h=m$; since $\nabla_{m} \subseteq \Omega$ and $u_{m}=0$ on $\Omega \backslash V_{m}$ we have

$$
D_{k} u_{m}(t)=S(t) D_{k} u_{0, m}+\int_{0}^{t} S(t-s) B_{h, m} u(s) d s
$$

where

$$
\begin{equation*}
B_{k, m} u=\sum_{i, j=1}^{n}\left(D_{k} a_{i j}\right) D_{i j} u_{m}+D_{k} B_{m} u . \tag{2.13}
\end{equation*}
$$

Therefore using (2.8) and interpolatory estimates for $\left\|D_{i} u\right\|_{1}$ we get

$$
\left\|D_{l k} u_{m}(t)\right\|_{1} \leq \frac{\text { const }}{\sqrt{t}}\left\|D_{k} u_{0, m}\right\|_{1}+\int_{0}^{t} \frac{\text { const }}{\sqrt{t-s}}\left[\sum_{i, j=1}^{n}\left\|D_{i j} u(s)\right\|_{1}+\|u(s)\|_{1}\right] d s
$$

Now we have from (2.6) and (2.8)

$$
\left\|D_{k} u_{0, m}\right\|_{1} \leq c\left(\left\|u_{0}\right\|_{1}+\frac{1}{\sqrt{\sigma}}\left\|u_{0}\right\|_{1}\right)
$$

and

$$
\|u(s)\|_{1} \leq M_{0}\left\|u_{0}\right\|_{1}
$$

so that

$$
\left\|D_{l k} u_{m}(t)\right\|_{1} \leq \frac{c(T)}{\sqrt{t \sigma}}\left\|u_{0}\right\|_{1}+\int_{0}^{t} \frac{\text { const }}{\sqrt{t-s}} \sum_{i, j=1}^{n}\left\|D_{i j} u(s)\right\|_{1} d s
$$

and hence

$$
\begin{equation*}
\sum_{i, j=1}^{n}\left\|D_{i j} u_{m}(t)\right\|_{1} \leq c(T)\left[\frac{\left\|u_{0}\right\|_{1}}{\sqrt{t \sigma}}+\int_{0}^{t} \frac{1}{\sqrt{t-s}} \sum_{i, j=1}^{n}\left\|D_{i j} u(s)\right\|_{1} d s\right] \tag{2.14}
\end{equation*}
$$

Further fix $h \in[0, m-1]$. Using local transformation of variables we may assume that $V_{h} \cap \partial \Omega$ can be represented by $x_{n}=0$ (and that for $x \in V_{h} \cap \Omega$ we have $x_{n}>0$). Therefore for $k \neq n$ we have that the function $w_{k}=D_{k} u_{k}$ satisfies

$$
w_{k}(t)=S(t) D_{k} u_{0, h}+\int_{0}^{t} S(t-s) B_{k, h} u(s) d s
$$

where $B_{k, h}$ is given by (2.13) with m replaced by h. Hence by a computation similar to the one used above we find for $(l, k) \neq(n, n)$

$$
\begin{equation*}
\left\|D_{l k} u_{h}(t)\right\|_{1} \leq c(T)\left[\frac{\left\|u_{0}\right\|_{1}}{\sqrt{t \sigma}}+\int_{0}^{t} \frac{1}{\sqrt{t-s}} \sum_{i, j=1}^{n}\left\|D_{i j} u(s)\right\|_{1} d s\right] . \tag{2.15}
\end{equation*}
$$

Moreover for $(l, k)=(n, n)$ we have from (2.11)

$$
\begin{gather*}
\left\|D_{n n} u_{h}(t)\right\|_{1}=\left\|\frac{1}{a_{n n}(\cdot)}\left[A_{1} u_{h}(t)-\sum_{(i, j) \neq(n, n)} a_{i j}(\cdot) D_{i j} u_{h}(t)\right]\right\|_{1}= \tag{2.16}\\
\left\|\frac{1}{a_{n n}(\cdot)}\left[\varphi_{h} A_{1} u(t)-B_{h} u(t)-\sum_{(i, j \neq(n, n)} a_{i j}(\cdot) D_{i j} u_{h}(t)\right]\right\|_{1} .
\end{gather*}
$$

Hence from (2.15) and (2.16) we find that there exists a constant (again denoted by $c(T))$ verifying

$$
\sum_{i, j=1}^{n}\left\|D_{i j} u_{h}(t)\right\|_{1} \leq c(T)\left\{\frac{\left\|u_{0}\right\|}{\sqrt{t \sigma}}+\int_{0}^{t} \frac{1}{\sqrt{t-s}}\left[\sum_{i, j=1}^{n}\left\|D_{i j} u(s)\right\|_{1}+\left\|A_{1} u(t)\right\|_{1}\right] d s\right\}
$$

so that from (2.14) we get

$$
\begin{equation*}
\sum_{i, j=1}^{n}\left\|D_{i j} u(t)\right\|_{1} \leq c(T)\left\{\frac{\left\|u_{0}\right\|_{1}}{\sqrt{t \sigma}}+\int_{0}^{t} \frac{1}{\sqrt{t-s}}\left[\sum_{i, j=1}^{n}\left\|D_{i j} u(s)\right\|_{1}+\left\|A_{1} u(t)\right\|_{1}\right] d s\right\} \tag{2.17}
\end{equation*}
$$

Now we have from (2.7) and (2.10)

$$
\left\|A_{1} u(t)\right\|_{1} \leq M_{1}\left\|u_{0}\right\|_{1} \frac{1}{t+\sigma} \leq M_{1}\left\|u_{0}\right\|_{1} \frac{1}{\sqrt{2 t \sigma}}
$$

and finally from (2.17) we find that there exists a constant (again denoted by $c(T)$) such that

$$
\sum_{i, j=1}^{n}\left\|D_{i j} u(t)\right\|_{1} \leq c(T)\left\{\frac{\left\|u_{0}\right\|_{1}}{\sqrt{t \sigma}}+\int_{0}^{t} \frac{1}{\sqrt{t-s}} \sum_{i, j=1}^{n}\left\|D_{i j} u(s)\right\|_{1} d s\right\}
$$

Hence using Gronwall's generalized inequality (see e.g. [9, Chapter 7.1]) we get (for some constant depending on T)

$$
\sum_{i, j=1}^{n}\left\|D_{i j} u(t)\right\|_{1} \leq c(T) \frac{\left\|u_{0}\right\|_{1}}{\sqrt{t \sigma}}
$$

so that the result follows by taking $\sigma=t$.

3. Characterization of interpolation spaces between $D\left(A_{1}\right)$ and $L_{1}(\Omega)$

Let A_{1} be given by (2.1)-(2.3). Then we have the following result.
Theoerm 3.1. For each $\theta \in] 0,1[$ and $1 \leq p<\infty$ we have

$$
\left(L^{1}, D\left(A_{1}\right)_{\theta, p} \cong\left(L^{1}, W^{2,1} \cap W_{0,1}^{1,1}\right)_{\theta, p}\right.
$$

where $L^{1}=L^{1}(\Omega), W^{2,1}=W^{2,1}(\Omega)$ and $W_{0}^{1,1}=W_{0}^{1,1}(\Omega)$.
Proof. From Theorem 1.2 it suffices to prove the theorem in the case where A_{1} is given by (2.2)-(2.3) where E is given by (2.9) and satisfies (2.5) with $\omega=0$. Now we have

$$
W^{2,1} \cap W_{0}^{1,1} \hookrightarrow D\left(A_{1}\right),
$$

therefore using (1.2)-(1.4) we obtain

$$
\begin{equation*}
\left(L^{1}, W^{2,1} \cap W_{0}^{1,1}\right)_{\theta, p} \hookrightarrow\left(L^{1}, D\left(A_{1}\right)\right)_{\theta, p} . \tag{3.1}
\end{equation*}
$$

Conversely let $u \in\left(L^{1}, D\left(A_{1}\right)\right)_{\theta, p}$ and set for $t \in[0,1]$

$$
\begin{equation*}
u=u-S(t) u+S(t) u=\int_{0}^{t} A_{1} S(s) u d s+S(t) u=v_{1}+v_{2} . \tag{3.2}
\end{equation*}
$$

We have

$$
\left\|v_{1}\right\|_{1} \leq \int_{0}^{t}\left\|A_{1} S(s) u\right\|_{1} d s
$$

moreover $v_{2} \in W^{2,1} \cap W_{0}^{1,1}$ and

$$
\begin{aligned}
& \left\|v_{2}\right\|_{w^{2}, 1}=\|S(t) u\|_{1}+\sum_{i, j=1}^{n}\left\|D_{i j}[S(t) u-S(1) u+S(1) u]\right\|_{1} \\
& \quad \leq M_{0}\|u\|_{1}+\sum_{i, j=1}^{n}\left\|D_{i j} \int_{t}^{1} S(s / 2) A_{1} S(s / 2) u d s\right\|_{1}+M_{3}\|u\|_{1} \\
& \quad \leq \text { const }\left[\|u\|_{1}+\int_{t}^{1} s^{-1}\left\|A_{1} S(s / 2) u\right\|_{1} d s\right]
\end{aligned}
$$

where we used (2.6) and Theorem 2.4. Therefore we obtain for $t \in[0,1]$

$$
\begin{aligned}
& K(t, u)=\inf _{u=u_{1}+u_{2}}\left(\left\|u_{1}\right\|_{1}+t\left\|u_{2}\right\|_{w^{2,1}}\right) \\
& \quad \leq\left\|v_{1}\right\|_{1}+t\left\|v_{2}\right\|_{w^{2,1}} \\
& \quad \leq \text { const }\left[t\|u\|_{1}+\int_{0}^{t}\left\|A_{1} S(s) u\right\|_{1} d s+t \int_{t}^{1} s^{-1}\left\|A_{1} S(s / 2) u\right\|_{1} d s\right] .
\end{aligned}
$$

Now we have $K(t, u) \leq\|u\|_{1}$ (choosing $u_{1}=u$ and $u_{2}=0$) and hence

$$
K(t, u) \leq \mathrm{const}\left[\min (1, t)\|u\|_{1}+\int_{0}^{t}\left\|A_{1} S(s) u\right\|_{1} d s+t \int_{t}^{1} s^{-1}\left\|A_{1} S(s / 2) u\right\|_{1} d s\right] .
$$

Therefore for each $\theta \in] 0,1$ [and $1 \leq p<\infty$ we get

$$
\begin{aligned}
& \int_{0}^{+\infty}\left(t^{-\theta} K(t, u)\right)^{p} t^{-1} d t \leq \mathrm{const}\left[\int_{0}^{+\infty}\left(t^{-\theta} \min (1, t)\right)^{p} t^{-1} d t\|u\|_{1}^{p}+\right. \\
& \left.\quad \int_{0}^{+\infty} t^{-1} d t\left(t^{-\theta} \int_{0}^{t}\left\|A_{1} S(s) u\right\|_{1} d s\right)^{p}+\int_{0}^{+\infty} t^{-1} d t\left(t^{1-\theta} \int_{t}^{+\infty} s^{-1}\left\|A_{1} S(s) u\right\|_{1} d s\right)^{p}\right]
\end{aligned}
$$

so that using Hardy inequality (see e.g. [2. Lemma 3.4.7])

$$
\int_{0}^{+\infty}\left(t^{-\theta} K(t, u)\right)^{p} t^{-1} d t \leq \mathrm{const}\left[\|u\|_{1}^{p}+\int_{0}^{+\infty}\left(s^{1-\theta}\left\|A_{1} S(s) u\right\|_{1}\right)^{p} s^{-1} d s\right]
$$

and hence from Theorem 1.1

$$
\begin{equation*}
\left(L^{1}, D\left(A_{1}\right)_{\theta, p} \hookrightarrow\left(L^{1}, W^{2,1} \cap W_{0,1}^{1,1}\right)_{\theta, p} .\right. \tag{3.3}
\end{equation*}
$$

Hence the desired result follows combining (3.1) and (3.3).
Corollary 3.1. For each $\theta \in] 0,1[$ and $1 \leq p<\infty$ we have

$$
D_{A_{1}}(\theta, p) \cong\left(L^{1}, W^{2,1} \cap W_{0}^{1,1}\right)_{\theta, p}
$$

Proof. The result follows from Theorems 1.1 and 3.1.

In view of the study of parabolic equations in $L^{1}(\Omega)$ (see sect. 4 below) it is convenient to consider the case $p=1$.

Theorem 3.2. For each $\theta \in] 0,1\left[\right.$ we have $D_{A_{1}}(\theta, 1) \cong \dot{B}^{2 \theta, 1}(\Omega)$, where

$$
\stackrel{\circ}{B}^{\theta, 1}(\Omega)=\left\{\begin{array}{l}
W^{2 \theta, 1}(\Omega), \quad \text { if } \quad 0<\theta<1 / 2 \\
u \in B^{1,1}(\Omega): \int_{\Omega}(d(x, \partial \Omega))^{-1}|u(x)| d x<+\infty, \quad \text { if } \theta=1 / 2 \\
W^{2 \theta, 1}(\Omega) \cap W_{0}^{1,1}(\Omega), \quad \text { if } \quad 1 / 2<\theta<1
\end{array}\right.
$$

Here $W^{20,1}(\Omega)$ denotes the Sobolev space of fractional order, $B^{1,1}(\Omega)$ denotes the Besov space and $d(x, \partial \Omega)$ the distance from x to $\partial \Omega$.

Proof. The result follows from Theorems 1.1 and 3.1 and from the characterization of the spaces $\left(L^{1}, W^{2,1} \cap W_{0}^{1,1}\right)_{\theta, 1}$ (see Proposition 1 of the Appendix).

Remark. In the case $\Omega=\boldsymbol{R}^{n}$ the results of Theorem 3.2 where presented in [5].

4. Parabolic second order equations in \boldsymbol{L}^{1}

Let E be the operator given by (2.1) and consider the problem

$$
\left\{\begin{array}{l}
u_{t}(t, x)=E u(t, x)+f(t, x), t>0, x \in \Omega \tag{4.1}\\
u(t, x)=0, t>0, x \in \partial \Omega \\
u(0, x)=u_{0}(x), x \in \Omega
\end{array}\right.
$$

Regularity results for parabolic equations with f in $L^{p}\left(0, T ; L^{q}(\Omega)\right)$ and u_{0} in $L^{q}(\Omega)$ are well known in the literature if $1<p, q<\infty$. In this section we study in a quite complete way also the case $p=q=1$ by using the abstract results of [4, sect. 8] and Theorem 3.2.

To state our results it is convenient to introduce some notation and definitions. Let Y be a Banach space and let $a<b$ be real numbers. We shall be concerned with the following spaces of Y-valued functions defined on $[a, b]$
$L^{1}(a, b ; Y)$ is the space of measurable functions u such that $\|u(\cdot)\|_{Y}$ is integrable in $] a, b[$,
$C(a, b ; Y)$ is the space of continuous functions on $[a, b]$,
$W^{1,1}(a, b ; Y)$ is the space of functions u of $L^{1}(a, b ; Y)$ having distributional derivative in $L^{1}(a, b ; Y)$,

$$
\begin{aligned}
& L_{+}^{1}(a, b ; Y)=\left\{u \in L^{1}(\varepsilon, b ; Y), \quad \text { for each } a<\varepsilon<b\right\} \\
& W_{+}^{1,1}(a, b ; Y)=\left\{u \in W^{1,1}(\varepsilon, b ; Y), \quad \text { for each } a<\varepsilon<b\right\} \\
& W^{\theta, 1}(a, b ; Y), 0<\theta<1, \text { is the Sobolev space of functions } u \text { of } L^{1}(a, b ; Y)
\end{aligned}
$$

such that

$$
\int_{0}^{T} d t \int_{0}^{T} d s\|u(t)-u(s)\|_{Y}|t-s|^{-1-\theta}<+\infty .
$$

Finally $\stackrel{\circ}{B}^{2 \theta, 1}(\Omega)$ is the Besov space introduced in Theorem 3.2 and $D\left(A_{1}\right)$ is the domain of the operator A_{1} given by (2.2)-(2.3), i.e.

$$
D\left(A_{1}\right)=\left\{u \in L^{1}(\Omega): E u \in L^{1}(\Omega)\right\}
$$

where $E u$ is understood in the sense of distributions.
The following theorems describe the regularity of the solutions of (4.1) when the regularity of f and u_{0} increases.

Theorem 4.1. Let $f \in L^{1}(] 0, T[\times \Omega)$ and $u_{0} \in L^{1}(\Omega)$. Then (4.1) admits a unique generalized solution u and we have

$$
\begin{align*}
& u(t, \cdot) \in C\left(0, T ; L^{1}(\Omega)\right) \cap L^{1}\left(0, T ; B^{2 \beta, 1}(\Omega)\right) \cap W^{\beta, 1}\left(0, T ; L^{1}(\Omega)\right), \tag{i}\\
& \quad \text { for each } 0<\beta<1, \\
& u(t, \cdot) \in W^{\beta-\alpha, 1}\left(0, T ; B^{0 \alpha, 1}(\Omega)\right), \quad \text { for each } \quad 0<\alpha<\beta<1 .
\end{align*}
$$

Proof. The result follows from [4, Th. 28] and Theorem 3.2.
Theorem 4.2. Lei $f(t, \cdot) \in L^{1}\left(0, T ; \dot{B}^{2 \theta, 1}(\Omega)\right)$, for some $0<\theta<1$. Then for each $u_{0} \in L^{1}(\Omega)$ (4.1) admits a unique solution u and we have
i) $u(t, \cdot) \in C\left(0, T ; L^{1}(\Omega)\right) \cap L_{+}^{1}\left(0, T ; D\left(A_{1}\right)\right) \cap W_{+}^{1,1}\left(0, T ; L^{1}(\Omega)\right)$,
ii) $u(t, \cdot) \in L^{1}\left(0, T ; \dot{B}^{2 \beta, 1}(\Omega)\right) \cap W^{\beta, 1}\left(0, T ; L^{1}(\Omega)\right) \cap W^{\beta-\alpha, 1}\left(0, T ; B^{0 \alpha, 1}(\Omega)\right)$, for each $0<\alpha<\beta<1$.
If in addition $u_{0} \in \stackrel{0}{B^{2 \gamma, 1}}(\Omega)$, for some $0<\gamma<1$, then we have for $\delta=\min (\theta, \gamma)$
iii) $u(t, \cdot) \in C\left(0, T ; \stackrel{0}{B}^{2 \delta, 1}(\Omega)\right) \cap W^{\alpha, 1}\left(0, T ;{\left.\stackrel{0}{B^{2 \beta, 1}}(\Omega)\right) \text {, for each } 0<\alpha, \beta<1, ~}_{0}\right.$ $\alpha+\beta=1+\delta$,
iv) $E u(t, \cdot) \in L^{1}\left(0, T ; \dot{B}^{2 \delta, 1}(\Omega)\right) \cap W^{\delta, 1}\left(0, T ; L^{1}(\Omega)\right) \cap W^{\delta-\alpha, 1}\left(0, T ; \dot{B}^{2 \alpha, 1}(\Omega)\right)$, for each $0<\alpha<\delta<1$,
v) $u_{t}(t, \cdot) \in L^{1}\left(0, T ; \dot{B}^{2 \delta, 1}(\Omega)\right)$.

Proof. The assertions follow from [4, Th. 29] and Theorem 3.2.
Theorem 4.3. Let $f(t, \cdot) \in W^{\theta, 1}\left(0, T ; L^{1}(\Omega)\right)$, for some $0<\theta<1$. Then for each $u_{0} \in L^{1}(\Omega)$ there exists a unique solution u of (4.1) and we have
i) $u(t, \cdot) \in C\left(0, T ; L^{1}(\Omega)\right) \cap L_{+}^{1}\left(0, T ; D\left(A_{1}\right)\right) \cap W_{+}^{1,1}\left(0, T ; L^{1}(\Omega)\right)$,
 for each $0<\alpha<\beta<1$.
If in addition $u_{0} \in \stackrel{B}{B}^{2 \gamma, 1}(\Omega)$, for some $0<\gamma<1$, then we have, for $\delta=\min (\theta, \gamma)$
iii) $u(t, \cdot) \in C\left(0, T ; \stackrel{0}{B}^{28,1}(\Omega)\right) \cap W^{\alpha, 1}\left(0, T ; \stackrel{B}{B}^{2 \beta, 1}(\Omega)\right)$, for each $0<\alpha, \beta<1, \alpha+\beta=1+\delta$,
iv) $u_{t}(t, \cdot) \in L^{1}\left(0, T ; \stackrel{B}{B}^{28,1}(\Omega)\right) \cap W^{\delta, 1}\left(0, T ; L^{1}(\Omega)\right) \cap W^{\delta-\alpha, 1}\left(0, T ; \stackrel{\circ}{B}^{2 \alpha, 1}(\Omega)\right)$, for each $0<\alpha<\delta<1$,
v) $E u(t, \cdot) \in W^{\delta, 1}\left(0, T ; L^{1}(\Omega)\right)$.

Proof. The assertions follow from [4, Th. 30] and Theorem 3.2.

Appendix

We want to give here the proof concerning the characterization of the intermediate spaces $\left(L^{1}(\Omega), W^{2,1}(\Omega) \cap W_{0}^{1,1}(\Omega)\right)_{\theta, 1}$, for $0<\theta<1$, which has been used in section 3. If Ω is of class C^{2} using local change of coordinates it suffices to consider the case $\Omega=\boldsymbol{R}_{+}^{n}$ where

$$
\boldsymbol{R}_{+}^{n}=\left\{x=\left(x^{\prime}, x_{n}\right): x^{\prime} \in \boldsymbol{R}^{n-1}, x_{n}>0\right\}
$$

If $\theta \neq 1 / 2$ this characterization can be deduced from kown results (see e.g. [2, Th. 4.3.6]) but we give here a direct proof for all $0<\theta<1$ in order to make the paper self-contained.

In what follows we denote by $B^{r, 1}\left(\boldsymbol{R}_{+}^{n}\right)$, for $0<r \leq 1$, the Besov spaces defined as

$$
\begin{aligned}
& B^{r, 1}\left(\boldsymbol{R}_{+}^{n}\right)=\left\{u \in L^{1}\left(\boldsymbol{R}_{+}^{n}\right): H_{r}(u)=\int_{R_{+}^{n}} d y \int_{R_{+}^{n}} d x\left|u(x)+u(y)-2 u\left(\frac{x+y}{2}\right)\right|\right. \\
& \left.\quad|x-y|^{-n-r}<+\infty\right\}
\end{aligned}
$$

endowed with the norm

$$
\|u\|_{B^{r, 1}}=\|u\|_{1}^{+}+H_{r}(u)
$$

where $\|\cdot\|_{1}^{+}$denotes the norm in $L^{1}\left(\boldsymbol{R}_{+}^{n}\right)$, whereas for $1<r<2$ we define

$$
B^{r, 1}\left(\boldsymbol{R}_{+}^{n}\right)=\left\{u \in W^{1,1}\left(\boldsymbol{R}_{+}^{n}\right): D_{j} u \in B^{r-1}\left(\boldsymbol{R}_{+}^{n}\right)\right\}
$$

with the norm

$$
\|u\|_{B^{r, 1}}=\|u\|_{1}^{+}+\sum_{i=1}^{n} H_{r-1}\left(D_{i} u\right)
$$

It is known that if $r \neq 1$ we have $B^{r, 1}\left(\boldsymbol{R}_{+}^{n}\right)=W^{r, 1}\left(\boldsymbol{R}_{+}^{n}\right)$, the usual Sobolev spaces of fractional order.

Proposition 1. We have $\left(L^{1}\left(\boldsymbol{R}_{+}^{n}\right), W^{2,1}\left(\boldsymbol{R}_{+}^{n}\right) \cap W_{0}^{1,1}\left(\boldsymbol{R}_{+}^{n}\right)\right)_{\theta, 1}=\dot{B}^{0,1}\left(\boldsymbol{R}_{+}^{n}\right)$, where

In proving Proposition 1 we need some preliminary result. Set

$$
N_{+}(t, u)=\sup _{0<|y|<t, y_{n}>0}\|u(\cdot)+u(\cdot+2 y)-2 u(\cdot+y)\|_{1}^{+}
$$

and

$$
\|u\|_{\theta, 1}^{+}=\int_{0}^{+\infty} t^{-1-2 \theta} N_{+}(t, u) d t+\|u\|_{1}^{+}+\int_{R_{+}^{n}}\left(x_{n}\right)^{-2 \theta}|u(x)| d x .
$$

Then for each $\theta \in] 0,1 / 2]$ it is easily checked that

$$
\begin{align*}
& \int_{R_{+}^{n}} d y \int_{R_{+}^{n}} d x\left|u(x)+u(y)-2 u\left(\frac{x+y}{2}\right)\right||x-y|^{-n-2 \theta} \tag{1}\\
& \quad \leq \text { const } \int_{0}^{+\infty} t^{-1-2 \theta} N_{+}(t, u) d t
\end{align*}
$$

Moreover we have the following result.
Lemma 1. Let us denote by $X_{\theta, 1}$ th: Banach space corresponding to the norm $\||\cdot|\|_{\theta, 1}^{+}$. Then

$$
X_{\theta, 1}={\stackrel{0}{B \theta, 1}\left(\boldsymbol{R}_{+}^{n}\right) .}^{0}
$$

Proof. Given $u \in L^{1}\left(\boldsymbol{R}_{+}^{n}\right)$, let us introduce the function $U \in L^{1}\left(\boldsymbol{R}^{n}\right)$ defined as

$$
U(x)=\left\{\begin{array}{l}
u(x), \quad \text { if } \quad x_{n}>0 \\
-u\left(x^{\prime},-x\right), \quad \text { if } \quad x_{n} \leq 0
\end{array}\right.
$$

Furthermore set, for $\theta \in] 0,1[$

$$
\|\mid U\|_{\theta, 1}=\|U\|_{1}+\int_{0}^{+\infty} t^{-1-2 \theta} N(t, U) d t
$$

where $\|\cdot\|_{1}$ denotes the norm in $L^{1}\left(\boldsymbol{R}^{n}\right)$ and

$$
N(t, U)=\sup _{0<\mid y<t}\|U(\cdot)+U(\cdot+2 y)-2 U(\cdot+y)\|_{1}
$$

Then (see [2, Prop. 4.3.5])

$$
\begin{equation*}
\|\mid \cdot\|\left\|_{\theta, 1} \simeq\right\| \cdot \|_{B^{2 \theta, 1}} \tag{2}
\end{equation*}
$$

where $B^{2 \theta, 1}=B^{2 \theta, 1}\left(\boldsymbol{R}^{n}\right)$. Moreover one easily obtains, for each $\left.\theta \in\right] 0,1[$ (here by
$c, c^{\prime}, c^{\prime \prime}, c_{i}$, we denote various constants)

$$
\begin{equation*}
\left\|\|U\|_{\theta, 1} \leq c\right\|\|u\|_{0,1}^{+} \leq c^{\prime}\left[\| \| U\| \|_{\theta, 1}+\int_{R_{+}^{n}}\left(x_{n}\right)^{-2 \theta}|u(x)| d x\right] \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\|U\|_{B^{28,1}} \leq c^{\prime \prime}\left[\|u\|_{B^{28,1}}+\int_{R_{+}^{n}}\left(x_{n}\right)^{-2 \theta}|u(x)| d x\right] \tag{4}
\end{equation*}
$$

where $B_{+}^{2 \theta, 1}=B^{2 \theta, 1}\left(\boldsymbol{R}_{+}^{n}\right) . \quad$ Now let $\theta<1 / 2$; we have (see [7, Th. 1.4.4.4])

$$
\begin{equation*}
\int_{R_{+}^{n}}\left(x_{n}\right)^{-2 \theta}|u(x)| d x \leq \text { const }\|u\|_{w_{+}^{2 \theta, 1}} \tag{5}
\end{equation*}
$$

Therefore from (1), (2), (3) and (4) we get, for $\theta \leq 1 / 2$

$$
\begin{aligned}
& \|u\|_{\theta, 1}^{+} \leq c_{1}\left[\|U\|_{B^{2 \theta, 1}}+\int_{R_{+}^{n}}\left(x_{n}\right)^{-2 \theta}|u(x)| d x\right] \leq c_{2}\left[\|u\|_{B_{+}^{2 \theta, 1}}+\int_{R_{+}^{n}}\left(x_{n}\right)^{-2 \theta}|u(x)| d x\right] \\
& \quad \leq c_{3}\| \| u \|_{\theta, 1}^{+}
\end{aligned}
$$

which, together with (5), proves the assertion if $\theta \leq 1 / 2$.
Finally let $\theta>1 / 2$. If $u \in W^{2 \theta, 1}\left(\boldsymbol{R}_{+}^{n}\right) \cap W_{0}^{1,1}\left(\boldsymbol{R}_{+}^{n}\right)$ then $U \in W^{2 \theta, 1}\left(\boldsymbol{R}^{n}\right)$ and (5) holds (see [7, Th. 1.4.4.4]). Therefore from (2), (3), (4) and (5)

$$
\|u u\|_{\theta, 1}^{+} \leq c_{1}\left[\|U\| \|_{W^{2 \theta, 1}+} \int_{R_{+}^{n}}\left(x_{n}\right)^{-2 \theta}|u(x)| d x\right] \leq c_{4}\|u\|_{W_{+}^{20,1}} .
$$

Conversely let $u \in X_{\theta, 1}$; from (2) and (3) we get

$$
\|U\|_{W^{2 \theta, 1}} \leq c_{5}\| \| U\left\|_{\theta, 1} \leq c_{6}\right\| u \|_{\theta, 1}^{+}
$$

so that $u \in W^{2 \theta, 1}\left(\boldsymbol{R}_{+}^{n}\right)$ and

$$
\|u\|_{W_{+}^{20,1}} \leq\|U\|_{W^{2 \theta, 1}} \leq c_{6}\| \| u \|_{\theta, 1}^{+} .
$$

Finally the assertion $u \in W_{0}^{1,1}\left(\boldsymbol{R}_{+}^{n}\right)$ follows from the fact that $u \in W^{1,1}\left(\boldsymbol{R}_{+}^{n}\right)$ and

$$
\int_{R_{+}^{n}}\left(x_{n}\right)^{-2 \theta}|u(x)| d x<+\infty
$$

implies that $u\left(x^{\prime}, 0\right)=0$.
Proof of Proposition 1. For simplicity in notation we restrict ourseleves to the case $n=2$. The method of the proof will lead the way for all $n \geq 1$.

In what follows we denote by Q_{t}, for $t>0$, the subset of \boldsymbol{R}_{+}^{2} defined as

$$
Q_{t}=\left\{x \in \boldsymbol{R}_{+}^{2}: 0 \leq x_{i} \leq \frac{t}{4 \sqrt{2}}, i=1, \cdots, 2\right\},
$$

moreover we set $c=(4 \sqrt{2})^{4}$. Furthermore, given $u \in L^{1}\left(\boldsymbol{R}_{+}^{2}\right)$, we denote by v_{1} and v_{2} the functions defined as

$$
v_{1}=\int_{Q_{t}} d y \int_{Q_{t}} u(x+2(y+z)) d z=\frac{1}{16} \Pi_{i} \int_{x_{i}}^{x_{i}+t / 2 \sqrt{2}} d y_{i} \int_{y_{i}}^{y_{i}+t / 2 \sqrt{2}} u(z) d z_{i}
$$

and

$$
v_{2}=\int_{Q_{t}} d y \int_{Q_{t}} 2 u(x+y+z) d z=2 \Pi_{i} \int_{x_{i}}^{x_{i}+t / 4 \sqrt{2}} d y_{i} \int_{y_{i}}^{y_{i}+t / 4 \sqrt{2}} u(z) d z_{i}
$$

Moreover set $w_{1}=c t^{-4}\left(v_{1}-v_{2}\right), w_{2}=c t\left(t+x_{2}\right)^{-5}\left(v_{1}-v_{1}\right)$ and $u_{1}=u+w_{1}-v_{2}, u_{2}=$ $-w_{1}+w_{2}$. Then we have that $u=u_{1}+u_{2}$ with $u_{1} \in L^{1}\left(\boldsymbol{R}_{+}^{2}\right)$ and $u_{2} \in W^{2,1}\left(\boldsymbol{R}_{+}^{2}\right) \cap$ $W_{0}^{1,1}\left(\boldsymbol{R}_{+}^{2}\right)$. Furthermore, using the fact that $y_{2}+z_{2} \leq t(2 \sqrt{2})^{-1}$, we get
(6) $\quad\left\|u+w_{1}\right\|_{1}^{+} \leq \frac{c}{t^{4}} \int_{R^{2}} d x \int_{Q_{t}} d y \int_{Q_{t}}|u(x)+u(x+2(y+z))-2 u(x+y+z)| d z$ $\leq N_{+}(t, u)$
and

$$
\begin{aligned}
& \left\|w_{2}\right\|_{1}^{+} \leq c^{\prime} t \int_{Q_{t}} d y \int_{Q_{t}} d z \int_{R} d x_{1}\left\{\int_{y_{2}+z_{2}}^{+\infty} \frac{|u(x)|}{\left|t+x_{2}-\left(y_{2}+z_{2}\right)\right|^{5}} d x_{2}+\right. \\
& \left.\quad \int_{2\left(y+z_{2}\right)}^{+\infty} \frac{|u(x)|}{\left|t+x_{2}-2\left(y_{2}+z_{2}\right)\right|^{5}} d x_{2}\right\} \\
& \quad \leq c^{\prime} t \int_{Q_{t}} d y \int_{Q_{t}} d z \int_{R} d x_{1}\left[\int_{y_{2}+z_{2}}^{t} \frac{|u(x)|}{t^{5}} d x_{2}+\int_{t}^{+\infty} \frac{|u(x)|}{x_{2}^{5}} d x_{2}\right]
\end{aligned}
$$

where c^{\prime} denotes a constant. Therefore setting

$$
L(t, u)=\int_{R} d x_{1}\left[\int_{0}^{t}|u(x)| d x_{2}+t^{5} \int_{t}^{+\infty} \frac{|u(x)|}{x_{2}^{5}} d x_{2}\right]
$$

we obtain

$$
\begin{equation*}
\left\|w_{2}\right\|_{1}^{+} \leq c^{\prime} L_{(}(t, u) . \tag{7}
\end{equation*}
$$

Concerning u_{2} we have

$$
\begin{equation*}
\left\|u_{2}\right\|_{1}^{+} \leq c^{\prime}\|u\|_{1}^{+} . \tag{8}
\end{equation*}
$$

Moreover, to estimate $\left\|D_{k, k} u_{2}\right\|_{1}^{+}$, let us note that

$$
\begin{aligned}
& D_{h, h} v_{1}=\int_{x_{i}}^{x_{i}+t / 2 \sqrt{2}} d y_{i} \int_{y_{i}}^{y_{i}+t / 2 \sqrt{2}} \\
& \quad\left[u\left(z_{i}, x_{h}+t / \sqrt{2}\right)-2 u\left(z_{i}, x_{h}+t / 2 \sqrt{2}\right)-u\left(z_{i}, x_{h}\right)\right] d z_{i}
\end{aligned}
$$

where $i \neq h$. Moreover

$$
\begin{aligned}
& D_{1,2} v_{1}=\int_{x_{1}}^{x_{1}+t / 2 \sqrt{2}} d z_{1} \int_{x_{2}}^{x_{3}+t / 2 \sqrt{2}} \\
& \quad d z_{2}\left[u\left(z_{1}, z_{2}+t / 2 \sqrt{2}\right)-2 u\left(z_{1}-t / 4 \sqrt{2}, z_{2}+t / 4 \sqrt{ } 2\right)\right. \\
& \quad+u\left(z_{1}-t / 2 \sqrt{2}, z_{2}\right)-u\left(z_{1}-t / 2 \sqrt{2}, z_{2}+t / 2 \sqrt{2}\right) \\
& \left.\quad+2 u\left(z_{1}-t / 4 \sqrt{2}, z_{2}+t / 4 \sqrt{2}\right)-u(z)\right] .
\end{aligned}
$$

Thereofre for each h, k we get

$$
\begin{equation*}
\left\|D_{h, k} w_{1}\right\|_{1}^{+} \leq c^{\prime} t^{-2} N_{+}(t, u) \tag{9}
\end{equation*}
$$

Now we have $\left\|D_{1,1} w_{2}\right\|_{1}^{+} \leq\left\|D_{1,1} w_{1}\right\|_{1}^{+}$so that (9) holds for $h=k=1$ with w_{1} replaced by w_{2}. Furthermore

$$
\begin{aligned}
& \left\|D_{2,2} w_{2}\right\|_{1}^{+} \leq c t \int_{R_{+}^{2}}\left[\frac{1}{\left(t+x_{2}\right)^{5}}\left|D_{2,2}\left(v_{1}-v_{2}\right)(x)\right|+\frac{1}{\left(t+x_{2}\right)^{6}}\left|D_{2}\left(v_{1}-v_{2}\right)(x)\right|\right. \\
& \left.\quad+\frac{1}{\left(t+x_{2}\right)^{7}}\left|\left(v_{1}-v_{2}\right)(x)\right|\right] d x=I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

Now we get

$$
I_{1}+I_{3} \leq\left\|D_{2,2} w_{1}\right\|_{1}^{+}+c^{\prime} t^{-2}\|u\|_{1}^{+} \leq c^{\prime} t^{-2}\left[N_{+}(t, u)+\|u\|_{1}^{+}\right]
$$

where we used (9). Furthermore, proceding as in (7), we obtain

$$
I_{2} \leq c^{\prime} t^{-2} L(t, u)
$$

Therefore

$$
\begin{equation*}
\left\|D_{2,2} w_{2}\right\|_{1}^{+} \leq c^{\prime} t^{-2}\left\{\|u\|_{1}^{+}+N_{+}(t, u)+L(t, u)\right\} . \tag{10}
\end{equation*}
$$

Finally in a similar way we get

$$
\begin{equation*}
\left\|D_{1,2} w_{2}\right\|_{i}^{+} \leq c^{\prime} t^{-2}\left\{N_{+}(t, u)+L(t, u)\right\} \tag{11}
\end{equation*}
$$

Summarizing using (6)-(11) we obtain that given $u \in L^{1}\left(\boldsymbol{R}_{+}^{2}\right)$, we can write $u=u_{1}+u_{2}$ with $u_{1} \in L^{1}\left(\boldsymbol{R}_{+}^{2}\right)$ and $u_{2} \in W^{2,1}\left(\boldsymbol{R}_{+}^{2}\right) \cap W_{0}^{1,1}\left(\boldsymbol{R}_{+}^{2}\right)$ and

$$
\left\|u_{1}\right\|_{1}^{+} \leq N_{+}(t, u)+c^{\prime} L(t, u)
$$

and

$$
\left\|u_{2}\right\|_{2}^{+} \leq c^{\prime} t^{-2}\left[\left(1+t^{2}\right)\|u\|_{1}+N_{+}(t, u)+L(t, u)\right]
$$

where $\|\cdot\|_{2}^{+}$denotes the norm in $W^{2,1}\left(\boldsymbol{R}_{+}^{2}\right)$. Therefore (see (1.2)) there exists c_{1} such that

$$
\begin{equation*}
K\left(t^{2}, u\right) \leq c_{1}\left[N_{+}(t, u)+\min \left(1, t^{2}\right)\|u\|_{1}^{+}+L(t, u)\right] . \tag{12}
\end{equation*}
$$

Conversely let $u=u_{1}+u_{2}$ with $u_{1} \in L^{1}\left(\boldsymbol{R}_{+}^{2}\right)$ and $u_{2} \in W^{2,1}\left(\boldsymbol{R}_{+}^{2}\right) \cap W_{0}^{1,1}\left(\boldsymbol{R}_{+}^{2}\right)$. Then we have

$$
\begin{equation*}
\min \left(1, t^{2}\right)\|u\|_{1}^{+} \leq K\left(t^{2}, u\right) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{+}(t, u) \leq N_{+}\left(t, u_{1}\right)+N_{+}\left(t, u_{2}\right) \leq 4\left\|u_{1}\right\|_{1}^{+}+t^{2}\left\|u_{2}\right\|_{2}^{+} \leq 4 K\left(t^{2}, u\right) \tag{14}
\end{equation*}
$$

the third estimate following by

$$
u(x)-2 u(x+y)+u(x+2 y)=2 \int_{0}^{|y|} d s \int_{0}^{s} d \sigma \frac{\partial}{\partial s} \frac{\partial}{\partial \sigma} u(x+(s+\sigma)) \frac{y}{|y|} .
$$

Furthermore

$$
\begin{align*}
& L(t, u) \leq\left\|u_{1}\right\|_{1}^{+}+\int_{R} d x_{1}\left[\int_{0}^{t} d x_{2} \int_{0}^{x_{2}} d y_{2} \int_{y_{2}}^{+\infty} d \xi_{2}\left|D_{22} u_{2}\left(x_{1}, \xi_{2}\right)\right|+\right. \tag{15}\\
& \left.\quad t^{5} \int_{t}^{+\infty} \frac{1}{x_{2}^{5}} d x_{2} \int_{0}^{x_{2}} d y_{2} \int_{z_{2}}^{+\infty} d \xi_{2}\left|D_{22} u_{2}\left(x_{1}, \xi_{2}\right)\right|\right] \\
& \quad \leq\left\|u_{1}\right\|_{1}^{+}+c t^{2}\left\|D_{22} u_{2}\right\|_{1}^{+}
\end{align*}
$$

so that

$$
L(t, u) \leq c K\left(t^{2}, u\right)
$$

Finally from (12)-(15) we obtain that there exists c_{2} such that

$$
K\left(t^{2}, u\right) \leq c_{1}\left[N_{+}(t, u)+\min \left(1, t^{2}\right)\|u\|_{1}^{+}+L(t, u)\right] \leq c_{2} K\left(t^{2}, u\right) .
$$

Therefore

$$
\begin{aligned}
& \int_{0}^{+\infty} t^{-1-\theta} K(t, u) d t=2 \int_{0}^{+\infty} t^{-1-2 \theta} K\left(t^{2}, u\right) d t \leq c_{1}^{\prime}\left[\int_{0}^{+\infty} t^{-1-2 \theta} N_{+}(t, u) d t+\|u\|_{1}^{+}\right. \\
& \left.\quad+\int_{0}^{+\infty} t^{-1-2 \theta} L(t, u) d t\right] \leq c_{2}^{\prime} \int_{0}^{+\infty} t^{-1-\theta} K(t, u) d t
\end{aligned}
$$

Now

$$
\int_{0}^{+\infty} t^{-1-2 \theta} L(t, u) d t=\mathrm{const} \int_{R_{+}^{2}}\left(x_{2}\right)^{-2 \theta}|u(x)| d x
$$

therefore the desired result follows from Lemma 1.
Aknowledgement. The author thanks the referee for helpful comments.

References

[1] H. Amann: Dual semigroups and second order linear elliptic boundary value problem, Israel J. Math., 45 (1983), 225-254.
[2] P.L. Butzer, H. Berens: Semigroups of operators and approximation, Springer, Berlin, 1967.
[3] P. Cannarsa, V. Vespri: Generation of analytic semigroups in the L^{p} topology by elliptic operators in $\boldsymbol{R}^{\boldsymbol{n}}$, Israel J. Math., 61 (1988), 235-255.
[4] G. Di. Blasio: Linear parabolic evolution equations in L^{p}-spaces, Ann. Mat. Pura e Appl., IV (1984), 55-104.
[5] G. Di Blasio: Characterization of interpolation spaces and regularity properties for holomorphic semigroups, Semigroup Forum 38 (1989), 179-187.
[6] P. Grisvard: Equations différentielles abstraites, Ann. Scient. Ec. Norm. Sup., 2 (1969), 311-395.
[7] P. Grisvard: Elliptic problems in non smooth domains. Monographs ans Studies in Math., 24, Pitman, London, 1985.
[8] Guidetti: On interpolation with boundary conditions (Preprint).
[9] D. Henry: Geometric theory of semilinear parabolic equations, Lect. Notes in Math. 840, 1981.
[10] O.A. Ladyzenskaja, V.A. Solonnikov, N.N. Uralceva: Linear and quasilinear equations of parabolic type, Amer. Math. Soc., Providence, 1968.
[11] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer Verlag, New York, 1983.
[12] J. Peetre: On an equivalence theorem of Taibleson. (unpublihsed manuscript), Lund, 1964.
[13] B. Stewart: Generation of analytic semigroups by strongly elliptic operators, Trans. Am. Mat. Soc. 199, 1974, 141-162.
[14] H. Tanabe: On semilinear equations of elliptic and parabolic type, in Functional Analysis and Numerical Analysis, Japan-France Seminar, Tokyo and Kyoto, 1976, (H. Fujita, ed.), Japan Society for the Promotion of Sciences, 1978, 455-463.

Dipartimento di Matematica
Università di Roma
P. le A Moro 5

00185 Roma
Italy

[^0]: (*) The work of the author is partially supported by M.P.I. 40% and by G.N.A.F.A.

