COHOMOTOPY OF LIE GROUPS

Hideaki ŌSHiMA and Kōji TAKAHARA

(Received May 11, 1990)

1. Introduction

The purpose of this note is to study the set $\operatorname{Cdg}(X, n)=\operatorname{Cdg}\left(\left[X, S^{n}\right]\right)$ when $X=G$ is a compact simply connected simple Lie group, where

$$
\text { Cdg: }\left[X, S^{n}\right] \rightarrow \operatorname{Hom}\left(\pi_{n}(X), \pi_{n}\left(S^{n}\right)\right)
$$

assigns the induced homotopy homomorphism f_{*} to the homotopy class of a map $f: X \rightarrow S^{n}$. To estimate $\operatorname{Cdg}(X, n)$ we introduce an invariant $\operatorname{cdg}(X, n)$ and its stable version ${ }^{s} \operatorname{cdg}(X, n)$, which are non-negative integers or infinity, such that ${ }^{s} \operatorname{cdg}(G, 3)$ was denoted by $\operatorname{cd}(G)$ in [9]. We denote by $\operatorname{cdg}_{p}(X, n)$ the exponent of a prime number p in the prime power decomposition of $\operatorname{cdg}(X, n)$ when $0<$ $\operatorname{cdg}(X, n)<\infty$. For convenience' sake we set $\operatorname{cdg}_{p}(X, n)=0$ when $\operatorname{cdg}(X, n)=0$. We define ${ }^{s} \operatorname{cdg}_{p}(X, n)$ similarly. We prove the following two theorems.

Theorem 1. If G is a compact simply connected Lie group, that is, $G=$ $G_{1} \times \cdots \times G_{t}$ with G_{i} a compact simply connected simple Lie group, then $\operatorname{cdg}(G, n)$ and ${ }^{s} \operatorname{cdg}(G, n)$ are finite and the following seven statements are equivalent for any prime number p.
(1) $\operatorname{cdg}_{p}(G, 3)=0$.
(2) ${ }^{s} \operatorname{cdg}_{p}(G, 3)=0$.
(3) $\operatorname{cdg}_{p}\left(G_{i}, 3\right)=0$ for all i.
(4) ${ }^{s} \operatorname{cdg}_{p}\left(G_{i}, 3\right)=0$ for all i.
(5) G_{i} is p-regular for every i.
(6) G is p-regular.
(7) $\operatorname{cdg}_{p}(G, n)=0$ for all n.

Theorem 2. If G is a compact simply connected simple Lie group, then $\operatorname{Cdg}(G, n)$ is a subgroup of $\operatorname{Hom}\left(\pi_{n}(G), \pi_{n}\left(S^{n}\right)\right)$ of maximal rank. Indeed $\operatorname{Cdg}(G$, $n)$ is $\operatorname{cdg}(G, n) Z\left\{s_{1}^{\prime}\right\} \oplus c Z\left\{s_{2}^{\prime}\right\}$ if $(G, n)=(S p i n(4 m), 4 m-1)$ and $\operatorname{cdg}(G, n) \cdot$ Hom $\left(\pi_{n}(G), \pi_{n}\left(S^{n}\right)\right)$ otherwise. Here $\pi_{4 m-1}(S p i n(4 m))=\boldsymbol{Z}\left\{s_{1}\right\} \oplus \boldsymbol{Z}\left\{s_{2}\right\}$ and s_{i}^{\prime} is the dual element to $s_{i} ; c$ is 1 if $m \leq 2$ and 2 if $m \geq 3 ; \operatorname{cdg}(G, n)$ is non-zero if and only if $n \in$ $\left\{n_{1}, \cdots, n_{r}\right\}$, where $H^{*}(G ; \mathbb{Q}) \cong H^{*}\left(\Pi_{i=1}^{r} S^{n} ; \boldsymbol{Q}\right)$.

In this note all spaces are path-connected with base point and all maps
preserve base point. Base point of any H-space is the unit of it. To simplify notation, we denote a map and its homotopy class by the same letter.

We define invariants $\operatorname{cdg}(X, n)$ and ${ }^{s} \operatorname{cdg}(X, n)$ in $\S 2$, prove Theorems in $\S 3$, and give three results without proofs in $\S 4$.

2. Homotopy invariants

We will use the following notation and convention: We denote by $a \mid b$ that $b=c a$ for some integer c. For any subset A of \boldsymbol{Z} which contains a nonzero, we denote by $\operatorname{GCD}(A)$ the greatest common divisor of the non-zero integers in A. For convenience' sake we set $\operatorname{GCD}(0)=0, k \mid \infty$ for any non-zero integer k, and $0 \cdot \infty=0$, hence $\infty \mid 0$. For any subset A of $\{k \in \boldsymbol{Z} ; k \geq 0\} \cup\{\infty\}$, we denote by $\operatorname{LCM}(A)$ the least common multiple of A (it may be ∞) if A is nonempty and contains neither 0 nor ∞, and 0 if A is empty or contains 0 , and ∞ if A does not contain 0 but ∞. For any grop C, we denote by ${ }^{a b} C$ the abelianization of C, that, is ${ }^{a b} C$ is the quotient group of C by its commutator subgroup. Note that the canonical surjection $C \rightarrow{ }^{a b} C /$ Tor induces an isomorphism Hom $(C$, $\boldsymbol{Z}) \cong \operatorname{Hom}\left({ }^{a b} C /\right.$ Tor, $\left.\boldsymbol{Z}\right)$, where Tor denotes the torsion subgroup. The group C has the rank $r, \operatorname{rank} C=r$, if ${ }^{a b} C /$ Tor is a free abelian group of rank r. We denote by $\mathfrak{B}(C)$ the set of $x \in{ }^{a b} C /$ Tor which is not divisible by any integer ≥ 2.

Put $\{X, Y\}=\lim _{k \rightarrow \infty}\left[\Sigma^{k} X, \Sigma^{k} Y\right]$ and ${ }^{s} \pi_{n}(X)=\left\{S^{n}, X\right\}$. Let ${ }^{s} C d g:\{X$, $\left.S^{n}\right\} \rightarrow \operatorname{Hom}\left({ }^{s} \pi_{n}(X),{ }^{s} \pi_{n}\left(S^{n}\right)\right)$ be the stable version of Cdg. For any $\alpha \in \pi_{n}(X)$, we denote by $\operatorname{cdg}(X, n ; \alpha)$ or $\operatorname{cdg}(\alpha)$ the non-negative generator of the subgroup of \boldsymbol{Z} generated by the image of $\alpha^{*}:\left[X, S^{n}\right] \rightarrow \pi_{n}\left(S^{n}\right)=\boldsymbol{Z}$. We define ${ }^{s} \operatorname{cdg}(\alpha)$ similarly for any $\alpha \in^{s} \pi_{n}(X)$. If $\alpha, \beta \in \pi_{n}(X)$ represent the same element in ${ }^{a b} \pi_{n}(X)$ /Tor, then $\operatorname{cdg}(\alpha)=\operatorname{cdg}(\beta)$. Thus cdg can be defined on ${ }^{a b} \pi_{n}(X) /$ Tor. Similarly ${ }^{s} \mathrm{cdg}$ is defined on ${ }^{s} \pi_{n}(X) /$ Tor.

Definition 2.1.

$$
\begin{aligned}
\operatorname{cdg}(X, n) & =\operatorname{LCM}\left\{\operatorname{cdg}(\alpha) ; \alpha \in \mathscr{B}\left(\pi_{n}(X)\right)\right\} \\
s \operatorname{cdg}(X, n) & =\operatorname{LCM}\left\{{ }^{s} \operatorname{cdg}(\alpha) ; \alpha \in \mathscr{B}\left(\pi^{s} \pi_{n}(X)\right)\right\}
\end{aligned}
$$

The invariant ${ }^{s} \operatorname{cdg}(X, n)$ has been studied by several people when X is the Thom space of an n-dimensional vector bundle [8]. Note from [10] that cdg $(S p(n) / S p(k), 4 n-1)$ and $\operatorname{cdg}(U(n) / U(k), 2 n-1)$ are James numbers [2] for $0 \leq$ $k<n$, though $\operatorname{cdg}(O(8) / O(1), 7)=6$ and the James number of $S O(8)=O(8) / O(1)$ is 1 .

The invariant $\operatorname{cdg}(X, n)$ may be ∞, though it is finite if X is a finite $C W$ complex. Indeed we have

Example 2.2. For each prime p, let $\alpha_{1}(3 ; p)$ and $\alpha_{1}(2 ; p)$ be generators of the p-components of $\pi_{2 p}\left(S^{3}\right)$ and $\pi_{2 p}\left(S^{2}\right)$, respectively [12]. Set $\alpha_{1}(n ; p)=\sum^{n-3}$ $\alpha_{1}(3 ; p) \in \pi_{n+2 p-3}\left(S^{n}\right)$ and $X(n ; p)=S^{n} \cup_{\alpha_{1}(n ; p)} e^{n+2 p-2}$ for $n \geq 3$, and set $X(2 ; p)=$
$S^{2} \cup_{\alpha_{1}(2 ; p)} e^{2 p+1}$. Then $\operatorname{cdg}(X(n ; p), n)=p$ and $\operatorname{cdg}\left(\Pi_{p} X(n ; p), n\right) \neq 0$, hence $\operatorname{cdg}\left(\Pi_{p} X(n ; p), n\right)=\infty$ by Proposition 2.6 below.

Proposition 2.3. If $\pi_{n}(X)$ is of finte rank, then the following three assertions hold.
(1) $\operatorname{cdg}(X, n)<\infty$, and $\operatorname{cdg}(X, n)=\operatorname{cdg}(\alpha)$ for some $\alpha \in \mathscr{B}\left(\pi_{n}(X)\right)$ if $\mathscr{B}\left(\pi_{n}(X)\right)$ is non-empty.
(2) $\operatorname{cdg}(X, n) \neq 0$ if and only if $\operatorname{rank} \pi_{n}(X)=\operatorname{rank}\langle\operatorname{Cdg}(X, n)\rangle \geq 1$, where $\langle\operatorname{Cdg}$ $(X, n)\rangle$ is the subgroup of $\operatorname{Hom}\left(\pi_{n}(X), \pi_{n}\left(S^{n}\right)\right)$ generated by $\operatorname{Cdg}(X, n)$.
(3) $\operatorname{cdg}(X, n) \neq 0$ if and only if $\operatorname{rank} \pi_{n}(X) \geq 1$ and there exists an integer $r \geq 1$ such that $r \cdot \operatorname{Hom}\left(\pi_{n}(X), \pi_{n}\left(S^{n}\right)\right) \subset\langle\operatorname{Cdg}(X, n)\rangle$. In the latter case $\operatorname{cdg}(X, n)$ is equal to the least of such r.

Stable version also holds.
Proof. Put $t=\operatorname{rank} \pi_{n}(X)$ and $s=\operatorname{rank}\langle\operatorname{Cdg}(X, n)\rangle$. We denote by $\left\{a_{1}\right.$, $\left.\cdots, a_{t}\right\}$ and $\left\{\alpha_{1}, \cdots, \alpha_{t}\right\}$ a free basis of $\operatorname{Hom}\left(\pi_{n}(X), \pi_{n}\left(S^{n}\right)\right)$ and its dual basis of ${ }^{a b} \pi_{n}(X) /$ Tor, respectively.

First we prove (2). Suppose $\operatorname{cdg}(X, n) \neq 0$. Then trivially $t \geq 1$. To induce a contradiction, suppose $t>s$. Then we can take $\left\{a_{1}, \cdots, a_{t}\right\}$ satisfying $\langle\operatorname{Cdg}(X, n)\rangle \subset\left\langle a_{1}, \cdots, a_{s}\right\rangle$. It follows that $f_{*}\left(\alpha_{t}\right)=0$ for all $f: X \rightarrow S^{n}$, hence $\operatorname{cdg}\left(\alpha_{t}\right)=0$ and $\operatorname{cdg}(X, n)=0$. This is a contradiction. Hence $t=s$. Conversely suppose that $t=s \geq 1$ and $\operatorname{cdg}(X, n)=0$. Then we can take $\left\{\alpha_{1}, \cdots, \alpha_{t}\right\}$ satisfying $\operatorname{cdg}\left(\alpha_{t}\right)=0$. It follows that $\operatorname{Cdg}(X, n) \subset\left\langle a_{1}, \cdots, a_{t-1}\right\rangle$ so that $s \leq t-1$. This is a contradiction. Hence $\operatorname{cdg}(X, n) \neq 0$ if $t=s \geq 1$. This proves (2).

Next we prove (1). If $\operatorname{cdg}(X, n)=0$, then there is no problem. So suppose that $\operatorname{cdg}(X, n) \neq 0$. Then $t=s \geq 1$ as shown above. Choose $\left\{a_{i} ; 1 \leq i \leq t\right\}$ such that $\left\{k_{i} a_{i} ; 1 \leq i \leq t\right\}$ is a basis of $\langle\operatorname{Cdg}(X, n)\rangle$, where $k_{i} \geq 1$. Put $k=\mathrm{LCM}\left\{k_{i}\right\}$. Then

$$
k=\operatorname{Min}\left\{r>0 ; r \cdot \operatorname{Hom}\left(\pi_{n}(X), \pi_{n}\left(S^{n}\right)\right) \subset\langle\operatorname{Cdg}(X, n)\rangle\right\}
$$

and hence $k \cdot \operatorname{Hom}\left(\pi_{n}(X), \pi_{n}\left(S^{n}\right)\right) \subset\langle\operatorname{Cdg}(X, n)\rangle$, where Min denotes the minimum. Evaluating at any $\beta=\sum c_{i} \alpha_{i} \in{ }^{a b} \pi_{n}(X) /$ Tor, we have $k \cdot \operatorname{GCD}\left\{c_{i}\right\} \boldsymbol{Z} \subset \operatorname{cdg}$ $(\beta) \boldsymbol{Z}=\operatorname{GCD}\left\{k_{i} c_{i}\right\} \boldsymbol{Z}$ so that $\operatorname{cdg}(\beta)=\operatorname{GCD}\left\{k_{i} c_{i}\right\} \mid k \cdot \operatorname{GCD}\left\{c_{i}\right\}$. If $\beta \in \mathscr{B}\left(\pi_{n}(X)\right)$, then $\operatorname{GCD}\left\{c_{i}\right\}=1$ and $\operatorname{cdg}(\beta) \mid k$, hence $\operatorname{cdg}(X, n) \mid k$. Set $d_{i}=k / k_{i}$ and $\alpha=\sum d_{i} \alpha_{i}$. Then $\operatorname{GCD}\left\{d_{i}\right\}=1$ and $\alpha \in \mathscr{B}\left(\pi_{n}(X)\right)$. We then have $\operatorname{cdg}(\alpha)=k$, so $\operatorname{cdg}(X, n)$ $=\operatorname{cdg}(\alpha)=k$. This proves (1) and a part of (3).

Other part of (3) follows immediately from (2). The same proof is valid for stable case. This completes the proof of Proposition 2.3.

Proposition 2.4. (1) If all of the following five conditions are satisfied, then $\operatorname{cdg}(X, n)$ is non-zero.
(i) X is a finite $C W$-complex.
(ii) $\operatorname{rank} \pi_{n}(X) \geq 1$.
(iii) X is simply connected if $n \geq 2$.
(iv) Image $\left\{\pi_{n}\left(X^{(n-1}\right) \rightarrow \pi_{n}(X)\right\}$ is a torsion, where $X^{(k)}$ is the k-skeleton of X.
(v) All attaching maps of $2 n$-cells in $X \mid X^{(n-1)}$ are null homotopic if n is even.
(2) If X is a finite $C W$-complex with $\operatorname{rank}^{s} \pi_{n}(X) \geq 1$, then ${ }^{s} \operatorname{cdg}(X, n)$ is non-zero.

Proof. The assertions for $n=1$ can be proved by using the facts that the composite of $\left[X, S^{1}\right] \cong H^{1}(X) \cong \operatorname{Hom}\left(H_{1}(X), Z\right) \cong \operatorname{Hom}\left(\pi_{1}(X), Z\right)$ is Cdg and that ${ }^{a b} \pi_{1}(X) \cong{ }^{s} \pi_{1}(X)$.

Suppose $n \geq 2$ and five conditions in (1).
First we shall show that Cdg is a surjection on $\left[X^{(n+1)} / X^{(n-1)}, S^{n}\right]$. This is trivial if X has no $(n+1)$-cell, so we assume that X has $(n+1)$-cells. We then have a cofibre sequence $\vee S^{n} \xrightarrow{p} \vee S^{n} \xrightarrow{i} X^{(n+1)} / X^{(n-1)}$ and the commutative diagram:

$$
\begin{aligned}
& {\left[\vee S^{n}, S^{n}\right] \quad \stackrel{p^{*}}{\leftarrow} \quad\left[\vee S^{n}, S^{n}\right] \quad \stackrel{i^{*}}{\leftarrow} \quad\left[X^{(n+1)} / X^{(n-1)}, S^{n}\right]} \\
& \operatorname{Cdg} \downarrow \simeq \quad \operatorname{Cdg} \downarrow \simeq \quad \downarrow \mathrm{Cdg} \\
& \operatorname{Hom}\left(\pi_{n}\left(\vee S^{n}\right), Z\right) \underset{p_{*}^{*}}{\leftarrow} \operatorname{Hom}\left(\pi_{n}\left(\vee S^{n}\right), \mathrm{Z}\right) \underset{i_{*}^{*}}{\leftarrow} \operatorname{Hom}\left(\pi_{n}\left(X^{(n+1)} / X^{(n-1)}\right), \mathrm{Z}\right) \text {. }
\end{aligned}
$$

In this diagram, the upper horizontal sequence is the same as the stable one and hence exact, i_{*}^{*} is a monomorphism, and $p_{*}^{*} \circ i_{*}^{*}=0$. By chasing the diagram, it follows that the third Cdg is a surjection.

Given any $a \in \operatorname{Hom}\left(\pi_{n}\left(X^{(n+1)} / X^{(n-1)}\right), Z\right)$, choose $b: X^{(n+1)} / X^{(n-1)} \rightarrow S^{n}$ such that $\operatorname{Cdg}(b)=a . \quad B y(v)$ and $[1,3.1]$, we can construct skeleton-wise a map f : $X \mid X^{(n-1)} \rightarrow S^{n}$ such that $f \circ i=k \circ b$ for some $k \neq 0$, where $i: X^{(n+1)}\left|X^{(n-1)} \subset X\right|$ $X^{(n-1)}$. This implies that $\left\langle\operatorname{Cdg}\left(X / X^{(n-1)}, n\right)\right\rangle$ is of maximal rank, since

By (iii) and a theorem of Blakers-Massey, $\pi_{n}\left(X, X^{(n-1)}\right) \cong \pi_{n}\left(X / X^{(n-1)}\right)$. Then by (iv) the homomorphism

$$
q_{*}^{*}: \operatorname{Hom}\left(\pi_{n}\left(X / X^{(n-1)}\right), Z\right) \rightarrow \operatorname{Hom}\left(\pi_{n}(X), Z\right)
$$

induced by the quotient map q has a finite cokernel. Therefore $\langle\operatorname{Cdg}(X, n)\rangle$ is of maximal rank, since $q_{*}^{*}\left\langle\operatorname{Cdg}\left(X \mid X^{(n-1)}, n\right)\right\rangle \subset\langle\operatorname{Cdg}(X, n)\rangle$. Hence $\operatorname{cdg}(X$, $n) \neq 0$ by Proposition 2.3. This proves (1). By almost the same proof as the above, we have (2).

The following two results can be proved easily. So we omit their proofs.
Proposition 2.5. (1) If X is k-connected with $n \leq 2 k+1$ and $\mathscr{B}\left({ }^{s} \pi_{n}(X)\right)$ is non-empty, then ${ }^{s} \operatorname{cdg}(X, n) \mid \operatorname{cdg}(X, n)$.
(2) If rank $\pi_{n}(X)=\operatorname{rank}^{s} \pi_{n}(X)=1$, then $m \cdot{ }^{s} \operatorname{cdg}(X, n) \mid \operatorname{cdg}(X, n)$, where
the suspension $\sum^{\infty}:{ }^{a b} \pi_{n}(X) / \mathrm{Tor}=\boldsymbol{Z} \rightarrow{ }^{s} \pi_{n}(X) / \mathrm{Tor}=\boldsymbol{Z}$ is multiplication by \boldsymbol{m}.
(3) If G is a connected simple Lie group, then $\operatorname{rank} \pi_{3}(G)=\operatorname{rank}^{s} \pi_{3}(G)=1$ and

$$
{ }^{s} \operatorname{cdg}(G, 3)\left|m \cdot{ }^{s} \operatorname{cdg}(G, 3)\right| \operatorname{cdg}(G, 3)
$$

where \mathcal{G} is a universal covering group of G and m is a non-zero integer defined as in (2) for $X=G$.

We denoted $m \cdot{ }^{s} \operatorname{cdg}(G, 3)$ in $2.5(3)$ by $\operatorname{cd}(G)$ in [9]. Hence ${ }^{s} \operatorname{cdg}(G, 3)=$ $\operatorname{cd}(G)$ if G is simple and simply connected.

Proposition 2.6. (1) If $\mathscr{B}\left(\pi_{n}\left(X_{i}\right)\right)$ is non-empty for $i=1,2$, then $\mathrm{LCM}\{\mathrm{cdg}$ $\left.\left(X_{1}, n\right), \operatorname{cdg}\left(X_{2}, n\right)\right\} \mid \operatorname{cdg}\left(X_{1} \times X_{2}, n\right)$. Stable version also holds.
(2) If ${ }^{a b} \pi_{n}\left(X_{1}\right)$ is a torsion, then $\operatorname{cdg}\left(X_{1} \times X_{2}, n\right)=\operatorname{cdg}\left(X_{2}, n\right)$.
(3) If $\pi_{n}\left(X_{i}\right)$ is of finite rank and $\operatorname{cdg}\left(X_{i}, n\right) \neq 0$ for $i=1,2$, then $\operatorname{cdg}\left(X_{1} \times\right.$ $\left.X_{2}, n\right)=\operatorname{LCM}\left\{\operatorname{cdg}\left(X_{1}, n\right), \operatorname{cdg}\left(X_{2}, n\right)\right\}$.
(4) If X_{i} is ($\left.n-1\right)$-connected and ${ }^{s} \pi_{n}\left(X_{i}\right)$ is of finite rank for $i=1$, 2, then ${ }^{s} \operatorname{cdg}\left(X_{1} \times X_{2}, n\right) \mid{ }^{s} \operatorname{cdg}\left(X_{1}, n\right) \cdot{ }^{s} \operatorname{cdg}\left(X_{2}, n\right)$.

3. Proof of Theorem

In this section G denotes a compact connected Lie group of type $\left\{n_{1}, \cdots\right.$, $\left.n_{r}\right\}$, that is, $H^{*}(G ; \boldsymbol{Q}) \cong H^{*}\left(\prod_{i=1}^{r} S^{n} ; \boldsymbol{Q}\right)$. As is well-known, n_{i} is odd and there are maps $f: \Pi_{i} S^{n_{i}} \rightarrow G$ and $g: G \rightarrow \Pi S^{n_{i}}$ which induce isomorphisms $\pi_{*}\left(\Pi S^{n_{i}}\right)$ $\otimes \boldsymbol{Q} \cong \pi_{*}(G) \otimes \boldsymbol{Q}$ (see [7]). From this and Proposition 2.3 we have

Proposition 3.1. The following five statements are equivalent.
(1) $\operatorname{Cdg}(G, n)$ is non-trivial.
(2) $\operatorname{cdg}(G, n)$ is non-zero.
(3) $\operatorname{rank} \pi_{n}(G)=\operatorname{rank}\langle\operatorname{Cdg}(G, n)\rangle \geq 1$.
(4) $\operatorname{rank} \pi_{n}(G) \geq 1$.
(5) $n \in\left\{n_{1}, \cdots, n_{r}\right\}$.

Proof of Theorem 1. Numbers $\operatorname{cdg}(G, n)$ and ${ }^{s} \operatorname{cdg}(G, n)$ are finite by Proposition 2.3. Put $A(n)=\left\{i\right.$; rank $\left.\pi_{n}\left(G_{i}\right) \geq 1\right\}$ and define ${ }^{s} A(n)$ similarly. Then $A(3)={ }^{s} A(3)=\{i ; 1 \leq i \leq t\}$. We have ${ }^{s} \operatorname{cdg}(G, 3) \mid \operatorname{cdg}(G, 3)$ by 2.5 (1). Thus (1) implies (2). We have $\left.\operatorname{LCM}\left\{{ }^{s} \operatorname{cdg}\left(G_{i}, 3\right)\right\}\right|^{s} \operatorname{cdg}(G, 3)$ and $\operatorname{cdg}(G, n)=\mathrm{LCM}$ $\left\{\operatorname{cdg}\left(G_{i}, n\right) ; i \in A(n)\right\}$ by 2.6. Hence (2) implies (4), and (1) and (3) are equivalent. By Theorem 4.1 (1) of [9], (4) and (5) are equivalent. Trivially (5) implies (6), and (7) implies (1).

To prove that (6) implies (7), suppose (6). By Proposition 3.1, we may suppose that $n \in\left\{n_{1}, \cdots, n_{r}\right\}$. Then there is a p-equivalence $f: G \rightarrow S=\prod_{i=1}^{r} S^{n_{i}}$ so that rank $\pi_{n}(G)=\operatorname{rank} \pi_{n}(S)=u$, say, and the image of $f_{*}: \pi_{n}(G) \rightarrow \pi_{n}(S)$ is of maximal rank. Let $\left\{\alpha_{1}, \cdots, \alpha_{u}\right\}$ be a free basis of $\pi_{n}(G) /$ Tor and $\left\{a_{1}, \cdots, a_{u}\right\}$ its
dual basis of $\operatorname{Hom}\left(\pi_{n}(G), \pi_{n}\left(S^{n}\right)\right)$. Let $\left\{k_{1}, \cdots, k_{u}\right\}$ be positive integers and $\left\{\beta_{1}, \cdots, \beta_{u}\right\}$ a free basis of $\pi_{n}(S)$ such that $f_{*}\left(\alpha_{i}\right)=k_{i} \beta_{i}$. Then k_{i} is prime to p. Since $f_{*}^{*} \circ \mathrm{Cdg}=\operatorname{Cdg} \circ f^{*}:\left[S, S^{n}\right] \rightarrow \operatorname{Hom}\left(\pi_{n}(G), \pi_{n}\left(S^{n}\right)\right)$ and since Cdg is surjective on $\left[S, S^{n}\right]$, we have $\operatorname{Cdg}(G, n) \supset \operatorname{Image}\left(f_{*}^{*}\right)=\oplus_{i=i}^{u} k_{i} Z\left\{a_{i}\right\}$. Hence $\operatorname{Cdg}(G, n)$ contains $\operatorname{LCM}\left\{k_{i}\right\} \cdot \operatorname{Hom}\left(\pi_{n}(G), \pi_{n}\left(S^{n}\right)\right)$ so that $\operatorname{cdg}(G, n) \mid \operatorname{LCM}\left\{k_{i}\right\}$ by Proposition 2.3 (3), therefore $\operatorname{cdg}_{p}(G, n)=0$. This implies (7) and completes the proof of Theorem 1.

Example 3.2. For G non-simply connected, Theorem 1 does not hold in general: $\operatorname{cdg}(S O(3), 3)=2$ and ${ }^{s} \operatorname{cdg}(S O(3), 3)=1$ (see [10]).

Recall that if G is simple then $n \in\left\{n_{1}, \cdots, n_{r}\right\}$ if and only if $\operatorname{rank} \pi_{n}(G)$ is 1 or 2 and rank $\pi_{n}(G)=2$ if and only if $(\widetilde{G}, n)=(\operatorname{Spin}(4 m), 4 m-1)$ for $m \geq 2$. Then the following and Proposition 3.1 prove Theorem 2 except for the case $(G, n)=$ $(S \operatorname{pin}(4 m), 4 m-1)$.

Proposition 3.3 (James). If n is odd, then the image of $\alpha^{*}:\left[X, S^{n}\right] \rightarrow \pi_{n}\left(S^{n}\right)$ is a subgroup for every $\alpha \in \pi_{n}(X)$. In particular if n is odd and $\operatorname{rank} \pi_{n}(X)=1$, then $\operatorname{Cdg}(X, n)=\operatorname{cdg}(X, n) \cdot \operatorname{Hom}\left(\pi_{n}(X), \pi_{n}\left(S^{n}\right)\right)$.

Proof. The first assertion can be proved by the method in [3, p.88]. The second assertion then follows, since $\alpha^{*}=e v_{\alpha} \circ \mathrm{Cdg}$ and $e v_{\alpha}$ is an isomorphism if rank $\pi_{n}(X)=1$ and α represents a generator of ${ }^{a b} \pi_{n}(X) /$ Tor $=\boldsymbol{Z}$, where $e v_{\alpha}$: Hom $\left(\pi_{n}(X), \pi_{n}\left(S^{n}\right)\right) \rightarrow \pi_{n}\left(S^{n}\right)$ is the evaluation at α, that is, $e v_{\alpha}(\theta)=\theta(\alpha)$.

Let

$$
S p i n(4 m-1) \xrightarrow{i} \operatorname{Spin}(4 m) \xrightarrow{p} S^{4 m-1}
$$

be the canonical bundle for $m \geq 1$. Then we have

$$
\begin{gathered}
\pi_{4 m-1}(\operatorname{Spin}(4 m))=\boldsymbol{Z}\left\{s_{1}\right\} \oplus \boldsymbol{Z}\left\{s_{2}\right\}, \\
\operatorname{Hom}\left(\pi_{4 m-1}(\operatorname{Spin}(4 m)), \pi_{4 m-1}\left(S^{4 m-1}\right)\right)=\boldsymbol{Z}\left\{s_{i}^{\prime}\right\} \oplus \boldsymbol{Z}\left\{s_{2}^{\prime}\right\}
\end{gathered}
$$

where s_{1} is the image under i_{*} of a generator of $\pi_{4 m-1}(\operatorname{Spin}(4 m-1))=\boldsymbol{Z}$ and s_{2} is an element such that $p_{*}\left(s_{2}\right)$ is 2 if $m \geq 3$ and 1 if $m \leq 2$ (cf., [5]); s_{j}^{\prime} is the dual element to s_{j}. Then the following completes the proof of Theorem 2.

Proposition 3.4. The number $\operatorname{cdg}(\operatorname{Spin}(4 m), 4 m-1)$ is non-zero and

$$
\operatorname{Cdg}(S p i n(4 m), 4 m-1)=\operatorname{cdg}(S p i n(4 m), 4 m-1) Z\left\{s_{1}^{\prime}\right\} \oplus c Z\left\{s_{2}^{\prime}\right\}
$$

where c is 2 if $m \geq 3$ and 1 if $m \leq 2$.
Proof. If $m \leq 2$, then $\operatorname{Spin}(4 m) \approx \operatorname{Spin}(4 m-1) \times S^{4 m-1}$ and the assertion can be obtained easily.

Suppose that $m \geq 3$. Then $s_{2}^{*}(p)=2$, hence $\operatorname{cdg}\left(s_{2}\right)=2$ by the following
lemma.
Lemma 3.5. If X is an H-space and n is odd with $n \neq 1,3,7$, then $\operatorname{cdg}(\alpha)$ is even for every $\alpha \in \pi_{n}(X)$.

To simplify notations, we set $(G, n)=(\operatorname{Spin}(4 m), 4 m-1)$. By definition, we have

$$
\operatorname{Cdg}(G, n) \subset \operatorname{cdg}\left(s_{1}\right) Z\left\{s_{1}^{\prime}\right\} \oplus 2 Z\left\{s_{2}^{\prime}\right\}
$$

Take any integers k_{1} and k_{2}. Then there exists a map $f: G \rightarrow S^{n}$ such that Cdg $(f)=\operatorname{cdg}\left(s_{1}\right) k_{1} s_{1}^{\prime}+2 j s_{2}^{\prime}$ for some integer j. Let $I: G \rightarrow G$ be the inversion, that is, $I(A)=A^{-1}$. Then Cdg of the composition of

$$
G \xrightarrow{d} G \times G \xrightarrow{1 \times f} G \times S^{n} \xrightarrow{g_{ \pm}} S^{n}
$$

is $\operatorname{cdg}\left(s_{1}\right) k_{1} s_{1}^{\prime}+(2 j \pm 2) s_{2}^{\prime}$, where d is the diagonal map, g_{+}the canonical action and $g_{-}=g_{+} \circ(I \times 1)$. Inductively we then have $\operatorname{cdg}\left(s_{1}\right) k_{1} s_{1}^{\prime}+2 k_{2} s_{2}^{\prime} \in \operatorname{Cdg}(G, n)$. Hence $\operatorname{Cdg}(G, n)=\operatorname{cdg}\left(s_{1}\right) \boldsymbol{Z}\left\{s_{1}^{\prime}\right\} \oplus 2 \boldsymbol{Z}\left\{s_{2}^{\prime}\right\}$. Also $\operatorname{cdg}\left(s_{1}\right)$ is even from Lemma 3.5, hence $\operatorname{cdg}(G, n)=\operatorname{cdg}\left(s_{1}\right) \neq 0$ from Proposition 2.3(3) and the following lemma.

Lemma 3.6. $\quad \operatorname{cdg}\left(s_{1}\right) \neq 0$.
Proof of 3.5. Let $g: X \rightarrow S^{n}$ be a map such that $g \circ \alpha=\operatorname{cdg}(\alpha) \in \pi_{n}\left(S^{n}\right)=$ \boldsymbol{Z}. Then the degree of the composition of

$$
S^{n} \xrightarrow{i_{j}} S^{n} \times S^{n} \xrightarrow{\alpha \times \alpha} X \times X \xrightarrow{\mu} X \xrightarrow{g} S^{n}
$$

is $\operatorname{cdg}(\alpha)$ for $j=1,2$, where i_{j} is the inclusion to the j-th factor and μ is the multiplication. Hence $\operatorname{cdg}(\alpha)^{2}\left[\iota_{n}, \iota_{n}\right]=\left[\operatorname{cdg}(\alpha) \iota_{n}, \operatorname{cdg}(\alpha) \iota_{n}\right]=0$, so $\operatorname{cdg}(\alpha)$ is even, because the Whitehead square $\left[\iota_{n}, \iota_{n}\right]$ of the identity map ι_{n} of S^{n} is of order 2.

Proof of 3.6. Set $n=4 m-1$. Then the homomorphism $\pi_{n}(\operatorname{Spin}(n))=$ $\boldsymbol{Z} \rightarrow \pi_{n}(\operatorname{Spin}(n+2))=\boldsymbol{Z}$ induced by the inclusion is multiplication by e, where e is 1 if $m \geq 3$ and 2 if $m \leq 2$. Thus we have $\operatorname{cdg}\left(\operatorname{Spin}(n+1), n ; s_{1}\right) \mid e \cdot \operatorname{cdg}(\operatorname{Spin}(n+$ 2), n). Since the latter number is non-zero by Proposition 3.1, so is the former.

This completes the proofs of Proposition 3.4 and Theorem 2.
Remark 3.7 ([10]). By almost the same proof as the above, we can prove that $\operatorname{Cdg}(S O(m), n)$ is a subgroup of maximal rank. By using Proposition 4.1 below, we can prove that if G is simple but not necessarily simply connected, then $\operatorname{Cdg}(G, n)$ contains a subgroup of maximal rank.

4. Other results

We give three results. See [6] and [10] for their proofs. When we study $\operatorname{Cdg}(G, n)$ for non-simply connected G, the following is useful.

Proposition 4.1. Let $q: H \rightarrow G$ be a finite covering homomorphism and m the least positive integer such that $x^{m}=1$ for all x in the kernel of q. Then we have
(1) $m \cdot \operatorname{Cdg}(H, n) \subset q_{*}^{*} \operatorname{Cdg}(G, n) \subset \operatorname{Cdg}(H, n)$,
(2) $\operatorname{cdg}(\beta)\left|\operatorname{cdg}\left(q_{*} \beta\right)\right| m \cdot \operatorname{cdg}(\beta)$ for every $\beta \in \pi_{n}(H)$,
(3) $\operatorname{cdg}(H, n)|\operatorname{cdg}(G, n)| m \cdot \operatorname{cdg}(H, n)$ for $n \geq 2$,
(4) $\operatorname{cdg}(H, 1) \mid m$.

Let $\Xi: \pi_{n}(X) \rightarrow H_{n}(X)$ be the Hurewicz homomorphism. Put $P H_{n}(X)=$ $\left\{x \in H_{n}(X) ; d_{*}(x)=x \otimes 1+1 \otimes x\right\}$, where $d: X \rightarrow X \times X$ is the diagonal map. As is easily seen, $\Xi\left(\pi_{n}(X)\right) \subset P H_{n}(X)$. It is known as a theorem of Cartan-Serre that $\Xi \otimes \boldsymbol{Q}: \pi_{*}(G) \otimes \boldsymbol{Q} \cong P H_{*}(G) \otimes \boldsymbol{Q}$. L. Simith[11] studied the problem: What is the smallest positive integer $N(G, n)$ such that $N(G, n) x$ is contained in the image of the modulo torsion Hurewicz homomorphism

$$
\Xi: \pi_{n}(G) / \text { Tor } \rightarrow P H_{n}(G) / \text { Tor }
$$

for every $x \in P H_{n}(G) /$ Tor ?
Proposition 4.2. If G is simple or simply connected, then $\operatorname{cdg}(G, n)$ is a multiple of $N(G, n)$.

Example 4.3. The number $N(G, n)$ has been determined for classical groups, G_{2} and F_{4} (see e.g., [4]). The first few values of the Smith's upper bound $N(n)$ of $N(G, n)$ are $N(3)=1, N(5)=2^{2}, N(7)=2^{4} \cdot 3, N(9)=2^{6} \cdot 3, N(11)=$ $2^{8} \cdot 3^{2} \cdot 5$ (see[11]). If G is simple and simply connected, then $N(G, 3)=1$ and cdg $(G, 3)$ is even except for $G=S^{3}$. We have $N(S U(3), 5)=\operatorname{cdg}(S U(3), 5)=2$; $N(S p(2), 7)=\operatorname{cdg}(S p(2), 7)=2^{2} \cdot 3=N(S p(3), 7) ; 2^{5} \cdot 3|\operatorname{cdg}(S p(3), 7)| 2^{8} \cdot 3 ; N$ $(S U(5), 9)=\operatorname{cdg}(S U(5), 9)=2^{3} \cdot 3 ; N\left(G_{2}, 11\right)=\operatorname{cdg}\left(G_{2}, 11\right)=2^{3} \cdot 3 \cdot 5$.

References

[1] M. Arkowitz and C.R. Curjel: The Hurewicz homomorphism and finite homotopy invariants, Trans. Amer. Math. Soc. 101 (1964), 538-551.
[2] M.C. Crabb and K. Knapp: James numbers, Math. Ann. 282 (1988), 395-422.
[3] I.M. James: Symmetric functions of several uariables, whose range and domain is a sphere, Bol. Mat. Mex. 1 (1956), 85-88.
[4] R. Kane and G. Moreno: Spherical homology classes in the bordism of Lie groups, Can. J. Math. 40 (1988), 1331-1374.
[5] M.A. Kervaire: Some nonstable homotopy groups of Lie groups, Ill.J. Math. 4 (1960), 161-169.
[6] A. Kono and H. Ōshima: Codegree of simple Lie groups-II, Osaka J. Math. 28 (1991), 129-139.
[7] M. Mimura and H. Toda: On p-equivalences and p-universal spaces, Comment. Math. Helv. 46 (1971), 87-97.
[8] H. Oshima: Remarks on the j-codegree of vector bundles, Japanese J. Math. 16 (1990), 97-117.
[9] H. Ōshima: Codegree of simple Lie groups, Osaka J. Math. 26 (1989), 759-773.
[10] H. Ōshima and K. Takahara: Codegrees and Lie groups, Mimeographed note, 1990.
[11] L. Smith: On the relation between spherical and primitive homology classes in topological groups, Topology 8 (1969), 69-80.
[12] H. Toda: Composition methods in homotopy groups of spheres, Ann. Math. Stud. 49, Princeton Univ. Press, Princeton, 1962.

Hideaki \bar{O} shima
Department of Mathematics
Osaka City University
Sugimoto, Sumiyoshi-ku
Osaka 558, Japan
Koji Takahara
Department of Mathematics
Osaka City University
Sugimoto, Sumiyoshi-ku
Osaka 558, Japan
and
Fujitsu
Miyamoto, Numazu
Shizuoka 410-03, Japan

