ON CERTAIN PROJECTIVE MODULES FOR FINITE GROUPS OF LIE TYPE

Dedicated to Professor Tosiro Tsuzuku on his 60th birthday

Yukio TSUSHIMA

(Received October 31, 1989)

1. Introduction

Let q be a power of a prime number p, F_{q} a finite field with q elements and K an algebraic closure of F_{q}. Let G_{0} be a classical linear group written in $G L(n, q)$; we are particularly interested in $S L(l+1, q), S p(2 l, q), \Omega(2 l+1, q)$, $\Omega_{ \pm 1}(2 l, q)$ and $S U(l+1, q)$. Let $V=K^{n}$, the vector space of column vectors of size n over K, and let $S t$ be the Steinberg module for G_{0}. In [8] Lusztig showed that $S t \otimes V$ is a principal indecomposable module for $G_{0}=G L(n, q)$, provided $q>2$. In this paper we shall prove this fact in all the classical linear groups, with the treatment of the case of $q=2$. Our methods rely heavily on Steinberg's tensor product theorem on the representation of semisimple algebraic groups over K. So we shall begin our arguments with a review of some standard facts about (universal) Chevalley groups over K.

For modules M, N over a ring A, we write $N\langle\oplus M$ if N is isomorphic to a direct summand of M, and $N \ll M$ if N is isomorphic to an irreducible constituen of M. We abbreviate \otimes_{K} to \otimes and denote by e_{j} the unit vector of K^{n} with 1 at the j-th entry. We refer to Borel [1], Carter [3] [4], Steinberg [10] [11] and Suzuki [12] for the general theories of Chevalley groups and their modular representations.

We mention here that our results in the cases of $S L(l+1, q)$ and $S p(2 l, q)$ were already obtained by Okuyama [9] by different methods.

2. Background materials

Let g be a simple Lie algebra over the complex field \boldsymbol{C} of type A_{l}, B_{l}, C_{l} or D_{l}, so that $\mathfrak{g} \subset \mathfrak{g l}(n, \boldsymbol{C})$ and $n=l+1,2 l+1,2 l$'s according to the order of the occurrence of the above types. Let \mathfrak{h} be the standard Cartan subalgebra of \mathfrak{g}, Φ the set of roots of \mathfrak{g} relative to $\mathfrak{h}, \Pi=\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ a simple root systme of Φ, Φ^{+}the set of positive roots of Φ with respect to Π, and $W_{\text {II }}$ the Weyl group of Φ. More generally, for $J \subset \Pi$, we let Φ_{J} be the root system with basis J and
W_{J} be the Weyl group of Φ_{J}. There is a unique $w_{0} \in W_{\text {II }}$ such that $w_{0} \Pi=-\Pi$. Let h_{α} be the coroot of $\alpha \in \Phi$ and $\left\{e_{\alpha}, h_{\beta} ; \alpha \in \Phi, \beta \in \Pi\right\}$ be a Chevalley basis of g . For simplicity we write h_{i} for $h_{\alpha_{i}}$.

Define $\lambda_{i} \in \mathfrak{b}^{*}=\operatorname{Hom}_{\boldsymbol{C}}(\mathfrak{h}, \boldsymbol{C})$ by

$$
\lambda_{i}\left(\operatorname{diag}\left(t_{1}, \cdots, t_{n}\right)\right)=t_{i} \quad(1 \leq i \leq l)
$$

where we write $\operatorname{diag}\left(t_{1}, \cdots, t_{2 l}\right)$ for $\operatorname{diag}\left(0, t_{1}, \cdots, t_{2 l}\right)$ in case g is of type B_{l}. Since each λ_{i} is a weight of \mathfrak{G} in the \mathfrak{g}-module \boldsymbol{C}^{n}, it takes integral values on all h_{α}. Let ω_{i} be the fundamental dominant weight corresponding to α_{i}, i.e., $\omega_{i}\left(h_{j}\right)=\delta_{i j}(1 \leq i, j \leq l)$, and let $X=\sum_{i=1}^{l} Z \omega_{i}$. In X we set $X^{+}=\left\{\sum_{i} m_{i} \omega_{i}\right.$; $\left.m_{i} \geq 0\right\}$ and $X_{q}=\left\{\sum_{i} m_{i} \omega_{i} ; 0 \leq m_{i} \leq q-1\right\}$.

Recall that $S L(l+1, q), \Omega(2 l+1, q), S p(2 l, q)$ and $\Omega_{+1}(2 l, q)$ are the Chevalley groups over F_{q} associated to the embedding $\mathfrak{g} \rightarrow \mathfrak{g l}(n, \boldsymbol{C})$. In order to give a unifed treatment of them with the Steinberg groups $S U(l+1, q)$ and $\Omega_{-1}(2 l, q)$ of types ${ }^{2} A_{l}$ and ${ }^{2} D_{l}$ respectively, let us consider a universal Chevalley group over K :

$$
\mathcal{G}=\left\langle x_{\alpha}(t) ; \alpha \in \Phi, t \in K\right\rangle
$$

We know that \bar{G} is a simply connected, semisimple algebraic group defined over F_{p}, which has $\tilde{H}=\left\langle h_{\alpha}(t) ; \alpha \in \Phi, t \in K^{\times}=K /\{0\}\right\rangle=\left\langle h_{i}(t) ; t \in K^{\times}, 1 \leq i \leq l\right\rangle$ and $B=\left\langle\hat{H}, x_{\alpha}(t) ; \alpha \in \Phi, t \in K\right\rangle$ as a maximal torus and a Borel subgroup resectively, where $w_{\alpha}(t)=x_{\alpha}(t) x_{-\alpha}\left(-t^{-1}\right) x_{\alpha}(t)$ and $h_{\alpha}(t)=w_{\alpha}(t) w_{\alpha}(-1)$. Also, we have that $N_{\tilde{G}}(\tilde{H})=\left\langle w_{\alpha}(t) ; \alpha \in \Phi, t \in K^{\times}\right\rangle$with factor group modulo \tilde{H} isomorphic to $W_{\text {II }}$ via $w_{\alpha}(1) \mapsto w_{\alpha}$, where w_{α} is the reflection in the hyperplane orthogonal to α.

Let $X(\tilde{H})$ be the group of rational characters of \vec{H}. For $\lambda \in X$, we define $\tilde{\lambda} \in X(\tilde{H})$ by $\tilde{\lambda}\left(h_{a}(t)\right)=t^{\lambda\left(h_{\infty}\right)}$. Then there is an isomorphism $X \simeq X(\tilde{H})$ sending λ onto $\tilde{\lambda}$, which is compatible with the actions of the Weyl group $W_{\text {II }}$ on both sides. The set of weights of \tilde{H} in $V=K^{n}$ is given by

$$
\begin{aligned}
& \left\{\tilde{\lambda}_{i} ; 1 \leq i \leq l+1\right\} \text { if } \mathrm{g} \text { is of type } A_{l} \\
& \left\{0, \pm \tilde{\lambda}_{i} ; 1 \leq i \leq l\right\} \text { if } \mathrm{g} \text { is of type } B_{l} \\
& \left\{ \pm \tilde{\lambda}_{i} ; 1 \leq i \leq l\right\} \text { if } \mathrm{g} \text { is of type } C_{l} \text { or } D_{l}
\end{aligned}
$$

The weight λ_{1} coincides with the first fundamental dominant weight ω_{1} in each case.
Throughout we fix a Frobenius endomorphism σ of \boldsymbol{G} such that

$$
\sigma\left(x_{\alpha}(t)\right)=x_{\tau(\alpha)}\left(\varepsilon_{\alpha} t^{q}\right)
$$

where either τ is the identity and all $\varepsilon_{\alpha}=1$, or else τ is the symmetry of order 2
on the Dynkin diagram of type A_{l} or D_{l} and $\varepsilon_{\alpha}= \pm 1$. Let $G=\mathcal{G}^{\sigma}$, the finite subgroup of τ-stable points of \tilde{G}, and also $H=\tilde{H}^{\sigma}, B=\widetilde{B}^{\sigma}$. Let G_{0} be one of the classlcal linear groups $S L(l+1, q), \Omega(2 l+1, q), S p(2 l, q), \Omega_{ \pm 1}(2 l, q)$ and $S U(l+1, q)$. There is a natural epimorphism $\psi: G \rightarrow G_{0}$, whose kernel is a central subgroup of G (provided, of course, that the underlying Lie algebras of them are the same). In this sense we often regard a G_{0}-module as a G-module.

For each $\lambda \in X^{+}$, there is a simple \tilde{G}-module $L(\lambda)$ with highest weight $\tilde{\lambda}$, which means that $\tilde{\lambda}$ is a weight of \tilde{H} in $\left.L(\lambda)\right|_{\tilde{H}}$ (the restriction to \tilde{H}) and that all other weights are of the form $\tilde{\lambda}-\sum_{i} m_{i} \tilde{\alpha}_{i}$ with non-negative integers m_{i}. The set $\left\{L(\lambda) ; \lambda \in X^{+}\right\}$provides a complete set of representatives of the underlying G-modules for the non-equivalent irreducible rational representations of \tilde{G} over K. Furthermore the set $\left\{L(\lambda)^{\prime}=\left.L(\lambda)\right|_{G} ; \lambda \in X_{q}\right\}$ gives a complete set of representatives of non-isomorphic simple G-modules. The canonical module K^{n} for G_{0} is, when considered as a G-module, isomorphic to $L\left(\omega_{1}\right)^{\prime}$ and the Steinberg module to $L((q-1) \rho)^{\prime}$, where $\rho=\sum_{i=1}^{l} \omega_{i}$.

Remark. In case that g is of type B_{l} and $p=2$, we have

$$
G_{0}=\Omega(2 l+1, q)=\left[\begin{array}{c|c}
1 & * \\
\hline 0 & S p(2 l, q)
\end{array}\right] \simeq S p(2 l, q)
$$

and $V=K^{2 l+1}$ decomposes into $V=K \oplus K^{2 l}$ in a natural manner. Hence the canonical module for $\Omega(2 l+1, q)$ in this case has been and will be understood to be the one $K^{2 l}$ for $S p(2 l, q)$.

For $\lambda, \mu \in X$ we write $\lambda \leq \mu$, if $\mu-\lambda$ is a non-negative integral linear combination of the simple roots α_{i}. Also, following Jantzen, we write $\lambda \leq_{Q} \mu$, if $\mu-\lambda$ is a non-negative rational linear combination of the simple roots α_{i}. We remark that given $\mu \in X^{+}$, there are only a finite number of $\lambda \in X^{+}$such that $\lambda \leq_{\boldsymbol{Q}} \mu$. In particular, the induction over $\leq_{\boldsymbol{Q}}$ may be carried out. The following well-known fact will be used throughout this paper.

Lemma 1. Let $\lambda, \mu, \gamma \in X^{+}$.
(1) The K-dual $L(\lambda)^{*}$ of $L(\lambda)$ is isomorphic to $L\left(-w_{0} \lambda\right)$.
(2) If $L(\gamma) \ll L(\lambda) \otimes L(\mu)$, then $\gamma \leq \lambda+\mu$.
(3) $L(\lambda+\mu)$ appears as a constituent of $L(\lambda) \otimes L(\mu)$ with multiplicity one. If $\lambda+\mu \in X$, then the same is true as G-modules.

For $\lambda \in X_{q}$, let $\lambda^{0}=(q-1) \rho+w_{0} \lambda \in X_{q}$ and let $U(\lambda)$ be a projective cover of the simple G-module $L(\lambda)^{\prime}$.

The next lemma is noted by Jantzen [6].
Lemma 2. Suppose that G is a universal Chavalley group over F_{q}. For
$\lambda \in X_{q}$, we have

$$
S t \otimes L(\lambda)^{\prime} \simeq U\left(\lambda^{0}\right) \oplus \underset{\mu}{\oplus} m(\lambda, \mu) U(\mu),
$$

where the sum is taken over those $\mu \in X_{q}$ such that $\lambda^{0}<_{Q} \mu$, and $m(\lambda, \mu)$ denotes the multiplicity of $U(\mu)$, so that

$$
\begin{aligned}
m(\lambda, \mu) & =\operatorname{dim} \operatorname{Hom}_{K G}\left(L(\mu)^{\prime}, S t \otimes L(\lambda)^{\prime}\right) \\
& =\operatorname{dim} \operatorname{Hom}_{K G}\left(L(\mu)^{\prime} \otimes L\left(-w_{0} \lambda\right)^{\prime}, S t\right)
\end{aligned}
$$

This result is valid for the universal Steinberg group $\Omega_{-1}(2 l, q)(l \geq 4)$, too. In fact, a slight modification of Jantzen's argument covers the proof of this case. To see this, it is sufficient, by Lemma 1, to show the following lemma.

Lemma 3. Let G be a universal Chevalley group over F_{q} or a universal Steinberg group over $F_{q^{2}}$ of type ${ }^{2} D_{l}(l \geq 4)$. Let $\gamma \in X_{q}$ and $\lambda, \mu \in X^{+}$. Then, if $L(\gamma)^{\prime} \ll L(\lambda)^{\prime} \otimes L(\mu)^{\prime}$, we have $\gamma \leq_{Q} \lambda+\mu$.

Proof. We argue by induction over $\leq_{\boldsymbol{Q}}$. There is $\nu \in X^{+}$such that $L(\nu) \ll L(\lambda) \otimes L(\mu)$ and that $L(\gamma)^{\prime} \ll L(\nu)^{\prime}$. If $\nu \in X_{q}$, then $\gamma=\nu \leq \lambda+\mu$. Suppose that $\nu \notin X_{q}$, and write $\nu=\nu_{0}+q \nu_{1}$ with $\nu_{0} \in X_{q}, \nu_{1} \in X^{+}$. Since $L\left(q \nu_{1}\right) \simeq$ $L\left(\tau \nu_{1}\right) \circ \sigma$, we get by Steinberg's tensor product theorem (cf. Steinberg [11] Theorem 13.1)

$$
L(\nu) \simeq L\left(\nu_{0}\right) \otimes L\left(\tau \nu_{1}\right) \circ \sigma
$$

and since σ is trivial on $G=\tilde{G}^{\sigma}$, we have

$$
L(\nu)^{\prime} \simeq L\left(\nu_{0}\right)^{\prime} \otimes L\left(\tau \nu_{1}\right)^{\prime} \gg L(\gamma)^{\prime}
$$

We claim that $\nu_{0}+\tau \nu_{1}<_{Q} \nu$, which is trivial if τ is the identity. Suppose that τ is the symmetry of order 2 on the Dynkin diagram of type $D_{l}(l \geq 4)$, so $\tau(i)=i$ $(1 \leq i \leq l-2), \tau(l-1)=l$ and $\tau(l)=l-1$. Write $\nu_{1}=\sum_{i} b_{i} \omega_{i}$. Then
$\nu-\left(\nu_{0}+\tau \nu_{1}\right)=q \nu_{1}-\tau \nu_{1}=\sum_{i=1}^{l-2}(q-1) b_{i} \omega_{i}+\left(q b_{l-1}-b_{l}\right) \omega_{l-1}+\left(q b_{l}-b_{l-1}\right) \omega_{l}$.
Expressing ω_{l-1} and ω_{l} as linear combinations of $\alpha_{1}, \cdots, \alpha_{l}$ (cf. Bourbaki [2]), we find easily that

$$
\left(q b_{l-1}-b_{l}\right) \omega_{l-1}+\left(q b_{l}-b_{l-1}\right) \omega_{l Q} \geq 0
$$

provided $l \geq 4$. This proves the claim and we have that $\nu_{0}+\tau \nu_{1}<_{Q} \lambda+\mu$. Then by the inductive hypothesis we get that $\gamma \leq_{Q} \nu_{0}+\tau \nu<_{Q} \lambda+\mu$, completing the proof of the lemma.

The above lemma (hence Lemma 2) still holds for the universal Steinberg groups of type ${ }^{3} D_{4}$ and ${ }^{2} E_{6}$, but is false for $S U(l+1, q)$. For instance, we have
$L\left((q-1) \omega_{1}\right) \otimes L\left(\omega_{1}\right) \gg L\left(q \omega_{1}\right)=L\left(\omega_{l}\right) \circ \sigma$ and hence $L\left((q-1) \omega_{1}\right)^{\prime} \otimes L\left(\omega_{1}\right)^{\prime} \gg L\left(\omega_{l}\right)^{\prime}$, But it is not generally true that $\omega_{l} \leq_{Q} q \omega_{1}$. In this case, however, we have an alternative version, which is weaker than the ordering $\leq_{\boldsymbol{Q}}$, but sufficient for our purpose. Namely we have

Lemma 4. Suppose $G_{0}=S U(l+1, q)$. For $\lambda=\sum a_{i} \omega_{i} \in X$, let $|\lambda|=$ $\sum_{i} a_{i}$.
(1) If $\lambda, \mu \in X$ and $\lambda \leq \mu$, then $|\lambda| \leq|\mu|$.
(2) Let $\gamma \in X_{q}$ and $\lambda, \mu \in X^{+}$.
(a) If $L(\gamma)^{\prime} \ll L(\lambda)^{\prime} \otimes L(\mu)^{\prime}$, then $|\gamma| \leq|\lambda+\mu|$.
(b) If $L(\gamma)^{\prime} \ll L(\lambda)^{\prime}$ and $|\gamma|=|\lambda|$, then $\gamma=\lambda$.

Proof. (1) It suffices to show that if $\lambda \geq 0$, then $|\lambda| \geq 0$ (this is not necessarily true for other types of Lie algebras). We write $\lambda=\sum_{i} a_{i} \omega_{i}$ with $a_{i} \in \boldsymbol{Z}$. The coefficients of α_{1} and α_{l} in λ are gievn by

$$
1 / l+1\left(l a_{1}+(l-1) a_{2}+\cdots+a_{l}\right)
$$

and

$$
1 / l+1\left(a_{1}+2 a_{2}+\cdots+l a_{l}\right)
$$

respectively. Both are non-negative integers by assumption, so that by adding them, we get $|\lambda|=\sum_{i} a_{i} \geq 0$.

Part (a) of (2) can be proved similarly as Lemma 3 via induction on $|\lambda+\mu|$, using (1). For the proof of (b), write $\lambda=\lambda_{0}+q \lambda_{1}$ with $\lambda_{0} \in X_{q}$ and $\lambda_{1} \in X^{+}$. Then $L(\lambda)^{\prime} \simeq L\left(\lambda_{0}\right)^{\prime} \otimes L\left(\tau \lambda_{1}\right)^{\prime} \gg L(\gamma)^{\prime}$, and so $|\gamma| \leq\left|\lambda_{0}+\tau \lambda_{1}\right| \leq\left|\lambda_{0}+q \lambda_{1}\right|=|\lambda|$. Hence $\left|\lambda_{0}+\tau \lambda_{1}\right|=\left|\lambda_{0}+q \lambda_{1}\right|$, and thus $\lambda_{1}=0$. Therefore $\lambda=\lambda_{0} \in X_{q}$, whence $\lambda=\gamma$.

To apply Lemma 2 to $S t \otimes V$, we need the following fact.
Lemma 5. Let g be as above.
(1) $\delta=(q-1) \rho$ is the only weight in X_{q} such that $\omega_{1}^{0}<_{Q} \delta$, except for type B_{2}, in which case ω_{2}^{0} also satisfies that $\omega_{1}^{0}<_{Q} \omega_{2}^{0}$.
(2) If \mathfrak{g} is of type A_{l}, then (1) is true for all ω_{k} in place of $\omega_{1}(1 \leq k \leq l)$.

Proof. Although we have to distinguish the cases, the proof is easy. Suppose that $\mu=\sum_{i} c_{i} \omega_{i} \in X_{q}$ satisfies $\omega_{1}^{0}<_{q} \mu$. If g is of type other than A_{l}, then $w_{0} \omega_{1}=-\omega_{1}$, so that

$$
\mu-\omega_{1}^{0}=\left(c_{1}-(q-2)\right) \omega_{1}+\sum_{i \geq 2}\left(c_{i}-(q-1)\right) \omega_{i}>0
$$

Since $0 \leq c_{i} \leq q-1$, we find readily $c_{1}=q-1$. Expressing each ω_{i} as a (nonnegative) rational linear combinations of the simple roots and looking at the coefficients of α_{l-1} and α_{l}, we find easily $c_{i}=q-1$ for all i, except for the case
of type B_{2}. In that case there is one exception that $\omega_{1}^{0}<_{Q} \omega_{2}^{0}$.
Now, let g is of type A_{l}. Then $w_{0} \omega_{k}=-\omega_{l+1-k}$ for all $k \leq l$ and so

$$
\mu-\omega_{k}^{0}=\left(c_{l+1-k}-(q-2)\right) \omega_{l+1-k}+\sum_{l \neq l+1-k}\left(c_{i}-(q-1)\right) \omega_{i}>0,
$$

whence we have $c_{l+1-k}=q-1$. Suppose that $c_{i}-(q-1)<0$ for some i. If $k>l-i+1$, then $i / l+1>l+1-k / l+1$. Since $i / l+1$ is the coefficient of α_{l} in ω_{i}, this implies that the coefficient of α_{l}, in $\mu-\omega_{k}^{0}$ is negative, contradicting the assumption. If, on the other hand, $k<l-i+1$, then we find that the coefficient of α_{1} in $\mu-\omega_{k}^{0}$ is negative again, contradicting the assumption. Therefore we have $c_{i}=q-1$ for all i. This completes the proof of the lemma.

The last preliminary lemma is the following.
Lemma 6. Let G_{0} be $S L(l+1, q), \Omega(2 l+1, q), S p(2 l, q), \Omega_{ \pm 1}(2 l, q)$ or $S U(l+1, q)$. Then we have
(1) $S t \otimes V \simeq U\left(\omega_{1}^{0}\right) \oplus m_{1} S t \quad\left(m_{1} \geq 0\right)$.
(2) If $G_{0}=S L(l+1, q)$ or $S U(l+1, q)$, then for all $k \leq l$
$S t \otimes L\left(\omega_{k}\right)^{\prime} \simeq U\left(\omega_{k}^{0}\right) \oplus m_{k} S t \quad\left(m_{k} \geq 0\right)$.
Proof. (1) By Lemmas 2 and 5, we need only prove the assertion in the cae case of $G_{0}=\Omega(5, q)$ with odd prime power q. We want to show that $L\left(\omega_{2}^{0}\right)^{\prime}$ is not a constituent of $S t \otimes V$. Suppose the contrary. Then there exists $\lambda=a_{1} \omega_{1}+a_{2} \omega_{2} \in X^{+}$such that $L(\lambda) \ll S t \otimes L\left(\omega_{1}\right)$ and that $L\left(\omega_{2}^{0}\right)^{\prime} \ll L(\lambda)^{\prime}$. In particular we have $\lambda \leq(q-1) \rho+\omega_{1}$. Since $\omega_{1}=\alpha_{1}+\alpha_{2}$ and $\omega_{2}=1 / 2 \alpha_{1}+\alpha_{2}$, we find from the above that $\left(q-a_{1}\right)+1 / 2\left(q-1-a_{2}\right)$ is a non-negative integer and that

$$
2 a_{1}+a_{2} \leq 3 q-1, \quad a_{1}+a_{2} \leq 2 q-1
$$

If $a_{1}, a_{2} \leq q-1$, then $\lambda=\omega_{2}^{0} \leq(q-1) \rho+\omega_{1}$, so that $\omega_{1}+\omega_{2} \geq 0$, which is impossible. If $a_{1} \geq q$, then $a_{2} \leq q-1$. Write $a_{1}=q+b$ with $0 \leq b \leq q-1$. Then

$$
L(\lambda)^{\prime}=L\left(b \omega_{1}+a_{2} \omega_{2}+q \omega_{1}\right)^{\prime} \simeq L\left(b \omega_{1}+a_{2} \omega_{2}\right)^{\prime} \otimes L\left(\omega_{1}\right)^{\prime} \gg L\left(\omega_{2}^{0}\right)^{\prime}
$$

whence $(b+1) \omega_{1}+a_{2} \omega_{2} \geq \omega_{2}^{0}$ and we have

$$
\begin{aligned}
& (b+2-q)+1 / 2\left(a_{2}-q+2\right) \geq 0 \\
& (b+2-q)+\left(a_{2}-q+2\right) \geq 0
\end{aligned}
$$

From the first inequality we have $2 a_{1}+a_{2} \geq 5 q-6$, so that $3 q-1 \geq 5 q-6$, i.e., $q \leq 2$, contradicting the assumption. If $a_{2} \geq q$, then $a_{1} \leq q-1$. Write $a_{2}=q+c$ with $0 \leq c \leq q 1$. Then

$$
L(\lambda)^{\prime} \simeq L\left(a_{1} \omega_{2}+c \omega_{2}\right)^{\prime} \otimes L\left(\omega_{2}\right)^{\prime} \gg L\left(\omega_{2}^{0}\right)^{\prime}
$$

whence $a_{1} \omega_{1}+(c+1) \omega_{2} \geq \omega_{2}^{0}$ and we have

$$
\begin{aligned}
& a_{1}-(q-1)+1 / 2(c-q+3) \geq 0 \\
& a_{1}-(q-1)+(c-q+3) \geq 0
\end{aligned}
$$

From the second inequality we have $a_{1}+a_{2} \geq 3 q-4$, so that $2 q-1 \geq 3 q-4$, i.e., $q \leq 3$. But the case that $q=3$ occurs if and only if $a_{1}=q-1=2$ and $a_{2}=$ $q=3$. Then $q-a_{1}+1 / 2\left(q-1-a_{2}\right)=1 / 2$ is not an integer. As noted above, this is a contradiction.

For the proof of (2), we may assume $G_{0}=S U(l+1, q)$. Take $\mu=\sum_{i} a_{i} \omega_{i} \in$ X_{q}. We want to show that if $S t=L((q-1) \rho)^{\prime} \ll L(\mu)^{\prime} \otimes L\left(-w_{0} \omega_{k}\right)^{\prime}$, then $\mu=\omega_{k}^{0}$ or $(q-1) \rho$. There is $\gamma \in X^{+}$such that $L(\gamma) \ll L(\mu) \otimes L\left(-w_{0} \omega_{k}\right)$ and that $S t \ll L(\gamma)^{\prime}$. Since $\gamma \leq \mu+\left(-w_{0} \omega_{k}\right)=\mu+\omega_{\tau(k)}$, we have by Lemma 4

$$
(q-1) l \leq|\gamma| \sum_{i} a_{i}+1 \leq(q-1) l+1
$$

If $a_{i}=q-1$ for all i, we have $\mu=(q-1) \rho$; otherwise we have $(q-1) l=|\gamma|=$ $\sum_{i} a_{i}+1$. This implies that $\mu=(q-1) \rho-\omega_{j}$ for some $j \leq l$ and we have $\gamma=$ ($q-1$) ρ by Lemma 4. Since $\gamma \leq \mu+\omega_{\tau(k)}$ we have $\omega_{\tau(k)} \geq \omega_{j}$ from the above, whence $j=\tau(k)$. Therefore $\mu=(q-1) \rho-\omega_{\tau(k)}=\omega_{k}^{0}$ as desired.

For convenience of later arguments, we list here the standard unipotent elements $x_{i}(t)$ of each Chevalley group G_{0} corresponding to the simple root α_{i} (cf. Carter [3]). I is the identity matrix and $e_{i j}$ the matrix unit. We remark that the element $x_{-i}(t)$ corresponding to $-\alpha_{i}$ is given by ${ }^{t} x_{i}(t)$, except for $x_{-l}(t) \in \Omega(2 l+1, q)$.
[$\left.\mathrm{A}_{l}\right] \quad G_{0}=S L(l+1, q)(=G)$.

$$
\begin{aligned}
& \Pi=\left\{\alpha_{1}=\lambda_{1}-\lambda_{2}, \cdots, \alpha_{l}=\lambda_{l}-\lambda_{l+1}\right\} \\
& x_{i}(t)=I+t e_{i, i+1}
\end{aligned} \quad(1 \leq i \leq l) .
$$

$\left[\mathrm{B}_{l}\right] \quad G_{0}=\Omega(2 l+1, q)$

$$
\begin{aligned}
& \Pi=\left\{\alpha_{1}=\lambda_{1}-\lambda_{2}, \cdots, \alpha_{l-1}=\lambda_{l-1}-\lambda_{l}, \alpha_{l}=\lambda_{l}\right\} \\
& x_{i}(t)=I+t\left(e_{i, i+1}-e_{-(i+1),-i}\right) \quad(1 \leq i \leq l-1) \\
& x_{l}(t)=I+t\left(2 e_{l, 0}-e_{0,-l}\right)-t^{2} e_{l,-l}
\end{aligned}
$$

(Rows and columns are numbered $0,1, \cdots, l,-1, \cdots,-l$.)
$\left[\mathrm{C}_{l}\right] \quad G_{0}=S p(2 l, q)(=G)$

$$
\begin{aligned}
& \Pi=\left\{\alpha_{1}=\lambda_{1}-\lambda_{2}, \cdots, \alpha_{l-1}=\lambda_{l-1}-\lambda_{l}, \alpha_{l}=2 \lambda_{l}\right\} \\
& x_{i}(t)=I+t\left(e_{i, i+1}-e_{-(i+1),-i}\right) \quad(1 \leq i \leq l-1) \\
& x_{l}(t)=I+t e_{l,-l} .
\end{aligned}
$$

$\left[\mathrm{D}_{l}\right] \quad G_{0}=\Omega_{+1}(2 l, q)$

$$
\begin{aligned}
& \Pi=\left\{\alpha_{1}=\lambda_{1}-\lambda_{2}, \cdots, \alpha_{l-1}=\lambda_{l-1}-\lambda_{l}, \alpha_{l}=\lambda_{l-1}+\lambda_{l}\right\} \\
& x_{i}(t)=I+t\left(e_{i, i+1}-e_{-(i+1),-i}\right) \quad(1 \leq i \leq l-1) \\
& x_{l}(t)=I+t\left(e_{l-1,-l}-e_{l,-(l-1)}\right)
\end{aligned}
$$

For $J \subset \Pi$, let $G_{J}=\left\langle x_{\alpha}(t) ; \alpha \in \Phi_{J}, t \in F_{q}\right\rangle \subset G_{0}$. This occupies parts of the main diagonal blocks of G_{0}. If I and J are mutually orthogonal subsets of Π, then $G_{I \cup J}=G_{I} \times G_{J}$.

The action of $h_{j}(t)$ on the unit vectors $e_{ \pm i}(1 \leq i \leq l)$ of V is written as

$$
\begin{aligned}
& h_{j}(t) e_{ \pm i}=t^{ \pm \lambda_{i}\left(h_{j}\right)} e_{ \pm i} ; \\
& h_{j}(t) e_{0}=e_{0} \quad(\text { only for } \Omega(2 l+1, q)),
\end{aligned}
$$

where in the case of $S L(l+1, q)$ no e_{-i} appears, but e_{l+1} is possible instead.
The standard diagonal subgroups H_{1} and H_{2} of the universal Steinberg groups of type ${ }^{2} A_{l}$ and ${ }^{2} D_{l}$ are as follows respectively:

$$
\begin{aligned}
& H_{1}=\left\langle h_{i}(t) h_{l+1-i}\left(t^{q}\right) ; t \in F_{\alpha^{2}}, \quad 1 \leq i \leq l\right\rangle, \\
& H_{2}=\left\langle h_{i}(u), h_{l-1}(t) h_{l}\left(t^{q}\right) ; u \in F_{q}^{\times}, t \in F_{q^{2}}, \quad 1 \leq i \leq l-2\right\rangle .
\end{aligned}
$$

3. Reduction to Levi subgroups

Let G be as before. We consider G as a group with a split (B, N)-pair (with $\left.B=\tilde{H}^{\sigma}, N=N_{\widetilde{G}}(\tilde{H})^{\sigma}\right)$; see $\S 1.18$ of Carter [4], which will be referred to for the general theory of groups with a (B, N)-pair. Our notations are mostly the same as in the book.

For a τ-invariant subset J of Π, let P_{J}, L_{J}, and $S t_{L_{J}}$ be the standard parabolic subgroup $\left(\tilde{B} W_{J} \tilde{B}\right)^{\sigma}$, the Levi subgroup $\left\langle\tilde{H}, x_{\alpha}(t) ; \alpha \in \Phi_{J}, t \in K\right\rangle^{\sigma}$ of P_{J}, and the Steinberg character of L_{J} respectively. As a complex character of $G, S t$ is defined by

$$
S t=\sum_{J}(-1)^{|J / \tau|}\left(1_{P_{J}}\right)^{G}
$$

where J runs over the τ-invariant subsets of Π and $|J / \tau|$ denotes the number of the τ-orbits on J. We know that $\left.S t\right|_{P_{J}}=\left(S t_{L_{J}}\right)^{P_{J}}$ and $\left(S t,\left(1_{B}\right)^{G}\right)=1$. In particular, it follows that if $J=\phi$, then $L_{\phi}=H=\tilde{H}^{\sigma}$ and $S t_{H}=1_{H}$. Also we have $\left.S t\right|_{B} \simeq\left(K_{H}\right)^{B}$ as $K B$-modules, which give a principal indecomposable $K B$-module corresponding to the trivial module, since H is a p-complement of B. Let be φ the Brauer character defined by $V=K^{n}$. Since $S t$ is projective, we see, with the notation of Lemma 6, that $m_{1}=\operatorname{dim} \operatorname{Hom}_{K G}(S t, S t \otimes V)$ is just the inner product ($S t, S t \varphi$) of the Brauer characters. Thus

$$
\begin{aligned}
m_{1} & =\left(S t, \sum_{J}(-1)^{|J / \tau|}\left(\left.\varphi\right|_{P_{J}}\right)^{G}\right)=\sum_{J}(-1)^{|J / \tau|}\left(\left.S t\right|_{P_{J}},\left.\varphi\right|_{P_{J}}\right) \\
& =\sum_{J}(-1)^{|J / \tau|}\left(S t_{L_{J}},\left.\varphi\right|_{L_{J}}\right)
\end{aligned}
$$

We put $m_{J}=\left(S t_{L_{J}},\left.\varphi\right|_{L_{J}}\right)=\operatorname{dim} \operatorname{Hom}_{K L_{J}}\left(S t_{L_{J}},\left.V\right|_{L_{J}}\right)$. We now prove

Theorem 1. Suppose $q \geq 3$. Then we have

$$
S t \otimes V \simeq\left\{\begin{array}{l}
U\left(\omega_{1}^{0}\right) \text { for } S L(l+1, q), S p(2 l, q), \Omega_{ \pm 1}(2 l, q) \text { and } S U(l+1, q) \\
U\left(\omega_{1}^{0}\right) \oplus S t \text { for } \Omega(2 l+1, q)
\end{array}\right.
$$

Proof. We want to show $m_{J}=0$ for any τ-invariant subset J of Π. Suppose to the contrary that $m_{J} \neq 0$ for some J. Since $S t_{L_{J}}$ is injective, it follows that $S t_{L_{J}}\left\langle\left.\oplus V\right|_{L_{J}}\right.$ and hence V contains a nonzero element fixed under H. But this is clearly impossible in the groups $S L(l+1, q), S p(2 l, q), \Omega_{ \pm 1}(2 l, q)$ and $S U(l+1, q)$, provided $q \geq 3$. So let us assume that $G_{0}=\Omega(2 l+1, q)$ with $p>2$. Then the first unit vector e_{0} is a unique element, up to scalar multiples, fixed under H. If $J \nexists \alpha_{l}$, then $L_{J}=\left\langle H, x_{\alpha}(t) ; \alpha \in \Phi_{J}, t \in F_{q}\right\rangle$ is mapped under $\psi: G \rightarrow G_{0}$ into the set of the elements of the form $\left[\left.\frac{1}{0} \right\rvert\, \frac{0}{*}\right]$. Hence $V=K e_{0} \oplus W$ ($W=K^{2 l}$) is a direct sum as a $K L_{J}$-module. If $J=\phi$, then $L_{J}=H$ and $S t_{H}=1_{H}$, hence $m_{\phi}=1$. If, on the other hand, $J \neq \phi$ and $S t_{L_{J}}\left\langle\left.\oplus V\right|_{L_{J}}\right.$, then $S t_{L_{J}}<\oplus W$. This is impossible because $K e_{0} \cap W=0$ and thus $m_{J}=0$. If $J \ni \alpha_{l}$, then $x_{l}(t)$ does not fix e_{0}, so that no nonzero element of V is stable under the subgroup $B_{J}=\left\langle H, x_{\sigma}(t) ; \alpha \in \Phi_{J}^{+}, t \in F_{q}\right\rangle$ of L_{J}, and we have again $m_{J}=0$. (Remember that L_{J} has a split (B_{J}, N_{J})-pair (Carter [4] Proposition 2.6.3).)

Now, we concentrate on $G_{0}=S L(l+1, q)$ or $S U(l+1, q)$. For $k \leq l$, we know that $L\left(\omega_{k}\right)^{\prime} \simeq{ }_{\wedge}^{k} V$, the module of skew-symmetric tensors of degree k (cf. Wong [13]). Using Lemma 6(2), we prove

Theorem 2. Let $G_{0}=S L(l+1, q)$ or $S U(l+1, q)$ with $q \geq 3$. Then we have

$$
S t \otimes \stackrel{k}{\wedge} V \simeq U\left(\omega_{k}^{0}\right) \quad \text { for all } \quad k \leq l
$$

Proof. The weight of the standard diagonal subgroup H of G_{0} in $\stackrel{k}{\wedge} V$ are of the form $\tilde{\delta}$ for some $\delta=\lambda_{p_{1}}+\cdots+\lambda_{p_{k}} \in X$ with $1 \leq p_{1} \leq \cdots<p_{k} \leq l+1$. We show that $\tilde{\delta}$ is not trivial on H. We may assume that $p_{k} \leq l$, because $\lambda_{l+1}=$ $-\left(\lambda_{1}+\cdots+\lambda_{l}\right)$. If $G_{0}=S L(l+1, q), H=\left\langle h_{i}(t) ; t \in F_{q}^{\times}, 1 \leq i \leq l\right\rangle$ and $\delta\left(h_{p_{k}}\right)=$ $2\left(\delta, \alpha_{p_{k}}\right) /\left(\alpha_{p_{k}}, \alpha_{p_{k}}\right)=\left(\delta, \lambda_{p_{k}}-\lambda_{p_{k}+1}\right)=1$. If $G_{0}=S U(l+1, q)$, then, by a similar computation, we have

$$
\begin{aligned}
& \delta\left(h_{p_{k}}+q h_{l+1-p_{k}}\right)=1, \quad \text { if } \quad p_{k}<l+1 / 2 \\
& \delta\left(h_{p_{k}}+q h_{l+1-p_{k}}\right) \in\{1,1 \pm q\}, \quad \text { if } \quad p_{k} \geq l+1 / 2 .
\end{aligned}
$$

Therefore, with the notation at the end of the section $2, \tilde{\delta}$ is not trivial on H_{1}, provided $q \geq 3$, i.e., H_{1} has no fixed point on $\wedge^{k} V$ other than zero. Since the
same formula as m_{1} written above Theorem 1 holds for m_{k}, with V replaced by \wedge ^ V, Theorem 2 is now immediate.

4. Case of $\boldsymbol{q}=2$

In this section we shall discuss the case of $q=2$ and determine the multiplicity m_{1} of $S t$ in $S \otimes V$. This will be done for $G_{0}=S U(l+1,2)$ in the next section. In the remaining linear groups, it is clear that $m_{1} \geq 1$; for $S t \otimes V=$ $L(\rho)^{\prime} \otimes L\left(\omega_{1}\right)^{\prime} \gg L\left(\rho+\omega_{1}\right)^{\prime}=\left(L\left(\rho-\omega_{1}\right) \otimes L\left(\omega_{1}\right)\right)^{\prime} \gg L(\rho)^{\prime}=S t$. Actually we have $m_{1}=1$ as will be shown below.

We first assume that $G_{0}=S L(l+1,2), S p(2 l, 2)$ or $\Omega_{+1}(2 l, 2)$, and compute $m_{J}=\operatorname{dim} \operatorname{Hom}_{K L_{J}}\left(S t_{L_{J}},\left.V\right|_{L_{J}}\right)$ for a non-empty subset J of Π. Let $J=\bigcup_{i=1}^{r} J_{i}$ be the partition into the connected components J_{i} of J. Here, for certain technical reason, we suppose in the case of $\Omega_{+1}(2 l, 2)$ that α_{l-1} and α_{l} are connected, whenever J contains both. Since $H=1, G_{J}=L_{J}$ for all $J \subset \Pi$ and so $L_{J}=L_{J_{1}} \times \cdots \times L_{J_{r}}$. We write L_{i} for $L_{J_{i}}$ for simplicity. Corresponding to this direct product, we have

$$
V=V_{1} \oplus \cdots \oplus V_{r} \oplus U
$$

in which each L_{i} acts on V_{i} in a natural manner, but trivially on other V_{j} and U. For example, if $J=\left\{\alpha_{1}\right\}$ and $G_{0}=S p(2 l, 2), V=V_{1} \oplus U$ with $V_{1}=K e_{1} \oplus$ $K e_{2} \oplus K e_{-1} \oplus K e_{-2}$ and $U=\oplus_{j} K e_{j}(j \neq \pm 1, \pm 2)$ (note that if $G_{0}=\Omega_{+1}(2 l, 2)$, then $L_{\left(\alpha_{l-1}\right)}$ and $L_{\left\{\alpha_{l}\right\}}$ act non-trivially on the same subspace $K e_{l-1} \oplus K e_{l} \oplus K e_{-(l-1)} \oplus$ $K e_{-l}$, for this reason α_{l-1} and α_{l} are supposed to be connected). We see that $\operatorname{dim} V_{i}$ is either $\left|J_{i}\right|+1,2\left|J_{i}\right|$ or $2\left(\left|J_{i}\right|+1\right)$. If $S t_{L_{J}}\left\langle\left.\oplus V\right|_{L_{J}}\right.$, then $S t_{L_{J}}<\oplus \oplus_{i=1}^{r} V_{i}$ and hence $S t_{L_{J}}\left\langle\oplus V_{j}\right.$ for a unique $j \leq r$. But since $S t_{L_{J}}={\underset{i=1}{r} S t_{L_{i}}, ~}_{\text {, }}$ this forces $r=1$. Recall that $\operatorname{dim} S t_{L_{J}}=2^{a}$, where $a=\left|\Phi_{J}^{+}\right|$. Hence

$$
\begin{equation*}
2^{a} \leq \operatorname{dim} V_{1} \leq 2(|J|+1) \tag{*}
\end{equation*}
$$

Suppose for the time being that $J \neq\left\{\alpha_{l-1}, \alpha_{l}\right\}$ in case $G_{0}=\Omega_{+1}(2 l, 2)$. If $|J| \geq 2$, then $a \geq|J|+1$, which contradicts $(*)$. Therefore we have $|J|=1$. Summarizing the above, we have $|J|=1$, whenever $m_{J} \neq 0$ for a nonempty subset J of Π. Write $J=\left\{\alpha_{i}\right\}$ nad $V=V_{1} \oplus U$. Since $L_{J} \simeq S L(2,2)$, the canonical module K^{2} gives the Steinberg module for L_{J}.

If $G_{0}=S L(l+1,2)$, then $V_{1} \simeq K^{2}=S t_{L_{J}}$ and so $m_{J}=1$. Since $m_{\phi}=\operatorname{dim} V$ $=l+1$, we have $m_{1}=\sum_{J}(-1)^{|J|} m_{J}=(l+1)-l=1$.

Let $G_{0}=S p(2 l, 2) . \quad$ If $i \leq l-1$, then $V_{1}=V^{(1)} \oplus V^{(2)}$ with $V^{(1)}=K e_{i} \oplus K e_{i+1}$ and $V^{(2)}=K e_{-i} \oplus K e_{-(i+1)}$. Since $V^{(1)} \simeq V^{(2)} \simeq K^{2}$, we have $m_{J}=2$. On the other hand, if $J=\left\{\alpha_{l}\right\}$, then $V_{1}=K e_{l} \oplus K e_{-l} \simeq K^{2}$, whence we have $m_{J}=1$.

Therefore $m_{1}=2 l-2(l-1)-1=1$.
Let $G_{0}=\Omega_{+1}(2 l, 2)$. If $i \leq l-1$, we are in the same situation as $S p(2 l, 2)$, hence $m_{J}=2$. If $J=\left\{\alpha_{l}\right\}, V_{1}=V^{(1)} \oplus V^{(2)}$ with $V^{(1)}=K e_{l-1} \oplus K e_{-l}, V^{(2)}=$ $K\left(e_{l-1}+e_{l}\right) \oplus K\left(e_{-(l-1)}+e_{-l}\right)$. Since $V^{(1)} \simeq K^{2} \simeq V^{(2)}$, we have $m_{J}=2$ again. Now we assume $J=\left\{\alpha_{l-1}, \alpha_{l}\right\}$. Then J has two connected components $J_{1}=$ $\left\{\alpha_{l-1}\right\}$ and $J_{2}=\left\{\alpha_{l}\right\}$. As noted above, L_{1} and L_{2} act on the same subspace $V_{1}=K e_{l-1} \oplus K e_{l} \oplus K e_{-(l-1)} \oplus K e_{-l}$. It is easy to see that V_{1} is irreducible as an $L_{J}=L_{1} \times L_{2}$-module, which necessarily gives the Steinberg module for it. Hence we have $m_{J}=1$. Combining the aboves, we get $m_{1}=2 l-2 l+1=1$.

We next consider the group $\Omega_{-1}(2 l, 2)$. This coincides with the universal Steinberg group $\Omega_{+}(2 l, K)^{\sigma}$ (since $p=2$) and the standard diagonal subgroup is written as

$$
\begin{aligned}
H & =\left\langle h_{l-1}(t) h_{l}\left(t^{2}\right) ; t \in F_{4}^{\times}\right\rangle \\
& =\left\{\left(\begin{array}{ll|l}
I & 0 \\
& t & \\
\hline 0 & I & t^{-1}
\end{array}\right) ; t \in F_{4}^{\times}\right\},
\end{aligned}
$$

where I denotes the identity matrix of degree $l-1$. For a τ-stable subset J of Π, let $J=\bigcup_{i=1}^{r} J_{i}$ be the partition into the connected components J_{i} of J, where we assume α_{l-1} and α_{l} are connected, as before, if J contains both. If J contains none of α_{l-1} and α_{l}, we have

$$
L_{J}=G_{1} \times \cdots \times G_{r} \times H
$$

with $G_{i}=\left\langle x_{\alpha}(1) ; \alpha \in \Phi_{J_{i}}\right\rangle$. Hence the corresponding decomposition of V is written as

$$
V=V_{1} \oplus \cdots \oplus V_{r} \oplus U
$$

in which each G_{i} acts on V_{i} in a natural manner, but trivially on other V_{j} and U. In particular H acts trivially on each V_{i}. Hence the same argument applies as in $\Omega_{+1}(2 l, 2)$, yielding $m_{J}=2$.

If some J_{i}, say J_{r}, contains one of α_{l-1} and α_{l}, then it contains the other by our assumption. We have

$$
L_{J}=G_{1} \times \cdots \times G_{r-1} \times L_{r} .
$$

By the same argument as in $\Omega_{+1}(2 l, 2)$ we get $|J|=\left|J_{r}\right|=2$, i.e., $L_{J}=L_{r}=$ $\Omega_{-1}(4,2)(\simeq S L(2,4))$, provided $m_{J} \neq 0$. A direct computation shows that $V_{s}=K e_{l-1} \oplus K e_{l} \oplus K e_{-(l-1)} \oplus K e_{-l}$ is irreducible, so that $V_{r}=S t_{L_{J}}$ and thus $m_{J}=1$. Therefore $m_{1}=\sum_{J}(-1)^{|J / \tau|} m_{J}=2(l-1)-2(l-2)-1=1$.

Summarizing the aboves, we get

Theorem 3. For $S L(l+1,2), S p(2 l, 2) \simeq \Omega(2 l+1,2)$ and $\Omega_{ \pm 1}(2 l, 2)$, we have

$$
S t \otimes V \simeq U\left(\omega_{1}^{0}\right) \oplus S t
$$

5. More on modules of skew-symmetric tensors

We begin with the following combinatorial facts. For the first two assertions, see Lovász [7], Problems 1.31 and 1.42 (g).

Lemma 7. Let n, k be natural numbers.
(1) The number of the subsets of $\{1,2, \cdots, n\}$ with cardinality r which contains no successive pair of integers is equal to the binomial coefficient $\binom{n+1-r}{r}$.
(2) $\sum_{r=0}^{\sum_{n / 2]}}(-1)^{r}\binom{n-r}{r}(1 / 4)^{r}=n+1 / 2^{n}$.
(3) $\sum_{r=0}^{k}(-1)^{r}\binom{k}{r}\binom{n-r}{k}=1$.

Proof. (3) From $\left(1-x^{-1}\right)^{k}=\sum_{r=0}^{k}(-1)^{r}\binom{k}{r} x^{-r}$ we have

$$
\left.x^{n}\left(1-x^{-1}\right)^{k}=\sum_{r=0}^{k}-1\right)^{r}\binom{k}{r} x^{n-r}
$$

Evaluating the value of the k-th derivatives at $x=1$ on both sides we get the assertion.

Theorem 4. For $S L(l+1,2)$ we have

$$
S t \otimes{ }^{k} \wedge \simeq U\left(\omega_{k}^{0}\right) \oplus S t \quad(1 \leq k \leq l)
$$

Proof. Let us fix $k \leq l$ and $J \subset \Pi$, and compute the integer $m(J, k)=$ $\operatorname{dim} \operatorname{Hom}_{K L_{J}}\left(S t_{L_{J}},{ }^{h} \wedge V\right)$. Using the same notation as in the proof of the preceding theorem, we have

$$
L_{J}=L_{1} \times \cdots \times L_{r}
$$

and

$$
V=V_{1} \oplus \cdots \oplus V_{r} \oplus U, \text { with } \operatorname{dim} V_{i}=\left|J_{i}\right|+1
$$

As is well-known, we have (cf. Curtis and Reiner [5], § 12)

$$
\stackrel{k}{\wedge} V=\oplus \stackrel{s}{1}_{\wedge}^{\wedge} V_{1} \otimes \cdots \otimes \stackrel{r}{\wedge} V_{r} \oplus \wedge, U
$$

where the direct sum is taken over the sequences $\left(s_{1}, \cdots, s_{r}, s\right)$ of $r+1$ integers such that $k=s_{1}+\cdots+s_{r}+s, 0 \leq s_{i} \leq\left|J_{i}\right|+1 . \quad$ Since $L_{i} \simeq S L\left(\left|J_{i}\right|+1,2\right)$, each $\wedge^{s_{i}} V_{i}$ is irreducible as an L_{i}-module and we have $S t_{L_{J}}=\otimes_{i=1}^{r} S t_{t_{i}}$. Therefore, if
$m(J, k) \neq 0$, i.e., $S t_{L_{J}}<\oplus \stackrel{k}{\wedge} V$, then there exists a $\left(s_{1}, \cdots, s_{r}, s\right)$ such that $S t_{J_{i}} \simeq$ ${ }^{s_{i}} V_{i}$ for all $i \leq r$. Then, considering the dimension of $S t_{J_{i}}$, we get $\left|J_{i}\right|=1$ and hence $s_{i}=1, \operatorname{dim} V_{i}=2$, for all i. If this is the case, then $m(J, k)=\operatorname{dim} \dot{\wedge} U=$ $\binom{\operatorname{dim} V-2 r}{k-r}=\binom{l+1-2 r}{k-r}$. Since no pair of elements of J is connected and $|J|=r$, the number of choices of such J is $\binom{l+1-r}{r}$ by Lemma 7(1). Therefore we have

$$
\begin{aligned}
m_{k} & =\sum_{J}(-1)^{|J / \tau|} m_{J}=\sum_{J}(-1)^{|J / \tau|}\binom{l+1-2 r}{k-r}\binom{l+1-r}{r} \\
& =\sum_{r=0}^{k}(-1)^{r}\binom{k}{r}\binom{l+1-r}{k},
\end{aligned}
$$

which is equal to 1 by Lemma 7 (3). This completes the proof of the theorem.
Finally we show the following result.
Theorem 5. For $S U(l+1,2)$ and $k \leq l$, we have

$$
S t \otimes \stackrel{k}{\wedge} V=\left\{\begin{array}{l}
U\left(\omega_{k}^{0}\right) \oplus S t, \text { if } l \text { is odd and } k=l+1 / 2 \\
U\left(\omega_{k}^{0}\right), \text { otherwise } .
\end{array}\right.
$$

Proof. Since $L\left(\omega_{k}\right)^{*} \simeq L\left(-w_{0} \omega_{k}\right)=L\left(\omega_{l+1-k}\right)$, we may assume $k \leq l+1 / 2$. The matrix form of the standard diagonal subgroup H_{1} of $S U(l+1, q)$ is in general described as

$$
H_{1}=\left\{\operatorname{diag}\left(t_{1}, \cdots, t_{l+1}\right) ; \prod_{i=1}^{l+1} t_{i}=1, t_{i}^{q} t_{l+2-i}=1, t_{i} \in F_{q_{2}}^{\times}\right\rangle
$$

and so in our case

$$
H_{1}=\left\{\operatorname{diag}\left(t_{1}, \cdots, t_{l+1}\right) ; \prod_{l=1}^{l+1} t_{i}=1, t_{i}=t_{l+2-i}, t_{i} \in F_{4}^{\times}\right\rangle
$$

In particular, for $\operatorname{diag}\left(t, \cdots, t_{l+1}\right) \in H_{1}$, we have

$$
\left\{\begin{align*}
\left(t_{1} \cdots t_{s}\right)^{2} t_{s+1}=1, & \text { if } l=2 s \tag{**}\\
t_{1} \cdots t_{s+1}=1, & \text { if } \quad l=2 s+1
\end{align*}\right.
$$

Using this, we first show that H_{1} has a non-zero fixed point in ${ }_{\wedge}^{k} V$ only if l is odd and $k=l+1 / 2$, which will establish the second statement of the theorem. The set $\left\{e_{p_{1}} \wedge \cdots \wedge e_{p_{k}} ; 1 \leq p_{1}<\cdots<p_{k} \leq l+1\right\}$ for.ns a basis of $\stackrel{k}{\wedge} V$ and we have

$$
\operatorname{diag}\left(t_{1}, \cdots, t_{l+1}\right) e_{p_{1}} \wedge \cdots \wedge e_{p_{k}}=t_{p_{1}} \cdots t_{p_{k}} e_{p_{1}} \wedge \cdots \wedge e_{p_{k}}
$$

So, if $e_{p_{1}} \wedge \cdots \wedge e_{p_{k}}$ is H_{1}-stable, $t_{p_{1}} \cdots t_{p_{k}}=1$ for all $\operatorname{diag}\left(t_{1}, \cdots, t_{l+1}\right) \in H_{1}$. Replacing $t_{p_{i}}$ with $t_{l+2-p_{i}}$ if $p_{i} \geq s+2$, we see easily from (**) that this occurs only
if l is odd and $k=l+1 / 2$. And when this is the case, the H_{1}-stable element $e_{p_{1}} \wedge \cdots \wedge e_{p_{k}}$ is obtained from $e_{1} \wedge \cdots \wedge e_{s+1}$ by replacing some of e_{1}, \cdots, e_{s+1}, say e_{i}, \cdots, e_{j}, with $e_{l+2-i}, \cdots, e_{l+2-j}$ respectively.

We now assume that $l=2 s+1, k=s+1$, and prove the first statement of the theorem. From the above, the subspace of the H_{1}-stable points of $\stackrel{s+1}{\wedge} V$ has dimension $\sum_{j=0}^{s+1}\binom{s+1}{j}=2^{s+1}$. For a τ-stable subset $J \neq \phi$ of Π, let $\tilde{G}_{J}=\left\langle x_{\alpha}(t)\right.$; $\left.\alpha \in \Phi_{J}, t \in K\right\rangle$ and let $\tilde{L}_{J}=\left\langle\tilde{H}, \tilde{G}_{J}\right\rangle$, the Levi subgroup (as before). Since \tilde{G}_{J} is a connected normal subgroup of \tilde{L}_{J}, it follows from the Lang-Steinberg theorem that $L_{J}=\tilde{L}_{J}^{\sigma}=\left\langle H_{1}, G_{J}\right\rangle$ with $G_{J}=\tilde{G}_{J}$. We say that J is τ-connected if either J is connected and contains α_{s+1}, or else J is of the form $J=I \cup \tau(I)$ for some connected subset I not containing α_{s+1}. In the former case we have that $G_{J} \simeq S U(|J|+1,2)$, while in the latter case, $\widetilde{G}_{J}=\widetilde{G}_{I} \times G_{\tau(I)} \simeq S L(|I|+1, K) \times$ $S L(|I|+1, K)$ is a universal Chevalley group over K. Hence $G_{J}=\left\langle U, U^{\prime}\right\rangle$ where $U=\left\langle x_{\alpha}(t) ; \alpha \in \Phi_{J}^{+}, t \in K\right\rangle^{\sigma}$ and $U^{\prime}=\left\langle x_{-\alpha}(t) ; \alpha \in \Phi_{J}^{+}, t \in K\right\rangle^{\sigma}$.

Now, let $J=\bigcup_{i=1}^{r} J_{i}$ be the partition into the τ-connected components J_{i} of J. Then $G_{J}=G_{J_{1}} \times \cdots \times G_{J_{r}}$. Write $G_{i}=G_{J_{i}}$ and $n_{i}=\left|J_{i}\right|$. We have

$$
V=V_{1} \oplus \cdots \oplus V_{r} \oplus U
$$

in which G_{i} acts naturally on V_{i}, but trivially on other V_{j} and U. We want to show that $m_{s+1}=\sum_{J}(-1)^{|J / \tau|} m_{J}$ is 1 , where J runs over the τ-stable subsets of Π and $m_{J}=\operatorname{dim} \operatorname{Hom}_{K L_{J}}\left(S t_{L_{J}}, \stackrel{s+1}{\wedge} V\right)$. Since L_{J} and G_{J} have the same Sylow 2subgroups, $\left.\left(S t_{L_{J}}\right)\right|_{G_{J}}$ must be irreducible, which therefore gives the Steinberg module for G_{J}.

If $J \ni \alpha_{t+1}$, we arrange the indices so that $J_{r} \ni \alpha_{s+1}$. Hence, if $J \nRightarrow \alpha_{s+1}$, we shall ignore in the following the terms that involve r or $s+1$ as subscripts. As noted above, $G_{r} \simeq S U\left(n_{r}+1,2\right)$.

If $i \neq r$, then n_{i} is even and we have

$$
G_{i}=\left\{\left[\frac{x \mid 0}{0}\right] ; x \in S L\left(n_{i} / 2+1,4\right)\right\} \simeq S L\left(n_{i} / 2+1,4\right)
$$

so that we have a $K G_{i}$-decomposition $V_{i}=V_{i}^{(1)} \oplus V_{i}^{(2)}$ with $\operatorname{dim} V_{i}^{(1)}=\operatorname{dim} V_{i}^{(2)}$ $=n_{i} / 2+1$.
 the Steinberg module for $S L\left(n_{i} / 2+1,4\right)$ and $M_{r}=S t_{G_{r}}$. Suppose $m_{J} \neq 0$. Then by the same argument as in the proof of Theorem 4, we get $\left|J_{i} / \tau\right|=1$ for all

implies that, putting $m=n_{i} / 2+1,4^{m(m-1) / 2} \leq\binom{ m}{s_{1}}\binom{m}{s_{2}}<2^{2 m}$, whence $n_{i}=2$. We then have $G_{r} \simeq S L(2,2)$, and hence $V_{r} \simeq K^{2}$ is the Steinberg module for it. If $i \neq r$, then $V_{i}^{(1)} \simeq L(\omega)^{\prime}$ and $V_{i}^{(2)} \simeq L(2 \omega)^{\prime}$, where ω is the first (and unique) fundamental dominant weight in the canonical module K^{2} for $S L(2,4)$. Thus as an $S L(2,4)$-module we have

$$
V_{i}^{(1)} \otimes V_{i}^{(2)}=L(\omega)^{\prime} \otimes L(2 \omega)^{\prime} \gg L(3 \omega)^{\prime}
$$

Since $L(3 \omega)^{\prime}$ is the Steinberg module for $S L(2,4), \operatorname{dim} L(3 \omega)^{\prime}=4$ and so $V_{i}^{(1)} \otimes V_{i}^{(2)} \simeq L(3 \omega)^{\prime}$. Thus, we conclude that $S t_{G_{J}} \simeq \otimes_{i=1}^{n-1}\left(V_{i}^{(1)} \otimes V_{i}^{(2)}\right) \otimes V_{r}$ (provided $m_{J} \neq 0$). Write $J=\left\{\alpha_{p_{i}}, \alpha_{\tau\left(p_{i}\right)}, \alpha_{s+1} ; 1 \leq i \leq f, 1 \leq p_{i} \leq s\right\}$. Remember that $\left|p_{i}-p_{j}\right| \geq 2$ whenever $i \neq j$. Since a highest weight vector of $S t_{L_{J}}$ in ${ }^{s+1} \wedge^{\prime} V$ is stable under the subgroup $\left\langle H_{1}, x_{p_{i}}(t) x_{\tau\left(p_{i}\right)}\left(t^{2}\right), x_{s+1}(1) ; 1 \leq i \leq f, t \in F_{4}^{\times}\right\rangle$, it takes the form

$$
e(J, u)=\widehat{\otimes i=1}_{f}^{\otimes_{i}}\left(e_{p_{i}} \otimes e_{\tau\left(p_{i}\right)}\right) \otimes e_{s+1} \otimes u \quad \text { for some } u \in \stackrel{t}{\Lambda} U \quad(t=s-2 f)
$$

Now we devide the cases.
Case 1. $J \ni \alpha_{s+1}$.
Take a subset R of $\Pi \backslash J$ with cardinality t and let $R^{\prime}=\left\{j ; \alpha_{j} \in R\right\}$. We have, using that $t_{\tau\left(p_{i}\right)}=t_{l+1-p_{i}}=t_{p_{i}+1}$,

$$
\operatorname{diag}\left(t_{1}, \cdots, t_{l+1}\right) e\left(J, \wedge_{j \in R^{\prime}} e_{j}\right)=t_{p_{1}} t_{p_{1}+1} \cdots t_{p_{f}} t_{p_{f}+1} t_{s+1} \prod_{j \in R^{\prime}} t_{j} e\left(J, \wedge_{j \in R^{\prime}}^{\wedge} e_{j}\right)
$$

Noting that $p_{i}, p_{i}+1$ and $s+1$ are all distinct $(1 \leq i \leq f)$, we find easily that the coefficient of $e\left(J, \wedge_{j \in R^{\prime}} e_{j}\right)$ on the right-hand side of the aboe above is 1 if and only if $\prod_{j \in \mathcal{R}^{\prime}} t_{j}=\prod_{i} t_{i}$, where i runs over $\{1, \cdots, s\} \backslash\left\{p_{i}, p_{i}+1 ; 1 \leq i \leq f\right\}$. Since $t_{i}=t_{l+2-i}$, there are exactly $2^{s-2 f}$ choices of such $\wedge e_{j}^{\prime}$'s and this gives the multiplicity m_{J} of $S t_{L_{J}}$ in $\xlongequal{s+1} V$. Once $|J|=2 f+1$ is fixed, the number of the subsets J under consideratoin is, from the aboves, equal to the number the subsets of $\{1, \cdots, s-1\}$ with cardinality f that contain no successive pair integers, which is $\binom{s-f}{f}$ by Lemma 7(1). Since $|J / \tau|=f+1$, the terms in m_{k} involving m_{J} with $J \ni \alpha_{s+1}$ are given by

$$
\sum_{f=0}^{\left[s_{s} / 2\right]}(-1)^{f+1}\binom{s-f}{f} 2^{s-2 f}
$$

and this equals $-(s+1)$ by virtue of Lemma 7(2).
Case 2. $J \nexists \alpha_{s+1}$.

By the same argument as above, we find that the terms in m_{k} involving m_{J} with $J \nexists \alpha_{s+1}$ are given by

$$
\sum_{f=1}^{[s+1 / 2]}(-1)^{f}\binom{s+1-f}{f} 2^{s+1-2 f}
$$

which equals $(s+2)-2^{s+1}$.
Now, summarizing the aboves, we get $m_{k}=2^{s+1}-(s+1)+(s+2)-2^{s+1}=1$, as desired.

Professor Jantzen informed the author that the results in this paper can be extended to $V=L(\lambda)$ with highest weight λ being minuscule or the unique dominant short root using some general results on the representations of algebraic groups due to himself in part.

References

[1] A. Borel: Properties and linear representations of Chevalley groups, Lect. notes in math. 131 (1970), Springer, 1-55.
[2] N. Bourbaki: Groupes et algèbras de Lie, Chap. 4-6, Hermann, Paris, 1968.
[3] R.W. Carter: Simple groups of Lie type, John Wiley \& Sons, London, 1972.
[4] -: Finite groups of Lie type, John Wiley \& Sons, Chichester, 1985.
[5] C.W. Curtis and I. Reiner: Methods of representation theory I, Wiley, NewYork, 1981.
[6] J.C. Jantzen: Representations of Chevalley groups in their own characteristic, Proc. Symposia in pure math., Amer. Math. Soc. 47, part I (1987), 127-146.
[7] L. Lovász: Combinatorial problems and exercises, Akadémiai Kiadó, Budapest, 1979.
[8] G. Lusztig: The discrete series of GL_{n} over a finite field, Ann. of Math. Studies 81, Princeton Univ. Press, 1974.
[9] T. Okuyama: On p-block theory of finite groups with a (B, N)-pair, Proc. Symposium on groups and their representations (1984), 176-185 (in Japanese).
[10] R. Steinberg: Lectures on Chevalley groups, Yale Univ. 1967.
[11] -: Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc. 80 (1968).
[12] M. Suzuki: Finite simple groups (in Japanese), Kinokuniya, Tokyo, 1987.
[13] W.J. Wong: Representations of Chevalley groups in characteristic p, Nagoya Math. J. 45 (1987), 39-78.

