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0. Introduction

The purpose of the present paper is to study the growth of certain harmonic
maps in relation with the geometry of the domains and ranges.

Let φ: M—>N be a harmonic map between complete noncompact Rieman-
nian manifolds M and N. We fix a point o of M(resρ. a point o' of N) and
denote by rM (resp. rN) the distance to o in N (resp. o' in N). Set μ(φ; t): =
mzκ{rN(φ(x)): x&M, rM(x)=t}. We want to know the growth of φ, or the
asymptotic behavior of μ(φ t) as t goes to infinity. We first recall the following
result by Cheng [8] (cf. also [3] [31: Chap. 6]): Suppose that M has nonnegative
Ricci curvature and N is a Hadamard manifold, namely, N is a simply connected
and nonpositively curved manofod manifold. Then the energy density e{φ) of
the map φ satisfies: e(φ)(o)<cmμ(φ: t)2i?, where cm is a constant depending only
on the dimension m of M. It follows that φ is a constant map if φ has sublinear
growth, that is, lim inf μ (φ t)/t = 0. We are interested in a (nonconstant)

harmonic map φ: M-*N which has linear growth, namely, which has the pro-
perty that lim sup μ(φ; t)jt<-\-oo. For instance, it turns out that a harmonic

map φ:. Λf-> N of linear growth must be totally geodesic if M has volume growth
of at most quadratic order (cf. [9]). It has been also proved in [24] that a
^-closed harmonic 1-form of bounded length on M must be parallel if the sec-
tional curvature of M is nonnegative and decays quadratically. Moreover Li
and Tarn [26] have shown that the dimension on the space of linear growth
harmonic functions on M is less than or equal to k-\-1 if the volume of the metric
ball of radius t around o is bounded by ctk for some constant c.

On the other hand, we can construct a noncompact complete manifold M
of positive Ricci curvature and a harmonic map φF: M-+F of bounded energy
density from M onto a complete manifold F of nonnegative Ricci curvature
(cf. Example in Section 2). It turns out from the construction that φ is a
harmonic marphism from M onto F with totally geodesic fibersy namely, it is a
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map carrying the germs of harmonic functions to the germs of harmonic func-
tions such that the inverse image of φ for each p of F is a totally geodesic sub-
manifold. For example, in case F=R, φR: M^>R is a harmonic function of
linear growth which is not totally geodesic, and in case F=S1

9 φs*: M-+S1 de-
fines a harmonic 1-form of bounded length which is not parallel. Moreover we
observe that if F admits a harmonic function h of linear growth, then the com-
position hoφF: M-*R is also a harmonic function of linear growth on M. It
is not clear whether there exist (nonconstant) harmonic maps with linear growth
between manifolds of nonnegative Ricci curvature and Hadamard manifods of
negative curvature.

We shall explain briefly the contents of this paper. In Section 1, we con-
struct equivariant harmonic maps by solving certain ordinary differential equa-
tions and discuss their growth in some cases (cf. Theorem 1.1). Section 2 is
devoted to the study of harmonic morphisms and their growth. For example,
we shall give a lower bound for the growth of harmonic morphisms under cer-
tain conditions (cf. Theorem 2.10). In Section 3, we consider harmonic maps
with linear growth between manifolds of nonnegative Ricci curvature and
Hadamard manifolds and get sufficient conditions for such maps to be totally
geodesic (cf. Theorem 3.2).

1. Examples of equivariant harmonic maps and their growth

In this section, we shall first show some examples of equivariant harmonic
maps and then discuss the asymptotic behavior of them at infinity. See e.g.,
[4: Chap. 6] for a general theory on equivariant harmonic maps.

1.1. Let us first consider simple equivariant harmonic maps between rotational-
ly symmetric spaces. To begin with, take a smooth function η on [0, oo) such
that

(1.1) i?(0) = 0, V ( 0 ) = l and v>0 on (0, oo),

and also a smooth function ξ on [0, oo) with the same property (1.1) as η. We
denote by gv a Riemannian metric on Rm which can be expressed as gv=dfi-\-
η(t)2dθ2 in the polar coordinates (*, θ). Let us denote by Rm

v (resp., R%(T)) the
Riemannan manifold (Rm, gη) (resp., the metric ball oίRm

yj with radius T around
the origin) for simplicity. Let φ: Sm"1-^Sn~'1 be a harmonic map from the
unit sphere S m - 1 of Rm to the unit sphere S91"1 of Rn with constant energy e.
For a positive smooth function ax(t) on (0, T) ( 0 < Γ < + °°)> define a map

->R% by

Then it turns out from direct computations that Fx is harmonic if and only if ax

satisfies an ordinary differential equation:
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on(0, T), where P i ( f ) = ( m - W W t f W 1 and &(*, i )=^ 7 ( i ) : a f ( i ) f ' ( ί ) .
Let us next consider equivariant harmonic maps from the Riemannian 4-

manifold Λ 4,^^ described below to R3

ζ or RUj2h
 L e t î» ̂ 2> ̂ 3 be a left

invariant orthonormal frame field on the unit 3-sphere S3 such that [Zl9 Z2] =
2Z3, [Z2, Z3J=2Z1, [Z3, ZJ=2Z 2 . We denote by Ω, ( ι = l , 2, 3) the dual forms
of Z, and consider a Riemannian metric £, l l v ? 8 on R4 of the form:

O 7ιi'l27i3

where ^ ( ί = l , 2, 3) satisfy (1.1). As before, Λ ^ a ( r e s P ' R\v2v3(T)) stands
for the Riemannian manifold (RA, gy,^^ (resp., the metric ball around the origin
with radius Γ).

Let ψ: S3-+S2 be the Hopf fibering and assume that K e r ^ = Z 3 . We
consider the case ηx=η2y and set η=ηx and \=η3. Given a smooth function
αr2:(0, Γ)~>(0, ° o ) ( 0 < Γ < + oo), define a map F2: R\vλ(T)/ io}->R3

ξ by

Then direct computations show that F2 is harmonic if and only if a2 satisfis the
following ordinary differential equation:

^ *#)) = o

on (0, T), where P2(ί)=ί{2,'(ί)^)"1+λ'WλW"1} and Q2(t, s)=Wη(ty2ξ(s)ξ'(s).
Let F3: R\r,iV3(T)\{o}^R%hh be a map dinned by

F3(t, θ) = («3(ί). «).

where <xz{t) is a positive smooth function on (0, T). Then the equation for the
harmonicity of the map F3 is given by

(E3) az\t)+P3(t)a;(t)

on (0, T), where P,(t)=t Σ3*.! v/fjOvM'1 ^ d ρ,(ί, ^H*2 Σ-sS ^(0"ff/
Finally let us consider equivariant harmonic maps between B2-bundles

over 2-sphere S2 with certain metrics. Take first a smooth function g on [0, oo)

such that

(1.2) *(0) = l , *'(0) = 0, and ^ > 0 on [0, oo)

and also a smooth function h on [0, oo) with the same property (1.2) as g. Let
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•η be a function satisfying (1.1). Then define a Reimannian metric όgιkt7l on

where {Ωly Ω^y Ω3} are, as before, left invariant 1-forms over the unit 3-sρhere
Sz in R*=C2. Given an integer kf we consider the quotient space Lk, or the R2-
bundle over S2, by the action of Sι on SzxR2: (p9 t, θ)eiω=(peiω, t, θ-kω).
Then the metric όgth%r, descends to Lk and define a Riemannin metric GghtV on
Lk, since the action preserves the metric. We denote by Lk

gtht1f and πk: (S3xR2,
όgth^)-*Lk

gthtΎn respectively, the resulting Riemannian manifold (L*, Ggthιk) and
the Riemannian submersion. Moreover the radial function t on S3 X R2

y which
is the distance function to S3X {0} with respect to όgthtΎn descends also to the
quotient manifold Lk

gtkt7l and defines the distance function to the zero section S2

0

of Lk with respect to G , t M . We put Lk

gthίr,(T)= {x(=Lk

gtht7l: t(x) < T}. For a
pair (ky I) of integers such that k divides /, i.e., l=nk for some integer n, we take
two Riemannian manifolds Lk

gthtV and Ώgt %,v described just above, and consider
a map FA: LgthtV(T)\S\->Llzjs defined by

FfaiP, t, θ)) = πtfip), aA(t)y φn(θ)),

where/: *Sf3->S3 is a symmetry of the Hopf fibration (i.e., a unitary transforma-
tion or the composition of a unitary transformation and the conjugation), α4 is a
positive smooth function on (0, Γ), and φn: S1-^S1 is the rotation given by
φn(eiω)=ein». Then direct computations show that FA: Lk

gfhtyι(T)\S2

0-+L!htgtϊ
is harmonic if and only if a4 satisfies

-PAt)a/(t)—L

9Q4(t, a4{t)) = 0
τ r

on (0, Γ), where

P4(ί) =

ρ4(ί, s) =

We note here that P{{t) and Q,{t, s) {ί=\, 2, 3,4) have the following pro-
perties:

(1)

where p1=m—2, p2=p3=2 and/>4=0;

(2) lim-!ρ,.(ί, *) = ?,.,
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where &=£, q2=8, ? 3 =3 and ? 4=n 2;

(3) there exist positive numbers t0 and s0 such that

(1.3) &(*,o) = o, ρ, (θ,*)>o (0<*<*0),

0<Qi(t, *i)<Qi(t, s2) {0<t<t0, 0<sx<s2<s0).

In the last two inequalities for the case: ί=4, it is assumed that

(1.4) g(s)>0 and h'(s)>0 on [0, s0].

Let us now state some results on the existence of certain solutions α, (£) of
equation (E{) (i=l, 2, 3, 4) and their asymptotic behavior as t goes to zero and
also tends to infinity, under some conditions. The proofs will be found in the
next subsection.

We assume first that nΦO for the case of i=A. Fix an ί e { l , 2, 3, 4}.

Then given two positive numbers tQ and s0 for which (1.3) and (1.4) hold, there

exists a monotonically increasing, positive solution α, : (0, ^-^(O, oo) with
α*(*o)=fo s u c n

l o g ;

log t

where /̂ (̂ >, 3)=—{—p+Vp2+4q} (cf. Lemmas 1.3 in 1.2). Hence the har-
Li

monic map F{ defined by a{ as before turns out to be a continuous weakly
harmonic maps defined around the origin 0 for the cases: i=l,2y3 and the
zero-section ^ for the case: ί=4. Thus the fundamental regularity theory (cf.
e.g., [11], [17]) shows that F{ is actually smooth over the origin for the cases:
ί = l , 2, 3 and the zero-section 5 2

0 for the case: z'=4.
In what follows, we assume that the solution aέ is defined maximally on

(0, Tt) for some T^.e^o, 00]. Then we have the following

Proposition 1.1. Let Ph Q{ and a{ be as above. Suppose that Qi(t, s) is non-
negative on (0, oo)χ(0, 00). Then a/ is positive on (0, 71,). In particular, a^t)
tends to infinity as t goes to T{ if T{ is finite. Moreover suppose that for some con-
stants A{^[— 00, + 00) andBi^[0, 00], p.(t), converges to A{ as t goes to infinity
and Qfc, s)js tends to B{ as t and s go to infinity. Then the following assertions
hold:

(1) 7 / - o o < J . < + oo and0<Bi< +00, or if

then T{ = + 00 and

H m ^ = K A l f B ) ( e ( 0 , 00)).

»•»•» l o g t
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(2) If B~ + oo, then

log t

Moreover 71

l= + °° if Qi{t> s)<Bi(t)s for some continuous function B^t) on (0, oo).
(3) //1 <Ai< + oo and B~0, then T~ + oo and

lim 0.
*->~ log ί

(cf. Lemmas 1.4 and 1.7 in 1.2).

Before concluding this subsection, let us consider the case: i=4 and deter-
mine the order oτd(a4)=μ(A4—ly 2?4) of α4 in some cases. For simplicity, we
assume that

for large t and

for large s, where a, άy b, δ, c, and d are nonnegative constants and the others are
arbitrary constants.

Case 1: α>0, ά>0, b>0y δ>0, c<0, 2f>0.

Case 2: Λ=0, α>0, 6>0, δ>0, c>0, ?>0.

ord(α4) = +oo .

Case 3: a=ά=0y b>0y h>0y c>09

Case 4: α>0, 5>0, δ=^5=c=e
f
=0.

Case 5: ,

ord (ar
4
) = + oo

Case 6: i=c=0, 5>0, ?>0.
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O r d ( α 4 ) = +00 .

Case 7: b>09 c>0, h=Z=O.

0 if a = a = 0,

o r d ( α 4 ) = l l Γ , . ^ Λ \ η ^ o t h e r w i s e .-l+[l + 2(-

1.2. In this subsection, we shall consider a nonlinear ordinary differential
equation which contains equations (E{) ( ί = l , 2, 3, 4) as special cases.

Given a smooth function F(*) on [0, co) and a smooth function Q(t, s) on
[0, oo) x [0, oo), we consider an equation as follows:

(Eo) a"(t)+±P(t)a'(t)-^Q(t, s) = 0.

In what follows, we assume that for some/>*>(), q*>0, to>O, and sQ>0,

limP(t)=p*+l if
/->0

J _ | P ( ί ) _ l | i s b o u n d e d o n ( 0 , ί 0 ) i f ^ * = 0 ,

Q(t, 0) = 0 (0<ί<ί0), Q(0, s)>0 (0<s<s0),

(1.4) lim — ρ ( ί , ί ) = ? * , and

0<Q(ty sγ)<Q{t, s2) for f e(0, ί0), ^ and ί 2 e(0, ίo) with

We want a positive solution α(ί) of equation (Eo) which converges mono-
tonically to zero as ΐ goes to zero. To begin with, let us reparametrize equa-
tion (Eo) with parameter w=log £G(— co, -f-oo)as follows:

(Eί) β"(u)+(P(e")-l)β'(u)-Q(e' , β(u)) = 0 .

Let us take two positive numbers ΐ0 and s0 for which (1.3) and (1.4) hold, and set
#0=log t0. For anyt Gfi, we denote by β9 a unique solution of (E'o) subject to
the conditions: βϋ(u0)=s0 and βp'(u0)=v. Define a set Jl of R by Jl= {v: βυ(u)
decreases monotonically to zero in finite time as u decreases from uQ}, and put
#0=inf Jl. Then vQ>0 and Jl is open (cf. [4: Chap.6]). Moreover we have

Lemma 1.1. For any u0 and sQ>0 as above, the solution β~βH of equation
(E'o) has the following properties:

(1) β>0,β'>Oon(-ooyUol
(2) lim β(u) = lim β\u) = lim /8//(«)=0.

Proof. The first assertion (1) follows from the same arguments as in [4:
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Chap. 6, Lemma 6.1.41. As for the second one, we first prove that lim β'(u)=0.

Fix a positive constant r* and choose vo^(— oo, u0] so that p*+r%>0 and
- P ( O < P * + l + r * o n (~°°> *>o] For any ^ G ( — °°, v0— 1], let γ(w) be a unique
solution of equation:

7>)+(/>*+r*)<y>) = 0

subject to the conditions: 7(v1) = β(v1) and γ'(^i) = jS'(^i). Then γ(w) =
{(i>*+'*)(*Ί-")}]. Define a function i? by

Then we have

(1.5) R'(u) = -

Hence R{vλ)=Q and R\vλ)>Q. Moreover R>0 on [vly vQ], In fact, if R>0
on (ϋj, v2) and i?(ί;2)=0 for some v2^(vly vo)y then i?'(^2)^0> which contradicts
(1.5). Since (/3/γ)'=i?/γ2>0 on (v19 v0), we have /3>γ on [vly v0]. Thus we
get

(1.6)

for any ^ e ( — o o , t;0—1]. Suppose that limsup y8'(w)>0. Then there exists

a positive constant δ and a sequence {vfr j=lt2,
 s u c ^ ^ ^ /S'(^ ) > δ and ^y+i<

^.— 1. It follows from (1.6) that for each/,

This is absurd, because β is positive. Thus we have shown that lim /?'(w)=0.
Set /Sj^lim β(u). Then we have

0 - lim β"(u) = lim {-{P{eu)-l)β'(u)+Q(eu, β(u))}

= Q(0, β*),

and hence β* = 0 by (1.4). This proves the second assertion (2) of the
lemma. //

Lemma 1.2. Let u0, s0 and β be as in Lemma 1.1. Given £>0, suppose

that \s^Q(e\s)-q^\<εy and \P(eu)-l-p*\<£ on (-oo, W o ]χ(_oo, Sf)].

Then β(u)<cexp 8tu and β\u)<c exp 89u on (— oo, uo],for some positive cons-

tant cy where δ f = i - {-(p*+S)+\/(p*+e)2+4(q*-ε)}.
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Proof. For any v&(— oo, uo]> let yVt2(u) be a unique solution of equation:

Tf.t/(tf)=δt7fft(M), subject to the condition: yυ,t(v)=β(v). That is, yvt(u) =

β{v) exp δε(w—ϋ). Then we claim that β\v)>yVf/(v) = 8eβ(v). In fact, we

have

~

Suppose that /?'(©)<%,,,,'(©). Then by (1.7) we get

Ύ..,"(v)<-(p*+S)β'(υ)+Q(S, β(v))

<-(P(e')-l)β'(v)+O(e\ β(v)) = /8"(t»).

Hence we have

(1.8) γ.,8</?, yj>β\ yj'<β"

on [ϋ7, v) for some α ' e ( — oo, v]. If (1.8) holds on (— oo, ϋ), then (7P,β—β)"<0

on (—00, Ϊ;), SO that (γ,,β—βY(^)>(Ύv,z—/8)/(»)>0 for any «E(-oo,z;). This

yields a contradiction, because lim /3'(#)=lim 7»,β

/(w)=0. Therefore there exists
tf->-oo tt->-oo

^ e ( — 00, ϋ) such that (1.8) ceases to hold at vv Then it turns out that

ΎM^βfri)* Ύ*,M)>β'(vi) and ΎvΛv)=β/\v1). By (1.7) and (1.4), we

obtain

This yields a contradiction. Thus we have shown that β'(v)>yo,z'(v)—8tβ(v)

on (— 00, uo]y which implies that β(v)<cγ exp hzu on (— cχ>, w0] for some con-

stant ^ > 0 . As for the estimate on /?', consider first the case p*>Q and then

assume that/>*>£. Then, we have

β"(u)<-(p*-£)β'(u)+(q*+£)β(u)

on (— 00, u0]. Integrating the both sides, we obtain

on (—ex), u0]. As for the case/>#=(), we have by (1.3)

(1.9) β"(u)<Φ"β'+β)
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for some constant c2>0. Integrating the both sides, we get

(1.10) β\u)^cAe^ι)u

on (— oo, w0], for some constant £3>0, where δ8(l)=min{l, δε}. If δ f >δ 8 (l),

then inserting (1.10) into (1.9) and integrating the resulting inequality, we obtain

for some constant c4>0, where δβ(2)=min {2, δe}. Thus repeating the same

argument, we have

on (— °°,u0] for some constant c5>0. This completes the proof of Lemma

1.2. //

Let us now return to equation (Eo). Let β and u0 be as in Lmema 1.2.

Define a solution a(i) of equation (Eo) by α(*)=/3(log t). Then by Lemma 1.2,

we have

Lemma 1.3. Let a be as above. Then a satisfies

(1) a(to)=so(to=euo), a>0,a'>0on(0,t0];

(2) li

(3) li
log*

1
where μ{p*y ?*)=y {-/>*+ Vp*2+4q*} (>0).

In what follows, we shall study the asymptotic behavior at infinity of solu-

tions of equation (Eo) under certain conditions. Let t0 and s0 be positive num-

bers and a(t) a solution of equation (Eo) with a(to)>so and a'(to)>O. Here

a(t) is assumed to be defined at least on [*0, ΓΛ), where 7I

βί=suρ {T: a is

positive and bounded on [t0, T]} ( < + °°) In order to study the asymptotic

behavior at infinity of or, we employ elementary comparison arguments just used

in the proof for the preceding lemmas. Let A and J B > 0 be two numbers

chosen appropiately later and γ a unique solution of equation:

(1.11) Ύ"(t)+—y'(f)~±i7(f) = 0 ,

subject to the condition: γ(to) = a(to) and y'(t0) = a'(t0). Define a function

RΛB--[t»Tm)-+R by
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T h e n o b v i o u s l y RAB{to)==O a n d

R V ) ^ λ { B a ( t ) ^ Q ( t i a(t))<y(t).

Lemma 1.4. Let a be as above. Suppose that Q(t, s)>0 on [t0, TΛ)χ
00, oo). Then a'>0 on [t0, TΛ). In particular, lim a(t)= + oo if ΓΛ

Proof. Suppose that a'(t)>0 on [*0, tj and α'(ί1)=0, for some t^fa, TΛ).
Take two numbers A and B as above so that P(t)<A on [tOy ί j and J5=0. Then
^ o W = O and RAO'(t0)<0. We claim that RAO(ή<0 on (f0, ί j . In fact if we
have t2<=(t0, t,] such that i?^o(/)<0 on (*0, t2) and RAO(t2)=Oy then

RAo{t2) = UP(t2)-A)a(t2)Ύ'(t2)—I

This yields a contradiction. Hence we have RAO(i)<0 on (ί0, ί j , that is,

a(tγΎ(t)<a'(.t)Ύ(t)

on (ί0, /J. Putting t=tu we get

This is absurd. Thus we have shown that α ' > 0 on [tQi TΛ). //

Lemma 1.5. Let a be as above. Suppose that for some A and β > 0 ,
P(t)<A on [t0) oo) and Q{t, s)>Bs on [t0) oo)χ[s0y oo), or for some A and 2?>0,
P(t)<A on [toy oo) and Q(t, s)>Bs on [tΌ, oo)χ[s0, oo). Then:

ψ
log t

where μ(A-l, B)=±-i-(A-l)+V(A-l)2+4B} .

Proof. Obviously RAB(t0)=0. and i?i4β'(ίo)<O The same arguments as in
the proof of Lemma 1.4 show that RAB<0 on (ί0, ΓΛ), namely, α ( ί ) γ ' ( 0 <
«'(0y(0 o n (fo> ^Λ)- Then it turns out that y(t)<a(t) on (ί0, ΓJ, which implies
that

lim inf lQg"(')>lim i n f i l l = μ(A-ly B).
*->τΛ l o g t *•>"» log ί

This completes the poof of Lemma 1.5. //

Lemma 1.6. Let a be as above. Suppose that for some A and 5 > 0 ,
P(t)>A on |/0, oo) and Bs>Q{ty s)>0 on [t0) oo)χ|)0, oo), or for some A and
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J3>0, P(t)>A on j / 0 , oo) and Bs>Q(t,s)>0 on [tOf oo) x [s0, oo). Then,
TΛ=-\-oo and

M^W <μ(A-ly B).
log t

Proof. Obviously i?^(ί o)=0 a n d ΛΛ2Ϊ'(*O)>O The same arguments as in
the proof of Lemma 1.4 again show that RAB>0 on (tQ, TΛ), namely, α(£)Ύ'(0>
ar(t)y(t) on (tQy TΛ). Hence y(t)>a(t)>a(t0) on (ί0, Γ,). This shows that
7>= + oo and

limsup l Q g ^ ) < l i m l o g ^ = μ(A-\, B).
/->•« log i t-*»» log ί

This completes the proof of Lemma 6. //

By Lemmas 1.5 and 1.6, we have

Lemma 1.7. Let a and TΛ be as before. Suppose that Q(t, s)>0 for any
t>0 and s>0, and suppose that for some A^[— oo, + oo) and £ ε [ 0 , + oo], P(t)
converges to A as t goes to infinity and Q{t, s)js tends to B as t and s go to infinity.

(1) // - o o < ^ 4 < + oo and 0 < J 5 ^ + oo, or if 0<^4<l and
then T Λ = + oo and

lim ^ψ^>- = μ{A-l,B) (e (0, oo)).
<-*~ log t

(2) If B= +co, then

l im — -|- oo

~~ log*

Moreover Γ Λ = + oo z/* ρ(ί, s)<B(t)s for some continuous function B(t).
(3) / / 1 < ^ 4 < + OO andB=0, then TΛ= + oo and

i i m o .
#•>« l o g £

2. Growth of harmonic morphisms

In this section, we shall first show a generalization of the O'NeilΓs curva-
ture formula for Riemannian submersions to horizontally conformal maps, and
then discuss the growth of harmonic morphisms (cf. e.g., [4] [11] for the general
theory on such maps).

2.1. Let φ: M->N be a smooth map between Riemannian manifolds (M,g)
and (N, h). For a point x of M, we set cVf

x=ktτ(dφx). The space cl?z is called
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the vertical space at x. Let Mx denote the orthogonal complement of OJχ in the
tangent space TXM. For a tangent vector E^TXM, we denote by CVE and
MEy respectively, the vertical component and the horizontal component of E.
Let OJ and M, respectively, denote the corresponding vertical and horizontal
distributions in the tangent bundle TM. We say that φ is horizontally con-
formal if, for each point xGi l ίa t which rfφ,Φθ, the restriction dφx\Mχ\ <$ίx-*-
Tφ(x)N is conformal and surjective. Thus for some nonnegative function Xφ on
M, Φ*h\jίχJi=Xφ2g\jίχjl. The function λφ is called the dilation of φ. Then λφ2

is smooth on M and actually equal to e(φ)/n, where n=dim N. Fuglede [13]
and Ishihara [20] showed that a smooth map φ: M-*N is a harmonic morphism
if and only if φ is both harmonic and horizontally conformal. Here φ is called
a harmonic morphism if for every function /harmonic on an open subset U of N,
the composition foφ is harmonic on φ~\U).

A horizontal conformal map is obviously a Riemannian submersion if (and
only if) the dilation is constantly equal to 1. For Riemannian submersions, we
have the O'NeilΓs formula on curvature [28]. We will first state the correspond-
ing formula for horizontally conformal maps, after some definitions and auxial
results which follow from the same direct computations as in [28],

Let φ: M-+N be a horizontally conformal map betwen Riemannian mani-
folds (M,g) and (iV, h). We call the points x^M where dφx=0 the critical
points of φ and denote by Cφ (resp., Mo) the critical points (resp., the com-
plement of Cφ, namely M0 = {x6M: Λφ2(*)>0}, where λφ is the dilation of φ).
After [28], we define two tensors T and A of type (1,2) over Άf0 by

TEF =

AEF =

for vector fields E and F on Λf0, where V denotes the Levi-Civita connection
of M. Then we have

Lemma 2.1 (cf. [28]). (1) Both T and A are skew-symmetric operators on
the tangent space of M reversing horizontal and vertical subspaces.

(2) TE=TcvE,andAE=AME.
(3) For vertical vector fields V and W, T is symmetric, i.e., TVW=TWV.

For horizontal vector fields X and Y,

A x Y v [ X y Y]+

where Aφ denotes a vector field on Mo defined by

Λφ = grad log λφ2.

A basic vector field is by definition a horizontal vector field X on MQ which
is φ-related to a vector field X* on Ny namely dφx(X)=X*φ(x) for all
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Lemma 2.2 (cf. [28]). Suppose X and Y are, respectively, basic vector fields
on Mo which are φ-related to X* and Y*. Then:

(i) \fg(x, Y)=HX*, Y*)°Φ-
(2) Jί[X, Y] is basic and φ-related to [X*, Γ*].
(3) The basic vector field which is φ-related to V*χ,y* is given by

\ {g{Aφ, X)Y+g(Aφ> Y)X-g(X, Y)JίAφ} ,

where V* denotes the Levi-Oivita connection of N.

For linearly independent vectors E and F, we denote by PEtF the tangent
plane spanned by these two vectors. Moreover KM, KNy and K, respectively,
stand for the sectional curvature of M, N, and the fibres (in Mo). Then making
use of Lemmas 2.1 and 2.2, we can derive the curvature formula stated below
for horizontally conformal maps as in [28].

Theorem 2.3. Let φ: M-*N be a horizontally conformal map between
Riemannian manifolds M and N. Then for orthonormal horizontal vectors X, Y,
and orthonormal vertical vectors V, W on M0) one has the following relations:

(1) KM{Py.W) = &{Py,W)-g{TvV, TWW)+g(TγW, TyW).
(2) KM(PX,y)=g(AχV, AχV)-g(TyX, TyX)+g((VXT)yV, X)

~|*(A*, Vf+\g{VyCVKφ, V).

(3)

~ ig(<=VAφ, CVAt)-g(JHAφ, MAφ)+g{Aφ, Xf+g{Aφ,

+jig(VxJlAt,X)+g(VyJlAt, Y)},

where X*=dφ{X) and Y*=dφ(Y).

2.2. Before showing a few applications of Theorem 2.3, let us first make some
observations. Let φ: M-*N be a horizontally conformal map and Vdφ the
second fundamental form of φ. Then the tension field τ(Φ) of φ, i.e., the
trace of Vdφ, is given by

Tίφ) =

on MOf where w=dimiV, m=dimM, and η is the mean curvature normal of
the fibres, namely, η=(m—ri)~ι trace T\cy . Hence if n>3 then it follows that
any two of the conditions below imply the other one:

(i) φ is harmonic on M.
(ii) φ has minimal fibres on Mo.

(iii) grad λψ2 is vertical
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(cf. [4: Chap. 7]). We mention here a theorem by Fuglede [14], which states
that a nonconstant harmonic morphism φ: M-*N is an open map and further-
more if grad Xφ

2 is vertical, then the set of singular points of φ is empty, that
is, φ: M-+N is a submersion.

Let φ: M->N be a nonconstant harmonic morphism with grad Xφ2 vertical.
Let η: [a, b]->N be a regular curve lying in the image of φ. For any point
xGφ~\η(a))y take the horizontal lift ηx: [a> b]-*M of η with ?)x(ά)=x, and then
define a map 3?ah\ Φ~ι{η(a))-+Φ~ι{η{b)) by &Λb(x) = flx(b). Since gradλψ2 is
vertical, d\φ

2(ηx(t))ldt=Q, and hence \φ

2°3?ab=\φ

2. Moreover it is easy to see
that if M is complete, then so is N and φ is surjective. Now suppose that the
fibres are totally geodesic. Then &ah induces an isometry between two fibers
Φ~ι(η(a)) and φ " 1 ^ ) ) , and hence | grad \φ

2 \ o@ab = | grad λΦ

21. In fact, let
σ: (c, d)-+φ~\η{ά)) be a regular curve in Φ~\η(a)), and define a map F: [a, b] X
(c, d)-*M by F(ty s)=j)σω(t). Set V=dF/ds and X=dFldt. Then obviously
V is vertical and X is horizontal. Since φ has totally geodesic fibres, we have

= 2g(VvX, V)

= 2g(TvX, V) = 0 .

This proves that &ah is an isometry from φ~\η(a)) onto Φ~\η{b)). Thus we
have shown

Lemma 2.4. Let φ: M-+N be a nonconstant harmonic morphism with
grad λφ2 vertical,

(1) If M is complete, then so is N and φ is surjective.
(2) If the fibres of φ are totally geodesic, then the map 3?ab: φ~\η(a)) ->

φ~\η{b)) defined as above induces an isometry and furthermore one has

X<?o2>ab = V , I grad λφ

21 o£>βb = | g r a d λ φ^ | .

2.3. We are now in a position to show an example of a harmonic morphism
of a complete noncompact manifold of positive Ricci curvature, and then give
a few applications of Theorem 2.3 (3), in connection with the example.

EXAMPLE. Let us denote by Rk

v the Riemannian manifold Rk equipped
with a rotationally symmetric metric gΎI=dr2jrη(r)2dθ2. Assume that k is greater
than or equal to 3 and take a smooth function ξ^t) on [0, oo) such that ξ1(t)=t
on [0, 1], &(*)>() on [1, 2] and ξ1(t)=r1'Λ on [2, oo), where αG(0, 1) is a

constant. Then define a smooth function ξ2(t) on [0, °°) by f 2(ί)=i ξi(s)ds,

and set
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J OO

ξx(t)dt. We choose two constants α, β G (0, 1) so that
o

k—β>2-{-a, and define a smooth function/(r) on j?* by

where έ and £ are positive constants sufficiently large. Given a complete mani-
fold F of nonnegative Ricci curvature, we consider the warped product M=
Rk^XfF of Rk

v and F with a warping function/(r). We denote by φF the
projection of M onto JF\ Then M has positive Ricci curvature and φ defines
a harmonic morphism from M onto F with bounded energy density and totally
geodesic fibers. We note that if F is flat and compact, then the sectional curva-
ture of M decays quadratically in the absolute values.

The first application of Theorem 2.3 is an immediate consequence from the
assertion (3):

Proposition 2.5. Let φ: M->N be a (nonconstant) harmonic morphism with
grad λφ2 vertical, where \φ denotes the dilation of φ. Suppose that the sectional
curvature KM is nonnegative. Then the sectional curvature KN is also nonnegative
on the image φ(M). Moreover if KN(π)=0 for a plane π tangent to N at a
point of the image φ(M), then \φ is constant, i.e., φ is a Riemanntan submersion
up to homothety.

We shall state further results.

Proposition 2.6. Let φ: M->N be as in Proposition 2.5. Suppose that
the following conditions hold:

(1) M is complete and N is noncompact.
(2) The Ricci curvature RicciM of M is nonnegative.
(3) The scalar curvature Scal^ of N is nonpositive.
(4) The sectional curvature KM of M satisfies

v 2+8

where c and S are positive constants, and rM stands for the distance on M to a fixed
point o of M. Then φ is totally geodesic and N is Riccί-flat.

See [30] for totally geodesic maps.

Proposition 2.7. Let φ: M-+N be as in Proposition 2.5. Suppose that
M is complete and N is noncompact, and suppose that M has nonnegative sectional
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curvature and the fibres of φ are totally geodesic. Then the dilation \φ of φ is

constant, i.e., φ is a Reimannian submersion up to homothety.

Proposition 2.8. Let φ: Rm->N be a harmonic morphism of Euclidean

space Rm onto a Riemannian manifold N of dimension n>3. Suppose the fibers

are totally geodesic, i.e., ajfine subspaces of codimension n. Then N is an affine

subspace and φ is the orthogonal projection.

Proof of Proposition 2.6. To bigin with, we state the Weitzenbϋck formula

for harmonic morphisms, which reads

(2.1) ^ Δ M λ φ

2 = I Vdφ\2+\Φ

2 trace Ricci M | ^-λ φ

4

Zn

where trace Ricci^ijf denotes the trace of the Ricci tensor of M on the hori-
zontal distribution M and Scal# stands for the scalar curvature of N. On the
other hand, in the case of grad λφ

2 vertical, as we noted in 2.2, dφ has maximal
rank n=dimN everywhere. Moreover by Theorem 2.3 (3), we have

(2.2) Y

where {X19 •••, Xn} is an orthonormal basis of the horizontal subspace.
Now it turns out from the completeness of M and the assumption (4) on

the sectional curvature of M that for large R, the outside of the metric ball
BM(R) around o with radius R is homeomorphic to [i?, oo) x dBM(R) and
furthermore any pair of points belonging to the same connected component of
M\BM(R) can be joined by a smooth curve which lies in M\BM(R) and the
length of which is bounded by cM R, where cM is a positive constant depending
only on M (cf. [23]). Based on this observation, we shall show that λφ must
be constant. In fact, take two points x, y in a connected component, say β,
of M\BM(R) and assume that rM(x)>rM(y) (>i?). Let 7: [0, ά\->M be a
distance minimizing geodesic joining 0 to x (a=rM(x)). Since we have by the
assumptions (3), (4) and (2.2)

(2.3) |Λφ|:

on Mo for some positive constants cx and δ, we get

,1-t-δ
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and henςe integrating the both sides, we obtain

(2.4)
λ

. This shows that

for some positive constant c2. Let us take a smooth arclength-parametrized
curve σ\ [0, b]-+M which lies in M/BM(d) (d=rM(y)) and joins y to y(d).
Then it follows from (2.3) again that

Hence by (2.4) and (2.5) ,we have

1 1 V|

This implies that λφ2(Λ?) goes to a constant ^ as x^β tends to infinity. More-
over for any point ΛJGM, there is a smooth curve *?x: [0, oo)->M which is the
horizontal lift of a ray γ in iV" starting at φ(x), since N is complete and non-
compact. Then

| <?,(')) = o ,

so that we have

if *?x(ί) goes to infinity through 6. This proves that λψ is constant. Now it
turns out from the assumption (2) and the Weitzenbϋck formula (2.1) that φ is
totally geodesic. //

Proof of Proposition 2.7. By Theorem 2.3 (3) and Lemma 2.4 (1), N is a
complete manifold of nonnegative curvature KN, Since N is assumed to be
noncompact, there exists a sequence of points \pj} of N and tangent planes P f

at />,- such that KN(P{) goes to zero as / tends to infinity. Let p be any fixed
point of N and take smooth paths η{: [0, 6J-*iV joining ^ with />,-. Then it
follows from Theorem 2.3 (3) and Lemma 2.4 (2) that for any x^φ~ι(p),

I grad λφ

21 \χ) = I grad λ 2 1 2 o^ 0 ,^)

< 4 λ Φ

8 W ^ ( P ί ) ,

where ^o,*,'- Φ'XP^Φ^iPi) 1S Λe isometry as in Lemma 2.4. Thus gradλψ2
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vanishes everywhere on M. This completes the proof of Proposition 2.7. /•/

Proof of Proposition 2.8. Since the fibres are affine subspaces, it is easy
to see that N is diffeomorphic to Rn. Thus it turns out from Proposition 2.7
that the fibres are pallarel, and hence φ is totally goedesic. This completes
the proof of Proposition 2.8. //

REMARK. In Propositions 2.7 and 2.8, if we assume, instead of the fibres
being totally geodesic, that the second fundamental form a of the fibres satisfies

for some constants £>0 and £>0, then the same assertions hold. See [5] for
related results to Proposition 2.8.

2.4. As an application of the Weitzenbϋck formula (2.1) and a generalized
maximum principle, we can derive Schwarz lemma for harmonic morphisms.
To be precise, let φ: M->N be a harmonic morphism. Suppose M is complete,
the Ricci curvature of M is bounded from below by a nonpositive constant —kλ

and the scalar curvature of N is bounded from above by a negative constant
—k2. Then the dilation \φ of φ satisfies:

h

where n=dim N (cf. [32]).
We are also able to give an upper bound of the growth of a harmonic

morphism, comparing the decay order of the Green functions of the domain
and the target.

Proposition 2.9. Let φ: M->N be a (nonconstant) harmonic morphism
between complete noncompact Riemannian manofolds M and N. Suppose that
the conditions below hold:

(1) The Ricci curvature RicciM of M satisfies :

(2.6) Ricc in^>- c

v 2+8 'rM

where c and S are positive constants.
(2) The dimension n of N is greater than or equal to 3, N is simply connected,

and the sectional curvature of N is nonpositive.
Then one has

log t n—2
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where m=dimM, μ(φ, ί)=max {rN(φ(x))ι x^M, rM(x)=t}i and rN stands for
the distance in N to a fixed point o1 of N.

Proof. Let us consider the Dirichlet problem outside the metric ball BN(a)
of N around of with radius a: ANu=0 on N\BN(a), u=ί on dBN(a). Then
there exists a unique solution u of the problem which satisfies:

(2.7)

for some positive constant cv In fact, the Rauch comparison theorem says that
the Laplaaian ANrN of the distance function rN is bounded from below by
(n—l)rN~ι, so that rN

2~n is superharmonic (i.e., ANrN

2~n < 0) (cf. e.g. [16]).
Hence by the maximum principle, the solution us of the Dirichlet problem:
ANus=0 on BN(s)\BN(a), us=\ on dBN(a) and us=0 on dBN(s), is bounded
from above by an~2rN

2~n. Thus w=lim us satisfies inequality (2.7). By setting

u(y)=l on BN(a), we assume that u is defined on N. Then the composition
uoφ is a positive superharmonic function on M. Let us now consider the same
Dirichlet problem outside the metric ball BM(b) around o^M with radius
b: AMv—Q on M\BM(b), v=l on dBM(b). Taking the radius a sufficiently
large, we may assume that BM(b)(Zφ"1(BN(a)). Then there exists a unique
solution v of the problem such that

(2.8) v<uoφ on M\BM(b).

On the other hand, by the assumption (2.6), we have

(2.9) -~ϊ<v o n M\BM{b)
rM

for some positive constant c2 (cf. [22, 24]). Thus we have by (2.7) and (2.8)

^ ^ log t+c3
n—

for some positive constant c3 and large t. This proves Proposition 2.9. //

REMARKS. (1) In case RicciM>0, estimate (2.9) is due to Calabi [7]. Our
condition (2.6) is rather technical, but from the view point of the problem dis-
cussed here, it seems to be natural (cf. [16, 22, 23, 24]). (2) Proposition 2.9
is a generalization of Proposition 8.1.1 in [4] where harmonic morphisms of
homogenuous polynomials between Euclidean spaces are discussed. In particu-
lar, the upper bound in Proposition 2.9 is sharp as noted in [4].

2.5. Finally we shall show a lower bound for the growth of a harmonic mor-
phism under certain conditions.
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Let M be a complete noncompact Riemannian manifold. We assume that
M is connected at infinity, namely, for any compact set K> there is a compact
set R. such that Kafc and M\K is connected. Since M is complete, M i s
connected at infinity if and only if for any metric ball BM(t) centered at a point
O G M of radius t> M\BM(t) has only one noncompact component, say Σ ( 0
We fix a point o of M as a base point and denote by diam (3Σ(0> Σ ( 0 ) the
diameter of 3Σ(0 measured with respect to the intrinsic distance of the open
manifold Σ ( ί ) . Set

δoo = limsup — diam(9Σ(ί), Σ(*))e[0, °°]

We shall now prove the following

Theorem 2.10 Let φ: M-*N be a (nonconstant) harmonic morphism bet-
ween complete noncompact Riemannian manifolds M and N both of which are con-
nected at infinity. Suppose that the conditions below hold: (1) The Rίcci curvature
RίccίM of M satisfies:

R i c c i M > - c

r 8+8
TM

for some positive constants c arid £,
(2) The dimension of N is equal to 2 and N has finite total curvature

Then ifδooX) or 2πX(N)— ί KNdA>0, one has

l iminf^>(% ( i V )

'•*- log t \ 2π

where μ(φ, t) is as in Proposition 2.9, X(N) denotes the Euler characteristic of N

and δoo is defined as above.

REMARKS. (1) The classical Cohn-Vossen inequality says that 2πX(N)>

\ KNdA. Finn [12] and Huber [18,19] studied the difference: X(N)-^KNdAβπ

from the view point of conformal geometry. On the other hand, Shiohama
[29] discussed the same problem in a different way and showed that

X { N ) - 1

2
\κNdAπm ; f y / y

2π 1 '+- Aπ Area(BN(ή)

*+» 7CΓ

_ l i m Length (dBN(ή)
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(2) If we replace the Ricci curvature of M with the sectional curvature in the
condition (1) of Theorem 2.10, then the scaled metric spheres {dBM(t)y t"ιd^
(where dt is the intrinsic distance of dBM(t) induced from that of M) converge
to a compact metric space M(oo) with respect to the Gromov-Hausdorff dis-
tance, and δoo is equal to the diameter of M(oo) (cf. [23]). (3) When M has
nonnegative Ricci curvature and M\BM(t) is homeomorphic to (0, oo)χQBM(t)
for large t> δ*. is finite (cf. [1]).

The proof of Theorem 2.10 is carried out by the same idea as in [24]. To
begin with, we shall show

Lemma 2.11. Let M be as in Theorem 2.10 and let h be a harmonic
function defined outside a compact set K of M such that h is not bounded from
below nor above. For large t} set m(h, t) = max{h(x): x^dBM(t)}, m(h} t) =
min {%): x^dBM{t)}y and μ(h, t)=fn(h, t)—m(h, t). Then,

Km sup l Q g ^ * ) > l o g Γ«pfa,8.,)+n
~~ F log* " H e x p ^ δ O l J

where cm is a positive constant depending only on the dimension m of M.

Proof. It suffices to show the lemma in case δoo< + °° For large t> we
take two points p,, qt of dBM(t) such that h(pt)=m(h, t) and h(qt)==m(h, t). By
the maximum principle, both pt and qt belong to 9 Σ ( 0 J o u l it t 0 Pt Ŷ a n

arclength-parametrized smooth curve τf: [0, αJ->Σ(ί) whose length at satisfies:
at< diam ( 3 Σ (0> Σ ( 0 ) + ^ i (0> where ^(ί) goes to zero as t tends to infinity. Let
us fix here a posotive integer k which is greater than δoo and set pt,i=rt(iatl3k)
(i=0, 1, •••, 3*). Observe that

f* f

(2.10)
1 δ 1

lim sup — disM(^,,., p i+1)^-2<— .
'̂ °« t 3/e 3

By the assumption on A, m(h, t) is monotone increasing and hence m(h, (δeo+
3/2)ί)—h is a positive harmonic function on the metric ball BM(ptti, tβ)
aroundp t i with radius */2. By applying the Harnack inequality due to Cheng
and Yau [9] to m(h, (δoo+3)ί)—A, and by the assumption on the Ricci curvature,
we have

where €2(t) goes to zero as t tends to infinity. This implies that
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(2.11) m(h9 (8m+3)t)-m(h,

Moreover by the assumption on h, m(h, t) is monotone decreasing and
h—m{hy (8co+3)t) is a positive harmonic function on BM(pttit tβ). Hence the
same reasoning as above shows that

(2.12) m(K t)-m(h, (δ«

Now it follows from (2.11) and (2.12) that

This implies that

Thus it turns out from the above inequality, (2.10) and the standard iteration
argument that

l imsupMMM >log<>« log ί
m s u p > l o g

<•>« log ί L exp (cu δoo)— 1

This completes the proof of Lemma 2.11. ///

Proof, of Theorem 2.10. Since N has finite total curvature I KNdA9 it

follows from [18] that the end of N is conformally equivalent to that of C, to be
precise, there is a conformal diffeomrophism Ψ : N\K-+C\DR from the com-
plement of a compact set K in N onto that of a disk DR={z^C: \z\ <i?}.
Then applying the argument in Theorems 11 and 13 of [12] and Thόorέm 1 of
[19] to N\K, we have

(2.13) lim l Qg r*(*) χ(N)

where rN denotes the distance to a fixed point in N. Moreover there exist
harmonic functions / and g on N such that both | f—Re(Ψ) \ and | g—Im(Ψ) |
are bounded on N\K (cf. [3: Chap.III)]). Define a harmonic map Ψ: N-+C
by φ=f-\ry/ZZΐg. Then by Lemma 2.11, we get

(2.14) l i m i nl i m i n f ^

Thus Theorem 2.10 follows from (2.13) and (2.14). This completes the proof

of the theorem. //
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The same argument as in the proof of Theorem 2.10 will yield the follow-

ing

Proposition 2.12. Let φ: M->N be a (nonconstant) harmonic morphism

between complete noncompact Rίemannian manifolds M arid N both of which are

connected at infinity. Suppose the following conditions hold:

(1) φ has at most linear growth.

(2) M has nonnegatίve Ricci curvature.

(3) The dimension of Nίs equal to 2, the Gaussian curvature KN of N is non-

positive and the total curvature \ KNdA is finite.

Then N must be flat.

Proof. We observe first that N is conformally equivalent to C, because M
admits no nonconstant harmonic functions. Hence there exists a conformal
diffeomrophism Ψ: N->C such that

l ί m l o g ! * ( * ) ! = Λ J _
logr^tf) \ 2π

Therefore by the condition (1), we have

lim inf l Q S ^ ψ o φ > *) - l i m inf l o S μ(ψoφ> *> l o g μ(φ>
/->« log t <->~ log μ(φ, t) log t

The right side of the above inequality is greater than or equal to 1, because of
the Cheng's theorem [8] mentioned in the introduction. Thus we see that the
total curvature of N vanishes, which implies that N must be flat. This com-
pletes the proof of Proposition 2.12.. / /

Corollary. Let φ: M-> N be as in Proposition 2.12. Suppose the conditions

(1) and (3) of the proposition hold, and suppose that

(2)' the sectional curvature KM of M is nonnegative and decays quadratically

{ue.f 0<KM<c/rM*).

Then φ is totally geodesic.

Proof. This follows from Proposition 2.12 and Theorem B in [24] quoted
in the introduction. //

3. Harmonic maps of linear growth

Let M be a complete noncompact Riemannian manifold of nonnegative
Ricci curvature, and let N be a Hadamard manifold. In Theorem 3.2 below,
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we shall give sufficient conditions for a nonconstant harmonic map φ: M-+N
to be totally geodesic. The main ingrudients in the proof of Theorem 3.2 are
a scaling argument and harmonic coordinates with specific properties (cf. e.g.,
[2,6,21,24,25]). Especially we make use of the following recent result due to
Anderson [2]:

Fact 3.1 ([2: Main Lemma 2.1]). Let X=(X, G) be a Riemannian mani-
fold (not necessarily complete) of dimension d such that

I Ricci* I < λ , inj* > io> 0 .

Then given any C > 1 and σG(0, 1), there is an So=£Q (λ, i0, d, σ) with the follow-
ing property: given any x^X, there is a harmonic coordinate system U=(ulf •••, ud)
defined on the metric ball Bx(S(x)) of X around x with radius £(x) such that
U(x)=0 and if Gi~G(Vuh Vus), then Gij(x)=8ij and

C~ιI<G(y)<CI (as bilinear forms)

Φ ) 1 +

for all y G Bx(6(x)), where

S(x)
>εo>o.

dis (a, dX)

We shall now prove the following

Theorem 3.2. Let M be a complete noncompact manifold of nonnegative
Ricci curvature and N a Hadamard manifold. Let φ: M~>iV be a nonconstant
harmonic map between M and N. Suppose the conditions below hold:

(1) The Ricci curvature RicciM of M satisfies

(3-1)

for some constant q > 0 , and moreover M has maximal volume growth, i.e.,

(3.2) Vol (BM(t))>c2t
a

for some constant c2>0, where m=dim M.

(2) The sectional curvature KN of N satisfies

(3-3) — %
rN

for some constant £3>0.
(3) The map φ satisfies

(3.4) ct(r
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for some constants c4>0 and c5>0, and moreover φ has maximal rank n (=dim N)
outside a compact set K, i.e.,

(3.5) the rank of dψx = n (χ(=M\K).

Then both M and N are isometric to Euclidean m-space Rm ahd φ is an affine map.
We make here some remarks before the proof of Theorem 3.2.

REMARKS. (1) As mentioned in the introduction, the second inequality in
(3.4) is equivalent to the condition that the energy density e(φ) of φ is bounded
on M. Moreover e(φ) is subharmonic on My because of the Weitzenbϋck
formura which reads:

(3.6) γ

where {ely •••, em} is an orthonormal basis at the point under consideration on M.
(2) By a theorem due to Croke [10] and by the nonnegativity of the Ricci

curvature of M and the condition (3.2) on the volume growth of M, the injec-
tivity radious injM(#) of M at a point Λ G M satisfies

(3.7) injM(x)> c6rM(x)

for some constant c6>0.

Proof of Theorem 3.2. We shall divide the proof into three steps.
Step 1. Given a positive number ty consider the scaled metric gt=t~2gM

of the metric gM of M. Denote by BY(xy a) (resp., A1f(by c)) the metric ball
around a point x of radius a with respect to gt (resp., the annular domain
B¥(°> b)\B^(o, c) (b<c)). Given a number k>ly by (3.7), we can apply Fact
3.1 to Af(k, k"1) and find constants a and b independent of t such that for any
x^A^(ky &"1), there is a harmonic coordinate system U=(uly •••, um) on B^(xy a)
which has the property described in Fact 3.1 and the image of which contains
the Euclidean m-ball Bm{b) of radius by i.e. U{Bf{xf a))Z) Bm(b)= {w^Rm:
I w I < b}. Moreover since M has nonnegative Ricci curvature and maximal
volume growth (3.2), we can employ the simple covering argument based on the
Bishop comparison theorem (cf. [15]) and obtain a finite collection of balls
{B^(xiy fl)}^^! the union of which covers Af(ky k~~ι) and the number / of
which is bounded by a constant independent of t. Therefore it turns out from
a version of the Gromov's Lipschitz convergence theorem and the standard
diagonal argument that arbitrary divergent sequences {£,-} and {kj} respec-
tively contain some subsequences, denoted by the same letters, for which
A^.{kjy kj"1) converges to an w-manifold C*(M(oo)) of a C^-metric^oo in the
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C^-topology ( 0 < σ < τ < l ) as/ goes to infinity (cf. e.g., [6, 25]). As for N9 the
same observations are valid. To be precise, if we take two (large) numers t and
k, and consider the scaled metric ht=t~2hN of the metric hN of N9 then we can
find positive constants ά and b independent of t such that for any y^A^φ, &""1),
there is a harmonic coordinate system V=(v19 •••, vn) on B*(y, ά) which has the
property described in Fact 3.1 and the image of which contains the Euclidean
w-ball Bn(p) of radius b. Moreover by (3.4) and (3.5), we will assume that

(3.8) Aftck, (ckDdφ(Aγ(k, k-^cA^ck, {ck)-l)cA>!$, t1)

for some constants c and c independent of t. Therefore it turns out again that
arbitrary divergent sequences {t{} and {kj} respectively contain some sub-
sequences, denoted by the same letters, for which Afykj, fef1) converges to an
w-manifold C*(N(oo)) of a C1>(Γ-metric A*, in the C1>τ-topology as j goes to
infinity. (In this case, it is easy to see that the limit Riemannian manifold
C(N(o°)) is a unique tangent cone at infinity of N (cf. [23]).)

Step 2. Set £oo=suρ e(φ) and take a family of points {xt} in M such that
rM(xt)=t and e(φ)(xt) goes to e* as t tends to infinity. In what follows, we will
assume that e»a<ά and B?(φ(x), a)cA?(k, k"1) for any xeAf(k9 k~ι), where
a9 ά9 k, and k are as in Step 1. Let Ut=(uv •••, um) be a harmonic coordinate
system on B^(xt, a) with the property described in Fact 3.1 and let Vt =
(vι> '">υn) be such a system on B^(φ(xt)y ά). Set φt—Vt°φoTJt~

ι and assume
that φt(Bm(b))cBn(b), where b and b are as in Step 1. Then the components

{φ?}—1,. . o f Φt s a t i s f y

^ » MVl QΦt* . V
/5,γ=iz 2 J / - I i t . i j r 2 - ι / 5 , γ = i l - t . β y ^ z

dUjdUj dut du{ du

where {MTt,ij} (resp., {NTt%y}) are the Cristoffel symbols of gt (resp. ht) with
respect to the harmonic coordinates Ut (resp., Vt). It follows from the standard
elliptic regularity theory that the C2'*-norms of φt* are bounded uniformly in t.
Thus for any divergent sequence {£,}, there exist a subsequence, denoted
by the same letters {tj}, a C1'* metric gM on Bm(b), a Clf<r metric h^ on Bjφ)
and a C2>(Γ map φoo. Bm(b)-*Bn(b) such that Utj*gtj (resp., Vtj*htJ) converges to
£«, (resp., hoo) in the C1>τ topology and so does {φtj} to φ^ in the C2fT topology.
Moreover if we use the apriori estimates in the Sobolev space, then we may
assume that the limit metrics g^ and hM have, respectively, the curvature tensors
i?fί and i?£ in iΛsense, to which the curvature tensors of gtj and htp respec-
tively, converge weakly in L2-sense. Thus it follows that the limit map </>«,
defines a harmonic map with respect to the limit metrics and the energy density
e(φco) of φco satisfies weakly the Weitzenbϋck formula (3.6) in Zr2-sense. Applying
the maximum principle to e(φoo)y we see that e(φoo) must be constant, because

o)=^eo. This implies that φM is totally geodesic, i.e., the
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second fundamental form of φw with respect to the limit metrics vanishes identi-
cally. Thus in particular, it turns out that e(φ)(x) converges to the constant £«,
a s x G M tends to infinity and the second fundamental form ydφ of satisfies:
limrM(x)\Vdφ\(x)=O.

Step 3. Let {tj}, {kj} and {kj} be divergent sequences as in Step 1 such
that (3.8) is kept for any j , and Afiζkj, kfι) and A?.{kyj faf1) converge respec-
tively to the Riemannian manifolds C*(M(oo)) and C*(N(oo)) asj goes to infinity.
As observed in Step 2, we may assume that as j goes to infinity, the restriction
φtj of φ to Afi(kj, kf1) converges to a totally geodesic map, say again φ^ from
C*(Λf(oo)) to C*(N(oo)). Moreover it follows from (3.8) that <£«, is a diffeo-
mrophism. Hence by the Weitzenbϋck formula (3.6), we see that both
C*(M(oo)) and C*(iV(oo)) are isometric to Rm\{o}. This shows in particular
that m=n and

= l i m

ωmtm *•*•- ωmtm

where ωm denotes the volume of the unit sphere in Rm (cf. [24,25]). Thus
it turns out from the equality discussion of Bishop and Rauch comparisom
theorems that both M and N are isometric to Rm. Hence it is obvious that φ
is an affine map. This completes the proof of Theorem 3.2. //
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