
Shinkai, K. and Taniguchi, K.
Osaka J. Math.
27 (1990), 709-720

ON ULTRA WAVE FRONT SETS AND FOURIER
INTEGRAL OPERATORS OF INFINITE ORDER

KENZO SHINKAI AND KAZUO TANIGUCHI

(Received September 5, 1989)

Introduction. The fundamental solution of the Cauchy problem for a
hyperbolic operator is given in the form of Fourier integral operator. As shown
in [16] or [20] when the problem is not C°° well-posed, the symbol of the funda-
mental solution has exponential growth, that is, it is estimated not only from
above but also from below by

(0.1) C e x p f ^ T , c > 0 .

The constant K in (0.1) corresponds to the constant in the necessary and suf-

ficient condition for the well-posedness in Gevrey classes given by Ivrii [5].

In the present paper we define UWFw(u) (ultra wave front sets) for u that

belongs to the space of ultradistributions S (K} ' by

(0.2) (xoy

3 C ;

where X^S{κ} Γ\Co and ξ belongs to a conic neighborhood of ξ0 (see
Definition 2.1). Then by using UWF(μ>)(ύ) we can state the propagation of
very high singularities for the solution of not C°° well-posed Cauchy problem
(see Theorems 3.1 and 3.2). Here, by a very high singularity of uy we mean
that its local Fourier transform has an estimate like (0.1).

UWF are first defined by Wakabayashi [22] by the name * 'generalized wave
front sets". But, his definition contains both UWF and Gevrey wave front
sets and they are denoted by WF[K] and WF[K) respectively (see Definition
1.3.2 in [22]). He also tried to get non-trivial inner estimates for UWF, but
got only a lemma ("not really satisfactory'' in his words) and he gave two ex-
amples with respect to operators with constant coefficients.

In section 1 we define pseudo-differential operators and Fourier integral
operators whose symbols have exponential growth and show that these operators
act on the space of ultradistributions S{κ}'. In section 2 we define the UWF
of M G ^ { 4 ' and give the propagation theorem of UWF for Fourier integral
operators of infinite order (Theorem 2.2). In section 3 we give exactly the
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UWF of the solution of the Cauchy problem for hyperbolic operators with

variable multiplicities.

1. Ultradistributions and Fourier integral operators of infinite order.
Let K satisfy κ>l. For positive constants h and S we define a class S{/c; h, 6}
of ultra differentiable functions by a set of functions u(x) satisfying

(1.1) \d*xu(x)\

for a positive constant 0. For u^S{κ; h, 8} we define a norm \\u; S{/c; h, £}||
by

\\u; S{κ; h9ε}\\ = inf{C of (1.1)}.

Then, S{κ; h9 6} is a Banach space.

DEFINITION 1.1. We define a class S(κ} by

S{κ} = indlim<S{/e; A, 6}
Λ-*o, ε-H)

and denote by S {K} ' the dual space of S {K} .

Lemma 1.2. The Fourier transform F[u]=ύ(ξ) maps S{κ} to S{κ}
and hence the Fourier transform is also well-defined on S{κ}'.

Proof is omitted.

The class S {/c}' is a class of ultradistributions (see [2] and [9]), and as we
shall prove later (Lemma 1.7) the class S{κ}' is characterized by the following:
Let MGCS{/C}'. Then, for any function X(x) in S{κ} with compact support the
Fourier transform (Xu)A(ξ) of Xu is a measurable function and has an estimate

for any £>0.

Let p and δ be real numbers satisfying O^δ^Sp^l, δ < l , /c(l — δ ) ^ l and

DEFINITION 1.3 (cf. [6], [12], [17]). i) Let w(θ) be a positive and non-
decreasing function in [1, oo) or a function of the type θm. We say that a
symbol p(x, ξ) belongs to a class Sp>δtG(κ)[w] if p(x, ξ) satisfies

for all x and ξ ,
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where pφ]=d*(—idx)
βp' We call the above function w(θ) an order function.

ii) We say that a symbol p(x> ξ) (^S~°°) belongs to a class 3iG(κ) if for
any a there exists a constant CΛ such that

hold with a positive constant c independent of a and /3. We call a pseudo-
differential operator with a symbol in iR^) a regularizing operator.

REMARK 1. When w(θ)=θm for a real m we denote SP,afCGo[w] by S"8tG(κ).

REMARK 2. When ^'(^)=exp(C^σ) for a er>0, the class S^QMIW] is a
symbol class of exponential type, and this corresponds to the class investigated
in [23], [14] and [1]. We also remark that the class of symbols in Gevrey classes
are investigated in [10], [11], [3] and [19].

EXAMPLE. For Λ(#, f)e*S*0,GW ^ e s v m k o l ρ(x, ξ) = a(x, £)exp «£>*)
belongs to Slt0>Giκ)[txV(2θσ)].

DEFINITION 1.4. Let 0 ^ τ < l . We say that a phase function φ(x9 ξ)
belongs to a class ^ ^ ( T ) if φ(x, ξ) is real-valued and for J(x, ξ) = φ(x, ξ)—x ξ
the estimates

(1.2) Σ I/$(*.

and

(1.3) !/©(*, ξ)\gτM-™+M\alβ\γ<ξy-™

hold for a constant M independent of a and /3. We also set

3>GM= U 5» β ω (τ).
O^T<1

Proposition 1.5. Z^ί w(^) δ^ αw orώr function satisfying

(1.4)

/or α constant σ with 0^σ<l//c. For a phase function φ(x> ξ)^SG^κ) and a
symbolp(x, ξ)^SPt8tG(κ)[w] we define a Fourier integral operator Pφ and a conjugate
Fourier integral operator Pφ* by

Pφu{x) = j «'•<*•»#*, ξ)ύ(ξ)dξ ,

Pφ*u{x) = j e"'H j e-'*o *>p(y, ξ)u(y)dy}dξ ,

where dζ = {2πYndξ. Then, the operators Pφ and Pφ* map S{κ} to S{κ} con-

tinuously.
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Proof. For u(x)^S{/c} we denote

Define L={l+|VsΦ(#, ξ)\2}^ίl~iVξφ(xy f) V*}. Then, we have Leiφ(x^=

eiΦ(χ.ξ) a n d hence

)" ip(x,

By the induction on N we can prove

(1.5) |

for positive constants C, Mv M2, Cx and £, since ά(ξ) belongs to 5̂ {/c}. Assume
that x satisfies CoiV

ιe^<Λ;><Co(iV+l)<c for a constant Co to be determined later.
Then, using (1.5) with α=-0 and denoting φβ(xy ξ)=e~iφ(x'ξ)dβ

xe
iφ(x-ξ) we have

| Σ (

β'+β"=β \β

=β \β ) exp

exp feCo^JV+l)) exp

for any positive constant £lβ Now, take Co and εx satisfying

Then, /(x) satisfies (1.1) with h=MA and S — SxCy*. Consequently, we have
proved that Pφ maps S{κ} to S{κ} continuously. In the same way we can
prove that Pφ* maps S{κ} to S{κ} continuously. Q.E.D.

From Proposition 1.5 the following definition is well-defined

DEFINITION 1.6. Let w(θ) be an order function satisfying (1.4), that is,
it satisfies

for a constant σ with 0^σ<l//c . Then for φ(χ, £)e£PG((e) and p(x,

'S'p.β.GOoM* ̂ e following operators
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are defined by the principle of duality.

EXAMPLE. For a(x, ξ)^S"ΰίGM («<2) we consider a symbol p(x, ξ) =
a(x, ξ) exp « £ > V 2 ) with c>0. Then, it belongs to SuoMκ) [exp(2c0V2)] and for
1 < « < 2 the following maps are well-defined:

where φ is a phase function in iPG(K).

Lemma 1.7. For &ecS{/c}' #m/ X^S{κ} Γl CJΓ the Fourier transform
(Xu)A(ξ) ofXu is a measurable function and has an estimate

for any £>0.

Proof. We may assume that u^S{κ}' has a compact support and prove
that, for any fixed £, exp(—£<£>1/κ)ώ is a functional on L1 and has the following
estimate

(1.6) KexpC-K?)1^, Ψ>l ^C||ψ||xi

for ψGL 1 . Then, we find that exp(—£<|>Vκ)ώ belongs to L°° and we have an
estimate

for any £. Denote by yjr(x) the inverse Fourier transform of ψ(ξ) and take a
function %(#) in S{κ; h} 1} ΠC?(!?*) with h=SκκΓκ\2 such that %(Λ?)=1 on the
support of w. Then, we have for ψG^S{/ί; A, 1}

= <«, exp ( -

= <«,%(*) exp(-

Here, we have used Proposition 1.5 for well-definedness of the third and fourth
members of the above equation. Hence, by the definition and the fact that

' we have

(1.7) K&xp(-ε<ξyfκ)A ψ>\ £O\\X(x) exp(-£<I>>^)ψ.; 3{κ; h,

Write
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X(x) exp(-£<Z)>^)^) = J «<*•*X(x) exp (-<K£>V"

Then, from h=£κfc~κj2, we have

18?(%(*) exp(-β<Z)>v^)I ^CA-'-'αl" exp (—

and hence

; £{*; A, l } | | ^

This and (1.7) yields (1.6) for ψGcS{/ί; A, 1}. Finally, using the limiting process
we have (1.6) for any ψ^L\Rn). Q.E.D.

From Lemma 1.7 we get the following Lemma 1.8, which states that the
pseudo-differential operator with a symbol in 3lG(κ) is a regularizing operator.

Lemma 1.8. For u^S{κ}' with compact support and r(#, ξ)^SlG(κ) we
have

r{X,

Here, f(x)elB{κ} means that there exists a constant C such that

19if(x) I gCM-' ΌI for any x.

In the following section we also need

Lemma 1.9. Let r(x, ξ) satisfies

(1.8) \r$(x,ξ)\

for a positive constant c0. Then, for u^S{/c}', r(Xf Dx)u is well-defined and

belongs to <3{/c}.

We can prove the lemma as Proposition 1.5 and Lemma 1.7. The detailes
are omitted.

2. Ultra wave front set

DEFINITION 2.1. Let K and μ satisfy κ^μ. For u^S{/c}' we define a
UWF (ultra wave front set) of u as follows: We say that a point (x0> ξ0) in
T*#\{0} does not belong to UWF^\u) if there exist a function X(x) in
S{κ} Γ\CQ with %(ΛJO)4=O, a conic neighborhood Γ of ξQy and for any positive
constant S there exists a constant C such that

(2.1) |(%M)A
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REMARK 1. As stated in Introduction this definition is the same as that
of Wakabayashi. (See Definition 1.3.2 in [22]).

REMARK 2. Let u<=S{κ}' and let κ^μ. Then, (x09 ξ)<£UWF(κ\u) for
all ξ is equivalent to that Xu^S{μ}' for some %e<5{4 with %(*0)4=0. (See
Lemma 1.3.3 of [22]). Especially, from Lemma 1.7 we have UWFw(u)=φ for

Theorem 2.2. Let κ<μ and let φ(x, f j e ^ and ρ(x, f)<=
SptιtG(κ)[exp (cθ*)]for some σ with σ<l/μ. Assume that φ(x, ξ) is positively homo-
geneous for large \ξ\. Then, for U<ZΞS{K}' and{yQiηQ)ςΞT*R\{fy with | ^ | > 1 ,
(jΌ> vo)^UWF^\u)yields

(2.2) fa, ξo)GUWF<PχPφu),

where

(2.3) ξ0 = Vxφ(χ0> vo), y0 = VeΦ(Λ?0> ??O)

This theorem corresponds to the theorem for the propagation of Gevrey
wave front sets investigated in Theorem 4 in [18].

Proof. Assume (yo> Vo)$ UWFw(u). Then, from the definition we can
take a neighborhood V2 of y0 and a conic neighborhood Γ2 of ηQ such that for any
S and %G<5{/c} with supp % c F 2 a n inequality

(2.4) l ( % ^ ) Λ ω i ^ C ε e x p [ ^ > ^ ] /or ^GΓ 2

holds. Next, using (2.3) we take neighborhoods Vx and V'2 of x0 and y0, and
conic neighborhoods Γ2 and Γ2 of ^0 and 970 satisfying

and

("I ( .!.
I u

i) Vίφ(Λ?, η)tΞV2 for

) Vxφ-\x,ξ)<ΞΓ'2 for

where η=Vxφ^\xy ξ) is the inverse function of ξ=Vxφ(x, η). Let Xx{x) and
%2(Λ?) be functions in S{κ} and ψ^f) and ψ2(ξ) be symbols in 55,0,GU) satisfying

(2.6)
(2.7)

(2.8)

suppXjCFi,
supp% 2 cΓ 2 ,

supp ψ iCΓj,
Uy) = i
•ψ i(l ) = 1

for

for

with some conic neighborhood Γ? of £0, and
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(2.9) s u p p ^ 2 c Γ 2 , ψ2(η)=l for

Now, write Xx(x)Pφu as

(2.10) XJφU = %1

From (2.5) and (2.8)-(2.9) we can show that σ(ψ1(D)X1Pφ(l—ψ2(D)) satisfies
(1.8) and hence from Lemma 1.9 we have

and

(2.11) \ίm\^C for

Similarly, from (2.5)-(2.7) we obtain that σ(X1Pφψ2(D)(ί—X2)) satisfies (1.8)
and hence we get

fjx) = SC

This yields

(2.12) \M®\£C for all ξ.

Next, we consider f^x). Let T be a constant satisfying (1.2)—(1.3) and write

(2.13) f m = j j *<-"

= Γ f
JJ|0-ϊ?

with λ—(l+τ)/2. Since the absolute value of the integrand of I1 is estimated by

Cexp [c<vy+€<vy^]SC exp [2ε<v>
VΊ

we have

(2.14) I/J ^Cff exp [2si2l(ί-τ)}ι/\ξy/μ].

Let L=-i\-ξ+Vxφ(x, η)\~2(-ξ+Vxφ{x, v))-Vs. Then, we have
L exp [/(—x ξ-{-φ(x, ̂ ))]=exp [/(—x ξ-{-φ(x, η))]. Hence, using the integration
by parts and | — ξ-\- Vxφ(x, η) \ ̂ C«?>+<97» on the support of the integrand of
I2 we can obtain
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(2.15) \I*\£C.

Combining (2.10)-(2.15) we obtain

\(X&u)*g)\ ^Cexp[26{2/(l-τ)}^<D 1 / μ] far £ e Γ ° .

Since we can take £ arbitrary, we obtain (2.2). Q.E.D.

3. Propagation of ultra wave front sets. The propagation of Gevrey
wave front sets are investigated in [8], [13] and [15] for the solutions of not C°°
well-posed Cauchy problem of hyperbolic operators. In this section, we give
the propagation of the UWF for the solutions of the following two degenerate
hyperbolic operators in [ί, T]xRl:

L = D2

t-t2jD2

x+aitkDx

and

L = D2-g(x)2jD2

x+aiDx,

where Dt~—idt and Dx=—idx. First, we consider the former degenerate
hyperbolic operator

(3.1) L = D2

t-t2iDl+aitkDx in [s, T]xRι

x,

where a is a real constant. Then, Shinkai [16] proves that the fundamental
solution E(t,s) for the Cauchy problem

(3.2) Lu(t) = 0, «(*) = <), erfs) = u0,

when s<0<t, is constructed in the form

(3-3) E(t,s) = Σli.n^Ea,n,Kn(t,s),

where φw>Λ(ί, s) = φm,n(t, *l ζ) are phase functions defined by

Φ...(t, *; f) = *e+{(-

In (3.3) the symbols em>n{t, s; ξ) of EmtUιΦ (t, s) satisfy

(3.4) β...(ί,ί;f) = β.

where

So, in (3.4), if Re C m n > 0 , then EMtHtφ (ί, s) is a Fourier integral operator of
infinite order. Using the fundamental solution in (3.3) we have the following
theorem

Theorem 3.1 ([16]). Assume k<j—l. Let u(t, x) be the solution of (3.2)
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for (3.1) with uo(x)=8(x) (Dirac function). Let Tmt1t be the trajectory associated to

Φm,n fw t>0. Then we get

(3.5) UWF«"\u(t)) = UpΓ W ) B ,

where P= {(m, n)\ Re Cw,M>0}.

REMARK. The result (3.5) shows that if k<j—l, then (3.2) for (3.1) is
not C°° well-posed and is <γ(ιe)-well-ρosed for ί<κ<(2j—k)l(j—k—l) (for the
7(κ)-well-posedness see also [5]).

Next, we consider a degenerate hyperbolic operator with respect to the
space variable:

(3.6) L = D)-g{xfDl+aiDx

with a positive constant a, where j is an even number and g(x) is an function
in <B{κ} satisfying g(x)=x for \x\ <*1, g(x)^l f o r x>^ a n d £ ( * ) ^ —* f o r

x< — 1. It is well-known that the Cauchy problem (3.2) for (3.6) is not C°°
well-posed (see [5], [21] and [4]). Assume

Let φ±(t, s; x, ξ) be the phase functions corresponding to the characteristic roots
±g(x)jξ of (3.6). Then, the fundamental solution of the Cauchy problem
(3.2) for (3.6) is constructed in the form

(3.7) E(tf s) = E+tΦ+(t, s)+E-tΦ_(t, s)+(regularizing operator)

and the symbols e±(tf s; x, ξ) of the Fourier integral operators E±tΦ±(t, s) can
be written in the form

(3.8) e±(t, s; x, ξ) = exp [f±(t, s; x, ξ)]e'±(ty s; x, ξ)

with symbols f±(t, s; x, ξ) in S'i-2δ,δ>G(κ) and elliptic symbols e+(t, s; x, ξ) in
SΊ-s,δ,GU)- Here, δ=l/(2j). Moreover, when s<t> the symbols /±(ί, s; x, ξ)
of (3.8) satisfy

(3.9) Re/+(ί, ,; x, ξ)^C(t

(3.10) Re/.(ί, s; x, ξ)^-C(t-s)Qy'2l(\x\Kξ>1/2+l)

for a positive constant O. Hence, E+tΦ+(ty s) is a Fourier integral operator with
infinite order. For a conic set V in T*F} we set T(t> s; V)= U ±ί(x, ζ)\ (xy ζ)
is a point at t of the bicharacteristic strip of ±g(x)jξ emanating from (yy η)
in V}. Then, using the fundamental solution (3.7) we have

Theorem 3.2 ([20]). Let u(t) be the solution of the Cauchy problem (3.2)
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of the operator (3.6) for u0 in S{tc) ' with compact support. Then, when μ satisfies

/e<μ<2 we have

UWF^(u{t)) = Tit, s; UWF^\u0))

and when μ^2we have

UWF^\u{t))(ZT(t, s; UWF^(uQ)) U TfR ,

especially, we have

= T(ty s\

where TfR={(0, ξ); ξ^R\{0}}. In particular, when uo=S(x) (Dirac function)
we have

(0, ±l)(=UWFW(u(t)).

For the construction of the fundamental solution (3.7) we use finite order
Fourier integral operators with complex phase functions φ±(ty s; x, ξ)—if±{t, s;
xy ξ) as in [7] instead of Fourier integral operators of exponential order. Then,
we can give the estimate (3.10) from below.

REMARK. In the above we assumed a>0. But, if we assume a<0 we can
also constructe the fundamental solution E(t> s) for (3.6) in the same form (3.7)
with (3.9)-(3.10) replaced by

_(ί, s; x, ξ)^C(t-

ί, s;
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