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1. Introduction

For a prime p, there is a spectral sequence, called the Adams-Novikov
spectral sequence, converging to the stable homotopy ring of spheres localized
at py 7r|(/,), whose Z?2-term is isomorphic to ΈxtBp^BP)(BP*y BP*), where BP
denotes the Brown-Peterson spectrum at ^([2]).

In [1], the elements a(

t

n) were defined in ExtJ p^p^BP*, BP*) for every po-
sitive integer n, t. (In [1], these elements were denoted by ηtyί) instead of a^.)
Here a(n) stands for the n-th. letter of Greek alphabet and we call them Greek
letter elements.

For n<3, it has already been prvoed that these elements are represented
by non-trivial elements in π*{P) if p>2n ([3], [4], [1], [2]) but in the case of
w>4, we have had few information on them yet.

The purpose of this paper is to prove the non-triviality of a\n) in ExtJ P^BP)
{BP*, BP*) for n > 4 under suitalbe restrictions on p, t and we succeed for p>n
and \<t<p— 1. Moreover we also prove p does not devide them.

In the next section, we recall the necessary information on BP and state
our results proved in §3.

I would like to thank Professor Akira Kono for useful conversations, kind
encouragement and reading this manuscript.

2. Recollections on BP and Statement of results

Let BP denote the Brown-Peterson spectrum at a prime p ([2]). Then
BPx^Z^lv^ v2y •••] and BP*(BP)=BP*[tly t2, •••] where the generators vm and
tm are defined as follows.

BP*®Q=Q [\v λ2, •] for canonical generators \m, \ Xm \ =2(pm— 1). Then
vm are determined inductively by

= J 3 > < £ - ' (λβ=l,»o=ί) ([2] A 2.2.2)

and ίw by
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= Σ λ< tt-i (to = 1) ([2] A 2.1.27)

where ηR: BP*®Q-*BP*(BP)®Q is the right unit of the Hopf algebroid

(BP*y BP*(BP)) tensored with Q.

Under the above choice of generators we have

Theorem 2.1. ([2] A. 2.2.5).

Theorem 2.2 ([2] A 2.1.27).

Σ F Δ(ίf) = Σ F h®tf ,

ί + />0

wfore Σ F denotes the formal group sum associated with BP and Δ: BP*(BP)-+

BP*(BP)®BP*{BP) is the coproduct of BP*(BP).

Let Im be the ideal in BP* generated by p, vly •••, vm_v Using 2.1 we see

easily that Im is an invariant ideal in BP*. In fact we have the following the-

orem.

Theorem 2.3. ([2] 4.3.2). Let Im=(p,υu - v^)

(a) /„, is invariant.

(b) For m>0.

Ext<>(2?P*//ffl) = Fp[vm],

and

= Z(t).

(c) 0 - Σ 2 t f " - I } BP*IIm - BP*IIm - BP*//.+ 1 - 0
/ί a short exact sequence of comodules.

(d) The only inv air ant prime ideals in BP* are the Im for 0<#ί<oo.

(From here we abbreviate Ext(M) for ΈκtBP^BP){BP*, M).)

This result allows us to define Greek letter elements.

We consider the short exact sequence given by (c) which leads to a long

exact sequence of Ext and let

Sm: Exts(BP*/Im+1)

denote the connecting homomorphism of the resulting long exact sequence.

DEFINITION. For t, rc>0, let

a(

t

n) = δ0 V Λ - i C
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We now state our results. Let

be the homomorphism induced by the natural projection
/£~Λ+1). (From now on we always assume p>n>3.) Then we have

Theorem 2.4. φn(a\n))j=0 if3<n<p and \<t<p—\.

As an immediate consequence of 2.4 we have

Corollary 2.5. α#°Φ0 if 3<n<ρ and \<t<ρ—\. Moreover p does not
devide them.

REMARK. For n<3 we have much more general results than 2.4. (See [1],

[2]-)

The rest of this section is devoted to describing the cobar construction
which we need in the next section.

Let (A, Γ) be a Hopf algebroid such that Γ is flat over A. Then the cate-
gory of (left) Γ-comodules becomes an abelian category with enough injectives,
so we can define Extr(L, M) for (left) Γ-comodules L, M as the 5-th right deriv-
ed functor of HomΓ(L, M).

In the case of L—A, these Ext groups can be computed as the homology of
the cobar complex CΓ(M) defined below.

DEFINITION. Let £: Γ^>A be the counίt and Γ=ker£. The cobar complex
CV(M) is defined by CS

Γ(M)=Γ®S®M with the differential d: CS

T(M)->CS

Γ

+1(M)
given by

- Σ (-iY

for y19 •••, γjGΓ and m^M where Γ®ς denotes the s-fold tensor product of Γ over
A, Δ(7 ί) = l®7, +Σ3 7/®7f /+7, ® l and ψ(m)=l®m+Tιnιr®m//. (A denotes
the coproduct ofY and ψ denotes the coaction map of M). The element γλ® ~ ®
7S® m will be denoted by rγι \ | γs \ m.

Then the following isomorphism holds.

Theorem 2.6 ([2] A 1.2.12).

Ext^A Γ) « HS(CV(M)).

Finally we define a certain quotient complex of CV(A) associated with a

sequence of non negative integers (aly ••-,#/) if T=A[rγlJ •• ,7«] (in may be
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infinity.) and rγi is primitive modulo (yv •••, y^^ for all i.

Let E=(elye2, •••) be a sequence of non negative integers such that ^ = 0

for all but a finite number of z. We introduce an order between such sequences

by saying that E<F ( = ( / 1 , / 2 , •••)) iff there is a positive integer i such that e~fj

for j<i and £,</,-. Let U + F denote a sequence ( ^ + / i , ^2+Λ> "*) a n d 7 £ —

DEFINITION.

CM)Cr((av •">*/)) = -

!{•} denotes the submodule of CΓ(A) generated by the indicated generators.

(Clearly CΓ((av ••-, at)) depends on the choice of γ f but we do not indicate

the generators in our notation because our choice is always evident in this paper.)

Now we show that CΓ((a19 •••, at)) is a quotient complex of CΓ(A). By our

assumption

where 7 ^ ( 7 ^ •• , 7 , _i) or 7; /^(7i> β ">7ί-i) Thus Δ ( 7 ί )G^4{7F(g)7G; F+G
i

> ( 0 , —, 0, ΐ)} and more generally we have Δ(7£)<E,4{7F<g)7G; F+G>E} since

Δ is an algebra homomorphism and (7 F ®7 G ) (7 F / ®7 G / )=7 F + F / (g)7 G + G / . There-

fore 0 A{7^11 ••• \yEs\ Eλ-\ \-Es> (av •••,«/)} is a subcomplex of CΓ(A) as

desired.

3. Proof of Theorem 2.4

Let O(n> m) (resp. D(n, m)) denote

(resp. CB^BP)lKnm{{p«-2+\,p"-\ -,p, 1)))

where Jntm=Im+IZ+1

ι+Itn+m+1 and ^ , m = / M

(Note that JBP#( JBP)=BP*[i1, ί2, •••] and Δ(ί, ) has the form

(3.1) Δ(ί,) = l ® ί « + ί , ® l in BP*(BF)®BP*(BF)l(tlt

for degree reasons.) It is obvious that the sequence

0 -> C(n, tn) ^ D(n, m) -> C(n, tn+1) -* 0

is a short exact sequence of complexes and letting

§ M : J=T(C(fi,
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denote the corresponding connecting homomorphism we have a commutative
diagram

Exts(BP*/Im+1) - Ext*+\BP*IIm)

Ψm+l I iψm

H\C{n, m+1)) -> H*+1(C(ny m))
o

where ψm is the homomorphism induced by the natural projection

Thus it is sufficient to show 3.2 below for the proof of 2.4 since ψ0 factors
through

φn: Erf(BP*) - ΈxtXBPtKI^+It"*1)).

Proposition 3.2. α(/°Φθ in Hn(O(n,0)) if l<t<p—ί where α(/° denotes

the element ψo(α?))=So—Sβ-i ψ»(»ί)εfl"(C(», 0)).

In order to prove 3.2 we begin with giving an explicit representative for
ά\n) and this requires some formulas on ηR of BP.

Lemma 3.3 ([2] 4.3.21).

Vlfcm) = ^m + ̂ rn-l tf^-vί^ tλ mod Im^ .

Lemma 3.4.

V&m) = Σ v, t£-i mod I*M .

For the proof of 3.4 we first prove the following simple fact about the formal
group law associated with BP.

Lemma 3.5.

X+FY = X+Y in BP

Proof. Note that X+FY has the form

X+Y+Έai9JX
iYi in

where ait~ajti<=LBP2ii+j-l).
Considering the degree of aij3 it is clear that ait~0 if i+j<p so we get

the desired result. •

Proof of 3.4. In the degree of ηR{vm), the left hand side of 2.1 is congruent

to ηR{vm) modulo Ip

m by 2.3 (a) and 3.5.
The right hand side of 2.1 is congruent to Σ *>,- tpm-i modulo Ip

m and the
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result follows. •

We now describe a representative for α(/°.

Lemma 3.6. α(/°eifn(O(rc, 0)) is represented by a cocycle

t^^ίίUn-λL2\Λr\^\^)
(p-n)\

Proof. In%n-1),

d(vί) = vR(vnγ-vί

= (vn+vu-i tΓ'-vLi tj-vt (by 3.3)

= -tvl'1 vLi h .

So we have

8,-K) = -tv\Γι viz\ t^H\C{n, n-ί)).

(We often abuse the same notation for a cocycle and its representing element
in the cohomology.)

In D(n, n—2),

d{v\Γιv*z\ h) = diυί-'vtzDlt, (by 3.1)

- K" 1K- ]+^-2 try-'-vί vtzl} I ίx (by 3.4)

= (p-l)vt

u'
1vtzlυΛ.2tί

t-2\t1

and thus

More generally, by induction on k, we can easily show

(3.7) s.-r s.-K) = - ^ ^ ̂ r1 «ίiί tf-?ι H

ZΞHk(C(n,n-k)) for all k,2<k<n.
Let ft=?z in 3.7 then we obtain the lemma. •

Next we define a subcomplex of C(ny 0) which will be denoted by C(n, 0).
Let (P(vn^vn)l(vζzr%P(vn^vnytly . . . ^ / ( ^ I Γ 1 ) ) be the sub-Hopf al-

gebroid of (BP*/JnOy BP*(BP)jJn 0) where P( ) denotes the polynomial algebra
which has the indicated generators over Fp. We define

C(n,0) = Cp{Vn^Vnthι...ιtnmvi-_n+ί)((p^+l,p''-\ -,p, 1))

and let
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B(n, m) = Op(h,..,tm) {{p«-*+\,p«-\ ...,p, 1))

where P(tv "',tm) is considered as a Hopf algebra over Fp whose coproduct is
given by Δ(ίf ) = Σ £; ®/?L;(l<ί<m). Then the following isomorphism of

differential graded algebras holds.

(3.8) C(n, 0) « P(vn.ly Όn)l(υίzV1)®B(ny n).

This follows from 3.4 and the formulas on the coproduct of BP*(BP) given by
the next lemma.

Lemma 3.9 ([2] 4.3.15). For m> 1

Δ ( ί m ) ^ Σ f, ®*ί'-, in BP*(BP)®BP*(BP)/Im ,

Δ ( ί β + 1 ) = Σ *, C

Now note that |α#° | < Kv+il f°Γ t<p—ί and C(Λ, 0) is equal to the sub-

complex C(n, 0) denned above in the internal degree less than \vn+1\ and there-

fore 3.2 is equivalent to

Proposition 3.10. tn.x\tU2\ - \tΐ"Ί^iΦO m iJM(B(w, Λ - 1 ) )

by 3.6 and 3.8 since B(nyn—l)=B(n,ri) in the internal degree less than \tn\

(>| ί ,- 1 | ί5-2 | | ί r > | f I | forp>n).
In order to show 3.10 we need the following lemma proved at the end of

this section.

Lemma 3.11. There is a spectral sequence converging to H*{B{ny m)) with

EΫ = H\Cp{tm) (Fp))®Ha(B(ny τn-l))IRa,b

and

ar. nr' —> rLr

where P(tm) is considered as a Hopf algebra over Fp with tm primitive and

Rab = Fpix®ytΞH\CpUJ (Fp))®Ha(B(n, m-1)); Both x andy have

representative cocycles X and y such that %y = 0 in Ba+b(n, m)} .

Moreover this spectral sequence has the third grading induced by the internal degree

in the cohomology which is preserved by all differentials.
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Proof of 3.10. First note that

tf'foΦO in H2(B(n, 1))

by 3.12 below since B(ny 1) is a direct summand of CP(tl) (Fp) as a complex.

(Recall our assumption n>3 which assures pn~2>l.)

Lemma 3.12.

H*(Op(tm) (F,)) = E(hmt0) hMΛ, -)®P(bMt0, bMΛt ...)

where hm , (resp. bm ,.) is represented by tζ(resp. — Σ (& ) tζJ\tζ(p~j)) and E(Λ
p O<J<P \ j I

denotes the exterior algebra which has the indicated generators over Fp.

Proof. This result is obtained by a routine calculation. •

Now suppose

(3.13) tf-'Γ| | t f " "Ί* iΦ0 in Hm(B(n,m-ί))

holds for some my l<m<n—l. Then the element tζ~m~ ®tζlΐ\ ••• \t{"~ \tλ

(^H\Cp{tm) (Fp))®Hm(B(n, tn—1))) defines a non-trivial element in the £2-term

of the spectral sequence given by 3.11 which is clearly a permanent cycle and

moreover there is no differential killing this element as observed below.

Let cm denote the internal degree of the above element then

(3.14) cM = 2{p-l

and it is enough to prove E?~r>r'Cm=0 for all r>2.

Using 3.11 and 3.12 we can identify the Er with an appropriate subquotient

of ® (^(At>y)®P(6 i>;)) and let Ci1j1,..;iι,jι,i'1j'1,- ;iί.J's denote the internal degree of

i ! . h h Λ h j s ( h ι > ^ ) t h e n

(3.15) ^ l iy l i... i f /.y/i, ίiyίf».,, ;.iί

= 2(̂ -1) { Σ y*(^-i+...+ί+l)+ Σ P^iP^+'

Comparing 3.14 with 3.15 we see easily that ctn=ciljίt...tiιjhi'1j'lt...ti'stj's does not

hold for l+2s<m under our assumption m<n<p(>3) and consequently

E?-' ' <m=o for all r>2. Therefore

tf"""Ί |rf""ΊίiΦ0 in H"+\B(n,m))

and by induction on m we have shown 3.13 for all m, l<m<n.

Letting m=n in 3.13 we get 3.10 and thus complete the proof of 2.4 assum-

ing 3.11. •
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Proof of 3.11. We begin with recalling the construction of the Cartan-
Eilenberg spectral sequence for the following cocentral Hopf algebra extension

P(tu -', *„-,) ί P(h, -, tn)^P(tm). (cf. [2] A 1.3.17)

We first define a decreasing filtration on OP(tlt...ttm) (Fp) by

(3.16) Fa-b = Fp{tEι I ••• I tB*+* at least a of the tEi lie in ktrg}

and let Er denote the Zίr-term of the spectral sequence associated with this
filtration.

Next define a homomorphism

hay. Cb

p(tm) (Fp)®Ca

p(h,....tm^ (Fp)

which is given by

for ?,i\-\t jtΞCb

Pitj(Fp) and ^ l - l ^ e C J ^ , . . . ^ ^ , ^ ) . If we consider
CP(tj (Fp)®CPitv...ttm_l) (Fp) as a complex with its differential d®\ then ha*
becomes a chain map and induces

fcy. H>(CpUj (Ft))®C'tιt^..lm_ύ (Fp) - El'".

Moreover we can prove hr is an isomorphism and if we consider Hb(OP(tm)(Fp))
®Cρ(h,»',tm-i) (Fp) as a complex with its differential (—1)* \®d then h'*tb is also
a chain map.

Hence we obtain an isomorphism

K'y. H\CM (Fp))®H°(CpUl,...ιtm_ύ (Fp)) - Efb

induced by h'.
Therefore we have a spectral sequence converging to H*(CP(tlt...tfm) (Fp))

whose £:2-term is isomorphic to H"¥{Cp{tJ{Fp))®H:¥{Cp{ht...ttm_l){Fp)). This
spectral sequence is called the Cartan-Eilenberg spectral sequence.

We now turn to our case. It is trivial that F°tb given by 3.16 also defines
a decreasing filtration on B(ny m) naturally. Thus we obtain a spectral sequence
Er converging to H*(B(n, m)) and a homomorphism

K'y. H\CpUa) (Fp))®H\B(n, « -

induced by a chain map

Ai.,: H\Cp{tj (Fp))®B(n, m-!)/!$., - Ef
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where

R'a.b = Fpix®y^Hb(CP(tm) (Fp))®Ba(ny m—ί); x has a representative

cocycle X such that %y = 0 in Ba+b(n, m)}

and A' (resp. h") is the map induced by h' (resp. A") naturally. So we will
show that h' is an isomorphism.

Let

R" = Fp{x®y^Cp{tm) (Fp)®B{ny m-1); ry = 0 in B(n, m)} .

It is easy to see that CP(tm) (Fp)®B(n, m—V)\B!f (resp. Eo) is a direct sum-
mand of Cp(tJ (Fp)®CP(tlt...ιtm_1) (Fp) (resp. JS0) as a complex where C ^ j (Fp)
®Cp(h,",tm-i)(Fρ) i s endowed with the differential d®ί and Cp(tm)(Fp)®B
(n, m— l)/i27/ with the induced one, and moreover through h, CP(tm) (Fp)®B
(n, m—l)IR" corresponds to Eo and another summand of CP(tm) (Fp)®CP(tlt...ttmi)

(Fp) corresponds to another one of Eo.

Hence the fact h' is an isomorphism implies h' is also an isomorphism
and we complete the proof of 3.11. •
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