QUASI K-HOMOLOGY EQUIVALENCES, II

Dedicated to Professor Junzo Tao on his sixtieth birthday

Zen-ichi YOSIMURA

(Received September 6, 1989)

0. Introduction

Let E be an associative ring spectrum with unit, and X, Y be $C W$-spectra. We say that X is quasi E_{*}-equivalent to Y if there exists a map $h: Y \rightarrow E \wedge X$ such that the composite $\left(\mu_{\wedge} 1\right)\left(1_{\wedge} h\right): E \wedge Y \rightarrow E \wedge X$ is an equivalence where $\mu: E \wedge E \rightarrow$ E stands for the multiplication of E. In this case we write $X \widetilde{E} Y$, and we call such a map $h: Y \rightarrow E \wedge X$ a quasi E_{*}-equivalence. We shall be concerned with the quasi $K O_{*^{-}}$and $K U_{*}$-equivalences where $K O$ and $K U$ denote the real and complex K-spectrum respectively.

The conjugation t on $K U$ gives rise to an involution t_{*} on $K U_{*} X$ for any $C W$-spectrum X. Thus the $K U$-homology $K U_{*} X$ is regarded as a $Z / 2$-graded abelian group with involution. Note that there is an isomorphism between $K U_{*} X$ and $K U_{*} Y$ as $Z / 2$-graded abelian groups with involution if X is quasi $K O_{*}$-equivalent to Y.

For any abelian group G we denote by $S G$ the Moore spectrum of type G. Evidently $K U_{0} S G \cong G$ on which $t_{*}=1$ and $K U_{1} S G=0$. Let us denote by P and Q the cofibers of the maps $\eta: \Sigma^{1} \rightarrow \Sigma^{0}$ and $\eta^{2}: \Sigma^{2} \rightarrow \Sigma^{0}$ respectively where $\eta: \Sigma^{1} \rightarrow \Sigma^{0}$ is the stable Hopf map of order 2. It is well known that $K U_{0} P \cong Z \oplus Z$ on which $t_{*}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $K U_{1} P=0$. On the other hand, $K U_{0} Q$ $\cong Z$ and $K U_{-1} Q \cong Z$ on both of which $t_{*}=1$.

Let H be a 2-torsion free abelian group which is written into a direct sum of cyclic groups. If the cyclic group $Z / 2$ acts on H, then H admits a direct sum decomposition $H \cong A \oplus B \oplus C \oplus C$ so that the involution ρ behaves as

$$
\rho=1 \text { on } A, \quad \rho=-1 \text { on } B \quad \text { and } \quad \rho=\left(\begin{array}{ll}
0 & 1 \tag{0.1}\\
1 & 0
\end{array}\right) \text { on } C \oplus C
$$

respectively (see [6, Proposition 3.7] or [7]).
By observing these facts, Bousfield [6, Theorem 3.7] has proved the following satisfactory result.

Theorem 1 (Bousfield). Let X be a $C W$-spectrum such that $K U_{*} X$ is a
direct sum of 2-torsion free cyclic groups. Then there exist abelian groups $A_{i}(0 \leqq$ $i \leqq 7), C_{j}(0 \leqq j \leqq 1)$ and $G_{k}(0 \leqq k \leqq 3)$ so that X is quasi $K O_{*}$-equivalent to the wedge sum $\underset{i}{\vee}\left(\Sigma^{i} S A_{i}\right) \vee \bigvee_{j} \vee\left(\Sigma^{j} P \wedge S C_{j}\right) \bigvee{ }_{k} \vee\left(\Sigma^{k+1} Q \wedge S G_{k}\right)$.

In [12, Theorems 1 and 2] or [9] a partial result of the above theorem was proved by a different method from Bousfield's. In the forthcoming paper [15, Theorem 1] we will give a new proof of the above theorem by our method developed in [12, 13].

Let H be a direct sum of 2-torsion free cyclic groups. If the cyclic group $Z / 2$ acts on the direct sum $H \oplus Z / 2 m, m=2^{s}$, then its matrix representation is divided into one of the following types:

$$
\begin{align*}
& \text { i) } \pm\left(\begin{array}{ll}
\rho & 0 \\
0 & 1
\end{array}\right) \tag{0.2}\\
& \text { ii) } \pm\left(\begin{array}{cc}
\rho & 0 \\
0 & m+1
\end{array}\right) \quad(s \geqq 2) \quad \text { on } \quad H \oplus Z / 2 m, \\
& \text { iii) } \pm\left(\begin{array}{lrr}
\rho^{\prime} & 0 & 0 \\
0 & -1 & 0 \\
0 & 1 & 1
\end{array}\right) \\
& \text { iv) } \pm\left(\begin{array}{lll}
\rho^{\prime} & 0 & 0 \\
0 & 1 & 0 \\
0 & m & 1
\end{array}\right) \\
& \text { v) } \pm\left(\begin{array}{lrrr}
\rho^{\prime \prime} & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & m & 1
\end{array}\right) \\
& \text { on } \quad H^{\prime} \oplus Z \oplus Z / 2 m, \\
& \text { on } \quad H^{\prime \prime} \oplus Z \oplus Z \oplus Z / 2 m
\end{align*}
$$

where $H \cong H^{\prime} \oplus Z \cong H^{\prime \prime} \oplus Z \oplus Z$ and ρ, ρ^{\prime} or $\rho^{\prime \prime}$ is an involution on H, H^{\prime} or $H^{\prime \prime}$ respectively which is decomposed as in (0.1).

We denote by $M_{2 m}, Q_{2 m}, N_{2 m}^{\prime}, R_{2 m}^{\prime}, V_{2 m}$ and $W_{8 m}$ the cofibers of the maps

$$
\begin{aligned}
& i \eta: \Sigma^{1} \rightarrow S Z / 2 m, \quad \tilde{\eta} \eta: \Sigma^{3} \rightarrow S Z / 2 m, \quad \eta^{2} j: \Sigma^{1} S Z / 2 m \rightarrow \Sigma^{0}, \\
& \eta^{2} \bar{\eta}: \Sigma^{3} S Z / 2 m \rightarrow \Sigma^{0}, \quad i \bar{\eta}: \Sigma^{1} S Z / 2 \rightarrow S Z / m \quad \text { and } \quad i \bar{\eta}+\widetilde{\eta} j: \Sigma^{1} S Z / 2 \rightarrow S Z / 4 m
\end{aligned}
$$

respectively where $\tilde{\eta}: \Sigma^{2} \rightarrow S Z / 2 m$ and $\bar{\eta}: \Sigma^{1} S Z / 2 m \rightarrow \Sigma^{0}$ stand for a coextension and an extension of η satisfying $j \tilde{\eta}=\eta$ and $\bar{\eta} i=\eta$. In [12, Propositions 4.1, 4.2 and Corollary 4.6] we have investigated the $K U$ - and $K O$-homologies of these elementary spectra.

We will moreover introduce some elementary spectra $M Q_{2 m}, N P_{4 m}^{\prime}, N R_{2 m}^{\prime}$ and $R^{\prime} Q_{2 m}$ constructed by the cofibers of the maps

$$
\begin{aligned}
& i_{\eta} \vee \tilde{\eta} \eta: \Sigma^{1} \vee \Sigma^{3} \rightarrow S Z / 2 m, \quad\left(\eta^{2} j, \bar{\eta}\right): \Sigma^{1} S Z / 4 m \rightarrow \Sigma^{0} \vee \Sigma^{0}, \\
&\left(\eta^{2} j, \eta^{2} \bar{\eta}\right): \Sigma^{3} S Z / 2 m \rightarrow \Sigma^{2} \vee \Sigma^{0} \quad \text { and } \quad \tilde{h}_{R} \eta: \Sigma^{7} \rightarrow R_{2 m}^{\prime}
\end{aligned}
$$

respectively where $\tilde{h}_{R}: \Sigma^{6} \rightarrow R_{2 m}^{\prime}$ is a coextension of $\tilde{\eta}$ satisfying $j_{R}^{\prime} \tilde{h}_{R}=\tilde{\eta}$. After studying the $K U$ - and $K O$-homologies of these spectra with four cells (Propositions 1.2, 1.3, 2.3 and 2.4) we will prove the following result which is our main theorem in this note.

Theorem 2. Let X be a $C W$-spectrum and H be a direct sum of 2-torsion
free cyclic groups. Assume that $K U_{0} X \cong H \oplus Z / 2 m, m=2^{s}$, and $K U_{1} X=0$. Then there exist abelian groups $A_{0}, A_{4}, B_{2}, B_{6}$ and C and a certain $C W$-spectrum Y so that X is quasi $K O_{*}$-equivalent to the wedge sum $S A_{0} \vee \Sigma^{2} S B_{2} \vee \Sigma^{4} S A_{4} \vee \Sigma^{6} S B_{6} \vee$ $(P \wedge S C) \vee Y$. Here Y is taken to be one of the following elementary spectra $\Sigma^{2 i} S Z / 2 m, \Sigma^{2 i} V_{2 m}, \Sigma^{2 i} W_{2 m}(s \geqq 2), \Sigma^{2 i} M_{2 m}, \Sigma^{2 i} Q_{2 m}, \Sigma^{2 i} N_{2 m}^{\prime}, \Sigma^{2 i} R_{2 m}^{\prime}, \Sigma^{2 j} M Q_{2 m}$, $\Sigma^{2 j} N P_{4 m}^{\prime}, \Sigma^{2 j} N R_{2 m}^{\prime}$ and $\Sigma^{2 j} R^{\prime} Q_{2 m}$ for $0 \leqq i \leqq 3$ and $0 \leqq j \leqq 1$.

In order to obtain our main theorem as a corollary we will give three theorems (Theorems 3.3, 4.2 and 4.4) in a slightly general form. The first theorem is established in the situation when the conjugation t_{*} on $K U_{0} X$ behaves as the types (0.2) ii) and v), and the second or the third theorem is done in the situation as the type (0.2) i) or the types (0.2) iii) and iv) respectively.

This paper is a continuation of [12] with the same title and we will use the same notations as in it.

1. Some elementary spectra $X Y_{2 m}$ and $X Y_{2 m}^{\prime}$ with four cells

1.1. For any map $f: Y \rightarrow X$ we denote by C_{f} its cofiber. Thus $Y \xrightarrow{f} X \xrightarrow{i_{f}}$ $C_{f} \xrightarrow{j_{f}} \Sigma^{1} Y$ is a cofiber sequence. The Moore spectrum $S Z / 2 m$ is obtained as the cofiber of multiplication by $2 m$ on Σ^{0}. In this case the maps $i_{2 m}: \Sigma^{0} \rightarrow S Z / 2 m$ and $j_{2 m}: S Z / 2 m \rightarrow \Sigma^{1}$ are often abbreviated to be i and j respectively. By applying Verdier's lemma (see [2]) we can easily show

Lemma 1.1. i) Given two maps $f: Y \rightarrow X, g: Z \rightarrow X$ the cofiber $C_{f \vee g}$ of the map $f \vee g: Y \vee Z \rightarrow X$ coincides with the cofiber $C_{i_{f} g}$ of the composite $i_{f} g: Z \rightarrow$ C_{f}. In particular, the cofiber $C_{f \vee g}$ coincides with the wedge sum $C_{f} \vee \Sigma^{1} Z$ if $g: Z \rightarrow X$ is factorized through Y as $g=f h: Z \rightarrow Y \rightarrow X$ for some map h.
ii) Given two maps $f: X \rightarrow Y, g: X \rightarrow Z$ the cofiber $C_{(f, g)}$ of the map (f, g) : $X \rightarrow Y \vee Z$ coincides with the cofiber $C_{g j_{f}}$ of the composite $g j_{f}: \Sigma^{-1} C_{f} \rightarrow Z$. In particular, the cofiber $C_{(f, g)}$ coincides with the wedge sum $C_{f} \vee Z$ if $g: X \rightarrow Z$ is factorized through Y as $g=h f: X \rightarrow Y \rightarrow Z$ for some map h.

Let $\tilde{\eta}_{2 m}: \Sigma^{2} \rightarrow S Z / 2 m$ be a coextension of η satisfying $j_{2 m} \tilde{\eta}_{2 m}=\eta$ and $\bar{\eta}_{2 m}: \Sigma^{1} S Z / 2 m \rightarrow \Sigma^{0}$ an extension of η satisfying $\bar{\eta}_{2 m} i_{2 m}=\eta$ where $\eta: \Sigma^{1} \rightarrow \Sigma^{0}$ denotes the stable Hopf map of order 2. The maps $\tilde{\eta}_{2 m}$ and $\bar{\eta}_{2 m}$ are often abbreviated to be $\tilde{\eta}$ and $\bar{\eta}$ respectively. After choosing these maps suitably there holds the following relation

$$
\begin{equation*}
\eta_{\wedge} 1=\tilde{\eta}_{2 m} j_{2 m}+i_{2 m} \bar{\eta}_{2 m}: \Sigma^{1} S Z / 2 m \rightarrow S Z / 2 m \tag{1.1}
\end{equation*}
$$

(see [5, Lemma 7.2]).
Let us denote by $M_{2 m}, N_{2 m}, P_{2 m}, Q_{2 m}, R_{2 m}, M_{2 m}^{\prime}, N_{2 m}^{\prime}, P_{2 m}^{\prime}, Q_{2 m}^{\prime}$ and $R_{2 m}^{\prime}$ respectively the elementary spectra constructed by the following cofiber sequences as in $[12,(4.1)$ and (4.2)]:

$$
\begin{array}{ll}
\Sigma^{1} \xrightarrow{i_{\eta}} S Z / 2 m \xrightarrow{i_{M}} M_{2 m} \xrightarrow{j_{M}} \Sigma^{2} & S Z / 2 m \xrightarrow{\eta j} \Sigma^{0} \xrightarrow{i_{M}^{\prime}} M_{2 m}^{\prime} \xrightarrow{j_{M}^{\prime}} \Sigma^{1} S Z / 2 m \\
\Sigma^{2} \xrightarrow{i^{2}} S Z / 2 m \xrightarrow{i_{N}} N_{2 m} \xrightarrow{j_{N}} \Sigma^{3} & \Sigma^{1} S Z / 2 m \xrightarrow{\eta^{2} j} \Sigma^{0} \xrightarrow{i_{N}^{\prime}} N_{2 m}^{\prime} \xrightarrow{j_{N}^{\prime}} \Sigma^{2} S Z / 2 m \\
\Sigma^{2} \xrightarrow{\tilde{\eta}} S Z / 2 m \xrightarrow{i_{P}} P_{2 m} \xrightarrow{j_{P}} \Sigma^{3} & \Sigma^{1} S Z / 2 m \xrightarrow{\bar{\eta}} \Sigma^{0} \xrightarrow{i_{P}^{\prime}} P_{2 m}^{\prime} \xrightarrow{j_{P}^{\prime}} \Sigma^{2} S Z / 2 m \tag{1.2}\\
\Sigma^{3} \xrightarrow{\tilde{\eta} \eta} S Z / 2 m \xrightarrow{i_{Q}} Q_{2 m} \xrightarrow{j_{Q}} \Sigma^{4} & \Sigma^{2} S Z / 2 m \xrightarrow{\eta \bar{\eta}} \Sigma^{i^{\prime}} \xrightarrow{i_{Q}^{\prime}} Q_{2 m}^{\prime} \xrightarrow{j_{Q}^{\prime}} \Sigma^{3} S Z / 2 m \\
\Sigma^{4} \xrightarrow{\tilde{\eta} \eta^{2}} Z S / 2 m \xrightarrow{i_{R}} R_{2 m} \xrightarrow{j_{R}} \Sigma^{5} & \Sigma^{3} S Z / 2 m \xrightarrow{\eta^{2} \bar{\eta}} \Sigma^{0} \xrightarrow{i_{R}^{\prime}} R_{2 m}^{\prime} \xrightarrow{j_{R}^{\prime}} \Sigma^{4} S Z / 2 m
\end{array}
$$

In [12, Propositions 4.1 and 4.2] we have calculated the $K U$ - and $K O$-homologies of these elementary spectra with three cells.

Given two cofibers $X_{2 m}, Y_{2 m}$ of any maps $f: \Sigma^{i} \rightarrow S Z / 2 m, g: \Sigma^{j} \rightarrow S Z / 2 m$ $(i \leqq j)$ we denote by $X Y_{2 m}$ the cofiber of the maps $f \vee g: \Sigma^{i} \vee \Sigma^{j} \rightarrow S Z / 2 m$. Dually we denote by $X Y_{2 m}^{\prime}$ the cofiber of the map (f, g): $\Sigma^{j} S Z / 2 m \rightarrow \Sigma^{j-i} \vee \Sigma^{0}$ for two cofibers $X_{2 m}^{\prime}, Y_{2 m}^{\prime}$ of any maps $f: \Sigma^{i} S Z / 2 m \rightarrow \Sigma^{0}, g: \Sigma^{j} S Z / 2 m \rightarrow \Sigma^{0}(i \leqq j)$. We will only deal with the $C W$-spectra $X Y_{2 m}$ and $X Y_{2 m}^{\prime}$ when $X=M$ or N and $Y=P, Q$ or R as Lemma 1.1 may be applicable to the other cases. Note that

$$
\begin{array}{lll}
M P_{2 m}=\Sigma^{3} D\left(M P_{2 m}^{\prime}\right), & M Q_{2 m}=\Sigma^{4} D\left(M Q_{2 m}^{\prime}\right), & M R_{2 m}=\Sigma^{5} D\left(M R_{2 m}^{\prime}\right) \tag{1.3}\\
N P_{2 m}=\Sigma^{3} D\left(N P_{2 m}^{\prime}\right), & N Q_{2 m}=\Sigma^{4} D\left(N Q_{2 m}^{\prime}\right), & N R_{2 m}=\Sigma^{5} D\left(N R_{2 m}^{\prime}\right)
\end{array}
$$

where $D W$ stands for the Spanier-Whitehead dual of W (cf. [12, (4.3)]).
1.2. We will now compute the $K U$ homologies of the above mentioned spectra $W=X Y_{2 m}, X Y_{2 m}^{\prime}$ with four cells, by making use of the results in [12, Proposition 4.1].

Proposition 1.2. The $K U$ homologies $K U_{0} W, K U_{1} W$ and the conjugation t_{*} on them are given as follows:

$W=M P_{2 m}$	$M Q_{2 m}$	$M R_{2 m}$	$N P_{2 m}$	$N Q_{2 m}$	$N R_{2 m}$
$K U_{0} W \cong Z \oplus Z / m$	$Z \oplus Z \oplus Z / 2 m$	$Z \oplus Z / 2 m$	Z / m	$Z \oplus Z / 2 m$	Z/2m
$t_{*}=\left(\begin{array}{rr} -1 & 0 \\ 1 & 1 \end{array}\right)$	$\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & m & 1\end{array}\right)$	$\left(\begin{array}{rr} -1 & 0 \\ 1 & 1 \end{array}\right)$	1	$\left(\begin{array}{ll} 0 & 1 \\ m & 1 \end{array}\right)$	1
$K U_{1} W \cong \quad Z$	0	Z	$Z \oplus Z$	Z	$Z \oplus Z$
$t_{*}=-1$		1	$\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$	-1	$\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$
$W=M P_{2 m}^{\prime}$	$M Q_{2 m}^{\prime}$	$M R_{2 m}^{\prime}$	$N P_{2 m}^{\prime}$	$N Q_{2 m}^{\prime}$	$N R_{2 m}^{\prime}$
$K U_{0} W \cong Z \oplus Z / m$	$Z \oplus Z$	$Z \oplus Z / 2 m$	$Z \oplus Z \oplus Z / m$	Z	$Z \oplus Z \oplus Z / 2 m$
$t_{*}=\left(\begin{array}{rr} 1 & 0 \\ 1 & -1 \end{array}\right)$	$\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & -1\end{array}\right)$	1	$\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
$K U_{1} W \cong \quad Z$	Z/2m	Z	0	$Z \oplus Z / 2 m$	0
$t_{*}=1$	-1	-1		$\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$	

where the matrices behave as left action on abelian groups.
Proof. The $W=M P_{2 m}$ case has been computed in [14, Proposition 1.2 i)]. We will investigate the behaviour of the conjugation t_{*} on $K U_{*} W$ only when $W=M Q_{2 m}, N P_{2 m}^{\prime}$ and $N R_{2 m}^{\prime}$, the other cases being easy.
i) The $W=M Q_{2 m}$ case: Consider the two commutative diagrams
involving cofiber sequences. Evidently $K U_{0} M Q_{2 m} \cong K U_{0}\left(\Sigma^{2} \vee \Sigma^{4}\right) \oplus K U_{0} S Z / 2 m$ $\cong Z \oplus Z \oplus Z / 2 m$ and $K U_{1} M Q_{2 m}=0$. In order to observe the behaviour of t_{*} on $K U_{0} M Q_{2 m}$ we use the three split short exact sequences $0 \rightarrow K U_{0} S Z / 2 m \rightarrow$ $K U_{0} M Q_{2 m} \rightarrow K U_{0}\left(\Sigma^{2} \vee \Sigma^{4}\right) \rightarrow 0, \quad 0 \rightarrow K U_{0} M_{2 m} \rightarrow K U_{0} M Q_{2 m} \rightarrow K U_{0} \Sigma^{4} \rightarrow 0$ and $0 \rightarrow K U_{0} Q_{2 m} \rightarrow K U_{0} M Q_{2 m} \rightarrow K U_{0} \Sigma^{2} \rightarrow 0$. Since [12, Proposition 4.1] says that $t_{*}=\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$ on $K U_{0} M_{2 m} \cong Z \oplus Z / 2 m$ and $t_{*}=\left(\begin{array}{ll}1 & 0 \\ m & 1\end{array}\right)$ on $K U_{0} Q_{2 m} \cong Z \oplus Z / 2 m$, we can easily verify that $t_{*}=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & m & 1\end{array}\right)$ on $K U_{0} M Q_{2 m} \cong Z \oplus Z \oplus Z / 2 m$ as desired.
ii) The $W=N P_{2 m}^{\prime}$ case: Consider the two commutative diagrams

involving cofiber sequnces, where $\iota_{k}: \Sigma^{0} \rightarrow \Sigma^{0} \vee \Sigma^{0}$ and $\pi_{k}: \Sigma^{0} \vee \Sigma^{0} \rightarrow \Sigma^{0}(k=1,2)$ denote the k-th injection and projection respectively. We can easily see that the short exact sequence $0 \rightarrow K U_{0} \Sigma^{0} \rightarrow K U_{0} N P_{2 m}^{\prime} \rightarrow K U_{0} P_{2 m}^{\prime} \rightarrow 0$ is split, by using the following commutative diagram

with $\pi_{1} \iota_{1}=1$. Thus $K U_{0} N P_{2 m}^{\prime} \cong K U_{0} \Sigma^{0} \oplus K U_{0} P_{2 m}^{\prime} \cong Z \oplus Z \oplus Z / m$ and $K U_{1} N P_{2 m}^{\prime}$ $=0$. Since $t_{*}=\left(\begin{array}{rr}1 & 0 \\ 1 & -1\end{array}\right)$ on $K U_{0} P_{2 m}^{\prime} \cong Z \oplus Z / m$ by means of [12, Proposition 4.1]), it follows immediately that $t_{*}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & -1\end{array}\right)$ on $K U_{0} N P_{2 m}^{\prime} \simeq Z \oplus Z \oplus Z / m$ as desired.
iii) The $W=N R_{2 m}^{\prime}$ case: Use the commutative diagram

involving cofiber sequences, in which the upper row becomes a cofiber sequence by means of Lemma 1.1 ii . Then we can easily see that the short exact sequence $0 \rightarrow K U_{0}\left(\Sigma^{2} \vee \Sigma^{0}\right) \rightarrow K U_{0} N R_{2 m}^{\prime} \rightarrow K U_{0} \Sigma^{4} S Z / 2 m \rightarrow 0$ is split, and $K U_{1} N R_{2 m}^{\prime}=0$. Hence it is immediate that $K U_{0} N R_{2 m}^{\prime} \cong K U_{0}\left(\Sigma^{2} \vee \Sigma^{0}\right) \oplus K U_{0} \Sigma^{4} S Z / 2 m \cong Z \oplus Z \oplus$ $Z / 2 m$ on which $t_{*}=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.

We will next compute the $K O$ homologies of the above mentioned spectra $W=X Y_{2 m}$ and $X Y_{2 m}^{\prime}$, by making use of the results in [12, Proposition 4.2].

Proposition 1.3. The $K O$ homologies $K O_{i} W$ are tabled as follows:

i	\equiv	0	1	2	3	i	\equiv	0	1	2	3
$M P_{2 m}$	$Z / 2 m$	0	Z	Z	$M P_{2 m}^{\prime}$	Z	Z	$Z / 2 m$	0		
$M Q_{2 m}$	$Z \oplus Z / 2 m$	0	$Z \oplus Z / 2$	0	$M Q_{2 m}^{\prime}$	Z	$Z / 2$	Z	$Z / 2 m$		
$M R_{2 m}$	$Z / 2 m$	Z	$Z \oplus Z / 2$	$Z / 2$	$M R_{2 m}^{\prime}$	$Z \oplus Z / 2 m$	$Z / 2$	$Z / 2$	Z		
$N P_{2 m}$	$Z / 2 m$	$Z / 2$	0	$Z \oplus Z$	$N P_{2 m}^{\prime}$	$Z \oplus Z$	$Z / 2$	$Z / 2 m$	0		

$N Q_{2 m}$	$Z \oplus Z / 2 m$	$Z / 2$	$Z / 2$	Z	$N Q_{2 m}^{\prime}$	Z	$Z \oplus Z / 2$	$Z / 2$	$Z / 2 m$
$N R_{2 m}$	$Z / 2 m$	$Z \oplus Z / 2$	$Z / 2$	$Z \oplus Z / 2$	$N R_{2 m}^{\prime}$	$Z \oplus Z / 2 m$	$Z / 2$	$Z \oplus Z / 2$	$Z / 2$

in which \equiv stands for the congruence modulo 4.
Proof. We have computed $K O_{*} M P_{2 m}$ in [14, Proposition 1.2 ii)]. In the other cases we can similarly compute $K O_{*} W$, by using the long exact sequences of $K O$ homologies induced by the cofiber seqeunces as appeared in the proof of Proposition 1.2. In computing $K O_{*} W$ we may moreover apply the universal coefficient sequence $0 \rightarrow \operatorname{Ext}\left(\mathrm{KO}_{3-*} D W, Z\right) \rightarrow K O_{*} W \rightarrow \operatorname{Hom}\left(K O_{4-*} D W, Z\right)$ $\rightarrow 0$ (see [11]) combined with (1.3).

2. Some elementary spectra $\boldsymbol{Y}^{\prime} \boldsymbol{X}_{2 m}$ with four cells

2.1. Let $X_{2 m}, Y_{2 m}^{\prime}$ denote the cofibers of maps $f: \Sigma^{i} \rightarrow S Z / 2 m, g: \Sigma^{j} S Z / 2 m$ $\rightarrow \Sigma^{0}$ respectively. If the composite $g f: \Sigma^{i+\rho} \rightarrow \Sigma^{0}$ is trivial, then there exists a coextension $h: \Sigma^{i+\jmath+1} \rightarrow Y_{2 m}^{\prime}$ of f and an extension $k: \Sigma^{j} X_{2 m} \rightarrow \Sigma^{0}$ of g so that the following diagram is commutative
with four cofiber sequences. Here the maps h and k are dependent on each other so that their cofibers coincide. We will here choose suitable pairs (h, k) to construct some elementary spectra $Y^{\prime} X_{2 m}=C_{h, k}$.

There exist maps

$$
\begin{array}{ll}
k_{M}: M_{2 m} \rightarrow \Sigma^{0}, \quad k_{R}: R_{2 m} \rightarrow \Sigma^{0}, \quad \bar{k}_{Q}: \Sigma^{1} Q_{2 m} \rightarrow \Sigma^{0}, \quad \bar{k}_{N}: \Sigma^{2} N_{2 m} \rightarrow \Sigma^{0} \tag{2.1}\\
h_{M}^{\prime}: \Sigma^{1} \rightarrow M_{2 m}^{\prime}, \quad h_{R}^{\prime}: \Sigma^{5} \rightarrow R_{2 m}^{\prime}, \quad \tilde{h}_{Q}: \Sigma^{5} \rightarrow Q_{2 m}^{\prime}, \quad \tilde{h}_{N}: \Sigma^{5} \rightarrow N_{2 m}^{\prime}
\end{array}
$$

such that $k_{M} i_{M}=j: S Z / 2 m \rightarrow \Sigma^{1}, k_{R} i_{R}=\eta j: S Z / 2 m \rightarrow \Sigma^{0}, \bar{k}_{Q} i_{Q}=\bar{\eta}: \Sigma^{1} S Z / 2 m \rightarrow \Sigma^{0}$, $\bar{k}_{N} i_{N}=\eta \bar{\eta}: \Sigma^{2} S Z / 2 m \rightarrow \Sigma^{0}, j_{M}^{\prime} h_{M}^{\prime}=i: \Sigma^{0} \rightarrow S Z 2 / m, j_{R}^{\prime} h_{R}^{\prime}=i_{\eta}: \Sigma^{1} \rightarrow S Z / 2 m, j_{Q}^{\prime} \widetilde{h}_{Q}=$ $\tilde{\eta}: \Sigma^{2} \rightarrow S Z / 2 m$ and $j_{N}^{\prime} \tilde{h}_{N}=\tilde{\eta} \eta: \Sigma^{3} \rightarrow S Z / 2 m$. Such maps $k_{R}, \bar{k}_{Q}, \bar{k}_{N}, h_{R}^{\prime}, \tilde{h}_{Q}$ and \widetilde{h}_{N} are uniquely chosen, and moreover the composites ηk_{M} and $h_{M}^{\prime} \eta$ are also determined uniquely although k_{M} and h_{M}^{\prime} are not so.

Let $X_{2 m}, Y_{2 m}$ be the cofibers of maps $f: \Sigma^{i} \rightarrow S Z / 2 m, f_{\eta}: \Sigma^{i+1} \rightarrow S Z / 2 m$, and $Y_{2 m}^{\prime}, X_{2 m}^{\prime}$ the cofibers of maps $g: \Sigma^{j} S Z / 2 m \rightarrow \Sigma^{0}, \eta g: \Sigma^{j+1} S Z / 2 m \rightarrow \Sigma^{0}$ respectively. Then there exist maps $\lambda_{X, Y}: \Sigma^{1} X_{2 m} \rightarrow Y_{2 m}, \rho_{Y, X}: Y_{2 m} \rightarrow X_{2 m}$ and dually $\lambda_{X, Y}^{\prime}: \Sigma^{1} Y_{2 m}^{\prime} \rightarrow X_{2 m}^{\prime}, \rho_{X, Y}^{\prime}: X_{2 m}^{\prime} \rightarrow Y_{2 m}^{\prime}$ related by the following commutative diagrams:

By composing the maps chosen in (2.1) with the above maps we set

$$
\begin{array}{ll}
k_{N}=k_{M} \rho_{N, M}: N_{2 m} \rightarrow \Sigma^{1} & h_{N}^{\prime}=\lambda_{M, N}^{\prime} h_{M}^{\prime}: \Sigma^{2} \rightarrow N_{2 m}^{\prime} \\
k_{Q}=k_{R} \lambda_{Q, R}: \Sigma^{1} Q_{2 m} \rightarrow \Sigma^{0} & h_{Q}^{\prime}=\rho_{R, Q}^{\prime} h_{R}^{\prime}: \Sigma^{5} \rightarrow Q_{2 m}^{\prime} \\
\bar{k}_{R}=\bar{k}_{Q} \rho_{R, Q}: \Sigma^{1} R_{2 m} \rightarrow \Sigma^{0} & \widetilde{h}_{R}=\lambda_{Q, R}^{\prime} \tilde{h}_{Q}: \Sigma^{6} \rightarrow R_{2 m}^{\prime} \tag{2.2}\\
\bar{k}_{P}=\bar{k}_{Q} \lambda_{P, Q}: \Sigma^{2} P_{2 m} \rightarrow \Sigma^{0} & \tilde{h}_{P}=\rho_{Q, P}^{\prime} \widetilde{h}_{Q}: \Sigma^{5} \rightarrow P_{2 m}^{\prime} \\
\bar{k}_{M}=\bar{k}_{N} \lambda_{M, N}: \Sigma^{3} M_{2 m} \rightarrow \Sigma^{0} & \widetilde{h}_{M}=\rho_{N, M}^{\prime} \tilde{h}_{N}: \Sigma^{5} \rightarrow M_{2 m}^{\prime} .
\end{array}
$$

These maps satisfy the following equalities respectively:

$$
\begin{array}{llll}
k_{N} i_{N}=j, & k_{Q} i_{Q}=\eta^{2} j, & \bar{k}_{R} i_{R}=\bar{\eta}, & \bar{k}_{P} i_{P}=\eta \bar{\eta}, \tag{2.3}\\
j_{N} i_{M}=\eta^{2} \bar{\eta} \\
j_{N}^{\prime} h_{N}^{\prime}=i, & j_{Q}^{\prime} h_{Q}^{\prime}=i \eta^{2}, & j_{R}^{\prime} \tilde{h}_{R}=\tilde{\eta}, & j_{P}^{\prime} \tilde{h}_{P}=\tilde{\eta} \eta, \\
j_{M}^{\prime} \tilde{h}_{M}=\tilde{\eta} \eta^{2}
\end{array}
$$

Note that such maps $k_{Q}, \bar{k}_{P}, \bar{k}_{M}, h_{Q}^{\prime}, \tilde{h}_{P}$ and \tilde{h}_{M} are uniquely determined, and moreover the composites $\eta^{2} k_{N}$ and $h_{N}^{\prime} \eta^{2}$ are so, too.

Using suitable pairs (h, k) consisting of maps chosen in (2.1) and (2.2), we can construct some elementary spectra $Y^{\prime} X_{2 m}=C_{h, k}$ taken to be the cofiber of the two maps h, k as follows:

$Y^{\prime} X_{2 m}$	$h: \Sigma^{i+j+1} \rightarrow Y_{2 m}^{\prime}$	$k: \Sigma^{\boldsymbol{j}} \mathrm{X}_{2 m}{ }^{\prime} \rightarrow \Sigma^{0}$
$M^{\prime} M_{2 m}$	$h_{M L}^{\prime} \eta: \Sigma^{2} \rightarrow M_{2 m}^{\prime}$	$\eta k_{\text {IE }}: M_{2 m} \rightarrow \Sigma^{0}$
$M^{\prime} N_{2 m}$	$h_{m}^{\prime} \eta^{2}: \Sigma^{3} \rightarrow M_{2 m}^{\prime}$	$\eta k_{N}: N_{2 m} \rightarrow \Sigma^{0}$
$N^{\prime} M_{2 m}$	$h_{N}^{\prime} \eta: \Sigma^{3} \rightarrow N_{2 m}^{\prime}$	$\eta^{2} k_{\text {IE }}: \Sigma^{1} M_{2 m} \rightarrow \Sigma^{0}$
$N^{\prime} N_{2 m}$	$h_{N}^{\prime} \eta^{2}: \Sigma^{4} \rightarrow N_{2 m}^{\prime}$	$\eta^{2} k_{N}: \Sigma^{1} N_{2 m} \rightarrow \Sigma^{0}$
$P^{\prime} Q_{2 m}$	$\tilde{h}_{P}: \Sigma^{5} \rightarrow P_{2 m}^{\prime}$	$\bar{k}_{Q}: \Sigma^{1} Q_{2 m} \rightarrow \Sigma^{0}$
$P^{\prime} R_{2 m}$	$\tilde{h}_{P} \eta: \Sigma^{6} \rightarrow P_{2 m}^{\prime}$	$\bar{k}_{R}: \Sigma^{1} R_{2 m} \rightarrow \Sigma^{0}$
$Q^{\prime} P_{2 m}$	$\tilde{h}_{Q}: \Sigma^{5} \rightarrow Q_{2 m}^{\prime}$	$\bar{k}_{P}: \Sigma^{2} P_{2 m} \rightarrow \Sigma^{0}$
$Q^{\prime} Q_{2 m}$	$\tilde{h}_{Q} \eta: \Sigma^{6} \rightarrow Q_{2 m}^{\prime}$	$\eta \bar{k}_{Q}: \Sigma^{2} Q_{2 m} \rightarrow \Sigma^{0}$
$Q^{\prime} R_{2 m}$	$\tilde{h}_{Q} \eta^{2}: \Sigma^{7} \rightarrow Q_{2 m}^{\prime}$	$\eta \bar{k}_{R}: \Sigma^{2} R_{2 m} \rightarrow \Sigma^{0}$
$R^{\prime} P_{2 m}$	$\tilde{h}_{R}: \Sigma^{6} \rightarrow R_{2 m}^{\prime}$	$\eta \bar{k}_{P}: \Sigma^{3} P_{2 m} \rightarrow \Sigma^{0}$
$R^{\prime} Q_{2 m}$	$\tilde{h}_{R} \eta: \Sigma^{7} \rightarrow R_{2 m}^{\prime}$	$\eta^{2} \bar{k}_{Q}: \Sigma^{3} Q_{2 m} \rightarrow \Sigma^{0}$
$R^{\prime} R_{2 m}$	$\tilde{h}_{R} \eta^{2}: \Sigma^{8} \rightarrow R_{2 m}^{\prime}$	$\eta^{2} \bar{k}_{R}: \Sigma^{3} R_{2 m} \rightarrow \Sigma^{0}$
$M^{\prime} R_{2 m}$	$\tilde{h}_{\text {IL }}: \Sigma^{5} \rightarrow M_{2 m}^{\prime}$	$k_{R}: R_{2 m} \rightarrow \Sigma^{0}$
$N^{\prime} Q_{2 m}$	$\tilde{h}_{N V}: \Sigma^{5} \rightarrow N_{2 m}^{\prime}$	$k_{Q}: \Sigma^{1} Q_{2 m} \rightarrow \Sigma^{0}$
$N^{\prime} R_{2 m}$	$\tilde{h}_{N} \eta: \Sigma^{6} \rightarrow N_{2 m}^{\prime}$	$\eta k_{R}: \Sigma^{1} R_{2 m} \rightarrow \Sigma^{0}$
$Q^{\prime} N_{2 m}$	$h_{\varphi}^{\prime}: \Sigma^{5} \rightarrow Q_{2 m}^{\prime}$	$\bar{k}_{N}: \Sigma^{2} N_{2 m} \rightarrow \Sigma_{0}$
$R^{\prime} M_{2 m}$	$h_{R}^{\prime}: \Sigma^{5} \rightarrow R_{2 m}^{\prime}$	$\bar{k}_{\text {M }}: \Sigma^{3} M_{2 m} \rightarrow \Sigma^{0}$
$R^{\prime} N_{2 m}$	$h_{R}^{\prime} \eta: \Sigma^{\mathbf{6}} \rightarrow R_{2 m}^{\prime}$	$\eta \bar{k}_{N}: \Sigma^{3} N_{2 m} \rightarrow \Sigma^{0}$

For all of these elementary spectra we notice that

$$
\begin{equation*}
Y^{\prime} X_{2 m}=\Sigma^{i+j+2} D\left(X^{\prime} Y_{2 m}\right) \tag{2.5}
\end{equation*}
$$

where $D W$ stands for the Spanier-Whitehead dual of W.
2.2. Consider the cofiber sequence $\Sigma^{2} \xrightarrow{\eta^{2}} \Sigma^{0} \xrightarrow{i_{Q}} Q \xrightarrow{j_{Q}} \Sigma^{3}$. Then the square η^{2} has a unique coextension $\tilde{\xi}: \Sigma^{5} \rightarrow Q$ and a unique extension $\xi: \Sigma^{2} Q \rightarrow \Sigma^{0}$ satisfying $j_{Q} \hat{\xi}=\eta^{2}$ and $\xi i_{Q}=\eta^{2}$. Denote by $Q Q$ the cofiber of $\tilde{\xi}$ which coincides with the cofiber of ξ. Then we have

Lemma 2.1. i) $K U_{0} Q Q \cong Z \oplus Z$ on which $t_{*}=\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$, and $K U_{1} Q Q \cong$ Z on which $t_{*}=-1$.
ii) $K O_{i} Q Q \cong Z \oplus Z / 2, Z / 2, Z, Z, Z, 0, Z, Z$ according as $i=0,1, \cdots, 7$.

Proof. Use the following commutative diagram

involving four cofiber sequences. Then it is obvious that $K U_{0} Q Q \cong K U_{0} \Sigma^{6} \oplus$ $K U_{0} Q \cong Z \oplus Z$ and $K U_{1} Q Q \cong K U_{1} Q \cong Z$. Moreover $K O_{i} Q Q$ are easily computed except $i=0$ and 1 . On the other hand, the Bott cofiber sequence induces two exact sequences $0 \rightarrow K O_{3} Q Q \rightarrow K U_{3} Q Q \rightarrow K O_{1} Q Q \rightarrow 0$ and $0 \rightarrow K U_{1} Q Q \rightarrow$ $K O_{7} Q Q \rightarrow K O_{0} Q Q \rightarrow K U_{0} Q Q \rightarrow K O_{6} Q Q \rightarrow 0$. Since the above monomorphisms are both multiplications by 2 on Z, we can also determine $K O_{i} Q Q(i=0,1)$ immediately.

We next consider the commutative diagram

with exact diagonals. Here the two vertical arrows are both multiplications by 2 on Z. As in [12, (2.3)] we can easily observe that $t_{*}=\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$ on $K U_{4} Q Q \cong$ $K U_{4} \Sigma^{6} \oplus K U_{4} Q \cong Z \oplus Z$ by replacing suitably the splitting of $j_{Q Q *}$ if necessary.

On the other hand, it is obvious that $t_{*}=-1$ on $K U_{1} Q Q \cong K U_{1} Q \cong Z$.
Combining Lemma 2.1 with Theorem 1 we get
Corollary 2.2. $\quad Q Q_{\widetilde{K O}} P \vee \Sigma^{7}$
Choose two maps $\lambda_{Q}: Q_{2 m} \rightarrow \Sigma^{1} Q, \rho_{Q}: Q \rightarrow Q_{2 m}^{\prime}$ making the diagram below commutative

Then the following equalities hold:

$$
\begin{equation*}
\xi \lambda_{Q}=k_{Q}: \Sigma^{1} Q_{2 m} \rightarrow \Sigma^{0}, \quad \rho_{Q} \tilde{\xi}=h_{Q}^{\prime}: \Sigma^{5} \rightarrow Q_{2 m}^{\prime} . \tag{2.6}
\end{equation*}
$$

2.3. We will now compute the $K U$ homologies of the elementary spectra $W=Y^{\prime} X_{2 m}$ with four cells mentioned in (2.4).

Proposition 2.3. The $K U$ homologies $K U_{0} W, K U_{1} W$ and the conjugation t_{*} on them are given as follows:

$W=M^{\prime} M_{2 m}$	$M^{\prime} N_{2 m}$	$N^{\prime} M_{2 m}$	$N^{\prime} N_{2 m}$		$P^{\prime} Q_{2 m}$	
$K U_{0} W \cong \quad Z$	$Z \oplus Z$	$Z \oplus Z \oplus Z / 2 m$	$Z \oplus Z / 2 m$		$Z \oplus Z \oplus Z / m$	
$t_{*}=$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & -1\end{array}\right)$	$\left(\begin{array}{rr} 1 & 0 \\ 0 & -1 \end{array}\right)$		$\left.\begin{array}{rlr} -1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right)$	$\begin{gathered} \left(\begin{array}{rrr} -1 & 0 & 0 \\ 0 & 1 & 0 \\ m / 2 & 1 & -1 \end{array}\right) \\ m: \text { even } \end{gathered}$
$K U_{1} W \cong Z \oplus Z / 2 m$	$z / 2 m$	0	z		0	
$t_{*}=\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$	1		1			
$W=P^{\prime} R_{2 m}$	$Q^{\prime} P_{2 m}$		$Q^{\prime} Q_{2 m}$	$Q^{\prime} R_{2 m}$	$R^{\prime} P_{2 m}$	$R^{\prime} Q_{2 m}$
$K U_{0} W \cong Z \oplus Z / m$	$Z \oplus Z$		Z	$Z \oplus Z$	$Z \oplus Z / m \quad Z \oplus$	$Z \oplus Z \oplus Z / 2 m$
$t_{*}=\left(\begin{array}{rr}1 & 0 \\ 1 & -1\end{array}\right)$	$\begin{array}{cc} \left(\begin{array}{cc} -1 & 0 \\ 1 & 1 \end{array}\right) & \left(\begin{array}{cc} -1 & 0 \\ 0 & 0 \end{array}\right) \\ m: \text { odd } & m: \text { even } \end{array}$		1	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right)$	$\left(\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ m & 0 & 1 \end{array}\right)$
$K U_{1} W \cong \quad Z$	Z / m		$Z \oplus Z / 2 m$	$z / 2 m$	Z	0
$t_{*}=-1$	-1		$\left(\begin{array}{rr}-1 & 0 \\ m & -1\end{array}\right)$	-1	-1	
$W=R^{\prime} R_{2 m}$	$M^{\prime} R_{2 m}$	$N^{\prime} Q_{2 m}$	$N^{\prime} R_{2 m}$	$Q^{\prime} N_{2 m}$	$R^{\prime} M_{2 m}$	$R^{\prime} N_{2 m}$
$K U_{0} W \cong Z \oplus Z / 2 m$	$Z \oplus Z$	$Z \oplus Z \oplus Z / 2 m$	$Z \oplus Z / 2 m$	$Z \oplus Z$	$Z \oplus Z \oplus Z / 2 m$	$m Z \oplus Z / 2 m$
$t_{*}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{rr} -1 & 0 \\ 1 & 1 \end{array}\right)$	$\left(\begin{array}{rrr} -1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right)$	$\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$		$\left(\begin{array}{rrr} -1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$	$\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right)$
$K U_{1} W \cong \quad Z$	Z/2m	0	z	Z/2m	0	Z
$t_{*}=$	1		-1	-1		-1

where the matrices behave as left action on abelian groups.
Proof. By making use of [12, Propositions 4.1 and 4.2] we will investigate the behaviour of the conjugation t_{*} on $K U_{*} W$ when $W=N^{\prime} M_{2 m}, P^{\prime} Q_{2 m}, Q^{\prime} P_{2 m}$, $R^{\prime} Q_{2 m}, M^{\prime} R_{2 m}, N^{\prime} Q_{2 m}, Q^{\prime} N_{2 m}$ and $R^{\prime} M_{2 m}$, the other cases being easy. Denote by t_{W} the conjugation t_{*} on $K U_{*} W$ for convenience sake.
i) The $W=N^{\prime} M_{2 m}$ case: Use the commutative diagram
involving four cofiber sequences. Evidently $K U_{0} N^{\prime} M_{2 m} \cong K U_{0} \Sigma^{4} \oplus K U_{0} N_{2 m}^{\prime} \cong$ $Z \oplus Z \oplus Z / 2 m$ and $K U_{1} N^{\prime} M_{2 m}=0$. Set $t_{N^{\prime} M}=\left(\begin{array}{rrr}1 & 0 & 0 \\ a & 1 & 0 \\ b & 0 & -1\end{array}\right)$ on $K U_{0} N^{\prime} M_{2 m} \simeq$ $Z \oplus Z \oplus Z / 2 m$ for some integers a, b because $t_{N^{\prime}}=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$ on $K U_{0} N_{2 m}^{\prime} \cong$ $Z \oplus Z / 2 m$. Since $t_{M}=\left(\begin{array}{rr}1 & 0 \\ 1 & -1\end{array}\right)$ on $K U_{-2} M_{2 m} \cong Z \oplus Z / 2 m$, we may take to be $b=1$. On the other hand, the equality $t_{N^{\prime} M}^{2}=1$ implies that $a=0$. Thus $t_{N^{\prime} M}=$ $\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & -1\end{array}\right)$ as desired.
ii) The $W=P^{\prime} Q_{2 m}$ case: Use the commutative diagram

involving four cofiber sequences. Evidently $K U_{0} P^{\prime} Q_{2 m} \cong K U_{0} \Sigma^{6} \oplus K U_{0} P_{2 m}^{\prime} \cong$ $Z \oplus Z \oplus Z / m$ and $K U_{1} P^{\prime} Q_{2 m}=0$. The induced homomorphism $j_{P^{\prime} Q, Q *}: K U_{0} P^{\prime} Q_{2 m}$ $\rightarrow K U_{-2} Q_{2 m}$ may be expressed by the matrix $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & -2\end{array}\right): Z \oplus Z \oplus Z / m \rightarrow Z \oplus$ $Z / 2 m$ since $j_{P * *}^{\prime}: K U_{0} P_{2 m}^{\prime} \rightarrow K U_{-2} S Z / 2 m$ is given by the row $(1-2): Z \oplus Z / m \rightarrow$ $Z / 2 m$. Set $t_{P^{\prime} Q}=\left(\begin{array}{rrr}-1 & 0 & 0 \\ a & 1 & 0 \\ b & 1 & -1\end{array}\right)$ on $K U_{0} P^{\prime} Q_{2 m} \cong Z \oplus Z \oplus Z / m$ for some integers a, b. Recall that $t_{Q}=\left(\begin{array}{rr}-1 & 0 \\ m & -1\end{array}\right)$ on $K U_{-2} Q_{2 m}$. Then the equality $j_{P^{\prime} Q, Q *} t_{P^{\prime} Q}=$
$t_{Q} j_{P^{\prime} Q, Q *}$ implies that $a-2 b \equiv m \bmod 2 m$, thus $a \equiv m \bmod 2$. So we may take to be $(a, b)=(1, m+1 / 2)$ or $(0, m / 2)$ according as m is odd or even. Since the matrix $\left(\begin{array}{ccc}-1 & 0 & 0 \\ 1 & 1 & 0 \\ m+1 / 2 & 1 & -1\end{array}\right)$ is congruent to $\left(\begin{array}{rrr}-1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$, the result is immediate.
iii) The $W=Q^{\prime} P_{2 m}$ case: Use the commutative diagram

involving four cofiber sequences. It follows immediately that $K U_{0} Q^{\prime} P_{2 m} \cong$ $K U_{-3} P_{2 m} \oplus K U_{0} \Sigma^{0}$ on which $t_{*}=\left(\begin{array}{rr}-1 & 0 \\ a & 1\end{array}\right)$ for some integer a, and $K U_{1} Q^{\prime} P_{2 m} \simeq$ $K U_{-2} P_{2 m} \simeq Z / m$ on which $t_{*}=-1$. We will show that the integer a may be taken to be 1 or 0 according as m is odd or even.

We will first compute the $K O$ homologies $K O_{i} Q^{\prime} P_{2 m}$. By using the above commutative diagram it is easily checked that $K O_{2 j} Q^{\prime} P_{2 m} \cong Z, K O_{3} Q^{\prime} P_{2 m} \cong$ $K O_{7} Q^{\prime} P_{2 m} \simeq Z / m$ and $K O_{5} Q^{\prime} P_{2 m} \simeq Z / m \otimes Z / 2$. In order to determine the remainder $K O_{1} Q^{\prime} P_{2 m}$ we consider the exact sequence $K O_{3} Q^{\prime} P_{2 m} \rightarrow K U_{3} Q^{\prime} P_{2 m} \rightarrow$ $K O_{1} Q^{\prime} P_{2 m} \rightarrow 0$ induced by the Bott cofiber sequence. Since there exists a short exact sequence $0 \rightarrow K O_{3} Q_{2 m}^{\prime} \rightarrow K U_{3} Q_{2 m}^{\prime} \rightarrow K O_{1} Q_{2 m}^{\prime} \rightarrow 0$, it is easily seen that $K O_{1} Q^{\prime} P_{2 m} \cong Z / m \otimes Z / 2$.

We next use the commutative diagram

with exact diagonals. Here the left vertical arrow is just multiplication by 2 on Z, and the right one is multiplication by 2 or 1 on Z according as m is odd or even. By a parallel discussion to [12, (2.3)] it is easily observed that a is odd or even according as m is odd or even. Therefore we may take a to be 1 or 0 according as m is odd or even, by replacing suitably the splitting of $j_{Q^{\prime} P, P *}$ if necessary. Thus $t_{Q^{\prime} P}=\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$ or $\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$ on $K U_{0} Q^{\prime} P_{2 m} \cong Z \oplus Z$ according
as m is odd or even.
iv) The $W=R^{\prime} Q_{2 m}$ case is shown similarly to the case i).
v) The $W=N^{\prime} Q_{2 m}$ case: We have the following commutative diagram

involving four cofiber sequences, because of (2.6). Evidently $K U_{0} N^{\prime} Q_{2 m} \simeq$ $K U_{-2} Q_{2 m} \oplus K U_{0} \Sigma^{0} \cong Z \oplus Z / 2 m \oplus Z$ and $K U_{1} N^{\prime} Q_{2 m}=0$. Set $t_{N^{\prime} Q}=\left(\begin{array}{rrr}-1 & 0 & 0 \\ m & -1 & 0 \\ a & 0 & 1\end{array}\right)$ on $K U_{0} N^{\prime} Q_{2 m} \cong Z \oplus Z / 2 m \oplus Z$ for some integer a. Then the equality $\lambda_{N^{\prime} Q^{*} t_{N^{\prime} Q}}$ $=t_{Q Q} \lambda_{N^{\prime} Q^{*}}$ implies that $a=1$ because $t_{Q Q}=\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$ on $K U_{0} Q Q$ by Lemma 2.1. Since the matrix $\left(\begin{array}{rrr}-1 & 0 & 0 \\ m & -1 & 0 \\ 1 & 0 & 1\end{array}\right)$ is congruent to $\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & 1\end{array}\right)$, the result is immediate.
vi) The $W=M^{\prime} R_{2 m}$ case: Consider the commutative diagram

involving four cofiber sequences. Evidently $K U_{0} M^{\prime} R_{2 m} \cong K U_{0} \Sigma^{6} \oplus K U_{0} M_{2 m}^{\prime} \cong$ $Z \oplus Z \quad$ and $\quad K U_{1} M^{\prime} R_{2 m} \cong K U_{1} M_{2 m}^{\prime} \cong Z / 2 m$. Since $\quad t_{N^{\prime} Q}=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$ on $K U_{0} N^{\prime} Q_{2 m} \cong Z \oplus Z \oplus Z / 2 m$, it is easily seen that $t_{M^{\prime} R}=\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$ on $K U_{0} M^{\prime} R_{2 m}$ $\cong Z \oplus Z$. Hence the result follows.
vii) The $W=Q^{\prime} N_{2 m}$ case: We have the following commutative diagram
involving four cofiber sequences, because of (2.6). Then it is easily obtained that $K U_{0} Q^{\prime} N_{2 m} \cong K U_{0} Q Q \cong Z \oplus Z$ on which $t_{*}=\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$, and $K U_{1} Q^{\prime} N_{2 m} \cong$ $K U_{1} Q_{2 m}^{\prime} \cong Z / 2 m$ on which $t_{*}=-1$.
viii) The $W=R^{\prime} M_{2 m}$ case: Consider the commutative diagrami

involving four cofiber sequences. Evidently $K U_{0} R^{\prime} M_{2 m} \cong K U_{0} \Sigma^{6} \oplus K U_{0} R_{2 m}^{\prime} \cong$ $Z \oplus Z \oplus Z / 2 m$ and $K U_{1} R^{\prime} M_{2 m}=0$. Set $t_{R^{\prime} M}=\left(\begin{array}{rrr}-1 & 0 & 0 \\ a & 1 & 0 \\ b & 0 & 1\end{array}\right)$ on $K U_{0} R^{\prime} M_{2 m} \cong$ $Z \oplus Z \oplus Z / 2 m$ for some integers a, b. Then the equality $\rho_{R^{\prime} M, Q^{\prime} N^{*}} t_{R^{\prime} M}=$ $t_{Q^{\prime} N} \rho_{R^{\prime} M, Q^{\prime} N^{*}}$ implies that $a=1$ because $t_{Q^{\prime} N}=\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$ on $K U_{0} Q^{\prime} N_{2 m} \simeq Z \oplus Z / 2 m$. So the result follows immediately, since the matrix $\left(\begin{array}{rrr}-1 & 0 & 0 \\ 1 & 1 & 0 \\ b & 0 & 1\end{array}\right)$ is always congruent to $\left(\begin{array}{rrr}-1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ for any integer b.
2.4. Finally we will compute the $K O$ homologies of the elementary spectra $W=Y^{\prime} X_{2 m}$ with four cells mentioned in (2.4).

Proposition 2.4. The $K O$ homologies $K O_{i} W$ are tabled as follows:

i	$M^{\prime} M_{2 m}$	$M^{\prime} N_{2 m}$	$N^{\prime} M_{2 m}$	$N^{\prime} N_{2 m}$	$P^{\prime} Q_{2 m}$	$P^{\prime} R_{2 m}$
0,4	Z	$Z \oplus Z$	$Z \oplus Z$	Z	$Z \oplus(Z / 2 \otimes Z / m)$	$Z \oplus(Z / 2 \otimes Z / m)$
1,5	$Z / 4 m$	$Z / 4 m$	$Z / 2$	$Z \oplus Z / 2$	0	$Z / 2$
2,6	0	$Z / 2$	$Z / 4 m$	$Z / 4 m$	$Z \oplus Z / m$	Z / m
3,7	Z	0	0	$Z / 2$	0	Z
i	$Q^{\prime} P_{2 m}$	$Q^{\prime} Q_{2 m}$	$Q^{\prime} R_{2 m}$	$R^{\prime} P_{2 m}$	$R^{\prime} Q_{2 m}$	$R^{\prime} R_{2 m}$
0,4	Z	Z	$Z \oplus Z$	$Z \oplus Z / m$	$Z \oplus Z \oplus Z / m$	$Z \oplus Z / m$
1,5	$Z / 2 \otimes Z / m$	$(*)_{m}$	$(*)_{m}$	$Z / 2$	$Z / 2$	$Z \oplus Z / 2$
2,6	Z	0	$Z / 2$	$Z / 2 \otimes Z / m$	$(*)_{m}$	$(*)_{m}$
3,7	Z / m	$Z \oplus Z / m$	Z / m	Z	0	$Z / 2$

i	$M R^{\prime}{ }_{2 m}$	$N^{\prime} Q_{2 m}$	$N^{\prime} R_{2 m}$	$Q^{\prime} N_{2 m}$	$R^{\prime} M_{2 m}$	$R^{\prime} N_{2 m}$
$\mathbf{0}$	$Z \oplus Z / 2$	$Z \oplus Z / 4 m$	$Z \oplus Z / 4 m$			
$\mathbf{1}$	$Z / 4 m$	$Z / 2$	$Z / 2 \oplus Z / 2$	$Z / 2$	$Z / 2$	$Z / 2 \oplus Z / 2$
2	$Z \oplus Z / 2$	$Z \oplus Z / 4 m$	$Z / 4 m$	Z	$Z \oplus Z / 2$	$Z / 2$
3	$Z / 2$	$Z / 2$	$Z \oplus Z / 2$	Z / m	0	Z
4	Z	$Z \oplus Z / 2$	$Z \oplus Z / 2$	Z	$Z \oplus Z / m$	$Z \oplus Z / m$
5	Z / m	0	$Z / 2$	$Z / 2$	0	$Z / 2$
6	Z	$Z \oplus Z / m$	Z / m	$Z \oplus Z / 2$	$Z \oplus Z / 2$	$Z / 2$
7	$Z / 2$	0	Z	$Z / 4 m$	$Z / 2$	$Z \oplus Z / 2$

in which $(*)_{m}$ stands for $Z / 4$ or $Z / 2 \oplus Z / 2$ according as m is odd or even.
Proof. We have computed $K O_{*} Q^{\prime} P_{2 m}$ in the proof of Proposition 2.3. In the other cases we can similarly compute by using the long exact sequences of $K O$ homologies induced by the cofiber sequences as appeared in the proof of Proposition 2.3. We may also apply the universal coefficient sequence combined with (2.5) as in the proof of Proposition 1.3.

3. Elementary $\mathbf{Z} / 2$-actions

3.1. Let H be a direct sum of 2 -torsion free cyclic groups. If the cyclic group $Z / 2$ of order 2 acts on the abelian group H, then there exists a direct sum decomposition $H \cong A \oplus B \oplus C \oplus C$ with C free on which the $Z / 2$-action ρ_{H} is represented by the matrix $\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$ (use [6, Propositions 3.7 and 3.8] or
[7]).

If the cyclic group $Z / 2$ acts on the direct sum $H \oplus Z / 2^{s+1}, s \geqq 0$, then its matrix representation is written into one of the following types:
i) $\pm\left(\begin{array}{ll}\rho_{H} & 0 \\ 0 & 1\end{array}\right)$
ii) $\pm\left(\begin{array}{lc}\rho_{H} & 0 \\ 0 & 2^{s}+1\end{array}\right) \quad(s \geqq 2)$ on $\quad H \oplus Z / 2^{s+1}$
iii) $\pm\left(\begin{array}{lll}\rho_{H^{\prime}} & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 1\end{array}\right)$ iv) $\pm\left(\begin{array}{lll}\rho_{H^{\prime}} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2^{s} & 1\end{array}\right)$
on $\quad H^{\prime} \oplus Z \oplus Z / 2^{s+1}$
v) $\pm\left(\begin{array}{lrll}\rho_{H^{\prime}} & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 2^{s} & 1\end{array}\right)$
on $\quad H^{\prime \prime} \oplus Z \oplus Z \oplus Z / 2^{s+1}$
where the matrices behave as left action on $H \oplus Z / 2^{\text {s+1 }}$ and $H \cong H^{\prime} \oplus Z \cong$ $H^{\prime \prime} \oplus Z \oplus Z$.

A $Z / 2$-action ρ on an abelian group H is said to be elementary if the pair
(H, ρ) is one of the following kinds of pairs (cf. [12, 5.1]):

$$
\begin{align*}
& (A, 1), \quad(B,-1), \quad\left(C \oplus C,\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right), \quad(Z / 8 m, 4 m \pm 1) \tag{3.2}\\
& \left(Z \oplus Z / 2 m, \pm\left(\begin{array}{rr}
1 & 0 \\
1 & -1
\end{array}\right)\right), \quad\left(Z \oplus Z / 2 m, \pm\left(\begin{array}{ll}
1 & 0 \\
m & 1
\end{array}\right)\right), \\
& \left(Z \oplus Z \oplus Z / 2 m, \pm\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
1 & m & 1
\end{array}\right) .\right.
\end{align*}
$$

We here deal with a $C W$-spectrum X such that the conjugation t_{*} on $K U_{0} X$ is decomposed into a direct sum of the above elementary $Z / 2$-actions, and $K U_{1} X=0$. Thus

$$
\begin{align*}
K U_{0} X \cong & A \oplus B \oplus(C \oplus C) \oplus A^{\prime} \oplus B^{\prime} \oplus\left(D \oplus D^{\prime}\right) \oplus\left(E \oplus E^{\prime}\right) \tag{3.3}\\
& \oplus\left(F \oplus F^{\prime}\right) \oplus\left(G \oplus G^{\prime}\right) \oplus\left(I \oplus I \oplus I^{\prime}\right) \oplus\left(J \oplus J \oplus J^{\prime}\right)
\end{align*}
$$

where each of the summands A^{\prime} and B^{\prime} is a direct sum of the forms $Z / 8 m$, each of the summands $D \oplus D^{\prime}, E \oplus E^{\prime}, F \oplus F^{\prime}$ and $G \oplus G^{\prime}$ is a direct sum of the forms $Z \oplus Z / 2 m$, and each of the summands $I \oplus I \oplus I^{\prime}$ and $J \oplus J \oplus J^{\prime}$ is a direct sum of the form $Z \oplus Z \oplus Z / 2 m$. Moreover the conjugation t_{*} acts on each component of $K U_{0} X$ as follows:

$$
\begin{align*}
t_{*}= & 1,-1,\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { on } A, B, C \oplus C \tag{3.4}\\
t_{*}= & 4 m+1,4 m-1 \text { on the component } Z / 8 m \text { of } A^{\prime}, B^{\prime} . \\
t_{*}= & \left(\begin{array}{rr}
1 & 0 \\
1 & -1
\end{array}\right), \quad\left(\begin{array}{rr}
-1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
m & 1
\end{array}\right),\left(\begin{array}{rr}
-1 & 0 \\
m & -1
\end{array}\right) \text { on the component } \\
& Z \oplus Z / 2 m \text { of } D \oplus D^{\prime}, E \oplus E^{\prime}, F \oplus F^{\prime}, G \oplus G^{\prime} \\
t_{*}= & \left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
1 & m & 1
\end{array}\right),\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
1 & m & -1
\end{array}\right) \text { on the component } Z \oplus Z \oplus Z / 2 m \text { of } \\
& I \oplus I \oplus I^{\prime}, \quad J \oplus J \oplus J^{\prime} .
\end{align*}
$$

For any direct sum $H=\oplus \oplus_{i} Z / 2 m_{i}$ we denote by $H(*)$ the direct sum $\oplus_{i}(*)_{m_{i}}$ where $(*)_{m_{i}}=Z / 4$ or $Z / 2 \oplus Z / 2$ according as m_{i} is odd or even. Moreover we write $2 H=\oplus_{i} Z / m_{i}$ and $1 / 2 H=\oplus_{i} Z / 4 m_{i}$.

Let $K C$ denote the self-conjugate K-spectrum, which is obtained as the fiber of the map $1-t: K U \rightarrow K U$ (see [3]). Given a $C W$-spectrum X satisfying (3.3) with (3.4) we can easily compute its $K C$ homology as in [12, Lemma 5.1].

Lemma 3.1. Assume that $K U_{1} X=0$.

```
i) \(\quad K C_{0} X \cong A \oplus(B * Z / 2) \oplus C \oplus\left(2 A^{\prime}\right) \oplus\left(B^{\prime} * Z / 2\right) \oplus\left(D \oplus D^{\prime} * Z / 2\right) \oplus E^{\prime}\)
    \(\oplus\left(F \oplus F^{\prime}\right) \oplus\left(G^{\prime} * Z / 2\right) \oplus\left(I \oplus I^{\prime}\right) \oplus\left(J \oplus J^{\prime} * Z / 2\right)\)
    \(K C_{1} X \cong(A \otimes Z / 2) \oplus B \oplus C \oplus\left(A^{\prime} \otimes Z / 2\right) \oplus\left(2 B^{\prime}\right) \oplus\left(1 / 2 D^{\prime}\right) \oplus E\)
    \(\oplus F^{\prime}(*) \oplus\left(G \oplus 2 G^{\prime}\right) \oplus\left(I \oplus I^{\prime} \otimes Z / 2\right) \otimes\left(J \oplus J^{\prime}\right)\)
    \(K C_{2} X \cong(A * Z / 2) \oplus B \oplus C \oplus\left(A^{\prime} * Z / 2\right) \oplus\left(2 B^{\prime}\right) \oplus D^{\prime} \oplus\left(E \oplus E^{\prime} * Z / 2\right)\)
    \(\oplus\left(F^{\prime} * Z / 2\right) \oplus\left(G \oplus G^{\prime}\right) \oplus\left(I \oplus I^{\prime} * Z / 2\right) \oplus\left(J \oplus J^{\prime}\right)\)
    \(K C_{3} X \cong A \oplus(B \otimes Z / 2) \oplus C \oplus\left(2 A^{\prime}\right) \oplus\left(B^{\prime} \otimes Z / 2\right) \oplus D \oplus\left(1 / 2 E^{\prime}\right)\)
    \(\oplus\left(F \oplus 2 F^{\prime}\right) \oplus G^{\prime}(*) \oplus\left(I \oplus I^{\prime}\right) \oplus\left(J \oplus J^{\prime} \otimes Z / 2\right)\)
ii) \(\quad K O_{1} X \oplus K O_{5} X \cong(A \otimes Z / 2) \oplus(B * Z / 2) \oplus\left(D^{\prime} * Z / 2\right) \oplus\left(F^{\prime} \otimes Z / 2\right)\)
    \(K O_{3} X \oplus K O_{7} X \cong(A * Z / 2) \oplus(B \otimes Z / 2) \oplus\left(E^{\prime} * Z / 2\right) \oplus\left(G^{\prime} \otimes Z / 2\right)\)
```

Let us denote by $V_{2 m}$ and $W_{4 m}$ respectively the elementary spectra constructed by the following cofiber sequences:

$$
\begin{align*}
& \Sigma^{1} S Z / 2 \xrightarrow{i \bar{\eta}} S Z / m \xrightarrow{i_{V}} V_{2 m} \xrightarrow{j_{V}} \Sigma^{2} S Z / 2 \tag{3.5}\\
& \Sigma^{1} S Z / 2 \xrightarrow{i \bar{\eta}+\tilde{\eta} j} S Z / 2 m \xrightarrow{i_{W}} W_{4 m} \xrightarrow{j_{W}} \Sigma^{2} S Z / 2 .
\end{align*}
$$

By observing [12, (5.4)] and Propositions 1.2 and 2.3 we here list up some of $C W$-spectra X with a few cells such that $K U_{0} X$ contains only one 2-torsion cyclic group and $K U_{1} X=0$.

$X=V_{2 m}$	$W_{8 m} \quad M_{2 m}$	$Q_{2 m}$	$N_{2 m}^{\prime}$	$R_{2 m}^{\prime}$
$K U_{0} X \cong \quad Z / 2 m$	$Z / 8 m \quad Z \oplus Z / 2 m$	- $Z \oplus Z / 2 m$	$Z \oplus Z / 2 m$	$Z \oplus Z / 2 m$
$t_{*}=1$	$4 m+1 \quad\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$	$\left(\begin{array}{ll}1 & 0 \\ m & 1\end{array}\right)$	$\left(\begin{array}{rr} 1 & 0 \\ 0 & -1 \end{array}\right)$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$X=M Q_{2 m}$	$N P_{4 m}^{\prime}$	$N R_{2 m}^{\prime}$	$N^{\prime} M_{2 m}$	
$K U_{0} X \cong Z \oplus Z \oplus Z / 2 m$	$Z \oplus Z \oplus Z / 2 m$	$Z \oplus Z \oplus Z / 2 m$	$Z \oplus Z \oplus Z / 2 m$	
$t_{*}=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & m & 1\end{array}\right)$	$\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & -1\end{array}\right)$	$\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & -1\end{array}\right)$	
$X=P^{\prime} Q_{2 m}$	$R^{\prime} Q_{2 m}$	$N^{\prime} Q_{2 m}$	$R^{\prime} M_{2 m}$	
$K U_{0} X \cong Z \oplus Z \oplus Z / 2 m$	$Z \oplus Z \oplus Z / 2 m$	$Z \oplus Z \oplus Z / 2 m$	$Z \oplus Z \oplus Z / 2 m$	
$t_{*}=\left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & m & -1 \end{array}\right)$	$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & m & 1\end{array}\right)$	$\left(\begin{array}{rrr}-1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$	$\left(\begin{array}{rrr}-1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$	

We will write simply $Y_{H}=\bigvee_{i} Y_{2 m_{i}}$ for any direct sum $H=\oplus \quad Z / 2 m_{i}$ when $Y=V, W, M, Q$ and so on.
3.2. For later use we will here study the induced homomorphism
$\varepsilon_{C^{*}}: \quad K O_{i} X \rightarrow K C_{i} X$ when $X=Q_{2 m}, N_{2 m}^{\prime}, R_{2 m}^{\prime}, N P_{4 m}^{\prime}, N R_{2 m}^{\prime}$ and $R^{\prime} Q_{2 m}$.
Lemma 3.2. The induced homomorphisms $\varepsilon_{C^{*}}: K O_{i} X \rightarrow K C_{i} X$ are represented by the following matrices $M_{i}(X)$:
i) $M_{0}\left(Q_{2 m}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right): Z \oplus Z / 2 m \rightarrow Z \oplus Z / 2 m$

$$
M_{4}\left(Q_{2 m}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right): Z \oplus Z / m \rightarrow Z \oplus Z / 2 m
$$

ii) $\quad M_{0}\left(N_{2 m}^{\prime}\right)=\binom{1}{0}: Z \rightarrow Z \oplus Z / 2$

$$
M_{4}\left(N_{2 m}^{\prime}\right)=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right): Z \oplus Z / 2 \rightarrow Z \oplus Z / 2
$$

iii) $\quad M_{0}\left(R_{2 m}^{\prime}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right): Z \oplus Z / 2 m \rightarrow Z \oplus Z / 2 m$

$$
M_{4}\left(R_{2 m}^{\prime}\right)=\left(\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right): Z \oplus Z / m \rightarrow Z \oplus Z / 2 m
$$

iv) $M_{0}\left(N P_{4 m}^{\prime}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right): Z \oplus Z \rightarrow Z \oplus Z \oplus Z / 2$
$M_{4}\left(N P_{4 m}^{\prime}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 0\end{array}\right): Z \oplus Z \rightarrow Z \oplus Z \oplus Z / 2$
v) $\quad M_{0}\left(N R_{2 m}^{\prime}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right): Z \oplus Z / 2 m \rightarrow Z \oplus Z / 2 m$
$M_{2}\left(N R_{2 m}^{\prime}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right): Z \oplus Z / 2 \rightarrow Z \oplus Z / 2$
$M_{4}\left(N R_{2 m}^{\prime}\right)=\left(\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right): Z \oplus Z / 2 m \rightarrow Z \oplus Z / 2 m$
$M_{6}\left(N R_{2 m}^{\prime}\right)=\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right): Z \oplus Z / 2 \rightarrow Z \oplus Z / 2$
vi) $\quad M_{0}\left(R^{\prime} Q_{2 m}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right): Z \oplus Z \oplus Z / m \rightarrow Z \oplus Z \oplus Z / 2 m$

$$
M_{4}\left(R^{\prime} Q_{2 m}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 2
\end{array}\right): Z \oplus Z \oplus Z / m \rightarrow Z \oplus Z \oplus Z / 2 m
$$

where the matrices behave as left action.
Proof. i) The $X=Q_{2 m}$ case: Obviously $\varepsilon_{C^{*}}: K O_{0} Q_{2 m} \rightarrow K C_{0} Q_{2 m}$ is an isomorphism, and moreover we have the following commutative diagram

$$
\begin{aligned}
0 \rightarrow \mathrm{KO}_{5} \Sigma^{4} & \rightarrow \mathrm{KO}_{4} \mathrm{SZ} / 2 m \\
\downarrow & \rightarrow \mathrm{KO}_{4} Q_{2 m} \rightarrow \mathrm{KO}_{4} \Sigma^{4} \rightarrow \mathrm{KO}_{3} \mathrm{SZ} / 2 m \rightarrow 0 \\
0 & \rightarrow K U_{4} S Z / 2 m
\end{aligned} \rightarrow K \mathrm{U}_{4} Q_{2 m} \rightarrow K U_{4} \Sigma^{4} \rightarrow 0
$$

with exact rows. As is easily seen, the central arrow $\varepsilon_{U^{*}}: K O_{4} Q_{2 m} \rightarrow K U_{4} Q_{2 m}$
is expressed as the matrix $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right): Z \oplus Z / m \rightarrow Z \oplus Z / 2 m$. The result is now immediate.
ii) The $X=N_{2 m}^{\prime}$ case: Using the commutative diagram

$$
\begin{aligned}
& K O_{0} \Sigma^{0} \cong \\
\downarrow & K O_{0} N_{2 m}^{\prime} \\
0 \rightarrow & K U_{0} \Sigma^{\bullet} \rightarrow K U_{0} N_{2 m}^{\prime} \rightarrow K U_{6} S Z / 2 m \rightarrow 0
\end{aligned}
$$

with a split exact row, it is easily checked that $M_{0}\left(N_{2 m}^{\prime}\right)=\binom{1}{0}$.
We next compare the two commutative diagrams

with exact diagonals. Since $K O_{4} N_{2 m}^{\prime} \cong K O_{4} Q \oplus K O_{4} \Sigma^{2} \cong Z \oplus Z / 2$ and $K U_{4} N_{2 m}^{\prime}$ $\cong K U_{4} \Sigma^{0} \oplus K U_{2} S Z / 2 m \cong Z \oplus Z / 2 m$, the induced homomorphism $\varepsilon_{U^{*}}: K O_{4} N_{2 m}^{\prime} \rightarrow$ $K U_{4} N_{2 m}^{\prime}$ is expressed as the matrix $\left(\begin{array}{ll}1 & 0 \\ m & 0\end{array}\right): Z \oplus Z / 2 \rightarrow Z \oplus Z / 2 m$. Therefore it follows immediately that $M_{4}\left(N_{2 m}^{\prime}\right)=\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$.
iii) The $X=R_{2 m}^{\prime}$ case: Compare the two commutative diagrams

with exact diagonals, in dimensions $i=0$ and 4. Since $K O_{i} R_{2 m}^{\prime} \cong K O_{i} Q \oplus$ $K O_{i-2} P_{2 m}^{\prime}$ and $K U_{i} R_{2 m}^{\prime} \cong K U_{i} \Sigma^{0} \oplus K U_{i-4} S Z / 2 m$ for $i=0$ and 4, the induced homomorphism $\varepsilon_{U^{*}}: K O_{i} R_{2 m}^{\prime} \rightarrow K U_{i} R_{2 m}^{\prime}$ is represented by the matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$ or $\left(\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right)$ according as $i=0$ or 4 . The result is now immediate.
iv) The $X=N P_{4 m}^{\prime}$ case: Use the following commutative diagram

$$
\begin{aligned}
& 0 \rightarrow K O_{i} \Sigma^{0} \rightarrow K O_{i} N P_{4 m}^{\prime} \rightarrow K O_{i} N_{4 m}^{\prime} \rightarrow 0 \\
& 0 \rightarrow K C_{i} \Sigma^{0} \rightarrow K C_{i} N P_{4 m}^{\prime} \rightarrow K C_{i} N_{4 m}^{\prime} \rightarrow 0
\end{aligned}
$$

with exact rows, in dimensions $i=0$ and 4. Then the result follows from ii) by a routine computation.
v) The $X=N R_{2 m}^{\prime}$ case: Use the following commutative diagrams

with exact rows. Then the result follows immediately from ii) and iii).
vi) The $X=R^{\prime} Q_{2 m}$ case is shown by a similar argument to the case iv) using the cofiber sequence $\Sigma^{0} \rightarrow R^{\prime} Q_{2 m} \rightarrow \Sigma^{4} Q_{2 m} \xrightarrow{\eta^{2} \bar{k}_{Q}} \Sigma^{1}$ and the above result i).
3.3. As a special case of (3.3) we here deal with a $C W$-spectrum X such that $K U_{0} X$ has a direct sum decomposition

$$
\begin{equation*}
K U_{0} X \cong A \oplus B \oplus(C \oplus C) \oplus A^{\prime} \oplus B^{\prime} \oplus\left(I \oplus I \oplus I^{\prime}\right) \oplus\left(J \oplus J \oplus J^{\prime}\right) \tag{3.7}
\end{equation*}
$$

in which the conjugation t_{*} acts on $K U_{0} X$ as in (3.4). For such a $C W$-spectrum X Lemma 2.1 ii) asserts that $K O_{1} X \oplus K O_{5} X \cong(A \otimes Z / 2) \oplus(B * Z / 2)$ and $K O_{3} X \oplus$ $K O_{7} X \cong(A * Z / 2) \oplus(B \otimes Z / 2)$ under the assumption that $K U_{1} X=0$. We will now show the first one of our main results.

Theorem 3.3. Let X be a $C W$-spectrum such that $K U_{0} X$ has a direct sum decomposition as (3.7) and $K U_{1} X=0$. Assume that A and B are both direct sums of 2-torsion free cyclic groups. Then there exist abelian groups A_{0}, A_{4}, B_{2} and B_{6} with $A_{0} \oplus A_{4} \cong A, B_{2} \oplus B_{6} \cong B$ so that X is quasi $K O_{*}$-equivalent to the wedge sum $S A_{0} \vee \Sigma^{2} S B_{2} \vee \Sigma^{4} S A_{4} \vee \Sigma^{6} S B_{6} \vee(P \wedge S C) \vee W_{A^{\prime}} \vee \Sigma^{2} W_{B^{\prime}} \vee M Q_{I^{\prime}} \vee \Sigma^{2} M Q_{J^{\prime}}$.

Proof. Consider the exact sequence

$$
K U_{j+2} X \xrightarrow{\varphi_{j}} K C_{j} X \xrightarrow{\psi_{j}} K O_{j+1} X \oplus K O_{j+5} X \rightarrow 0
$$

induced by the cofiber sequence $\Sigma^{1} K C \xrightarrow{\left(-\tau, \tau \pi c^{-1}\right)} K O \vee \Sigma^{4} K O{ }^{\varepsilon_{U} \vee \pi_{U}^{2} \varepsilon_{U}} K U$ $\xrightarrow{\varepsilon_{c} \varepsilon_{0} \pi_{v}^{-1}} \Sigma^{2} K C$ when $j=0$ and 2. Since $K O_{1} X \oplus K O_{5} X \cong A \otimes Z / 2$ and $K O_{3} X \oplus$ $K O_{7} X \cong B \otimes Z / 2$, we can choose direct sum decompositions $A \cong A_{0} \oplus A_{4}, B \cong B_{2} \oplus$ B_{6} with A_{4}, B_{6} free so that $\psi_{0}\left(A_{i}\right) \cong A_{i} \otimes Z / 2 \cong K O_{i+1} X, \psi_{2}\left(B_{i+2}\right) \cong B_{i+2} \otimes Z / 2 \cong$
$K O_{i+3} X$ for $i=0$ and 4.
Our proof will be established by the same method as in [12, Theorem 5.2] or [13, Theorem 2.5]. Abbreviate by Y the desired wedge sum of nine elementary spectra. For each component Y_{H} of the wedge sum Y we choose a unique map $f_{H}: Y_{H} \rightarrow K U \wedge X$ whose induced homomorphism in $K U$ homologies is the canonical injection. Here H is taken to be $A_{0}, A_{4}, B_{2}, B_{6}, C, A^{\prime}, B^{\prime}, I^{\prime}$ or J^{\prime}. Notice that there exists a map $g_{H}: Y_{H} \rightarrow K C \wedge X$ satisfying $\left(\zeta_{\wedge} 1\right) g_{H}=f_{H}$ for each H. We will find a map $h_{H}: Y_{H} \rightarrow K O \wedge X$ such that $\left(\varepsilon_{U \wedge} 1\right) h_{H}=f_{H}$ for each H, and then apply [12, Proposition 1.1] to show that the map $h=\bigvee_{H} h_{H}: Y=\bigvee_{H} Y_{H} \rightarrow$ $K O \wedge X$ becomes a quasi $K O_{*}$-equivalence. We will only find such maps h_{H} in the cases $H=A_{0}, C, A^{\prime}$ and I^{\prime}, the other cases being done similarly.
i) The $H=A_{0}$ case: Consider the commutative diagram

$$
\begin{aligned}
0 \rightarrow \operatorname{Ext}\left(A_{0}, K O_{6} X\right) & \rightarrow\left[S A_{0}, \Sigma^{3} K O \wedge X\right] \\
\downarrow\left(\eta_{\wedge} 1\right)_{*} & \xrightarrow{\tilde{\kappa}_{K O}} \\
& \operatorname{Hom}\left(A_{0}, K O_{5} X\right) \rightarrow 0 \\
\downarrow \eta_{* *} & \downarrow \eta_{* *} \\
0 \rightarrow \operatorname{Ext}\left(A_{0}, K O_{7} X\right) \rightarrow\left[S A_{0}, \Sigma^{2} K O \wedge X\right] & \operatorname{Hom}\left(A_{0}, K O_{6} X\right) \rightarrow 0
\end{aligned}
$$

with the universal coefficient sequences, in which the arrows $\tilde{\boldsymbol{\kappa}}_{K O}$ assign to any map f its induced homomorphism of $K O$ homologies in dimension 0 . Note that the induced homomorphism $\tilde{\kappa}_{K o}\left(\left(\tau \pi \bar{c}^{-1}{ }_{\wedge} 1\right) g_{A_{0}}\right): K O_{0} S A_{0} \rightarrow K O_{5} X$ becomes trivial because $K O_{5} X \cong \psi_{0}\left(A_{4}\right)$. Then the composite $\left(\eta_{\wedge} 1\right)\left(\tau \pi_{C}^{-1}{ }_{\wedge} 1\right) g_{A_{0}}=\left(\varepsilon_{0} \pi_{U}^{-1} \wedge 1\right) f_{A_{0}}$: $\Sigma^{2} S A_{0} \rightarrow K O \wedge X$ is in fact trivial becasuse $\operatorname{Ext}\left(A_{0}, K O_{7} X\right)=0$. So we can find a desired map $h_{A_{0}}$.
ii) The $H=C$ case: Recall that P is self dual, thus $P=\Sigma^{2} D P$. Since $\eta_{\wedge} 1: \Sigma^{1} K O \wedge P \rightarrow K O \wedge P$ is trivial, it is easily seen that the composite $\left(\eta_{\wedge} 1\right)\left(\tau \pi \bar{c}^{-1} \wedge\right) g_{c}=\left(\varepsilon_{o} \pi_{U}^{-1} \wedge 1\right) f_{c}: P \wedge S C \rightarrow \Sigma^{2} K O \wedge X$ becomes trivial. So we can find a desired map h_{C}.
iii) The $H=A^{\prime}$ case: Set $A^{\prime}=\oplus \quad Z / 2 m_{i}$, and then write $2 A^{\prime}=\oplus_{i} Z / 4 m_{i}$ and $A^{\prime \prime}=\oplus_{i} Z / 2$. We will first find vertical arrows h_{0}, h_{1} making the diagram below commutative

after replacing the map $g_{A^{\prime}}$ with $\left(\zeta_{\wedge} 1\right) g_{A^{\prime}}=f_{A^{\prime}}$ suitably if necessary. The induced homomorphisms $\tilde{\kappa}_{K O}\left(\left(\tau \pi^{-1}{ }_{\wedge} 1\right) g_{A^{\prime}}\right): K O_{j} W_{A^{\prime}} \rightarrow K O_{j+5} X$ are trivial in dimensions $j=0$ and 2 because $\psi_{0}\left(2 A^{\prime}\right)=0=\psi_{2}\left(A^{\prime} * Z / 2\right)$. So we get a map $h_{0}^{\prime}: \bigvee_{i} \Sigma^{0} \rightarrow$ $\Sigma^{2} K O \wedge X$ such that $h_{0}^{\prime} j_{2 A^{\prime}}=\left(\tau \pi c^{-1} \wedge\right) g_{A^{\prime}} i_{W}: S\left(2 A^{\prime}\right) \rightarrow \Sigma^{3} K O \wedge X$ and in addition
$\left(\eta_{\wedge} 1\right) h_{0}^{\prime}=0$ where $j_{2 A^{\prime}}=\bigvee_{i} j_{4 m_{i}}: \bigvee_{i} S Z / 4 m_{i} \rightarrow \bigvee_{i} \Sigma^{1}$. Consequently the composite $\left(\eta_{\wedge} 1\right)\left(\tau \pi c^{-1}{ }_{\wedge} 1\right) g_{A^{\prime}} i_{W}: S\left(2 A^{\prime}\right) \rightarrow \Sigma^{2} K O \wedge X$ becomes trivial. Hence we can obtain desired maps h_{0} and h_{1} by applying [12, Lemma 1.3].

We will next find vertical maps k_{0}, k_{1} making the diagram below commutative

with $j_{A^{\prime \prime}}=\bigvee_{i} j_{2}: \bigvee_{i} S Z / 2 \rightarrow \bigvee_{i} \Sigma^{1}$, after replacing the map $g_{A^{\prime}}$ with $\left(\zeta_{\wedge} 1\right) g_{A^{\prime}}=f_{A^{\prime}}$ again if necessary. Notice that the composite $\left(\eta_{\wedge} 1\right) i_{A^{\prime \prime}} j_{M}: M_{2 A^{\prime}} \rightarrow \Sigma^{1} S A^{\prime \prime}$ is trivial because $\left(\eta_{\wedge} 1\right) i_{A^{\prime \prime}}=\bigvee_{i}\left(\rho_{4 m_{i}, 2} i_{4 m_{i}} \eta\right): \bigvee_{i} \Sigma^{1} \rightarrow V_{i} S Z / 2$ where $\rho_{4 m_{i}, 2}: S Z / 4 m_{i} \rightarrow$ $S Z / 2$ denotes the associated map with the canonical epimorphism. Since $j_{W} k_{M, W}=i_{A^{\prime \prime}} j_{M}: M_{2 A^{\prime}} \rightarrow \Sigma^{2} S A^{\prime \prime}$, the composite $\left(\eta_{\wedge} 1\right)\left(\tau \pi \bar{c}^{-1}{ }_{\wedge} 1\right) g_{A^{\prime}} k_{M, W}: M_{2 A^{\prime}} \rightarrow$ $\Sigma^{2} K O \wedge X$ coincides with the composite $\left(\eta_{\wedge} 1\right) h_{1} i_{A^{\prime \prime}} j_{M}$, which is trivial. So we can obtain desired maps k_{0} and k_{1} by applying [12, Lemma 1.3] again. However the composite $\left(\eta_{\wedge} 1\right) j_{A^{\prime \prime}} j_{W}: W_{A^{\prime}} \rightarrow \bigvee_{i} \Sigma^{2}$ becomes trivial because $\left(\eta_{\wedge} 1\right) j_{A^{\prime \prime}}=$ $\underset{i}{\bigvee}\left(j_{4 m_{i}}\left(i_{4 m_{i}} \bar{\eta}_{2}+\widetilde{\eta}_{4 m_{i}} j_{2}\right)\right): \bigvee_{i} S Z / 2 \rightarrow \bigvee_{i} \Sigma^{0}$. Hence there exists a map $h_{A^{\prime}}: W_{A^{\prime}} \rightarrow$ $K O \wedge X$ with $\left(\varepsilon_{U \wedge} 1\right) h_{W}=f_{W}$ as desired.
iv) The $H=I^{\prime}$ case: Setting $I^{\prime}=\oplus \quad Z / 2 m_{i}$ we will find vertical maps h_{0}, h_{1} making the diagram below commutative

after replacing the map $g_{I^{\prime}}$ with $\left(\zeta_{\wedge} 1\right) g_{I^{\prime}}=f_{I^{\prime}}$ suitably if necessary. The induced homomorphisms $\tilde{\kappa}_{K O}\left(\left(\tau \pi \bar{c}^{-1}{ }_{\wedge} 1\right) g_{I^{\prime}}\right): K O_{j} M Q_{I^{\prime}} \rightarrow K O_{i+5} X$ are trivial in dimensions $j=0$ and 2 because $\psi_{0}\left(I \oplus I^{\prime}\right)=0=\psi_{2}\left(I \oplus I^{\prime} * Z / 2\right)$. So we get a map h_{0}^{\prime} : $\underset{i}{\vee} \Sigma^{0} \rightarrow \Sigma^{2} K O \wedge X$ such that $h_{0}^{\prime} j_{I^{\prime}}=\left(\tau \pi \bar{c}^{-1} \wedge 1\right) g_{I} i_{M Q}: S I^{\prime} \rightarrow \Sigma^{3} K O \wedge X$ and in addition $\left(\eta_{\wedge} 1\right) h_{0}^{\prime}=0$. Since the composite $\left(\eta_{\wedge} 1\right)\left(\tau \pi \bar{c}^{-1} \wedge\right) g_{I_{I}} i_{M Q}: S I^{\prime} \rightarrow \Sigma^{2} K O \wedge X$ becomes trivial, we can obtain desired maps h_{0} and h_{1} by applying [12, Lemma 1.3].

Choose maps $k_{i}^{\prime}: \Sigma^{0} \rightarrow \Sigma^{2} K O \wedge X, k_{i}^{\prime \prime}: \Sigma^{0} \rightarrow K O \wedge X$ satisfying $h_{1}=\bigvee_{i}\left(k_{i}^{\prime} \eta \vee\right.$ $\left.k_{i}^{\prime \prime} \eta\right): \bigvee_{i}\left(\Sigma^{0} \vee \Sigma^{2}\right) \rightarrow \Sigma^{1} K O \wedge X$, and then set $\bar{k}=\bigvee_{i}\left(k_{i}^{\prime} \bar{\eta}_{2 m_{i}}+k_{i}^{\prime \prime} j_{2 m_{i}}\right): S I^{\prime} \rightarrow \Sigma^{1} K O \wedge$ X. Notice that $\left(\eta_{\wedge} 1\right) h_{1}=\bar{k}\left(\bigvee_{i}\left(i_{2 m_{i}} \eta \vee \tilde{\eta}_{2 m_{i}} \eta\right)\right): \bigvee_{i}\left(\Sigma^{0} \vee \Sigma^{2}\right) \rightarrow K O \wedge X$ because
$\bar{k}\left(\bigvee_{i} i_{2 m_{i}} \eta\right)=\bigvee_{i} k_{i}^{\prime} \eta^{2}$ and $\bar{k}\left(\bigvee_{i} \tilde{\eta}_{2 m_{i}} \eta\right)=\bigvee_{i} k_{i}^{\prime \prime} \eta^{2}$. Hence the composite $\left(\eta_{\wedge} 1\right) h_{1} j_{M Q}$: $M Q_{I^{\prime}} \rightarrow \Sigma^{2} K O \wedge X$ becomes trivial. So there exists a map $h_{I^{\prime}}: M Q_{I^{\prime}} \rightarrow K O \wedge X$ with $\left(\varepsilon_{U \wedge} 1\right) h_{I^{\prime}}=f_{I^{\prime}}$ as desired.

4. $K \boldsymbol{U}_{0} X$ containing only one 2 -cyclic group $\boldsymbol{Z} / 2^{\text {s+1 }}$

4.1. We first deal with a $C W$-spectrum X such that $K U_{0} X$ has a direct sum decomposition

$$
\begin{equation*}
K U_{0} X \cong A \oplus B \oplus(C \oplus C) \oplus Z / 2 m \tag{4.1}
\end{equation*}
$$

with A, B direct sums of 2 -torsion free cyclic groups, and $K U_{1} X=0$. Here the conjugation t_{*} behaves on A, B and $C \oplus C$ as in (3.4), and $t_{*}=1$ on the last factor $Z / 2 m$. For such a $C W$-spectrum X we consider the exact sequence

$$
K U_{j+2} X \xrightarrow{\varphi_{j}} K C_{j} X \xrightarrow{\psi_{j}} K O_{j+1} X \oplus K O_{j+5} X \rightarrow 0
$$

in dimensions $j=0$ and 2 as in the proof of Theorem 3.2. Recall that $K C_{0} X \cong$ $A \oplus C \oplus Z / 2 m, \quad K C_{2} X \cong B \oplus C \oplus Z / 2, \quad K O_{1} X \oplus K O_{5} X \cong(A \otimes Z / 2) \oplus Z / 2 \quad$ and $K O_{3} X \oplus K O_{7} X \cong(B \otimes Z / 2) \oplus Z / 2$.

Using the isomorphism $\theta_{0}:(A \otimes Z / 2) \oplus Z / 2 \rightarrow K O_{1} X \oplus K O_{5} X$, we put $\theta_{0}(0,1)=(x, y) \in K O_{1} X \oplus K O_{5} X$. Then the pair (x, y) is divided into the three types:
i) $x \neq 0, y=0$
ii) $x=0, y \neq 0$
iii) $x \neq 0, y \neq 0$.

Corresponding to each type we can choose a direct sum decomposition of A as follows:
i) $A \cong A_{0} \oplus A_{4}$ with A_{4} free so that $\psi_{0}\left(A_{0} \oplus Z / 2 m\right) \cong\left(A_{0} \otimes Z / 2\right) \oplus Z / 2\langle x\rangle$ $\cong K O_{1} X$ and $\psi_{0}\left(A_{4}\right) \cong A_{4} \otimes Z / 2 \cong K O_{5} X$.
ii) $A \cong A_{0} \oplus A_{4}$ with A_{4} free so that $\psi_{0}\left(A_{0}\right) \cong A_{0} \otimes Z / 2 \cong K O_{1} X$ and $\psi_{0}\left(A_{4} \oplus Z / 2 m\right) \cong\left(A_{4} \otimes Z / 2\right) \oplus Z / 2\langle y\rangle \cong K O_{5} X$.
iii) $\quad A \cong A_{0} \oplus A_{4} \oplus Z$ with A_{4} free so that $\psi_{0}\left(A_{0} \oplus Z / 2 m\right) \cong\left(A_{0} \otimes Z / 2\right) \oplus$ $Z \mid 2\langle x\rangle \cong K O_{1} X, \psi_{0}\left(A_{4} \oplus Z / 2 m\right) \cong\left(A_{4} \otimes Z / 2\right) \oplus Z / 2\langle y\rangle \cong K O_{5} X$ and $\psi_{0}(Z) \cong Z \mid 2\langle x\rangle$.

Similarly we can choose a direct sum decomposition of B corresponding to each of the three types. Consequently we have

Lemma 4.1. Let X be a $C W$-spectrum satisfying (4.1).
i) $K C_{0} X \cong A \oplus C \oplus Z / 2 m$ is decomposed into one of the following three types: A1) $K C_{0} X \cong A_{0} \oplus A_{4} \oplus C \oplus Z / 2 m$ so that $K O_{1} X \cong\left(A_{0} \oplus Z / 2 m\right) \otimes Z / 2, K O_{5} X \cong$ $A_{4} \otimes Z / 2$ and both $\tau_{*}: K C_{0} X \rightarrow K O_{1} X$ and $\left(\tau \pi \bar{c}^{-1}\right)_{*}: K C_{0} X \rightarrow K O_{5} X$ are the canonical epimorphisms.
A2) $K C_{0} X \cong A_{0} \oplus A_{4} \oplus C \oplus Z / 2 m$ so that $K O_{1} X \cong A_{0} \otimes Z / 2, K O_{5} X \cong\left(A_{4} \oplus Z / 2 m\right)$
$\otimes Z / 2$ and both $\tau_{*}: K C_{0} X \rightarrow K O_{1} X$ and $\left(\tau \pi c_{c}^{-1}\right)_{*}: K C_{0} X \rightarrow K O_{5} X$ are the canonical epimorphisms.
A3) $K C_{0} X \cong A_{0} \oplus A_{4} \oplus Z \oplus C \oplus Z / 2 m$ so that $K O_{1} X \cong\left(A_{0} \otimes Z / 2\right) \oplus Z / 2, K O_{5} X \cong$ $\left(A_{4} \oplus Z / 2 m\right) \otimes Z / 2$ and $\left(\tau \pi \pi_{c}^{-1}\right)_{*}: K C_{0} X \rightarrow K O_{5} X$ is the canonical epimorphism, but $\tau_{*}: K C_{0} X \rightarrow K O_{1} X$ is the epimorphism whose restriction to $Z \oplus Z / 2 m$ is given by the matrix $\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right): Z \oplus Z / 2 m \rightarrow\left(A_{0} \otimes Z / 2\right) \oplus Z / 2$.
ii) $K C_{2} X \cong B \oplus C \oplus Z / 2$ is similarly decomposed into one of the three types:

B1) $K C_{2} X \cong B_{2} \oplus B_{6} \oplus C \oplus Z / 2$ with $K O_{3} X \cong\left(B_{2} \oplus Z / 2\right) \otimes Z / 2, K O_{7} X \cong B_{6} \otimes Z / 2$.
B2) $K C_{2} X \cong B_{2} \oplus B_{6} \oplus C \oplus Z / 2$ with $K O_{3} X \cong B_{2} \otimes Z / 2, K O_{7} X \cong\left(B_{6} \oplus Z / 2\right) \otimes Z / 2$.
B3) $K C_{2} X \cong B_{2} \oplus B_{6} \oplus Z \oplus C \oplus Z / 2$ with $K O_{3} X \cong\left(B_{2} \otimes Z / 2\right) \oplus Z / 2, K O_{7} X \cong$ $\left(B_{6} \oplus Z / 2\right) \otimes Z / 2$.
Here $\tau_{*}: K C_{2} X \rightarrow K O_{3} X$ and $\left(\tau \pi c_{c}^{-1}\right)_{*}: K C_{2} X \rightarrow K O_{7} X$ are epimorphisms as given in A1), A2) and A3) respectively.
4.2. By making use of Lemma 4.1 we will now show the second one of our main results.

Theorem 4.2. Let X be a $C W$-spectrum such that $K U_{0} X$ has a direct sum decomposition as (4.1) and $K U_{1} X=0$. Then there exist abelian groups A_{0}, A_{4}, B_{2} and B_{6} and a certain $C W$-spectrum Y so that X is quasi $K O_{*}$-equivalent to the wedge sum $S A_{0} \vee \Sigma^{2} S B_{2} \vee \Sigma^{4} S A_{4} \vee \Sigma^{6} S B_{6} \vee(P \wedge S C) \vee Y$. Here Y is taken to be one of the following elementary spectra $\Sigma^{i} S Z / 2 m, \Sigma^{i} V_{2 m}, \Sigma^{2+i} N_{2 m}^{\prime}, \Sigma^{i} R_{2 m}^{\prime}$ and $N R_{2 m}^{\prime}$ for $i=0,4$.

Proof. Set $\quad Y_{11}=S Z / 2 m, \quad Y_{12}=\Sigma^{4} V_{2 m}, \quad Y_{13}=\Sigma^{6} N_{2 m}^{\prime}, \quad Y_{21}=V_{2 m}, \quad Y_{22}=$ $\Sigma^{4} S Z / 2 m, \quad Y_{23}=\Sigma^{2} N_{2 m}^{\prime}, Y_{31}=\Sigma^{4} R_{2 m}^{\prime}, Y_{32}=R_{2 m}^{\prime}$ and $Y_{33}=N R_{2 m}^{\prime}$. According to Lemma 4.1 $K C_{0} X$ and $K C_{2} X$ are respectively decomposed with the three types $\mathrm{A} 1)-\mathrm{A} 3$) and B 1$)-\mathrm{B} 3$). We will prove that X is quasi $K O_{*}$-equivalent to the wedge sum $S A_{0} \vee \Sigma^{2} S B_{2} \vee \Sigma^{4} S A_{4} \vee \Sigma^{6} S B_{6} \vee\left(P_{\wedge} S C\right) \vee Y_{i j}$ in each type ($A i, B j$). In each type ($A i, B j$) we choose a unique map $f_{i j}: Y_{i j} \rightarrow K U \wedge X$ whose induced homomorphism in $K U$ homologies is the canonical injection. Then there exists a map $g_{i j}: Y_{i j} \rightarrow K C \wedge X$ satisfying $\left(\zeta_{\wedge} 1\right) g_{i j}=f_{i j}$. It is sufficient to find a map $h_{i j}: Y_{i j} \rightarrow K O \wedge X$ such that $\left(\varepsilon_{U \wedge} 1\right) h_{i j}=f_{i j}$ for each pair $(A i, B j)$, because the other cases has been established in the proof of Theorem 3.3.
i) The $Y_{11}=S Z / 2 m$ case: Consider the commutative diagram

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Ext}\left(Z / 2 m, K O_{6} X\right) \rightarrow\left[S Z / 2 m, \Sigma^{3} K O \wedge X\right] \xrightarrow{\tilde{\kappa}_{K O}} \operatorname{Hom}\left(Z / 2 m, K O_{5} X\right) \rightarrow 0 \\
& 0 \rightarrow \operatorname{Ext}\left(Z / 2 m, \stackrel{\downarrow \eta_{* *}}{K O_{7}} X\right) \rightarrow\left[S Z / 2 m, \stackrel{\downarrow\left(\eta_{\wedge} 1\right)_{*}}{\Sigma^{2}} \stackrel{\downarrow}{\wedge} X\right] \underset{\tilde{\kappa}_{K O}}{\rightarrow} \operatorname{Hom}\left(Z / 2 m, \stackrel{\downarrow \eta_{*}}{K O_{6}} X\right) \rightarrow 0
\end{aligned}
$$

with the universal coefficient sequences. The induced homomorphisms $\widetilde{\kappa}_{K O}\left(\left(\pi \pi \bar{c}^{-1}{ }_{\wedge} 1\right) g_{11}\right): K O_{i} S Z / 2 m \rightarrow K O_{i+5} X$ become trivial in dimensions $i=0$ and 2
because of Lemma 4.1 A1) and B1). So it is easily verified that the composite $\left(\eta_{\wedge} 1\right)\left(\tau \pi \bar{c}^{-1}{ }_{\wedge}\right) g_{11}=\left(\varepsilon_{0} \pi_{\bar{U}}{ }^{1} \wedge 1\right) f_{11}: S Z / 2 m \rightarrow \Sigma^{2} K O \wedge X$ is trivial. Hence we can find a desired map h_{11}.
ii) The $Y_{21}=V_{2 m}$ case: We will first find vertical arrows h_{0} and h_{1} making the diagram below commutative

The induced homomorphisms $\tilde{\kappa}_{K O}\left(\left(\tau \pi \bar{c}^{1}{ }_{\wedge} 1\right) g_{21}\right): K O_{i} V_{2 m} \rightarrow K O_{i+5} X$ are trivial in dimensions $i=0$ and 2 because $K O_{0} V_{2 m} \cong Z / m, K C_{0} V_{2 m} \cong Z / 2 m$ and $K O_{7} X \cong \psi_{0}\left(B_{6}\right)$ by Lemma 4.1 B 1$)$. So we get a map $h_{0}^{\prime}: \Sigma^{0} \rightarrow \Sigma^{2} K O \wedge X$ such that $h_{0}^{\prime} j_{m}=$ $\left(\tau \pi \bar{c}^{1}{ }_{\wedge} 1\right) g_{21} i_{v}: S Z / m \rightarrow \Sigma^{1} K O \wedge X$ and in addition $\left(\eta_{\wedge} 1\right) h_{0}^{\prime}=0$ when m is even. Hence the composite $\left(\eta_{\wedge} 1\right)\left(\tau \pi \bar{c}^{-1}{ }_{\wedge} 1\right) g_{21} i_{V}: S Z / m \rightarrow \Sigma^{2} K O \wedge X$ becomes trivial when m is even as well as odd. By applying [12, Lemma 1.3] we can obtain desired maps h_{0} and h_{1} after replacing the map g_{21} with $\left(\zeta_{\wedge} 1\right) g_{21}=f_{21}$ suitably if necessary.

Moreover we note that $h_{1 *}: K O_{2} S Z / 2 \rightarrow K O_{1} X$ becomes trivial since the induced homomorphism $\tilde{\kappa}_{K O}\left(\left(\tau \pi \bar{c}^{-1}{ }_{\wedge} 1\right) g_{21}\right): K O_{4} V_{2 m} \rightarrow K O_{1} X$ is also trivial by means of Lemma 4.1 A 2). This implies that the composite $h_{1} \tilde{\eta}_{2}: \Sigma^{1} \rightarrow K O \wedge X$ is trivial. Hence it follows that $\left(\eta_{\wedge} 1\right) h_{1}=h_{1} i_{2} \bar{\eta}_{2}: S Z / 2 \rightarrow K O \wedge X$ because $\eta_{\wedge} 1=$ $\tilde{\eta}_{2} j_{2}+i_{2} \bar{\eta}_{2}: \Sigma^{1} S Z / 2 \rightarrow S Z / 2$ by (1.1). When m is even, we see that $\left(\eta_{\wedge} 1\right) h_{1}=$ $h_{1} \rho_{m, 2} i_{m} \bar{\eta}_{2}: S Z / 2 \rightarrow K O \wedge X$ where $\rho_{m, 2}: S Z / m \rightarrow S Z / 2$ denotes the associated map with the canonical epimorphism. Hence it follows that the composite $\left(\eta_{\wedge} 1\right) h_{1} j_{V}$: $V_{2 m} \rightarrow \Sigma^{2} K O \wedge X$ is trivial when m is even. When m is odd, $h_{1 *}: K O_{0} S Z / 2 \rightarrow$ $K O_{7} X$ becomes also trivial because $h_{1} j_{V}=\left(\tau \pi \bar{c}^{-1}{ }_{\wedge} 1\right) g_{21}$. Using the fact that $h_{1 *}: K O_{i} S Z / 2 \rightarrow K O_{i+7} X$ are trivial in dimensions $i=0$ and 2 , we can then verify that the composite $\left(\eta_{\wedge} 1\right) h_{1}: S Z / 2 \rightarrow K O \wedge X$ is trivial when m is odd. Conseqently there exists a map $h_{21}: V_{2 m} \rightarrow K O \wedge X$ satisfying $\left(\varepsilon_{0} \pi \bar{U}^{1} \wedge 1\right) h_{21}=f_{21}$ for any m.
iii) The $Y_{32}=R_{2 m}^{\prime}$ case: Note that the induced homomorphisms $\tilde{\kappa}_{K O}\left(\left(\tau \pi \bar{c}^{-1}{ }_{\wedge} 1\right) g_{32}\right): K O_{i} R_{2 m}^{\prime} \rightarrow K O_{i+5} X$ are trivial in dimensions $i=0,4$ and 6 by means of Lemmas 3.2 iii) and 4.1 A 3), B2). Then we can find vertical arrows h_{0}, h_{1} making the diagram below commutative

Moreover we can see that $h_{1 *}: K O_{i} S Z / 2 m \rightarrow K O_{i+1} X$ are trivial in dimensions
$i=0$ and 2 because $h_{1} j_{R}^{\prime}=\left(\tau \pi \bar{c}^{1}{ }_{\wedge} 1\right) g_{32}$. So we can verify that the composite $\left(\eta_{\wedge} 1\right) h_{1}: \Sigma^{2} S Z / 2 m \rightarrow K O \wedge X$ becomes trivial. Hence there exists a desired map h_{32}.
iv) The $Y_{23}=\Sigma^{2} N_{2 m}^{\prime}$ case is shown similarly to the case iii), by means of Lemmas 3.2 ii) and 4.1 A 2), B3) in place of Lemmas 3.2 iii) and 4.1 A3), B2).
v) The $Y_{33}=N R_{2 m}^{\prime}$ case: Note that the induced homomorphisms $\tilde{\kappa}_{K O}\left(\left(\tau \pi c^{-1}{ }_{\wedge} 1\right) g_{33}\right): K O_{i} N R_{2 m}^{\prime} \rightarrow K O_{i+5} X$ are trivial in dimensions $i=0,2,4$ and 6 , by means of Lemmas 3.2 v) and 4.1 A 3), B3). Then we can find vertical arrows h_{0}, h_{1} making the diagram below commutative

Moreover we can see that $h_{1 *}: K O_{i} S Z / 2 m \rightarrow K O_{i+1} X$ are trivial in dimensions $i=0,2$. This implies that the composite $\left(\eta_{\wedge} 1\right) h_{1}: \Sigma^{2} S Z / 2 m \rightarrow K O \wedge X$ is trivial. The result is now immediate.

The other cases $Y_{22}=\Sigma^{4} S Z / 2 m, Y_{12}=\Sigma^{4} V_{2 m}, Y_{31}=\Sigma^{4} R_{2 m}^{\prime}$ and $Y_{13}=\Sigma^{6} N_{2 m}^{\prime}$ are evidently shown by parallel discussions to the above cases i), ii), iii) and iv) respectively.
4.3. We next deal with a $C W$-spectrum X such that $K U_{0} X$ has a direct sum decomposition
i) $K U_{0} X \cong A \oplus B \oplus(C \oplus C) \oplus(Z \oplus Z / 2 m)$ or
ii) $K U_{0} X \cong A \oplus B \oplus(C \oplus C) \oplus(Z \oplus Z / 2 m) \oplus(Z \oplus Z / 2 n)$
with A, B direct sums of 2-torsion free cyclic groups, and $K U_{1} X=0$. Here the conjugation t_{*} behaves on A, B and $C \oplus C$ as in (3.3), and moreover on $Z \oplus Z / 2 m, Z \oplus Z / 2 n$ as follows:

$$
\begin{aligned}
& t_{D}=\left(\begin{array}{rr}
1 & 0 \\
1 & -1
\end{array}\right) \quad \text { or } \quad t_{F}=\left(\begin{array}{rr}
1 & 0 \\
m & 1
\end{array}\right) \quad \text { on } \quad Z \oplus Z / 2 m \\
& t_{E}=\left(\begin{array}{rr}
-1 & 0 \\
1 & 1
\end{array}\right) \quad \text { or } \quad t_{G}=\left(\begin{array}{rr}
-1 & 0 \\
n & -1
\end{array}\right) \quad \text { on } \quad Z \oplus Z / 2 n
\end{aligned}
$$

For such a $C W$-spectrum X we recall that $K O_{1} X \oplus K O_{5} X \cong(A \otimes Z / 2) \oplus$ $Z / 2$ and $K O_{3} X \oplus K O_{7} X \cong B \otimes Z / 2$ or $\cong(B \otimes Z / 2) \oplus Z / 2$ in the case (4.3) i) or ii). By a parallel discussion to (4.2) we can show

Lemma 4.3. Let X be a $C W$-spectrum satisfying (4.3).
i) When $t_{*}=t_{D}$ on $Z \oplus Z / 2 m, K C_{0} X \cong A \oplus C \oplus(Z \oplus Z / 2) \oplus H$ with $H=0$, $Z / 2 n$ or $Z / 2$ and it is decomposed into either of the following three types:

D1) $K C_{0} X \cong A_{0} \oplus A_{4} \oplus C \oplus(Z \oplus Z / 2) \oplus H$ so that $K O_{1} X \cong\left(A_{0} \oplus Z / 2\right) \otimes Z / 2$, $K O_{5} X \cong A_{4} \otimes Z / 2$ and both $\tau_{*}: K C_{0} X \rightarrow K O_{1} X$ and $\left(\tau \pi_{c}^{-1}\right)_{*}: K C_{0} X \rightarrow K O_{5} X$ are the canonical epimorphisms.
D2) $K C_{0} X \cong A_{0} \oplus A_{4} \oplus C \oplus(Z \oplus Z / 2) \oplus H$ so that $K O_{1} X \cong A_{0} \otimes Z / 2, K O_{5} X \cong$ $\left(A_{4} \oplus Z / 2\right) \otimes Z / 2$ and both $\tau_{*}: K C_{0} X \rightarrow K O_{1} X$ and $\left(\tau \pi \bar{c}^{-1}\right)_{*}: K C_{0} X \rightarrow K O_{5} X$ are the canonical epimorphisms.
D3) $K C_{0} X \cong A_{0} \oplus A_{4} \oplus Z \oplus C \oplus(Z \oplus Z / 2) \oplus H$ so that $K O_{1} X \cong\left(A_{0} \otimes Z / 2\right) \oplus Z / 2$, $K O_{5} X \cong\left(A_{4} \oplus Z / 2\right) \otimes Z / 2$ and $\left(\tau \pi \bar{c}_{c}^{-1}\right)_{*}: K C_{0} X \rightarrow K O_{5} X$ is the canonical epimorphism, but $\tau_{*}: K C_{0} X \rightarrow K O_{1} X$ is the epimorphism whose restriction to $Z \oplus(Z \oplus Z / 2)$ is given by the matrix $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right): Z \oplus Z \oplus Z / 2 \rightarrow\left(A_{0} \otimes Z / 2\right) \oplus$ $Z / 2$.
ii) When $t_{*}=t_{F}$ on $Z \oplus Z / 2 m, K C_{0} X \cong A \oplus C \oplus(Z \oplus Z / 2 m) \oplus H$ with $H=0$, $Z / 2 n$ or $Z / 2$ and it is decomposed similarly into one of the three types $D 4$), D5) and D6) corresponding to the above $D 1$), D2) and D3).
iii) When $t_{*}=t_{E}$ on $Z \oplus Z / 2 n, K C_{2} X \cong B \oplus C \oplus H \oplus(Z \oplus Z / 2)$ with $H=$ $Z / 2 m$ or $Z / 2$ and it is also decomposed into one of the three types E1), E2) and E3) as the case i).
iv) When $t_{*}=t_{G}$ on $Z \oplus Z / 2 n, K C_{2} X \cong B \oplus C \oplus H \oplus(Z \oplus Z / 2 n)$ with $H=$ $Z / 2 m$ or $Z / 2$ and it is also decomposed into one of the three types E4), E5) and E6) as the case ii).
4.4. By making use of Lemma 4.3 we will here show the third one of our main results.

Theorem 4.4. Let X be a $C W$-spectrum such that $K U_{0} X$ has a direct sum decomposition as (4.3) and $K U_{1} X=0$. Then there exist abelain groups A_{0}, A_{4}, B_{2} and B_{6} and certain $C W$-spectra Y and Y^{\prime} so that X is quasi $K O_{*}$-equivalent to the wedge sum $S A_{0} \vee \Sigma^{2} S B_{2} \vee \Sigma^{4} S A_{4} \vee \Sigma^{6} S B_{6} \vee Y \vee Y^{\prime}$. Here Y is taken to be $\Sigma^{2+i} M_{2 m}, \Sigma^{i} Q_{2 m}, N P_{4 m}^{\prime}$ or $R^{\prime} Q_{2 m}$ for $i=0,4$ and Y^{\prime} to be $\{p t\}$ in the (4.3) i) case and Y^{\prime} to be $\Sigma^{i} M_{2 n}, \Sigma^{2+i} Q_{2 n}, \Sigma^{2} N P_{4 n}^{\prime}$ or $\Sigma^{2} R^{\prime} Q_{2 n}$ for $i=0,4$ in the (4.3) ii) case.

Proof. Set $Y_{1}=\Sigma^{6} M_{2 m}, \quad Y_{2}=\Sigma^{2} M_{2 m}, \quad Y_{3}=N P_{4 m}^{\prime}, \quad Y_{4}=Q_{2 m}, \quad Y_{5}=\Sigma^{4} Q_{2 m}$, $Y_{6}=R^{\prime} Q_{2 m}$ and then $Y_{j}^{\prime}=\Sigma^{2} Y_{j}$ for $1 \leqq j \leqq 6$. According to Lemma 4.3 $K C_{0} X$ is decomposed with the six types D1)-D6), and $K C_{2} X$ is decomposed with the six types E1)-E6) in the case (4.3) ii). We will prove that X is quasi $K O_{*^{-}}$ equivalent to the wedge sum $S A_{0} \vee \Sigma^{2} S B_{2} \vee \Sigma^{4} S A_{4} \vee \Sigma^{6} S B_{6} \vee(P \wedge S C) \vee Y_{i} \vee Y_{j}^{\prime}$ in each type ($D i, E_{j}$). In each type $D i$) we choose a unique map $f_{i}: Y_{i} \rightarrow K U \wedge X$ whose induced homomorphism in $K U$-homologies is the canonical injection. Then there exists a map $g_{i}: Y_{i} \rightarrow K C \wedge X$ satisfying $\left(\zeta_{\wedge} 1\right) g_{i}=f_{i}$. It is sufficient to find a map $h_{i}: Y_{i} \rightarrow K O \wedge X$ such that $\left(\varepsilon_{U \wedge} 1\right) h_{i}=f_{i}$ for each i, the $Y^{\prime}=Y_{j}^{\prime}$ case being similarly done.
i) The $Y_{2}=\Sigma^{2} M_{2 m}$ case: We will find vertical arrows h_{0}, h_{1} making the
diagram below commutative

by replacing the map g_{2} with $\left(\zeta_{\wedge} 1\right) g_{2}=f_{2}$ suitably if necessary. The induced homomorphisms $\tilde{\kappa}_{K O}\left(\left(\tau \pi \bar{c}^{1}{ }_{\wedge} 1\right) g_{2}\right): K O_{i} M_{2 m} \rightarrow K O_{i+7} X$ become trivial in dimensions $i=0$, 2 because of Lemma 4.3 D2) and E1)-E3). Hence it is easily seen that the composite $\left(\eta_{\wedge} 1\right)\left(\tau \pi \bar{c}^{-1}{ }_{\wedge} 1\right) g_{2} i_{M}: \Sigma^{2} S Z / 2 m \rightarrow K O \wedge X$ is trivial. So we get desired maps h_{0}, h_{1} by applying [12, Lemma 1.3]. However the map $h_{1}: \Sigma^{1} \rightarrow$ $K O \wedge X$ has an extension $\bar{h}_{1}: \Sigma^{1} S Z / 2 m \rightarrow K O \wedge X$ satisfying $\bar{h}_{1} i=h_{1}$. Since ($\eta_{\wedge} 1$) $h_{1}=\bar{h}_{1}(i \eta): \Sigma^{2} \rightarrow K O \wedge X$, the result is now immediate.
ii) The $Y_{3}=N P_{4 m}^{\prime}$ case: Note that the induced homomorphisms $\tilde{\kappa}_{K O}\left(\left(\tau \pi \bar{c}^{-1}{ }_{\wedge} 1\right) g_{3}: K O_{i} N P_{4 m}^{\prime} \rightarrow K O_{i+5} X\right.$ are trivial in dimensions $i=0$ and 4, by means of Lemmas 3.2 iv) and 4.3 D3). Then we can find vertical arrows h_{0}, h_{1} making the diagram below commutative

Moreover we notice that the composite $h_{1} \tilde{\eta}: \Sigma^{1} \rightarrow K O \wedge X$ becomes trivial because $h_{1} j_{N P}^{\prime}=\left(\tau \pi \bar{c}^{-1}{ }_{\wedge} 1\right) g_{3}$. Then it follows from (1.1) that $\left(\eta_{\wedge} 1\right) h_{1}=h_{1} i \bar{\eta}=h_{1} i \pi_{2}\left(\eta^{2} j, \bar{\eta}\right)$: $S Z / 4 m \rightarrow K O \wedge X$ where $\pi_{2}: \Sigma^{0} \vee \Sigma^{0} \rightarrow \Sigma^{0}$ stands for the second projection. The result is now immediate.
iii) The $Y_{4}=Q_{2 m}$ case: As in the case i) we can find vertical arrows h_{0}, h_{1} making the diagram below commutative

since the induced homomorphisms $\tilde{\kappa}_{K O}\left(\left(\tau \pi \bar{c}^{-1} \wedge 1\right) g_{4}\right): K O_{i} Q_{2 m} \rightarrow K O_{i+5} X$ are trivial in dimensions $i=0,2$ by means of Lemma 4.3 D4) and E4)-E6). The map $h_{1}: \Sigma^{1} \rightarrow K O \wedge X$ is written as the composite $h_{1}=k_{1} \eta$ for some map $k_{1}: \Sigma^{0} \rightarrow K O \wedge$ X. Hence we see that $\left(\eta_{\wedge} 1\right) h_{1}=k_{1} j(\tilde{\eta} \eta): \Sigma^{2} \rightarrow K O \wedge X$ which implies our result immediately.
iv) The $Y_{6}=R^{\prime} Q_{2 m}$ case: We will find vertical arrows h_{0}, h_{1} making the
diagram below commutative

by replacing the map g_{6} with $\left(\zeta_{\wedge} 1\right) g_{6}=f_{6}$ suitably if necessary. The induced homomorphisms $\tilde{\kappa}_{K O}\left(\left(\tau \pi \bar{c}^{-1}{ }_{\wedge} 1\right) g_{6}\right): K O_{i} R^{\prime} Q_{2 m} \rightarrow K O_{i+5} X$ become trivial in dimensions $i=0,4$ and 6 by means of Lemmas 3.2 vi) and 4.1 D 6$), \mathrm{E} 4)$-E6). Then we get a map $h_{0}^{\prime}: \Sigma^{2} \rightarrow K O \wedge X$ such that $\left(\tau \pi \bar{c}^{-1}{ }_{\wedge} 1\right) g_{6} i_{R^{\prime}, R^{\prime} Q}=h_{0}^{\prime} j_{R_{R^{\prime}}}: R_{2 m}^{\prime} \rightarrow \Sigma^{3} K O \wedge X$ and in addition $\left(\eta_{\wedge} 1\right) h_{0}^{\prime}=0$. So we obtain desired maps h_{0} and h_{1} by applying [12, Lemma 1.3]. Since there exists a map $k_{1}: \Sigma^{4} \rightarrow K O \wedge X$ with $k_{1} \eta=h_{1}$, it follows from (2.3) that $\left(\eta_{\wedge} 1\right) h_{1}=k_{1} j j_{R}^{\prime}\left(\widetilde{h}_{R} \eta\right): \Sigma^{6} \rightarrow K O \wedge X$. The result is now immediate.

The other cases $Y_{1}=\Sigma^{6} M_{2 m}$ and $Y_{5}=\Sigma^{4} Q_{2 m}$ are evidently shown by parallel discussions to the cases i) and iii) respectively.
4.5. We will finally prove our main theorem as a corollary by putting Theorems 3.3, 4.2 and 4.4 together.

Proof of Theorem 2. Recall that the conjugation t_{*} on $K U_{0} X \cong H \oplus Z / 2 m$, $m=2^{s}$, is represented by one of the matrices given in (3.1)i)-v). If its matrix representation has the type i), we may apply Theorem 4.2 in order to observe that Y is taken to be one of the elementary spectra $\Sigma^{2 i} S Z / 2 m, \Sigma^{2 i} V_{2 m}, \Sigma^{2 i} N_{2 m}^{\prime}$, $\Sigma^{2 i} R_{2 m}^{\prime}$ and $\Sigma^{2 j} N R_{2 m}^{\prime}$ for $0 \leqq i \leqq 3$ and $0 \leqq j \leqq 1$. If it has the type iii) or iv), we may apply Theorem 4.4 in order to observe that Y is taken to be one of the elementary spectra $\Sigma^{2 i} M_{2 m}, \Sigma^{2 i} Q_{2 m}, \Sigma^{2 j} N P_{4 m}^{\prime}$ and $\Sigma^{2 j} R^{\prime} Q_{2 m}$ for the above i, j. If it has the type ii) or v), we may apply Theorem 3.3 in order to observe that Y is taken to be one of the elementary spectra $\Sigma^{2 j} W_{2 m}(m=4 n)$ and $\Sigma^{2 j} M Q_{2 m}$ for the above j.

Combining Theorem 2 with Propositions 1.2, 2.3 and 2.4, and then applying [12, Corollary 1.6] with (1.3) and (2.5) we obtain

Corollary 4.5. i) $N^{\prime} M_{2 m} \widetilde{K O} N P_{4 m}^{\prime}, N^{\prime} Q_{2 m} \widetilde{K O} P \vee \Sigma^{6} V_{2 m}, R^{\prime} M_{2 m} \widetilde{K O} P \vee \Sigma^{4} V_{2 m}$, $P^{\prime} Q_{4 m} \widetilde{K O} \Sigma^{2} M Q_{2 m}$ and $P^{\prime} Q_{2 n \widetilde{K O}} P \vee \Sigma^{2} S Z / n$ for n odd.
ii) $\quad M^{\prime} N_{2 m} \widetilde{K O} \Sigma^{1} N P_{4 m}, M^{\prime} R_{2 m} \widetilde{K O} P \vee \Sigma^{5} V_{2 m}, Q^{\prime} N_{2 m} \widetilde{K O} P \vee \Sigma^{3} V_{2 m}$, $Q^{\prime} P_{4 m} \widetilde{K O} M Q_{2 m}^{\prime}$ and $Q^{\prime} P_{2 n \widetilde{K O}} P \vee \Sigma^{3} S Z / n$ for n odd.
iii) $\quad M Q_{2 m}{ }^{\widetilde{K O}} \Sigma^{4} M Q_{2 m}, N P_{2_{m}}^{\prime} \widetilde{ } \Sigma^{4} N P_{2 m}^{\prime}, N R_{2 m}^{\prime} \widetilde{K O} \Sigma^{4} N R_{2 m}^{\prime}$ and $R^{\prime} Q_{2 m} \widetilde{K O} \Sigma^{4} R^{\prime} Q_{2 m}$.
iv) $M Q_{2 m}^{\prime} \widetilde{K O} \Sigma^{4} M Q_{2 m}^{\prime}, N P_{2 m} \widetilde{K O} \Sigma^{4} N P_{2 m}, N R_{2 m} \widetilde{K O} \Sigma^{4} N R_{2 m}$ and $Q^{\prime} R_{2 m} \widetilde{K O} \Sigma^{4} Q^{\prime} R_{2 m}$.

Remark. By applying [14, Theorem 2.6] we can observe that

$$
\begin{equation*}
M^{\prime} M_{2 m} \widetilde{K O} \Sigma^{1} M P_{4 m}, \quad M P_{2 m} \widetilde{K O} \Sigma^{4} M P_{2 m} \quad \text { and } \quad M P_{2 m}^{\prime} \widetilde{K O} \Sigma^{4} M P_{2 m}^{\prime} \tag{4.4}
\end{equation*}
$$

References

[1] J.F. Adams: Vector fields on spheres, Ann. of Math 75 (1962), 603-622.
[2] J.F. Adams: Stable homotopy and generalized homology, Univ. of Chicago, 1974.
[3] D.W. Anderson: A new cohomology theory, Thesis, Univ. of California, Berkeley, 1964.
[4] D.W. Anderson: Universal coefficient theorems for K-theory, mimeographed notes, Berkeley.
[5] S. Araki and H. Toda: Multiplicative structures in mod q cohomology theories, I and II, Osaka J. Math. 2 (1965), 71-115 and 3 (1966), 81-120.
[6] A.K. Bousfield: A classification of K-local spectra, preprint.
[7] C.W. Curtis and I. Reiner: Methods of representation theory with applications to finite groups and orders, Pure and Applied Math. A Wiley-Interscience series of texts, monographs and tracts, 1981.
[8] A.G. Kurosh: The theory of groups, I. Chelsea Publ. Co., New York, 1955.
[9] M. Mimura, S. Oka and M. Yasuo: K-theory and the homotopy types of some function spaces, in preparation.
[10] E.H. Spanier: Function spaces and duality, Ann. of Math. 70 (1959), 338-378.
[11] Z. Yosimura: Universal coefficient sequences for cohomology theories of CWspectra, I and II, Osaka J. Math. 12 (1975), 305-323 and 16 (1979), 201-217.
[12] Z. Yosimura: Quasi K-homology equivalences, I, Osaka J. Math. 27 (1990), 465498.
[13] Z. Yosimura: The quasi KO-homology types of the real projective spaces, Proc. Int. Conf. at Kinosaki, Springer-Verlag, 1418 (1990), 156-174.
[14] Z. Yosimura: The quasi KO-homology types of the stunted real projective spaces, J. Math. Soc. Japan 42 (1990), 445-466.
[15] Z. Yosimura: Quasi KO*-equivalences; Wood spectra and Anderson spectra, Math. J. Okayama Univ., to appear.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan

