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0. Introduction

Let KO, KU and KC be the real, complex and self-conjugate iΓ-spectrum
respectively. Following [14] we call a CW-spectrum X a Wood spectrum if
there exists a i^O-module equivalence/: KU-+KOΛX, and an Anderson spectrum
if there exists a jKO-module equivalence g: KC-+KOΛX- The elementary spe-
ctra P and Q taken to be the cofibers of the maps ΎJ\ Σ1-^Σ° and η2%. Σ2-*Σ° respe-
ctively are known as typical examples of Wood and Anderson spectra [3], where
η: Σ1—*Σ° is the stable Hopf map of order 2. Recently Mimura, Oka and Yasuo
[14] gave some characterizations of finite CW-complexes whose suspension spec-
tra are such spectra. The following theorem is a spectrum version of one of their
results.

Theorem 0. i) X is a Wood spectrum if and only if KU0X^Z(BZ,

KU1X=0 and the conjugation t* on KUQX is represented by the matrix ί - QY

ii) X is an Anderson spectrum if and only if KU0X^Z, KU^^Z, KO2X=0=
K06X and the conjugation t* acts as the identity on both KU0X and KU-.λX.

Let E be an associative ring spectrum with unit. Given CW-spectra X, Y
we say that X is quasi E^-equivalent to F, written X~% Y, if there exists a map
h: Y-+EΛX such that the composite (μΛl) (lAh): E/\ Y-^EAEAX^EAX is
an equivalence. We are interested in the quasi iC-homology equivalences, especi-
ally the quasi .KOίic-equivalence. According to our definition, a CW-spectrum
X is said to be a Wood spectrum if X^6 P and an Anderson spectrum if Xg$ Q.

Let H be a finitely generated abelian group which is 2-torsion free. If the
cyclic group Zβ of order 2 acts on H, then H admits a direct sum decomposition
H^AφBφCφC such that the action p behaves as p=\ on A, p== — 1 on B

and P=[Λ Λ on C 0 C respectively [7]. For any abelian group G we denote by

SG the Moore spectrum of type G. The Moore spectrum SZjm is constructed
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m i j
by the cofiber sequence Σ°-*Σ°-*'S'Z/m->Σ1. In this note our purpose is a de-
velopment of the work of Mimura-Oka-Yasuo [14]. We will first show the fol-
lowing results (cf. [6]) which of course contain Theorem 0.

Theorem 1. Assume that KU0X is finitely generated, 2-torsion free and
KU1X=0. Then there exist abelian groups A', A", Bf, B" and C so that XίftYV
{PΛSC) where Y denotes the wedge sum SA'VZ2SB'VVSA"\/Z6SB" of the
Moore spectra (Theorem 2.4).

Theorem 2. Assume that KU0X and KUj^X are finitely generateds 2-torsion
free. If the conjugation t* acts as the identity on KU0X and KUλX, then there
exist abelian groups Af

} A"3 D', D" and G so that X^YV^QASG) where Y
denotes the wedge sum SA'VΊ,1SD'VΊ,4SA"\/ΊI

5SD" of the Moore spectra
(Theorem 3.4).

As an immediate corollary of Theorem 1 we can determine the quasi KO*-
type of the complex projective n-space CPn (Corollary 2.5), since KU0CPn is the
free abelian group of rank n and KU1CPn=0 [1]. However we need to dis-
cuss more richly to determine the quasi i£O*-tyρe of the real projective rc-space
RPn [20, Theorem 5], since KU1RPn is not 2-torsion free for any n^2. In
fact, KUQRPn=0 and KU1RPn^Zβs or Z®Zβs according as n=2s or 2s+ί
[1], and besides KO0RPtt=0 if » = 1 , 2, 3, 4, 5 mod 8, KO,RPn=0 if n = 0, 1, 5,
6, 7 mod 8 and KO6RPn=0 for all n [8].

In order to state another main result we will only need the following ele-
mentary spectra with a few cells introduced in (4.1), (4.4) and (4.16). Let
M2m, Q2mi V2m and W%m (m^\) denote respectively the cofibers of the maps

iη: Σ1 -> SZβm , rfo: Σ3 -> SZβm ,

iη: fSZβ -> SZ/m and iη+ffj: fSZβ -> SZ\\m

where η: Σ2-+SZβn is a coextension of η wΊthjy=η and η: Σ1*SfZ/2/z-»Σ° is an
extension of η with ηi=η.

In the case when KU0X has 2-torsion and KQX^O, we can next show a
corrsponding theorem (Theorem 5.2) to Theorem 1 under certain restrictions,
using these elementary spectra. This theorem implies the following result,
which is useful in determining the quasi KO*-type of such a CW-spectrum as
RPn.

Theorem 3. Assume that KU1X= 0 and KO1X=0=KO7X.
i) // KUoX^Zβm with m=2s,s^0, then X^> l?SZ\2m, V2m, WSn(m=4n) or

( )
ii) IfKUoX^ZφZβm with m=2s, s^O, then XfTo Σ2V Y, V V Y, M2m, Σ2M2m,
Σ2ζ?2!» or Σ402ffl where Y is one of the four elementary spectra given in i). (Cf. [20,
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Theorem 2.5].)

This paper is organized as follows. As a preliminary, in § 1 we will first
recall some relations among KO> KU and KC theory [3] and then give basic
tools (Proposition 1.1 and Lemma 1.3) to prove our main results. After study-
ing the jKΌ*-module structures of KO*X under the situations assumed in the
theorems (Propositions 2.3 and 3.2), we will prove Theorems 1 and 2 (Theorems
2.4 and 3.4) respectively in §2 and §3. In §4 we will introduce some ele-
mentary spectra with a few cells such as M2my Q2m, V2m and WSm, and then compute
their KU and KO homologies (Propositions 4.1, 4.2, 4.4 and 4.5). By making
use of the results obtained in §4 we will devote ourselves to prove Theorem 5.2
in §5, and finally show Theorem 3 as a consequence of this theorem.

In this note we will work in the stable homotopy category of CW-spectra.

1. Real, complex and self-conjugate Jϊ-theory

1.1. Let KU be the Z? [/-spectrum representing the complex if-theory and
KO the J5O-spectrum representing the real K-theory. Both KU and KO are as-
sociative and commutative ring spectra with unit. These spectra are related by
the Bott cofiber sequence

(l.i) yκo ^ κo

where η: Σ1-^Σ° is the stable Hopf map of order 2 and πυ\ Σ2KU->KU denotes
the Bott periodicity. The complexification Gσ: KO-+KU and the conjugation
t: KU-+KU are both ring maps, but the realification So: KU-^KO is merely a
ifO-module map. As is well known, the equalities £ 0 £ ί 7 =2 and Suβo^l + t
hold.

Let KC be the BSC-spectrum representing the self-conjugate if-theory,
which is useful in studying the relation between KO and KU theory (see [3],
[6]). This spectrum KC is also an associative and commutative ring spectrum
with unit, and it is obtained as the fiber of the map 1—t: KU->KU. Thus we
have a cofiber sequence

(1.2) KCIKU71^-^ Ί^KU^i ΊΪKC

(see [3, Theorem 1.2]).
Since Sv So πϋ1=πϋ\l—t)y we get a cofiber sequence

(1.3) 1?KO ίάKO^KC ^ Ί,3KO

making the diagram below commutative
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τικu = τ'
Ύ7Cu I l60 πϋ1

κo -
(1.4)

πϋ\l-t)i

Here τrc: Έ,AKC->KC denotes the periodicity satisfying ζπc=πhζ and πcγ=γπ2u.
The maps Sc and f are ring maps such that ζSc=SUy and the maps γ and T are
XO-module maps such that τ γ = £ 0 [6].

Let P denote the suspension spectrum whose second term is the complex
projective space CP2. Thus the spectrum P is constructed by the cofiber se-
quence

(1.1)' Σ^Σ^P-Σ2.

Take the element ueKU0P satisfying (6OΛ1)* U=(1Λ*P)* CO
 a n d (KUAJP)*U==1U

where ιo^KO0Ί,° and I^KUQJ,0 denote the units. Consider the map WP(u):
KU-^KOΛP definied to be the composite (£OΛ1) ( ^ Λ l ) (1Λ«): KU^KUΛKU
AP-+RUΛP-+KOΛP where μυ denotes the multiplication of KU. Since
ϊFp(tt)6^=lΛίp and (lΛip) WP{u)=80πΰι> we can use Five lemma to show that
WP(u) is an equivalence. As is well known, this result says that the Bott cofiber
sequence (1.1) is produced by the cofiber sequence (1.1)' smashed with KO.
The map WP(u): KU->KO/\P is called the Wood equivalence [3, Theorem 2.1].

Let Q denote the suspension spectrum obtained as the cofiber of the com-
posite square η2. Thus

is a cofiber sequence.
Take the element v^KC-i Q satisfying (τΛ l)* ^ = ( 1 ^ ) * c0 and (πCAjQ)* v=

tc where cc^KO0Έ,° denotes the unit. Consider the map WQ(v): KC^>KOΛQ
defined to be the composite (τAl)(μCAl)(lAv): KO-+J,1KCΛKOΛQ-*Έ,1KOΛQ
-+KOΛQ where μc denotes the multiplication of KC. The map WQ(v) is also
an equivalence, since WQ(v) £c=lAiQ and (iAjg) WQ(v)=τπlι. Hence the cofiber
sequence (1.3) is produced by the cofiber sequence (1.3)' smashed with KO.
The map WQ(v): KO->KOΛQ to be the i^C-analogous of the Wood equivalence,
is called the Anderson equivalence (see [3, Theorem 3.1]).
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Combining the two cofiber sequences (1.1)' and (1.3)' we get the following

cofiber sequence

(1.2)' Q->

which yields the cofiber sequence (1.2) by smashing with KO.

Let R denote the suspension spectrum constructed by the cofiber sequence

Σ3-»Σ°-»1?-*Σ4. Then we have two cofiber sequences

(1.5)' τιQ->R->P

(1.6)' Σ 2 P - > i ? - Q — Σ 3P

which yield cofiber sequences

(i.5) vκc{~^£1)
 KOVVKO

(1.6) { e o * v ^

(see [3, Theorems 3.2 and 3.3]).

1.2. Let E be an associative ring spectrum with unit and F any associa-

tive ^-module spectrum. Given a CW-spectrum Y we denote by \E/\ Y, F]E

the subgroup of [EΛ Yy F] consisting of all the homotopy classes of .E-module

maps. We assign to any map / : Y-+F the £-module map fcE{f)=μF{lAf):

E/\ Y-+EΛF-+F where μF denotes the £-module structure map of F. The as-

signment κE: [Y, F]->[EΛ Y, F]E is evidently an isomorphism.

A map / : Y—>F is said to be a quasi E'^-equivalence if κE(f): E/\Y^>F

becomes an equivalence. For any CW-spectra X, Y we say that X is quasi Ex-

equivalent to Y if there exists a quasi ^-equivalence/: Y-*E/\X. In this case

we write X*% Y.

Consider the homomorphism ίcE: [Y, F]-^HomEitt(E* Y, F%) defined by ϊcE(f)

— κE(f)*, where E^—π^E and F*=π*F. Taking E=KU we have a universal

coefficient sequence

(1.7) 0 -> Ext^iKU^ Y, F*) - [Y, F] ^ HoπWϋCt/*Y, F*) -> 0

for any associatvie KU-module spectrum F (use [1, Theorem 13.6]). In par-

ticular, we note that

(1.8) ίcκu: [Y,F]-+ HomκuχKU* Y, F*)

is an isomorphism if KU*Y is free, or if KU1Y=0=F1.

Taking E—KO and Y=SG> the Moore spectrum of type G, we have a short
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exact sequence

(1.9) 0 -> ΈxtzoXKO^SG, F*) -> [5G, F] ^ HσmκoJiKO*SG, F*) -> 0

for any associative i£O-module spectrum F, if the abelian group G is 2-torsion
free.

Given two CW-spectra X, IF there exists a unique CW-spectrum F(X, W),
called the function spectrum, with a natural isomorphism Dxw: [Y, F(X, PF)]->
[XA Y, W] for any CW-spectrum Y (see [12] or [18]). Let DX denote the
Spanier-Whitehead dual spectrum of X. Thus DX is just the function spectrum
F{X> S) where S is the sphere spectrum.

The elementary spectra P and Q are both self-dual in the sense that DP=
Σ" 2 P and DQ=JI~

3Q. So there exist duality isomorphisms DP: [Σ2Y, PΛX|->
[PA y, X] and ZV [Σ3 Y, QΛ-X]-* [QΛ Y, X] for any CW-spectra X, Y. Let
u(=KU°P be the dual element of (πUAϊ)*ueKU2P and ϋ(ΞKC0Q the dual
element of (7rCΛl)^z;ei^C3Q. Then the element u satisfies i%u=ίu and (Soπΰ1)*
u=j*ιo>

 a n d similarly the element v satisfies i%v=tc and {τπΈι)^v=j%ί0. Mak-
ing use of these equalities and Five lemma we can show that κκo(u): KOAP-^KU
and κκo(ϋ): KOAQ->KC are both equivalences, which give the inverses of WP(u)
and WQ(V) respectively. Thus

(1.10) u: P-^KU and v: Q->KC are both quasi KO^-equivalences.

Moreover we note that the following diagram is commutative

(1.11) Ί*P -> Q -> P -> Σ 2 P

w | i ) | \u [u

τικu ^ KC -> KU -> i,2κu

in wyhich the cofiber sequences (1.2), (1.2)' are involved (cf. [3, Lemma 3.2]).
For any maps /: Y—>KUAX and g: Y->KCAX we define a map eP(f):

PAY^KUAX to be the composite ( ^ Λ l ) (1Λ/) (βΛ l): PA Y->KUA Y->
KUAKUAX-+KUΛl, and similarly a map eQ(g): QA Y->KOAX to be the
composite (μCAί) (lAg) (0Λ1): QA Y-+KCA Y->KCAKCAX-+KCAX Ob-
viously κK0(eP(f))=κκu(f) (κK0(u)Al) and κκc(eQ{g)) = κκc(g) (κK0(ϋ)Aί). There-
fore it follows immediately from (1.10) that

(1.12) i) /: Y-+KUAX is a quasi Kl)^-equivalence if and only if eP(f): PA Y
-^>KU AX is a quasi KO ̂ -equivalence.
ii) g: Y->KC AX is a quasi KC ^-equivalence if and only if eQ(g): Q AY-*
KC AX is a quasi KO ̂ -equivalence.

The following result, which states a relation between quasi KU*- and KO*-
equivalences, is very useful in proving our main theorems.
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Proposition 1.1. A map h: Y-+KOAX is a quasi KO^-equivalence if and

only if the composite (SUAί) h: Y-+KOAX-+KUAX is a quasi KΌ^-equivalence.

(Cf. [15, Theorem 8.14] or [13].)

Proof. Given a quasi KO*-equivalence h: Y->KOAX we consider the

commutative diagram

Ί.ιY —

h{

ΊΪKOAX -•>

Y
h\

KOAX

-* PAY -

-* KUAX ->

Σ 2 Γ

Ί,2KOAX

involving the cofiber sequences (1.1), (l l)', where h1=eP((6UAl) h). Applying

Five lemma we see that hγ is a quasi KO*-equivalence. Thus (1.12) i) shows

that (SUAί) h is a quasi K£/*-equivalence.

Conversely we assume that (εUAl)h: Y—>KU f\X is a quasi i^C/*-equiva-

lence. Use the two commutative diagrams

τΨA Y —
hii

Έ'KUAX -*

QAY
hi

KCAX

-> PAY -*

-> KUAX -*

Σ2PΛF

Σ2iO7ΛX

Σ2PΛ y -
Aj ψ w 3 1 I h2 \ h\

Σ2KUAX — KOARAX -> KCAX — Ί?KUAX

involving the cofiber sequences (1.2), (1.2)', (1.6) and (1.6)', where h1=eP((SUAl)h),

h2=eQ((SCAl) h) and hs=(TAl) (ίAh) for the switching map T: RAKO-+KOAR.

Then Five lemma shows that h2 and hence h3 is a quasi i^O* -equivalence as

hλ is. This implies that h*: KO*Y->KO*X is an epimorphism as well as a

monomorphism, because KO A R="KO V Σ4KO. Thus A: Y—>KO A X is a quasi

i£O*-equivalence.

1.3. Let/: Y->KUAX be a map satisfying ( ί Λ l )/=/. Then there exists

a map£: Y->i£CΛ^Γ such that (ξΆl),^/* Given such maps /, g we have a

commutative diagram

(i.i3) f i gi UiU) U
Ί}KUAX -* KCAX -* KUAX -* Σ2KUAX

involving the cofiber sequences (1.1), (l l)', because ryπuξ=ηAl: Σ1KC-*KC.

In other words, there exists a commutative diagram

(1.14)

Σ'PAY -•

eP(f) i eQ(
•Σ'KUAX -*

QAY
g)l
KCAX

— PAY -
ieP(f)

— ίCf/Λl -*

Σ2PΛΓ
| e p ( / )

Σ2i^C/Λ-S
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involving (1.2), (1.2)', since [4, Theorem 1.3] says that γ/%(1A£)=μc(7Άl):
KUΛKC^^KC. Applying Five lemma and (1.12) we see that

(1.15) g: Y->KC/\X is a quasi KC ^-equivalence if f: Y->KU AX is a quasi
KV^-equivalence.

Lemma 1.2. Assume that [F, J^KUAX]=0 and the map η%:[Y, Σ4KOΛ
X]-»[Y, Z2KOΛX] is trivial. If a map f: Y-+KUΛX satisfies ( ί Λ l)/=/, then
there exists a map h: Y->KO/\X such that (SUAl)h=f.

Proof. Under the assumption that [F, ^KU AX] = 0, (ζAl)*: [PAY,
τ2KC A X] -> [P A F, Σ2KU A X] is a monomorphism. Then (1.14) implies that
(ecSoπΰ1^) ep{f)=eQ{g) (*Giiv\l) Hence there exists a map hR: RA Y-+KOA
RAX making the diagram below commutative

RAY -*

KOARAX ->

PAY

W/)
KUAX

ieQ(g)

X2KCAX

where the rows are induced by the cofiber sequences (1.5), (1.5)'. We here
consider the commutative diagram

Y ! ίd RAγ _ PAγ !ld Σ̂ F
KI I eP{f) \ eQ{g)

KOAX —-*- KOARAX -^ KU AX — z ^ ^2KOAX ->. τ2κc AX
I I S 1 ^

Since £ c*: [F, Σ2.KOΛZ]->[F, Σ 2 i ί C Λ l ] is a monomorphism by our second
as sumption, the composite (βoπΰ1^) eP(f) (iPAl): Y-*Σ2KOAX is trivial. So
we can find a map h: Y-+KOAX such that (£#Λ1) h=f.

In proving our main theorems we shall often use the following result, whose
proof is given in [20, Lemma 1.1 and (1.7)].

Lemma 1.3. Let f: Y-+KU AX be a map satisfying (tAl)f=f and k: W-*
Ybea map inducing an epimorphism k*: [F, fKU AX]-*[W9 Ί,ιKU AX\. Then
there exist maps h0: W-+KOAX and g: Y->KCAX making the diagram below
commutative

k
W -> Y f

hQi gl \

KOAX -> KCAX -> KUAX
ZcAl ζAί

if the composite {Soπϋι

A\) fk: W-+Σ2KOAX is trivial, in particular if (??Λ1)*:
[W, τ'KOAX]-^ [W, ΊΪKOAX] is trivial.
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1.4. Let VE denote the Anderson dual spectrum of E (see [4], [5], [9]
or [19, / and II]). The CW-spectra E and Vi? are related by the following uni-
versal coefficient sequence

0 -* E x t ^ . ! X, Z) -+ V£*X-> Hom(£*X, Z) -> 0 .

The Anderson dual spectrum VE is just the function spectrum F(E> VS) where
V5 is the Anderson dual of the sphere spectrum S.

We now assume that E is an associative ring spectrum with unit. Note
that the Anderson dual VE is an associative ^-module spectrum [19, / / ] . To
any map /: Y-+EAX we may assign the i?-module map tf£(/)*: F(X, VE)-+
F(Y, VE) where F(Wy V£) = F(W9 F(Ey VS)) = F{E A W, VS). Evidently it
follows that

(1.16) the E-module map ##(/)* is an equivalence whenever f: Y-*EAX is a
quasi E'^-equivalence.

For any CW-spectra X, Y we say that X is quasi E*-equivalent to Y if there
exists an E'-module map g: F(X, E)->F(Y, E) which is an equivalence. Recall
that VKU=KU as KU-moάule spectra, VKO=Σ4KO as i£O-module spectra
and also VKC=^KC as ίCC-module spectra (see [4] or [19, /]). Then we
obtain

Proposition 1.4. Let E denote the K-spectrum KU3 KO or KC. If X is
quasi E*-equivalent to Yy then X is quasi E*-equivalent to Y.

Proof. If a map /: Y-+E AX is a quasi ^-equivalence, then the 2?-module
m a p / * : F(X, E)->F(Y, E) induced by / is an equivalence because we may
replace E with Vi? in this case.

A CW-spectrum W is said to be of finite type if n{W is finitely generated
for each i. Notice that E AW=VV(E AW)=F(F(W, V£), VS) if EA W is of
finite type (see [19, /] or [5]). Then we obtain

Proposition 1.5. Let E denote the K-spectrum KU, KO or KC. Assume
that both EAX and E AYare of finite type. Then X is quasi E^-equivalent to Y
if and only if X is quasi E*-equivalent to Y.

Proof. We have only to prove the "if" part. Let g: F(X, E)-+F(Yy E)
be an jB-module equivalence. Under the finiteness assumption on E AX and
£ Λ Γ w e get an ^-module map g*: EA Y-+EAX which is also an equivalence,
by replacing E with V-E.

For the Spanier-Whitehead dual spectrum DW=F(W, S) there exists an
equivalence δ: DWAE-^F(W, E) if W is finite. Note that the equivalence δ is
an E-module map when E is an associative ring spectrum. As is easily seen, we
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have

Corollary 1.6. Let E denote the K-spectrum KU, KO or KC. Assume
that X and Y are finite CW-spectra, Then X is quasi E ̂ -equivalent to Y if and
only if DY is quasi E*-equivalent to DX.

2. Wood spectra

2.1. Let H be a finitely generated abelian group which is 2-torsion free.
Assume that the cyclic group Zβ of order 2 acts on H. Thus the abelian group
H possesses an automorphism p: H->H with p 2 = l . By applying the integral
representation theory of the cyclic group Z/2 [7] we observe that H has a direct
sum decomposition H^A®B®C®C with C free, on which the Z/2-action p
behaves as follows:

(2.1) p = l o n ; ί , p = - l o n i 3 and p = (J J) on

The conjugation t: KU->KU gives rise to a Z/2-action t* on KU*X for
any CW-spectrum X. We first deal with a CW-spectrum X such that KU0X
and KUXX are decomposed into the forms KUQX^A@B®C@C and KUλX^

respectively, on which the conjuagtion t% behaves as follows:

(2.2) ^ = l o n i o r D , t* = — 1 on B or E, and

t*= (J J) on CΘC or F 0 F .

For such a CW-spectrum JY" we will study i^-homologies KC*X and KO*X.

Lemma 2.1. i) There are short exact sequences

0 -> D®(E®Zβ)®F -> KC0X-* A®(B*Z/2)eC -> 0

0 -* ( ^ ® Z / 2 ) 0 S 0 C -> KCXX -> D0(£;*Z/2)0F -• 0
0 -» ( D ® Z / 2 ) 0 £ 0 F -> X:C2X -> ((4*Z/2)©J80C -> 0
0 -> ̂ 0 ( B ® Z / 2 ) 0 C -> ίΓCaX-^ (Z)*Z/2)0£©F-> 0 .

ii) X0,-X®Z[l/2]«(;ί ©C)®Z[l/2], (D0F)®Z[l/2], (B0C)®Z[l/2] or
(£0F)®Z[l/2] corresponding to i = 0, 1,2 or 3 mod 4.
iii) // .K£/,.X is 2-torsion free, then the 2-torsion subgroup KO^Zβ00 of KO{X
is a Zβ-module.

Proof, i) Use the long exact sequence induced by the cofiber sequence
(1.2).

ii) Use the exact sequence Q->KOiX®Z[\β]->KUiX®Z[\β]-+
KUi_2X®Z[lβ]->KOi_iX®Z[lβ]->0 induced by the cofiber sequence (1.1).

iii) Under the 2-torsion freeness assumption on KU{Xy the complexifica-
tion Su*: KOiX-^KUiX restricted to the 2-torsion subgroup KOiX*Zβ°° is
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trivial. Then it follows that 2(KOiX*Zβ")=0 because £06u=2.

Lemma 2.2. Assume that KU1X=0. Then
i) KO1XφKOsX^(A®Zβ)φ(B*Zβ) and

KO3X@KO7Xsz {A*Zβ)®{B®Zβ).
ii) 0 -* A®{B®Zβ)@C -> KOoX®K04X -* A®(B*Zβ)®C -*• 0

0 -* {A®Zβ)®B®C -* KO2X®KO6X -* (A*Zβ)@B®C -* 0
are short exact sequences.

Proof. Consider the exact sequences

0 -> KC3X -> KOtXφKOoX -* KUAX 2? KC2X -* KO3XφKO7X -* 0

0 -> KCλX -* KO2XΘKO6X -> KU2X ^ i^C0X -> KOXX®KOSX -> 0

induced by the cofiber sequence (1.5). Here the homomorphisms <p2: Aξ&B®
C0C->(^HcZ/2)0JSeC and ω0: A®B®C®C->A@{B*Zβ)®C induced by
the map Scβon^1: KU->Έ,2KO, are respectively expressed as <p2(a,b,c1,c2)=

(0, 2b, c1—c2) and <po(a, b, clf c2) = (2a, 0, ^+£2) because ζScS07tϋι = π^O —t).

The result is now immediate.

2.2. We here deal with a CW-spectrum X such that KU0X is finitely
generated, 2-torsion free and KU1X=0. In this case KU0X has a direct sum
decomposition KU0X^A@B®C@C with C free, on which the conjugation t*
behaves as (2.2).

Proposition 2.3. There are direct sum decompositions A^A'®A/r and B^
B'@B" with A", B" free, so that KO^^{K

as KO*-modules.

ΛJr2i

Proof. Consider the exact sequences KU2i+2X->KC2iX->KO2i+1X(B
KO2i+5X^0 induced by the cofiber sequence (1.5). Set KOλX=Ax, KO5X=A5,
KO3X=B? and KO7X=B7y all of which are Z/2-modules by Lemma 2.2 i).
Since A and B are both 2-torsion free, we can choose direct sum decompositions
KO0X^A'®A"®C and K02X^B'®B"®0 so that A'®Zβ^Aλ, A!'®Z\2^
A5, B'®Zβ^B3 and B"®Zβ^BΊ, and moreover ψOy ψ2 are both the canonical
epimorphisms (use [11, §20]). Here A", B" may be taken to be free.

The commutative diagram (1.4) gives rise to the following diagram

2X-+ K02iX -> KC2iX -* K02i^X — 0

\ II I I
0 -^ KO^X-* K02iX-+ KU2iX^ KO2i-2X-

with exact rowτs. Denote by L2i the cokernel of η*: KO2i.xX-^KO2iX, It is
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just the kernel of (τπc1)*: KC2iX->KO2i_3X. Since the homomorphism ψ2i is
induced by the pair (—r, TTΓC1): ^KC-^KOWKO, we observe that L2i^
KC2iXy and the inclusions l2i: L2i-+KC2iX are expressed as lo(aly cι2yc) =

(aly 2a2y c)y lA{aιy a2y c)=^(2aly a2y c) for any (aly a2y c)^A'®A"®Cy and so on.

In order to determine the i£O*-module structure of KO*X we will describe
explicitly the complexification 6Um=€2i: KO2iX-*KU2iX, admitting a factoriza-
tion KO2iX-+L2i->KC2iX->KU2iX. Note that KO2iX^L2i®KO2i^X. As
is easily computed, £2i: KO2iX^»KU2iX are given by the following homomorp-
hisms:

£0:

S2: (A'®Zβ)@B'®B"®C

£ 4 :

defined by SQ{aly a2y by c) = (a19 2a2) 0, c, c), S2{a, bly b2y c) = (0, b19 2b2y cy —c)y

€t(au a2y by c)=(2aly a2y 0, cy c) and 66{a, b19 b2y c ) = ( 0 , 2bly b2y cy—c).

We moreover investigate the induced homomorphism ^*—ηji KOjX—>
KOj+1X. Obviously η2i_λ is the canonical monomorphism. On the other hand,

η2i is obtained as the composite KO2iX->L2i->KC2iX
::+KC2i+±X->KO2i+ιX

because ηΛl=T£c: l^KO-^KO. Therefore η2i is the canonical epimorphism.
The above investigations about 6u* and η* show that KO*X^(KO*®A')@

(KO*_2®B')®(KO*_4®Ά')φ(KO*_Q®Bf/)®(KU*®O) as XO^-modules.

2.3. Using the cofiber sequences (1.1), (1.1)' we consider the commuta-
tive diagram

KU0P

Jp*

KO2P

I

KUoΣ2

Here both of the two vertical arrows are identified with multiplication by 2 on Z.
Evidently KUJPs*KU£?®KUf&

is*Z®Z. Set (πd1Su)^(ί)=(2y -n) for some
integer n. Then So*(0, 1)=2 and £0*(l> 0)~n. Note that n is odd because £0%
is an epimorphism. We may take n to be 1 by replacing suitably the splitting of
jp*. Since £ot=£o, the conjugation t* on KU0P is represented by the matrix

ί + 11 where the matrix behaves as left action on Z φ Z . Thus
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(2.3) KU0P^KU<Z2®KUQΊ?^Z®Zon which ** = ( " } }), andKUιP=Q.

After changing the isomorphism KUQP^Z®Z suitably we obtain

(2.3)' KU0Pβ Z@Z on which ί# = (J J), β ^ -KW = 0

because the matrix ί ^ ^ j is congruent to L

We can now prove one of our main results concerning Wood spectra (cf.
[20, Theorem 1.6] or [16]).

Theorem 2.4. Let X be a CW-spectrum such that KU0X is finitely gen-
erated, 2-torsion free and KU1X=0. Then there exist abelίan groups A'', A"', J3',
B" and C so that X is quasi KO^-equivalent to the wedge sum SA'VΣ2SB'\/
VSA" V Σ 6 S5" V (P Λ SC).

Proof. We may write KU0X^ A®B®C@C with C free, on which t* acts
as (2.2). By Proposition 2.3 we admit direct sum decompositions A = Ar@A"

so that KO^X^{KO^®A')®{KO^2®B')@{KO^4l®A'f)®
®0) as i£O*-modules.

Set Y=SA'VΣ2SB/Vτ4SΆ/VΈ/

eSB", the wedge sum of the Moore
spectra. Then we can choose a map hγ: Y->KOΛX whose induced homomor-
phism Kκo(hγ)*> KO*Y—>KO*X is the canonical inclusion, by means of (1.9).
Putting fγ=(βUAl) hYy its induced homomorphism κKu(fγ)*' KU*Y->KU*X is
of course the canonical inclusion.

We next choose a map fP: P ASO-+KUAX whose induced homomorphism
κκu(fp)* KU*(PASC)-+KU*X is the canonical inclusion. Because of (1.8)
such a map fP is uniquely chosen, and hence (tAl)fP—fP. Note that η*\
[P, τi+1K0AX]->[P, Z'KOAX] is always trivial as ηAl = 3iPvjP: Ί<ιP->P where
v\ Σ3-^Σ° is the stable Hopf map. We may here apply Lemma 1.2 to obtain a
map hP: PASC-+KOAX satisfying (εUAl)hP=fP.

Seth=hYVhP: YV(PASC)-+KOAX. Obviously (<^Λ1) h: YV(PASC)
->KUAX is a quasi KU*-equivalence. By making use of Proposition 1.1 we
can show that the map h is a quasi KO*-equivalence as desired.

Let CPn be the complex projective ra-space. As is well known, KU0CPn

is the free abelian group of rank n and KU1CPn=0 [1]. So we can apply The-
orem 2.4 to show

Corollary 2.5. CPn^> VP or VPVΣ 2 w according as n=2t or 2t+l. (Cf.
[10].)

Proof. KO*CPn has been computed by Fujii [8, Theorem 2], So we can
determine the additive structure of KO*CPn, by applying the universal coefB-
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cient sequence 0-^Ext (KO*+5X,Z)->KO*X->Hom(KO*+4Xy Z)—0 for any
finite CΊF-spectrum X. Then the result follows immediately from Theorem
2.4.

3. Anderson spectra

3.1. We here deal with a CW-spectrum X such that KUQX^A and
D are finitely generated, 2-torsion free and t*—l on both KU0X and
Then it follows from [20, Lemma 1.9] that

(3.1) i) KOi X is 2-torsίon free for each i = 0 mod A, and
ii) KOj X is a Zβ-module for each j = 2, 3 worf 4.

We will first calculate i£-homologies KC*X and KO*X by means of
Lemma 2.1 and (3.1).

Lemma 3.1. i) KCiXe*A®Dy (A®Zβ)®D, D®Zβ or A correspond-
ing to * = 0, 1,2 or 3 mod 4.

ii) KOiX—Ay Ai®D, -4f -iθA+iθGϊ> o r A / ^ ^ ^ Zβ-modules Au A5y D3>

D7 and Go, corresponding to / = 0, 1, 2 or 3 mod 4. Here these Zβ-modules hold
the relations Aλ®A^®G0^A®Zβ and

Proof, i) Consider the short exact sequence 0->KU_1X-+KC0X->KU0X
-»0 induced by the cofiber sequence (1.2). This sequence splits if tensored with
Z[l/2], since 6u=ζ£c and £σ#: KO0X®Z[lβ]->KU0X®Z[lβ] becomes an
isomorphism by (3.1) ii). So we observe that this sequence remains split even if
not tensored with Z[l/2], because it is a pure exact sequence. Thus KC0X^
A®D. The other cases when z'ΐO mod 4 are immediate from Lemma 2.1 i).

ii) The z'^2 mod 4 cases follow immediately from Lemma 2.1 ii), iii)
and (3.1).

To show the remainders we first consider the two exact sequences

-+ o

o -> κc3x^ κuoχt? κo2x®κo6x -> κo2x-> o

induced by the cofiber sequence (1.6). The former gives rise to an epimorphism
D®Zβ-^KOzX@KO7X, and the latter a short exact sequence 0->A®Zβ->
KO2X(BKO6X-+D®Zβ->0 since φ0: A->A is just multiplication by 2. Thus
KO3XφKO7X®GQ^D®Zβ for some Z/2-module Go, and KO2X®KO6X^
{A®D)®Zβ.

Lety be a fixed integer withy = 1 mod 4. Combine the two exact sequences
0->KUjX^KOjX^KOj+1X-+0 and KOjX->KUjX->KOj_2X->0 induced
by the cofiber sequence (1.1). Then we get a short exact sequence 0->KOj-2X
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->KOjX®Zβ->KOj+ιX^ because f o f σ = 2 . Thus
0(Z)®Z/2) with Aj=KOJX*Zβo° the 2-torsion subgroup of KOjX. On the
other hand, the cofiber sequence (1.3) gives an exact sequence KOj+1X->
KCj+1X-+KOj_2X^0. Therefore we get immediately that KOj+1X^Ajφ
Dj+2φG0y since KOj+1X^D®Zβ^D3®D7®G0 where D3=KO3X and D7=
KO7X. Then it is easily verified that A1®A5@G0^A®Zβ because KO2X@

We again consider the exact sequences

κcAχQκuιx'^κozx®κo7x-* o

0 -> KC3X^KU0X t?KO2XφKO6X-> KC2X-> 0 .

As is easily seen, KU0X and KU1X admit direct sum decompositions such that
ψ0 and fa are given as the canonical morphisms (use [11]). Thus they are writ-
ten into the forms KU0Xc*A'®A"®G and KU1X^D'®D"®G so that
A'®Zβt*Au A"®Zβc*A5, D'®ZβeχD3, D"®Zβ<*D7 and
where A!r, D" and G are taken to be free. Besides

x ® 3 ® 0 ® 5 7 0 and fa:

are expressed as

(3.2) ψ ofo, a2, g) = ([βj, 0, [g], [a2], 0, [g]) and ψ . ^ , rf2) ̂  = ([rfj,

where [ ] stands for the mod 2 reduction.

Hence Lemma 3.1 says that

(3.3) K0*X is decomposed as an abelian group into the direct sum (KO*®Af)®
(iiΓO*_1®Z)')θ(iiΓO*_4(8)i4[//)θ(-KO*-5(2)Z)//)θ(i^CHc-i®G) for some abelian
groups Af, A", Df

y D" and G.

3.2. Let I b e a CW-spectrum such that KU0X and KUXX are finitely
generated, 2-torsion free. Assume that t*=l on both KU0X and KUλX. By
studying the i^O^-module structure of K0*X as in Proposition 2.3 we will
show

Proposition 3.2. There are direct sum decompositions
and KUιX^Dr®D'ί@G with AN\ Ώ" and G free, so that KO*X^(KO*®A')

as KO*-modules.

Proof. In order to determine the i£O*-module structure of K0*X, we
will describe explicitly the complexification £u*=£i: K0iX-+KUiX and the
induced homomorphism 77̂ =77,-: K0iX->K0i+1X. It is sufficient to show that
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£0: A'®A"®G -> A'®A"®G £4: A'®A"@G — A'®A"@G

6X: Aι@D'®D"®G — D'φD^θG £5: A5®D'®D"®G

are given by S0(aly a2yg)=(aly

 2#2> 2#), £ 4 ^ , a2yg)=(2aly a2y 2g)y

(rfjL, 2rf2, #) and £ 5([α 2], ^ , έί2, g)=(2d19 d2, g), and moreover

are given by Vo(aly a2yg)=([a^y 0), Vi(aly a2yg)=([a2]y 0) and also Vi the canonical

epimorphisms when i = 1, 2 mod 4.
Let 7 be a fixed integer with j==l mod 4 as in the proof of Lemma 3.1.

Recall (3.2) that fa: KU1X-+KO3X(BKO7X is given as the canonical epimor-
phism D'®D"®G-*D3@D7. Then £y: KOJX-^KUJX is immediately deter-
mined since fa is induced by (£oπUy —S07tϋι)> Note that £ c*: KOj+1X->KCj+1X
is given as the canonical morphism Aj(BDj+2(BG0-+D3(BD7(BG0y and T*:
i^Cy + 1X->i^O ; + 2X as the canonical epimorphism D3®D7®G0->Dj+2. Thus
?7;+1: KOj+1X-^KOjX is just the canonical epimorphism because ηAl=τ8c.

Cy+3 Vj+1

We next use the exact sequences 0^>KOj+3X >KUj+3X-*KOj+1X >

^i?iκθj+1X->0 and 0->KUj+1X->KOj-]X^

Then Sj+3 and 97^! are easily determined by
means of ηj+1 and £y respectively. Moreover it follows that ηj is the canonical
epimorphism since βjSj is multiplication by 2 on KOjX.

These investigations imply that K0*X^ (KO*®A')®(KO*_1®D')®
as i£O*-modules.

3.3. Making use of the cofiber sequence (1.3)' we see immediately

(3.4) KUQΊ}Q^Z and KU,^Q^Z, on both of which f *=1.

Consider the commutative diagram

KC3Q

KO0Q

induced by the cofiber sequences (1.2) and (1.3). Here both of the vertical
arrows are identified with multiplication by 2 on Z. Evidently KC3Q^KU3Q

y and then £ c*(l)=(2, 2m+ί) for some integer m. We may
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take m to be 0 by replacing suitably the splitting of ζ*. Thus

(3.5) Sc*: KO3Q^> KC3Q is represented by the row (2 1): Z-» Z φ Z .

Let Xbe a CW-spectrum as in Proposition 3.2. Choose a map/: ΣXQΛ SG
-*KUΛX whose induced homomorphism κKu(f)*' KU^-^QΛSG)->KU*X is
the canonical inclusion. By means of (1.8) we note that such a map / is
uniquely chosen, and hence (tAl)f=f. Then there exists a map g: ^QΛSG-^
KCΛX satisfying (ζAl)g=f. The diagram (1.14) gives a commutative diagram

0 ->KU2(QΛSG)-*KO3(QΛSG)->KU3(QΛSG)-> o

i 1 I
o -> iπy 3 x -> i£c 4 x -» iαy 4x -̂  o .

The two rows are split exact sequences by Lemma 3.1 i), so KC3(QΛSG)^
KU3(QASG)®KU2(QΛSG) and KC4X^KUAX®KU3X. The central arrow

*«;(£)*: KO3(QΛSG)->KC4X is represented by the matrix (Q 0 0 0 0 ̂ ϊ) :

G Θ G - ^ ' θ i ^ θ G Θ D ' θ Z y ' φ G for some homomorphisms u, v and w. Com-
bine this expression with (3.5) to obtain

(3.6) κκc(g)*€c*' KO3(QΛ SG)->KCAX is represented by the row
(0 0 2 2u 2v 2w+l): G-^^'Θ^ΘGΘO'Θ^ΘG.

Lemma 3.3. ( T T Γ C 1 ) * ^ ^ ) * ^ * " - KO3(QASG)^>KO1X is represented by
the row (0 4-x 2y 4s): G-+{Af®Zβ)®D'ξ&D"ζ&G for some homomorphisms x,y
and z.

Proof. Let iσ: G->KU4X^Af(BA"®G be the canonical inclusion and
ic: G->KCAX^Af®A"@G@D'@D"@G the injection into the former G.
First we will show that (τπc%ic - G-+KOιX^(A'®Zβ)®D'®D"®G is re-
presented by the row (0 2p q 2 r+l) for some homomorphisms p, q and r. Ex-
press (τπd1)* ic: G->(A'®Zβ)@D'®D"®G into a form ([s] pr q' r'), and then
note that (ηAl) τπc1=Soπΰ1 ζ and ζ*ic—iu- Proposition 3.2 asserts that η*\
KO1X-^KO2X and (Soπϋ1)*: KU4X->KO2X are respectively the canonical
morphisms Vι: (A'®Zβ)®Dr®D"®G^{A'®Dt®G)®Zβ and e2: A'φΆ'φ
G-+(A'@D'®G)®Zβ (or see the proof of Proposition 3.2). Since ^(TTΓC1)* ic
=e2iU9 we then see that ([s] [pf] [r/])=(0 0 [1]): G^{A'®D'®G)®Zβ where
[ ] denotes the mod 2 reduction. Thus [s] = 0yp'=2p, q'=q and r ' = 2 r + l for
some homomorphisms py q and r.

On the other hand, τπ~cΛ<yπu=80πϋι and (βoπϋ1)*: KU3X-+KOXX is identi-
fied with the homomorphism eλ: D'@D"®G-+(A'®Zβ)®Dr@D"®G defined
by eλ(dly d2yg)=(0, 2dly d2, 2g). Combining the above observations with (3.6), we
can easily show that (rπΈ1)^ Kκc(g)*£c*: KO3(QΛSG)->KO4X is expressed as
the sum
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We can now prove another main result concerning Anderson spectra (cf.

[20, Theorem 1.7]).

Theorem 3.4. Let X be a CW-spectrum such that KUQX and KU1X are

finitely generated, 2-torsίon free. Assume that t* = l on both KU0X and KU1X.

Then there exist abelίan groups A1

 SA" }D' ,D" and G so that X is quasi KO*-

equivalent to the wedge sum SA'VΣ1SD'V2ASΆ'V25SD"V('Σ1QASG).

Proof. By Proposition 3.2 we have direct sum decompositions

A'@A"@G and KU^exD'φiy'φG so that i£O*X^(i£O*®

D')®(KO*_ι®A'')®(KO*_s®D")@{KC*-ι®G) as KO*-modules. Here A",

D" and G may be taken to be free. Set Y=SA'VtLSD'VI,ASA"VI,*SD",

the wedge sum of the Moore spectra, and choose a map hγ: Y->KOΛX whose

induced homomorphism ιtκo{hγ)*' KO*Y-*KO*X is the canonical inclusion.

Then the homomorphism κKu(fγ)*: KU^Y-^-KU^X induced by the composite

fγ=(6UAl) hγ is the canonical inclusion, too.

We next choose a map fQ: Ίp QΛSG-*KUΛX whose induced homomo-

rphism fCκu(fo)*' JKΈ/*-I(QΛSG)->KU*X is the canonical inclusion. Because

of (1.8) it is obvious that {tAVjfQ^=fQ. First we will find vertical arrows g, h0

and hλ making the diagram below commutative

KOAX > KUΛX —z^ Ί?KO/\X
SUA1 S l

with (£ Λ 1) £—/<?> where the cofiber sequence (1.3)' and a part of the commutative

diagram (1.4) are involved. Consider the composite f/Q:={Soπϋι

A\)fQ{iQA\)\

T h e composite homomorphism {So^u1)* Kκu{fo)*'

^KO.X becomes trivial, since (SoπJ}%: KUλX-*KO7X

is given by the canonical epimorphism e7: D'ξ&D"®G-^D"®Zβ. Hence

fcK0(f'Q)*: KO0SG->KO7X is trivial. This triviality means that the composite

map /Q is in fact trivial. So we can apply Lemma 1.3 to obtain the required

maps£: ΣιQΛSG-+KCΛX and Ao, hx: Ί<ιSG->KO/\X.

In order to show that the composite (^Λl) A^j^l): Q/\SG-+Ί}KO/\X be-

comes trivial, we will find a map k: SG-+KOΛX satisfying (η2

Al) k~(ηAί) hv

Consider the commutative square

[SG, Σ ' ^ O Λ I ] -^ Hom(KO0(SG), KOλX)

(ΛΛI)* I « J UQ*)*

[Z~3QASG, τ-'KOΛX] -* Hom(KO3(QΛSG), KOλX)

in which the arrows it assign to any map / the induced homomorphism fcκo{f)*
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in dimension 0. Obviously fcih^jQ^V)) coincides with the composite
κκc(g)* £c* Since the right vertical arrow (./$*)* is just multiplication by 2 on
Hom(G, KOλX), Lemma 3.2 asserts that it(h^) is written into the form
([s]2xy2z): G->{Af®Zβ)®D'@D"®G. Recall that v*: KOλX-*KO2X is
the canonical epimorphism Vl: {A'®Zβ)®Dr®D"®G-*(Ar®D'®G)®Zβ.
So η*κ(h^: KO0(SG)->KO2X is represented by the row ([J] 0 0): G-+(A'®D'
@G)®Zβ. On the other hand, η%: KO0X->KO2X is identified with the com-
posite homomorphism Vl Vo: A'@A"@G->(A'®D'@G)®Zβ defined by VlVo

(*i> a2, g)=([ai]y 0, 0). Therefore the homomorphism s=(s 0 0): G-+A'®A"@
G satisfies the equality η%s=η*ίc(h1). This means that there exists a map k:
SG-+KOΛX with (η2

Al) k=(ηAί) h. Consequently we get a map fiQilfQASG
-+KOΛX such that (^ A l ) hQ=fQy because Soπ^fQ^O.

Set h=hYVhQ: YV^QASG^KOAX. It is obvious that (SUA1) h: YV
(^Q ASG)-^KUAX is a quasi K[/*-equivalence. So we can apply Proposi-
tion 1.1 to show that the map h is a quasi KO*-equivalence.

4. Some elementary spectra with a few cells

4.1. We first study KU and KO homologies of some elementary spectra
with three cells. The Moore spectrum SZβm is obtained by the cofiber se-

quence Σ° -> Ίf^SZβm^-Ί,1. Denote by M2m, N2m, P2m, Q2m and R7m respec-
tively the finite CW-spectra constructed by the following cofiber sequences:

* * 2

Σ 1 ^ SZβm -* M2m -* Σ 2 , Σ2 S- 5Z/2m -* iV2M -> Σ3

(4.1) Σ 2 - ^

Σ4

where fj\ Σ2-^>SZβm is a coextension of η satisfying jη=η.
Dually we denote by Mf

2m, N'2m, Pίm, Qίm and R2m respectively the finite
CW-spectra constructed by the following cofiber sequences:

SZβm -ί Σ° -> ML -> τιSZβmy τ'SZβm -+ Σ° -> iVL -> ΊϊSZβm

(4.2) JΪSZβtn ^ Σ° -> P L -
2

ΊΪSZβm^l Σ° ̂  i?L -> VSZβm

where η: ^SZβm-^Σ0 is an extension of η satisfying ηi=η.
The Moore spectrum SZβm is self-dual in the sense that

Σ~~ιSZβm where DX stands for the Spanier-Whitehead dual of X. By means
of [17, Theorem 6.10] we obtain that

(4.3) ML = τ2DM2my NL = Z3DN2nn PL = Z3DP2my QL = VDQ2m and
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Rίm = Σ DR2m .

We will first compute the KU homologies of the elementary spectra men-
tioned above.

Proposition 4.1. The KU homologies KU0X, KUλX and the conjugation
t* on KUQX®KUXX are tabled as follows:

X =

t* =

X =

M2m

Z®Z/2m

ML

Z

Z/2m

(1 ON

lo l j

N2m

Z/2m

Z

(1 ON

lo -ij
N'2m

Z®Z/2m

0

(1 ON

lo -ij

P2m

Z/m

Z

(1 ON

lo -ij
Pirn

Z®Z/m

(I °Λ)

Q2m

Z®Z/2m

0

(1 ON
U lj

Qίm

Z

Z/2m

(1 ON

lo -ij

R2m

Z/2m

Z

(1 ON

lo ij
Rim

Z®Z/2m

0

(1 ON

lo ij

where the matrices behave as left action on abelίan groups.

Proof. We will investigate the behaviour of the conjugation t* on KU0XξB
KU1X only in the cases when X— Pf

lm and Q2m. The other cases are easy,
i) The X=P2m case: Consider the commutative diagram

Σ 2 = Σ2

hP\ 12m

τιSZj2m -> Σ° -• PL -* τ2SZβm .
V

Recall (2.3) that KUaP^KU0Σ
2®KU0τ°^ZφZ on which / * = ( " } J). The

induced homomorphism hP*: KU0X
2-^-KU0P is given by hP^(l)=(2m, —m) be-

cause ί*λp#(l)=— hP*(V). Hence an easy computation shows that KU0P'2m^
Z@Z\m, KUϊP'2m=^ and the induced homomorphism kP%: KU0P-*KU0P2m is

given by kP*(x, y)=(x-\-2y, y). So we obtain that £#=(1 1) on KU0P'2m=
Z®Z\m. ' \ - /

ii) The X=Q2m case: We next consider the commutative diagram

II Iff IK

Ί,3 -* SZβm T * Q2m -

p p
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Evidently KUoQ2m^KUoV®KUoSZβm^ZφZβm and KU1Q2m=0. We will
use the induced homomorphism hQ*: KU_2P-*KU0Q2tn to determine the be-
havior of t* on KU0Q2m. By means of (4.3) we see that KU0P2m^KU3 P2m^
Zjm. This implies that η*\ KU0Έt

2-j>KU0SZβm is given by ή*(l)=m. So the
induced homomorphism hQ*\ KU-2P^>KUQQ2m is expressed as hQ*(l> 0)=(l, ft)
and hQ*(Q, l)=(0> m) for some integer n, where KU_2P^KU0V®KU02,2^

Z(BZ. Since t*iQ*=iQ* on KU0SZβm and t*hQ*=hQJ 1 J on KU_2P,

an easy computation shows that £#=( i ) on KU0Q2m^Z(&Zβm.

We will moreover compute the JK̂ O homologies of the elementary spectra
treated in the above proposition.

Proposition 4.2. The KO homologies KO{X are tabled as follows:

i =

M2m

N2m

P2m

Q2m

R2m

M'2m

N'2m

PL

Qίm

Rίm

0

Z/2m

Z/2m

Z/2m

Z®Z/2m

Z/2m

Z

Z

z
z

Z@Z/2m

1

0

Z/2

Z/2

Z/2

Z&Z/2

Zβm

Z/2

0

Z/2

Z/2

2

Z@Z/2

Z/2

Z/2®Z/m

(*)-

(*)«
Z/2

Z/ίm

Z/m

0

Z/2

3

Z/2

Z©Z/2

Z

0

Z/2

Z/2

Z/2

0

Z/m

0

4

Z/4m

Z/4w

Z/m

Z®Z/m

Z/m

Z

Z0Z/2

Z©(Z/2(g)Z/m)

Z

Z@Z/m

5

0

Z/2

0

0

z
Z/2w

Z/2

Z/2

(•).

Z/2

6

Z

0

0

Z/2

Z/2

0

Z/2m

Z/2m

Z/2

(*)«

7

0

z
z
0

Z/2

0

0

0

Z/2m

Z/2

in which (*)w stands for Z\\ if m is odd, but Z/2φZj2 if m is even.

Proof. Use the long exact sequences of KO homologies induced by the
cofiber sequences (4.1), (4.2). In computing KO*X for the latter five spectra
X we may apply the universal coefficient sequence 0—>Ext (KO3_ * DX, Z)->
KO*X->Hom(KO4-*DX, Z)-+0 combined with (4.3) if necessary.

4.2. We next study the KU and KO homologies of some elementary
spectra with four cells. Denote by S2nίt2ny T2nit2n, V2m>2n, V'2mM and W2Mt2n

respectively the finite CW-spectra constructed by the following cofiber sequneces:

SZβn

ηJ SZβm - T2m>2n -> Ί?SZβn

(4.4) Ί}SZβn %X SZβm - V2m>2n -> Σ2SZβn

τ'SZβn -i SZβm -> V'2mM ~> VSZβn



486 Z. YOSIMURA

ΊΪSZβn > SZβm -* W2m,2n -* fSZβn .

Note that

v v 2m,2n — ** χ y v v 2n,

We first consider the

Ί}SZ\\

II
Ί}SZ\\

commutative diagram

yr>0 ypO

_ | 2m - I hf

\i \kP

CJII> * kjZ-d 1 i-itll " V 2γβ 2*ι

V 2m,2n = ^ *

>

-+Ί?SZ\2n

II
-> Ί?SZβn

and

lη

The map iP has a factorization iP=kPiP through P where kP is the map used in
the proof of Proposition 4.1 i). So we see that

(4.6) the induced homomorphism hP*\ KU0Σ
0-+KU0P2n is identified with the

homomorphism f2m,n: Z-^Z®Z/n defined by/2m,M(l) = (4m, 2m).

We also consider the

Σ1

a
τxSZβn :

commutative

*-£ SZβm

II
>. SZβm

diagram

Σ2

• hM \

-* M2m

-* w2m2n

= Σ 2

- Σ 2

a
-* Ί,2SZβn.

Lemma 4.3. The induced homomorphism hM*: KU0Έ,2->KU0M2m is identifi-
ed with the homomorphism hnm: Z-^-ZφZβm defined by hnm(l)=(2n, m—n).

Proof. Consider the induced homomorphism hM*=h2: KO2Ί>?-*KO2M2m.
An easy computation shows that h2: Z-»Z0Z/2 is expressed as h2(l)=(n, q0) for
some go6Z/2. We will verify that J 0 G Z / 2 is non-trivial. In order to observe
the complexification 6u*=62: KO2M2m->KU2M2m and the realification 60*=e2:

KU2M2m->KO2M2m we recall that t6u=£Uy SuSo^l+t and * * = ( j _]) on

KU2M2ms*Z(BZβm. As is easily checked, 82: Z®Zβ->Z@Zβm and e2:
ZQ)Zβm->Z@Zβ are respectively given by £2(x, y)=(2x, my—x) and e2(z, w) =
(z, 0). We here choose a map p: M2m-^Ί,1 satisfying ρiM=j. Then the compos-
ite ρhM is just the Hopf map η\ Σ2-»Σ\ and hence p^^Vj^l^KO^^Zβ.
On the other hand, the composite homomorphism p*e2: KU2M2m->KO2M2m->
KO2Έ,1 is evidently trivial. So we see that p*(0, qo)= 1, which means that q0— 1.
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This implies that 62h2(l)=(2n) tn—ri), and hence the result follows immediately.

We will here discuss the homomorphisms fmn: Z->Z®Z/n and hmn: Z->
ZφZβn denned by/ ίWf l l(l)=(2m, m) and hmtn(l)=(2m, n—m) respectively. The
results (4.7)-(4.15) obtained below will be needed in studying the KU homologies
of V2mt2n a n < i Wim,2n later. Let Cmfίl denote the cokernel of fmn. Thus the
sequence

is exact. Write m=2km' and n=2'n' with m', n' odd.
In the k^l case it follows that

(4.7) Cm>n^Z\2m®Z\2l§>Z\n', and

(4.8) guy. Z®ZI2l®Zln'-+ZI2m@ZI2'®Zln' is given by gm.a(x, ylt y2)=(x, y»

x-2y2). In particular, ^ . . , ( 1 , 0, ^ ± * ) = (1, 0, 0), &,t.(0, 1, 0) = (0, 1, 0) and

Λ..(0,0,?^=l) = (0,0,1).

On the other hand, in the k^l case it follows that

(4.9) C M > B s Z/2nφZ/2*φZ/m'', and

(4.10)^«.. :ZφZ/»-»Z/2nφZ/2*®Z/«' is given by ^...ί*,^) = (2y-x,y,

O±Jpl). In particular, gm,.{-tn'α, 2*b) = (1, 0, 0), ̂ ^ ( 2 ^ ' α , « ' β ) = (0,1, 0)

and gm,n(2k+2b, 2h+ίb) = (0, 0, 1) for some integers α, b with m'α+2»+1b = 1.

Denote by Dmn the cokernel of hmn: Z->Z(BZ/2n. Obviously 2hm>n=
hnfzm,2n where s2n: ZφZβn—^ZφZβn denotes the automorphism defined by
s2e(x, y)=(x, —y) So there exists a short exact sequence

cmn d,
nt,n

o - z / 2 - i c 2 M, 2 M - D W , B — o .

Here the connecting homomorphism cmn is obtained as cmin{\)=g2mt2n s2nhmn{\).
In place of cm>n we write with emphasis c'mιn when Λ^/ and c£,'» when Λ^/.

The connecting homomorphism ίί,iM: Z/2-*Z/4wφZ/2'+1φZ/«' is expressed
as e;,,(l)=(2»ι, m-», 0). Thus c'm,n{\)={2m, n, 0) if ft>/, and cί,.,(l)=
(2m, 0, 0) if A=/. In the ft>/ case it follows that

(4.11) A»,»« Z/2*+2ΘZ/2'φZ/m'φZ/w', and

(4.12) 4 i B : Z / 4 m e Z / 2 ' + 1 φ Z / « ' - » Z / 2 w e Z / 2 i φ Z / f f ί ' © Z / B ' is given by
4 „(«, », w) = (u-2* + 1 - ' ϋ ) β, u, w). In particular, <ί..,(»'β, 0, 0) = (1, 0, 0, 0),
dm,n(2*+1-'rn'α, m'α, 0) = (0, 1, 0, 0), dm..(2*+% 0, 0) = (0, 0, 1, 0) and ^..(O, 0, 1)
=(0, 0, 0, 1) for some integers α, b with m'α+2k+2b = 1.
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Moreover, in the k=l case it follows that

(4.13) Όm>n^Z\2m®Z\2ι+ι®Z\n\ and

(4.14) 4,M:Z/4meZ/2 / + 10Z/n'->Z/2meZ/2 / + 1eZ/n' is the canonical epi-

morphism.

On the other hand, the connecting homomorphism c'm'tn: Z/2-»Z/4w0Z/2*+1

0Z/m' is expressed as c'm'tn(l)=(2n, m—n, 0). Thus c/

m

/

tn(\)=(2ni m, 0) if k<l,
and c'Jtn(\)=\lny 0, 0) if k=l This means that

(4.15) c'mtn = c'n>m i n t h e k^l case .

4.3. Using the results discussed in 4.2 we will compute the KU homologies
of the elementary spectra with four cells given in 4.2.

Proposition 4.4. Let m=2km' and n=2ιn' with m!\ ri odd. The KU
homologies KUQX, KU^ and the conjugation t* on KU0X®KUlX are tabled as
follows:

X =

VTT V /^^
Tx. UQΛ. -—

u =

X =

S2m,2n

Z/2m
Z/2n

Z/m®Z/4n
0

( 1 , °

T

Z/2m®Z/2n
0

(1 0\

V'2m,2n

Z/2m®Z/2n
0

\ /I 2k~lm'\

V2m,2n

Z/4m®Z/n
0

/I 0\
W - l j

^2«,2«

^</ k=l
Z/m®Z/in Z/2m®Z/2n

0 0

*A,-k (1 J)

Z/2m®Z/2n
0

/I m'\
VO - l j

*>/
Zβm®Z/n

0

(
a{ \—a] 0

0 " ? ' 1 Si whh α < = = 1 - 2 ί + 1 The matήx A*-ι acts on

0 0 0-1/

Z/270Z/w'0Z/n' and the transposed matrix *At-k acts on Z/2*0Z/2/ + 20Z/m'0
Z\ri.

Proof, i) The X=S2mf2n, T2nίt2n cases are easy.
ii) The X=V2nly2n case: From (4.6) it follows that KU0V2m>2n^C2mt1t and

KU1V2nit2n=0 where C2w>w denotes the cokernel oί f2mn. Thus KU0V2ntt2n^
ZIAm®Zβι®Zjnf or Z/2w0Z/2*+10Z/m' according as k+l^l or k+l^l, as is
shown by (4.7) and (4.9).

The induced homomorphism kP%: KU0P2m->KU0V2mf2n is written as the
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homomorphism g2mtn given in (4.8) and (4.10). To investigate the behaviour of

the conjugation t* on KU0V2nit2n we recall that ί*—(i i ) o n

Zjn. By making use of (4.8) and (4.10) we can easily observe that t*=
(\ 0 0\ / - I 0 0'<

1 - 1 0 on KU0V2m 2n^Z/4m0Z/2/0Z/w/ if k+l^l, and * * = - 1 1 0
\0 0 - 1 / ' \ 0 0 1
on KU0V2m 2n^Zβn@Zβk+ι®Zjm' if k+l^L Note that the latter matrix is

' / - I 0 0\
congruent to 1 1 0 . Then the result is immediate.

\ 0 0 l)
iii) The X=V2mι2n case: Consider the commutative diagram

Σ 2 = Σ 2

VJ *v hγ ^ jv ^ l

τ'SZβn -i SZjlm -* V'2m,2n -> τ2SZβn
j \ # H ky I ^ J

Σ2 -^SZβm^ P2m -> Σ3 .

This gives rise to the following commutative diagram

KU0V2m,2n

where the diagonal sequences are exact and the vertical arrows are both epimor-
phism. By means of the duality (4.5) we get that KUoV^^n^^^KUo V2n>2m, Z),
and hence KUQVf

2m,2n-KUQP2m®{KUQτ2®ZIAή)^Zlm@Z^n if k^l+ίy and
KU0VL.2n-KU0τ

2SZβn®KU0SZβm^Zβn®Zβm if k^I+1.
We next investigate the behaviour of the conjugation t* on KU0 V2mf2n . In

the k^l+ί case we use the short exact sequence 0^KUQSZβm->KU0V2mt2n^
KUo^SZβn-^O. Here / 7 # : Zβm->Z\m@Z\\n is expressed as tV*(l)=(l> ?i)
for some integer qv Note that mq^ln mod An, As is easily verified, ί # =

o n KU0V2m.2n^Zlm®ZIAn9 which is congruent to the matrix(? _ i )

(ni+2-k ' _ i ) On the other hand, we use the short exact sequence 0->i^i!70Σ
2

®ZI4nh™KUQV2'm>2n

k™KU0P2m->0 in the k^l+1 case. Here hY*\ Z\\n->
ZβnφZβm is expressed as hv*(l)—(l> q2) for some integer q2 satisfying 2nq2=m

mod 2m. Then h=\^a i ) o n K.U0V2m,2n^Zβn®Zβmi which is also con-
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gruent to the matrix (o*w / i )• The result is now immediate.

iv) The X=W2m%2n case: Lemma 4.3 implies that KU0W2m2n^Dntm and

KUX W2m>2n=0 where Dntfn denotes the cokernel of hn>m. Thus (4.11), (4.13) and

(4.14) show that KU0W^u^Zβl+2®ZI2k®Zln'®Zlmf

9 Zβn®Zβk+ι®Zjmf or

Zβk+2®Zβι®Zjmr@Zlnf according as Λ<Z, k=l or k>l

Note that the induced homomorphism kM*: KU0M2m->KU0 W2m>2n is written

as the composite dnftng2n>2m s2m: Z®Zβm->Zξ&Zβm->C2nt2m->Dntm. Recall that

* * = ( " " } i ) on KUQM2ms*Z(BZβm. The conjugation ί* on KU0M2m produces

a conjugation ίΛtW on C2fly2m through the epimorphism g2n>2m s2m. In place of tnttn

we write with emphasis t'Λtm when k^l and £",» when k^L In ii) we have im-

' / - I 0 0\

plicitly observed that t'u m= - 1 1 0 on C2w 2m^Z/4flθ^/2*+W/m' and # , =

/I 0 0\ \ 0 0 \)
1-1 0 on C2n 2m^Z\\m®Zβι+λ®Z\ri.

\0 0 - 1 /

Use these matrix representations of t'n>m and ̂ fw, (4.12) and (4.15). Then

a routine computation shows that the conjugation t* on KU0 W2mM is represented

by the matrix —At_k or Ak_t corresponding to k<l or k>l. Here the former

matrix — At.k acts on ZβM®Zβk®Z\n'®Z\m' and the latter Ak^ acts on

Λ,. 1-α 0 0\

Zβk+2®Zβι®Zlm'@Zjn'. Since ^ ί = ( o V 1 o) i s c o n δ r u e n t t 0 Bi=

f α,. - 1 + β ί 0 0\ \0 0 0 - 1 /

""0 Ό ^ ' 1 01 w i t h ai=1~2'+1>the Γ e s u l t f o l l o w s i n the * Φ / cases. On

0 0 0 - 1 /

the other hand, (4.14) says that dn>m: C2nt2m->Dnttn is the canonical epimorphism

when k=L Therefore the conjugation ί* on KU0W2m>2n^Zβtn®Zβι+1®Zln'

/I 0 0\
is represented by the matrix ( 1 — 1 0 I, and hence the result is immediate in

the k=l case. V° O " 1 /

4.4. Using the long exact sequences of KO homologies induced by the

cofiber sequences (4.4) we can easily compute

Proposition 4.5. The KO homologies KO{X are tabled as follows:

S2m,2»

T2m,2n

V2m,2»

v2m>2n

W2m,2n

o
Z/2m
Z/2m
Z/2m
Z/2m
Z/2m

1

Z/An
Z/2

0

Z/2

0

2

Z/20Z/2
Z/2@Z/4w
Z/2@Z/«

(*)«,»
Z/2Λ

3

Z/2ΘZ/2
Z/20Z/2

Z/2

Z/2

0

4

Z/4m
Z/4m@Z/2

(*)m.n

Z/m®Z/2
Z/2m

5

ZI2n
Z/2

Z/2

0

0

6

0

Z/2n
Z/2n
ZI2n
Z/2n

7

0

0

0

0

0
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in which (*)ι»,» stands for Zβm if n is odd, but ZflmφZβ if n is even.

For simplicity we denote by V2my V2m, WSm and Wίm the cofibers of the
following maps

iη: τ'SZβ-^SZ/m, ηj: ΊΪSZ\m-+ SZβ

iη+yj: S1SZβ -> SZ/4m , iη+ffj: Σ1SZjAm -> SZβ

respectively. Thus

(4.16) V4m = V2mt2, Vίm = Fί.2., WSm = WAmt2 and W'8m=W2Am.

But V2m=SZImVτ2SZβ and V'2m=SZβ\/Ί?SZ\m if m is odd.

As a special case Propositions 4.4 and 4.5 give

Corollary 4.6. i) The KU homologies KU0X, KUλX and the conjugation
t* on KU0X are tabled as follows:

The

i

X

κu0

u

KO

v2m

XQ* Z/2m

X^ 0

= 1

homologies KO{X

•• 0 1

v2m

Z/2m

0

- 1

w8m

Z/8m

0

are tabled as follows:

2 3 4

WL

Z/Sm

0

4 m - l

5

w2mt2m

Z/2m@Z/2m

0

(0 1\

6 7

W
2m,2m

Z/m
Z/2

Z/Am

Z/2

Z/2m

0
Z/2

0

0

0

Z/2
Z/Am

Z/2

Z/lm

Z/2m

Z/2
Z/2

0

0

0

Z/4m
Z/2

Zβm

Z/2

Z/2m

Z/2
0

0

0

0

Z/2
Z/m

Z/2

Z/Am

Z/2m

0
0

0

0

0

5. Elementary ^/2-actions

5.1. If the cyclic group Zβ of order 2 acts on the abelian group Z0Z/25 + 1,
s^O, then its matrix representation is written as one of the following twelve
types:

1 0\ , (1 0\ , (1 0\ fί 0\ (1 0 \ /I 0
± (1 0

\ι -i
where the matrices behave as left action on Z0Z/2S + 1.

A Z/2-action p on an abelian group if is said to be elementary if the pair
(H, p) is one of the following kinds of pairs:
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(5.1) (A, 1) (B, -1) (CΦC, (J J)) (Z/8w, 4OT±1) (Z®Zβm, ± (} _J

We here deal with a CW-spectrum X such that the conjugation t% on KU0X

is decomposed into a direct sum of the above elementary Z/2-actions, and KU^^X

= 0 . Thus

(5.2) KU0X

where each of the summands A' and Br is a direct sum of the forms Zβm and
each of the summands D®D\ E®E\ F®F' and G@G' is a direct sum of the
forms Z©Z/2m. Moreover the conjugation t* acts on each component of KU0X
as follows:

(5.3) '* = 1 > - 1 > ( i o ) o n A S

£* = 4m+l, Am—\ on the component Z/8w of

/I 0\ /-I 0\ /I 0\ /-I 0\ -

** = Vl —1> V l l J ' U l M fn-l) o n t h e c o m P ° n e n t

Z0Z/2m of D®D\ E®E\ F®F', G®G'.

For any direct sum i ί=0Z/2w ί we denote by i/(*) the direct sum (©(*),„.

where (*)m.^Zj4 or Z/2φZ/2 according as m; odd or even. Besides we write

2H=φZlm; and l/2iί=φZ/4»ι,.. For any CW-spectrum X satisfying (5.2)

with (5.3) we will give a generalization of Lemmas 2.1 and 2.2.

Lemma 5.1. Assume that KU1X=0.

i) KCiXεz

,A®(B*ZI2)φC®(2A')®(B'*ZI2)®(D®D'*ZI2)ΘE'φ(FφF')φ(G'*ZI2)

(A*Zβ)®B®C®(A'*Zβ)<$(2B')®D'θ(E®E'*Zβ)®(F'*Zβ)®(G®G')

corresponding to i = 0, 1, 2, 3 mod 4.

ii) KO2iX®Z[ίβ] ec (A®OφDΘF)®Z[lβ] or [B®C@E®G)®Z[\β]
according as i even or odd, and KO2i+χX®Z[lβ] = 0 for any i.
iii) There are short exact sequences

0 -• KC3X -• KO0X®KO,X -* KC0X -* 0

0 -> KC^X — KO2XΦKO6X -* KC2X -> 0
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and isomorphisms

KO1X®KO5X^(A®Zβ)®(B*Zβ)®(D'*Zβ)®(F'®Zβ)

*Zβ)®{B®Zβ)@(E'*Zβ)®{G'®Zβ).

Proof, i) Use the exact sequences

0 -» KCtX-+ KU^^h KU2X
 { ^ k KC3X->0

^ κu2x «1+t)π~ulk κuox

and compute the kernels and cokernels of ldz*** KU0X->KU0X.
ii) First notice that KO2i+1X®Z[lβ]=0 because 60Su=2. Then it fol-

lows that £ c*: KO2iX®Z[lβ]->KC2iX®Z[ίβ] is an isomorphism. The result
is now immediate from i).

iii) The cofiber sequence (1.6) gives rise to two exact sequences

0 -> KO3X®KO7X-> KC3X^ KU0X-> KO2XφKO6X-* KC2X^ 0

0 ̂  KOλX®KOsX-> KCλX^i KU.2X -> KO0X®KO4X-> KC0X-+ 0

where φ.(i=09 2) are induced by the composite Surπc1- Note that £v τπc1 Ύ7rσ=
{\-\-t)πϋι- Then the kernels and cokernels of 9?, (ί=0, 2) are easily obtained,
since (yπu)*: KUi+2X-^KCi+3X has already computed in i).

5.2. By observing Proposition 4.1 and Corollary 4.6 we here list up some
of finite CW-spectra X with a few cells such that the conjugation t* on KU0X
is elementary and KU1X=0.

(5.4)

X =

KUoXz*

t* =

X =

KUoX^

/* =

v2m

Z/2m

1

M2m

Z@Z/2m

v2m

Z/2m

- 1

Z®Z/2m

U 1)

w8m

Z/8m

4w + l

N2m

Z@Z/2m

(1 0\

\o -if

Wίm

Z/Sm

4 m - l

Pirn

Z@Z/m

(ί -!)

W2m,2m

Z/2m@Z/2m

U 0)

Z®Z/2m

(1 0\
lθ 1)

We write YH= V Y2m. for any direct sum H=(BZI2mi when Y=V9 W, M,
i ' i

Q and so on. We will here determine the quasi jKO#-type of a CW-spectrum
X satisfying (5.2) with (5.3) under certain restrictions.

Theorem 5.2. Let X be a OW-spectrum such that KU0X has a direct sum
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decomposition as (5.2), KU1X=0 and t* acts on KU0X as (5.3). Assume that
A^AQ®Aγ where Ao is 2-torsion free and Ax is a direct sum of cyclic 2-groups. If
KO1X=0=KO7X, then X is quasi KO^-equivalent to the wedge sum VSA0V
Σ 2 5 β V ( P Λ 5 C ) V F ^ V ^ V Σ W 5 / V Σ 2 M p / V M ^ V Σ 4 Q ^ V Σ 2 Q G / . (Cf. [20,
Theorem 2.5].)

Proof. Abbreviate by Y the desired wedge sum of elementary spectra with
a few cells. From (5.4) it is obvious that KU0Y^KU0X on both of which the
conjugations t* behave as the same action. Moreover we note that KOX Y=0—
KO7 Y by means of Proposition 4.2 and Corollary 4.6. For each component
YH of the wedge sum Y we can choose a unique map fH: YH->KU ΛX whose
induced homomorphism κκu(fH)*: KU0YH->KU0X is the canonical inclusion,
because of (1.8). Here H is taken to be Ao, Aly B, ••, F' or G'. Notice that
there exists a map gH: YH->KO f\X satisfying (ζAl)gH—fii f°r each i ί since (tAl)
fH=fH. We will find a map hH: YH->KOΛX such that (SUA1) hH—fH for each
Hy and then apply Proposition 1.1 to show that the map h=VhH: Y=V YH->
KOΛX is a quasi KO*-equivalence.

i) The H^=A0 case: Consider the commutative diagram

0 -> Ext(Λ, K02X) -> [Σ4&40> ΈΪKOΛX] -> Hom(Λ, KOλX) -> 0

0 -^ Ext(Λ, K03X) -> [Σ4SA0y Ί,2KOΛX] -> Hom(Λ, KO2X) -* 0

with exact rows. Since AQ is 2-torsion free and KO3X is a Z/2-module by
Lemma 5.1 iii), we see that Έxt(AOy KO3X)=0. So the central arrow (i7Λl)*
becomes trivial because KO1X=0. This implies that the composite (SoTtΰ1^)
fAo: Σ 2 SAQ-^KOAX is trivial because it coincides with the composite (^Λl)
(τπcι

Al) gA0- Hence there exists a map hAo: Σ4SAQ->KOΛX satisfying (SUAί) hAQ

ii) The H=B case is obtained more simply than the case i), by making
use of only the assumption that KO7X=0=KO1X.

iii) The H=C case: We will find vertical arrows h0, hλ making the dia-
gram below commutative

SC lp-^

1 gc

KOΛX ->KCΛX -
II U Λ i

KOΛX ->KUΛX -> VKOΛX

after replacing the map gc with (ζ/\l) gc=fc suitably if necessary. The homomor-
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phism Kκo(gc(ip/\V))*: KO0SO^>KO0X is just the canonical inclusion C dKC0X,
and the induced homomorphism (τττc%: KC0X-+KO5X restricted to C c
KCQX is trivial by Lemma 5.1 iii). Therefore fcKo((τπcl/s}) £c(i#/v\l))*: KOQSC
~>KO5X becomes trivial. As in the case i) we here use the commutative diagram

0 -> Ext(C, KO6X) — [SC, τ'KOAX] -> Hom(O, KO5X) — 0

0 -> Ext(C, ίΓO7X) — [SO, τ2K0ΛX] -> Hom(C, KO6X) -» 0

with exact rows, in which KO7X=0. Then it follows that the composite (ηAl)

{τπ~c fr\)gc{iPί\\): SC->Σ2KOΛX becomes trivial. So we apply Lemma 1.3 to

obtain maps h0: SC->KOΛX and hλ: SC-*Ί<ιKOf\X*s desired where the map

gc might be replaced suitably. However the composite {η/\Y) hx\ SC-+KO f\X is

trivial because KO7X=0=KO1X. Consequently we get a map hc: PΛSO->

KOΛX such that (^ Λ l ) hc=fc.

iv) The H=A1 case: Setting A1=φZ/2mi we have to find vertical ar-

rows h0, hx making the diagram below commutative

V SZ/m, X VAl

 JZ\y Σ2 SZβ

hoi I gAl i K
KOΛX -> KCΛX -> τzK0ΛX

I! I C Λ I I ??Λ i

as in the case iii). The complexification Sσ*: KO0 VAl->KU0 VAl is the canonical

monomorphism ξ&Zlmi-*'®ZI2mi, and the realification^oTΓ^1)*: KU0X-+KO6X
i i

restricted to AdKU0X is factorized through A®Zβ by Lemma 5.1 iii). These

facts imply that ^ ( ( S O T Γ ^ I ) / ^ ) * : KO0 VAι->KO6X is trivial. Hence the com-

posite map {S07tϋι

h\)fAlίv: V5'Z/mί -»Σ2ifθΛ-X"becomes trivial because KO7X

=0. Applying Lemma 1.3 we get the required maps h0: \tSZlnif^KO AX and
i

hχi VSZβ-^^KOΛX, after replacing the map gAl suitably if necessary. Then

there exists a map hAχ: VAl-^KOAXsatisfying (SUAl) hAl—fAl since (??Λ1) ̂ =0 as

in the case iii).

v) The H=A' case is obtained by a quite similar discussion to the above

case iv).

vi) The H=Bf case: Set Br=®ZI2mi and consider the commutative

diagram
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h01 I gB> I hx

KOΛX -

KOΛX ->KUΛX-*Ί2KOΛX .

In this case we can find vertical arrows λo> K more easily than the case iv), by
making use of only the assumption that KO7X=0=KO1X. The map hx\ VΣ1

SZ/2-+K0ΛX has an extension h2: yΈf-^KOΛX, thus hλ=h2{\ίj). Hence

the composite map {ηAV)hλjw: WB'->KOΛX becomes trivial because ηj=
j(iη+ηj). So we get a map hBr. Σ2 WB'^>KOΛX satisfying (SUAl) hB'=fBs.

vii) The H=D'y E' cases are shown by similar discussoins to the case iv).
Use the assumption that KO7X=0=KO1X in the former case, and Lemma 5.1
iii) and the assumption that KO7X=Q in the latter case.

viii) The H=F' case: Setting F'=(BZ/2miy we will find vertical arrows
i

hQy hλ making the diagram below commutative

^SFf ^ Σ4QF/ ^ Ί?SF

K\ I gp' IK
>KCΛX->τ3KθΛX

KOΛX-+KUΛX-+:

where SFf=ySZI2mi and SF= VΣ°. Since KOλX=0, the composite

gF,iQ:Έ(

1SF'-+KθΛX has an extension k0: Έ,2SF->KOΛX. The induced
homomorphism gF'*: KO2QF'-*KC6X carries KO2QF> onto the component
F®ZI2dKC6X. On the other hand, (TTΓC1)*: KC6X->KO3X restricted to the
component F®Z/2(ZKC6X is trivial by Lemma 5.1 iii). Combining these facts
we see that k0*: KOλSF^>KOzX is trivial. Thus the composite {ηA\) k0: Σ

3 5 F
-+KOΛX becomes trivial, and hence the composite (8o7tul

A\)fF'iQ'. Έ,2SF'-+
KOΛX is trivial, too. So we apply Lemma 1.3 to obtain the required maps h0:
Σ4 SF'-+KO Λ X and hλ: Σ

5 SF->KO Λ X.
The coextension η: X2->SZI2m of η induces an epimorphism ^*: [Σ3SZ/2m,

KOΛX]^[Ί,5, KOΛX] because jv=v So there exists a map h2: Ί,3SF'->KO
ΛX such that h2(Vy)=h1. Then the composite map (ηAl) hjΌ: Σ2QF'-+KOΛX

becomes trivial. So we get a map hFr. ^Qp'-^KOΛX satisfying (SUA1) hF'=fF'
as desired.

ix) The H=G' case is obtained easily by a parallel discussion to the above
case viii).
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As a special case of Theorem 5.2 we have

Corollary 5.3. Let X be a CW-spectrum and C, Af, B' abelίan groups where
A' and B' are direct sums of the forms Z/Sm. Then Xffi(PΛSO)VWA,VΣ2WB'
if and only if KU0X^C®O®A'®B\ KU,X=0 and ί* acts on KU0X as in
(5.3). (Cf. [20, Theorem 1.6].)

Proof. The "only if" part is evident.
The "if" part: In this case it follows from Lemma 5.1 iii) that KO2i+ιX=0

for any i. So we may apply Theorem 5.2.

As an easy application of Theorem 5.2 combined with Propositions 4.1 and
4.2 and Corollaries 1.6 and 4.6, we obtain

Corollary 5.4. PL 2o VM2m, P^KO^ML, V2mr0^Vr

2m> WSm2o
VW8m κo τ2WL and W2m,2m £o PΛSZβtn.

As a consequence of Theorem 5.2 we can finally show Theorem 3 stated in
the introduction.

Proof of Theorem 3. i) The KU0X^Z/2m case: The conjugation t* on
KU0X behaves as one of the following four types: t* = ± 1 , 4 Λ ± 1 (m=4n).
Thus the pair (KU0X, t*) is itself elementary. So we may apply Theorem 5.2
to show that X is quasi KO*-equivalent to one of the following four elementary
spectra: V2m, τ2SZβm, WBn and VWSn.

ii) The KUoXexZtBZβm case: The conjugation t* on KU0X behaves

as one of the following twelve types: £ # = ± ( Λ _ι_i)> ± ( 0 4 _ι A (m=^ή),

(1 0\ / 1 0\ . .

I 1), ± ( ij Thus the pair (KU0X,t*) is itself elementary, too.
Hence we can show that X is quasi KO*-equivalent to one of the twelve ele-
mentary spectra given in Theorem 3 ii), by applying Theorem 5.2 again.
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