QUASI K-HOMOLOGY EQUIVALENCES, I

Dedicated to Professor Shôrô Araki on his sixtieth birthday

Zen-ichi YOSIMURA

(Received March 23, 1989)
(Revised November 7, 1989)

0. Introduction

Let $K O, K U$ and $K C$ be the real, complex and self-conjugate K-spectrum respectively. Following [14] we call a $C W$-spectrum X a Wood spectrum if there exists a $K O$-module equivalence $f: K U \rightarrow K O \wedge X$, and an Anderson spectrum if there exists a $K O$-module equivalence $g: K C \rightarrow K O \wedge X$. The elementary spe$\operatorname{ctra} P$ and Q taken to be the cofibers of the maps $\eta: \Sigma^{1} \rightarrow \Sigma^{0}$ and $\eta^{2}: \Sigma^{2} \rightarrow \Sigma^{0}$ respectively are known as typical examples of Wood and Anderson spectra [3], where $\eta: \Sigma^{1} \rightarrow \Sigma^{0}$ is the stable Hopf map of order 2. Recently Mimura, Oka and Yasuo [14] gave some characterizations of finite $C W$-complexes whose suspension spectra are such spectra. The following theorem is a spectrum version of one of their results.

Theorem 0. i) X is a Wood spectrum if and only if $K U_{0} X \cong Z \oplus Z$, $K U_{1} X=0$ and the conjugation t_{*} on $K U_{0} X$ is represented by the matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
ii) X is an Anderson spectrum if and only if $K U_{0} X \cong Z, K U_{1} X \cong Z, K O_{2} X=0=$ $K O_{6} X$ and the conjugation t_{*} acts as the identity on both $K U_{0} X$ and $K U_{-1} X$.

Let E be an associative ring spectrum with unit. Given $C W$-spectra X, Y we say that X is quasi E_{*}-equivalent to Y, written $X_{\widetilde{E}} Y$, if there exists a map $h: Y \rightarrow E \wedge X$ such that the composite $\left(\mu_{\wedge} 1\right)\left(1_{\wedge} h\right): E \wedge Y \rightarrow E \wedge E \wedge X \rightarrow E \wedge X$ is an equivalence. We are interested in the quasi K-homology equivalences, especially the quasi $K O_{*}$-equivalence. According to our definition, a $C W$-spectrum X is said to be a Wood spectrum if $X_{\widetilde{K O}} P$ and an Anderson spectrum if $X_{\widetilde{K O}} Q$.

Let H be a finitely generated abelian group which is 2-torsion free. If the cyclic group $Z / 2$ of order 2 acts on H, then H admits a direct sum decomposition $H \cong A \oplus B \oplus C \oplus C$ such that the action ρ behaves as $\rho=1$ on $A, \rho=-1$ on B and $\rho=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ on $C \oplus C$ respectively [7]. For any abelian group G we denote by $S G$ the Moore spectrum of type G. The Moore spectrum $S Z / m$ is constructed
by the cofiber sequence $\Sigma^{0} \xrightarrow{m} \Sigma^{0} \xrightarrow{i} S Z / m \xrightarrow{j} \Sigma^{1}$. In this note our purpose is a development of the work of Mimura-Oka-Yasuo [14]. We will first show the following results (cf. [6]) which of course contain Theorem 0.

Theorem 1. Assume that $K U_{0} X$ is finitely generated, 2-torsion free and $K U_{1} X=0$. Then there exist abelian groups $A^{\prime}, A^{\prime \prime}, B^{\prime}, B^{\prime \prime}$ and C so that $X_{\widetilde{K O}} Y \vee$ $(P \wedge S C)$ where Y denotes the wedge sum $S A^{\prime} \vee \Sigma^{2} S B^{\prime} \vee \Sigma^{4} S A^{\prime \prime} \vee \Sigma^{6} S B^{\prime \prime}$ of the Moore spectra (Theorem 2.4).

Theorem 2. Assume that $K U_{0} X$ and $K U_{1} X$ are finitely generated, 2-torsion free. If the conjugation t_{*} acts as the identity on $K U_{0} X$ and $K U_{1} X$, then there exist abelian groups $A^{\prime}, A^{\prime \prime}, D^{\prime}, D^{\prime \prime}$ and G so that $X_{\widetilde{K O}} Y \vee\left(\Sigma^{1} Q \wedge S G\right)$ where Y denotes the wedge sum $S A^{\prime} \vee \Sigma^{1} S D^{\prime} \vee \Sigma^{4} S A^{\prime \prime} \vee \Sigma^{5} S D^{\prime \prime}$ of the Moore spectra (Theorem 3.4).

As an immediate corollary of Theorem 1 we can determine the quasi $K O_{*^{-}}$ type of the complex projective n-space $C P^{n}$ (Corollary 2.5), since $K U_{0} C P^{n}$ is the free abelian group of rank n and $K U_{1} C P^{n}=0$ [1]. However we need to discuss more richly to determine the quasi $K O_{*}$-type of the real projective n-space $R P^{n}$ [20, Theorem 5], since $K U_{1} R P^{n}$ is not 2-torsion free for any $n \geqq 2$. In fact, $K U_{0} R P^{n}=0$ and $K U_{1} R P^{n} \cong Z / 2^{s}$ or $Z \oplus Z / 2^{s}$ according as $n=2 s$ or $2 s+1$ [1], and besides $K O_{0} R P^{n}=0$ if $n \equiv 1,2,3,4,5 \bmod 8, K O_{4} R P^{n}=0$ if $n \equiv 0,1,5$, $6,7 \bmod 8$ and $K O_{6} R P^{n}=0$ for all n [8].

In order to state another main result we will only need the following elementary spectra with a few cells introduced in (4.1), (4.4) and (4.16). Let $M_{2 m}, Q_{2 m}, V_{2 m}$ and $W_{8 m}(m \geqq 1)$ denote respectively the cofibers of the maps

$$
\begin{array}{ll}
i \eta: \Sigma^{1} \rightarrow S Z / 2 m, & \tilde{\eta} \eta: \Sigma^{3} \rightarrow S Z / 2 m, \\
i \bar{\eta}: \Sigma^{1} S Z / 2 \rightarrow S Z / m & \text { and } \\
i \bar{\eta}+\tilde{\eta} j: \Sigma^{1} S Z / 2 \rightarrow S Z / 4 m
\end{array}
$$

where $\tilde{\eta}: \Sigma^{2} \rightarrow S Z / 2 n$ is a coextension of η with $j \tilde{\eta}=\eta$ and $\bar{\eta}: \Sigma^{1} S Z / 2 n \rightarrow \Sigma^{0}$ is an extension of η with $\bar{\eta} i=\eta$.

In the case when $K U_{0} X$ has 2-torsion and $K U_{1} X=0$, we can next show a corrsponding theorem (Theorem 5.2) to Theorem 1 under certain restrictions, using these elementary spectra. This theorem implies the following result, which is useful in determining the quasi $K O_{*}$-type of such a $C W$-spectrum as $R P^{n}$.

Theorem 3. Assume that $K U_{1} X=0$ and $K O_{1} X=0=K O_{7} X$.
i) If $K U_{0} X \cong Z / 2 m$ with $m=2^{s}, s \geqq 0$, then $X_{\widetilde{K O}} \Sigma^{2} S Z / 2 m, V_{2 m}, W_{8 n}(m=4 n)$ or $\Sigma^{2} W_{8 n}(m=4 n)$.
ii) If $K U_{0} X \cong Z \oplus Z / 2 m$ with $m=2^{s}$, $s \geqq 0$, then $X_{\widetilde{K O}} \Sigma^{2} \vee Y, \Sigma^{4} \vee Y, M_{2 m}, \Sigma^{2} M_{2 m}$, $\Sigma^{2} Q_{2 m}$ or $\Sigma^{4} Q_{2 m}$ where Y is one of the four elementary spectra given in i). (Cf. [20,

Theorem 2.5].)

This paper is organized as follows. As a preliminary, in $\S 1$ we will first recall some relations among $K O, K U$ and $K C$ theory [3] and then give basic tools (Proposition 1.1 and Lemma 1.3) to prove our main results. After studying the $K O_{*}$-module structures of $K O_{*} X$ under the situations assumed in the theorems (Propositions 2.3 and 3.2), we will prove Theorems 1 and 2 (Theorems 2.4 and 3.4) respectively in $\S 2$ and $\S 3$. In $\S 4$ we will introduce some elementary spectra with a few cells such as $M_{2 m}, Q_{2 m}, V_{2 m}$ and $W_{8 m}$, and then compute their $K U$ and $K O$ homologies (Propositions 4.1, 4.2, 4.4 and 4.5). By making use of the results obtained in $\S 4$ we will devote ourselves to prove Theorem 5.2 in $\S 5$, and finally show Theorem 3 as a consequence of this theorem.

In this note we will work in the stable homotopy category of $C W$-spectra.

1. Real, complex and self-conjugate K-theory

1.1. Let $K U$ be the $B U$-spectrum representing the complex K-theory and $K O$ the $B O$-spectrum representing the real K-theory. Both $K U$ and $K O$ are associative and commutative ring spectra with unit. These spectra are related by the Bott cofiber sequence

$$
\begin{equation*}
\Sigma^{1} K O \xrightarrow{\eta_{\Lambda} 1} K O \xrightarrow{\varepsilon_{U}} K U \xrightarrow{\varepsilon_{0} \pi_{U}^{-1}} \Sigma^{2} K O \tag{1.1}
\end{equation*}
$$

where $\eta: \Sigma^{1} \rightarrow \Sigma^{0}$ is the stable Hopf map of order 2 and $\pi_{U}: \Sigma^{2} K U \rightarrow K U$ denotes the Bott periodicity. The complexification $\varepsilon_{U}: K O \rightarrow K U$ and the conjugation $t: K U \rightarrow K U$ are both ring maps, but the realification $\varepsilon_{0}: K U \rightarrow K O$ is merely a $K O$-module map. As is well known, the equalities $\varepsilon_{o} \varepsilon_{U}=2$ and $\varepsilon_{U} \varepsilon_{0}=1+t$ hold.

Let $K C$ be the $B S C$-spectrum representing the self-conjugate K-theory, which is useful in studying the relation between $K O$ and $K U$ theory (see [3], [6]). This spectrum $K C$ is also an associative and commutative ring spectrum with unit, and it is obtained as the fiber of the map $1-t: K U \rightarrow K U$. Thus we have a cofiber sequence

$$
\begin{equation*}
K C \xrightarrow{\zeta} K U \xrightarrow{\pi \bar{U}^{-1}(1-t)} \Sigma^{2} K U \xrightarrow{\gamma \pi_{U}} \Sigma^{1} K C \tag{1.2}
\end{equation*}
$$

(see [3, Theorem 1.2]).
Since $\varepsilon_{U} \varepsilon_{o} \pi_{U}^{-1}=\pi_{U}^{-1}(1-t)$, we get a cofiber sequence

$$
\begin{equation*}
\Sigma^{2} K O \xrightarrow{\eta^{2} \wedge 1} K O \xrightarrow{\varepsilon_{c}} K C \xrightarrow{\tau \pi \bar{c}^{-1}} \Sigma^{3} K O \tag{1.3}
\end{equation*}
$$

making the diagram below commutative

$$
\begin{align*}
& \Sigma^{1} K U=\Sigma^{1} K U \\
& \begin{array}{ccc}
\\
K O \underset{\varepsilon_{C}}{\gamma \pi_{U} \downarrow} & K C \underset{\tau \pi \sigma^{1}}{\longrightarrow} & \downarrow \varepsilon_{o} \pi_{\bar{U}}^{-1} \\
\Sigma^{3} K O \\
\eta^{2} \wedge 1 \\
& \zeta \downarrow & \downarrow \eta_{\wedge} 1
\end{array} \tag{1.4}\\
& K O \xrightarrow{\varepsilon_{U}} K U \xrightarrow{\varepsilon_{0} \pi_{U}^{-1}} \Sigma^{2} K O \xrightarrow{\eta_{\wedge}{ }^{1}} \Sigma^{1} K O \\
& \pi_{U}^{-1}(1-t) \downarrow \quad \downarrow \varepsilon_{U} \\
& \Sigma^{2} K U=\Sigma^{2} K U
\end{align*}
$$

Here $\pi_{c}: \Sigma^{4} K C \rightarrow K C$ denotes the periodicity satisfying $\zeta \pi_{C}=\pi_{U}^{2} \zeta$ and $\pi_{c} \gamma=\gamma \pi_{U}^{2}$. The maps ε_{C} and ζ are ring maps such that $\zeta \varepsilon_{C}=\varepsilon_{U}$, and the maps γ and τ are $K O$-module maps such that $\tau \gamma=\varepsilon_{o}[6]$.

Let P denote the suspension spectrum whose second term is the complex projective space $C P^{2}$. Thus the spectrum P is constructed by the cofiber sequence

$$
\begin{equation*}
\Sigma^{1} \xrightarrow{\eta} \Sigma^{0} \xrightarrow{i_{P}} P \xrightarrow{j_{P}} \Sigma^{2} \tag{1.1}
\end{equation*}
$$

Take the element $u \in K U_{0} P$ satisfying $\left(\varepsilon_{o \wedge}\right)_{*} u=\left(1_{\wedge} i_{P}\right)_{*} \iota_{o}$ and $\left(\pi_{U \wedge} j_{P}\right)_{*} u=\iota_{U}$ where $\iota_{o} \in K O_{0} \Sigma^{0}$ and $\iota_{U} \in K U_{0} \Sigma^{0}$ denote the units. Consider the map $W_{P}(u)$: $K U \rightarrow K O \wedge P$ definied to be the composite $\left(\varepsilon_{o \wedge} 1\right)\left(\mu_{U \wedge} 1\right)(1 \wedge u): K U \rightarrow K U \wedge K U$ $\wedge P \rightarrow K U \wedge P \rightarrow K O \wedge P$ where μ_{U} denotes the multiplication of $K U$. Since $W_{P}(u) \varepsilon_{U}=1_{\wedge} i_{P}$ and $\left(1_{\wedge} j_{P}\right) W_{P}(u)=\varepsilon_{o} \pi_{U}^{-1}$, we can use Five lemma to show that $W_{P}(u)$ is an equivalence. As is well known, this result says that the Bott cofiber sequence (1.1) is produced by the cofiber sequence (1.1)' smashed with $K O$. The map $W_{P}(u): K U \rightarrow K O \wedge P$ is called the Wood equivalence [3, Theorem 2.1].

Let Q denote the suspension spectrum obtained as the cofiber of the composite square η^{2}. Thus

$$
\begin{equation*}
\Sigma^{2} \xrightarrow{\eta^{2}} \Sigma^{0} \xrightarrow{i_{Q}} Q \xrightarrow{j_{Q}} \Sigma^{3} \tag{1.3}
\end{equation*}
$$

is a cofiber sequence.
Take the element $v \in K C_{-1} Q$ satisfying $\left(\tau_{\wedge} 1\right)_{*} v=\left(1_{\wedge} i_{Q}\right)_{*} \iota_{0}$ and $\left(\pi_{C \wedge} j_{Q}\right)_{*} v=$ ι_{c} where $\iota_{c} \in K C_{0} \Sigma^{0}$ denotes the unit. Consider the map $W_{Q}(v): K C \rightarrow K O \wedge Q$ defined to be the composite $\left(\tau_{\wedge} 1\right)\left(\mu_{C \wedge} 1\right)\left(1_{\wedge} v\right): K C \rightarrow \Sigma^{1} K C \wedge K C \wedge Q \rightarrow \Sigma^{1} K C \wedge Q$ $\rightarrow K O \wedge Q$ where μ_{C} denotes the multiplication of $K C$. The map $W_{Q}(v)$ is also an equivalence, since $W_{Q}(v) \varepsilon_{C}=1_{\wedge} i_{Q}$ and $\left(1_{\wedge} j_{Q}\right) W_{Q}(v)=\tau \pi \bar{c}^{-1}$. Hence the cofiber sequence (1.3) is produced by the cofiber sequence (1.3)' smashed with $K O$. The map $W_{Q}(v): K C \rightarrow K O \wedge Q$ to be the $K C$-analogous of the Wood equivalence, is called the Anderson equivalence (see [3, Theorem 3.1]).

Combining the two cofiber sequences (1.1)' and (1.3)' we get the following cofiber sequence

$$
\begin{equation*}
Q \rightarrow P \xrightarrow{i_{P} j_{P}} \Sigma^{2} P \rightarrow \Sigma^{1} Q, \tag{1.2}
\end{equation*}
$$

which yields the cofiber sequence (1.2) by smashing with $K O$.
Let R denote the suspension spectrum constructed by the cofiber sequence $\Sigma^{3} \xrightarrow{\eta^{3}} \Sigma^{0} \xrightarrow{i_{R}} R \xrightarrow{j_{R}} \Sigma^{4}$. Then we have two cofiber sequences

$$
\begin{align*}
& \Sigma^{1} Q \rightarrow R \rightarrow P \xrightarrow{i_{Q} j_{P}} \Sigma^{2} Q \tag{1.5}\\
& \Sigma^{2} P \rightarrow R \rightarrow Q \xrightarrow{i_{P} j_{Q}} \Sigma^{3} P \tag{1.6}
\end{align*}
$$

which yield cofiber sequences

$$
\begin{align*}
& \Sigma^{1} K C \xrightarrow{\left(-\tau, \tau \pi \bar{c}^{-1}\right)} K O \vee \Sigma^{4} K O \xrightarrow{\varepsilon_{U} \vee \pi_{U}^{2} \varepsilon_{U}} K U \xrightarrow{\varepsilon_{c} \varepsilon_{o} \pi_{U}^{-1}} \Sigma^{2} K C \tag{1.5}\\
& \Sigma^{2} K U \xrightarrow{\left(\varepsilon_{o} \pi_{U},-\varepsilon_{o} \pi_{U}^{-1}\right)} K O \vee \Sigma^{4} K O \xrightarrow{\varepsilon_{c} \vee \pi_{c} \varepsilon_{c}} K C \xrightarrow{\varepsilon_{U} \tau \pi_{c^{1}}^{1}} \Sigma^{3} K U \tag{1.6}
\end{align*}
$$

(see [3, Theorems 3.2 and 3.3]).
1.2. Let E be an associative ring spectrum with unit and F any associative E-module spectrum. Given a $C W$-spectrum Y we denote by $[E \wedge Y, F]_{E}$ the subgroup of $[E \wedge Y, F]$ consisting of all the homotopy classes of E-module maps. We assign to any map $f: Y \rightarrow F$ the E-module map $\kappa_{E}(f)=\mu_{F}\left(1_{\wedge} f\right)$: $E \wedge Y \rightarrow E \wedge F \rightarrow F$ where μ_{F} denotes the E-module structure map of F. The assignment $\kappa_{E}:[Y, F] \rightarrow[E \wedge Y, F]_{E}$ is evidently an isomorphism.

A map $f: Y \rightarrow F$ is said to be a quasi E_{*}-equivalence if $\kappa_{E}(f): E \wedge Y \rightarrow F$ becomes an equivalence. For any $C W$-spectra X, Y we say that X is quasi $E_{*^{-}}$ equivalent to Y if there exists a quasi E_{*}-equivalence $f: Y \rightarrow E \wedge X$. In this case we write $X_{\widetilde{E}} Y$.

Consider the homomorphism $\tilde{\kappa}_{E}:[Y, F] \rightarrow \operatorname{Hom}_{E_{*}}\left(E_{*} Y, F_{*}\right)$ defined by $\widetilde{\kappa}_{E}(f)$ $=\kappa_{E}(f)_{*}$, where $E_{*}=\pi_{*} E$ and $F_{*}=\pi_{*} F$. Taking $E=K U$ we have a universal coefficient sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Ext}_{K U *}\left(K U_{*-1} Y, F_{*}\right) \rightarrow[Y, F] \xrightarrow{\widetilde{\kappa}_{K U}} \operatorname{Hom}_{K U *}\left(K U_{*} Y, F_{*}\right) \rightarrow 0 \tag{1.7}
\end{equation*}
$$

for any associatvie $K U$-module spectrum F (use [1, Theorem 13.6]). In particular, we note that

$$
\begin{equation*}
\tilde{\kappa}_{K U}:[Y, F] \rightarrow \operatorname{Hom}_{K U *}\left(K U_{*} Y, F_{*}\right) \tag{1.8}
\end{equation*}
$$

is an isomorphism if $K U_{*} Y$ is free, or if $K U_{1} Y=0=F_{1}$.
Taking $E=K O$ and $Y=S G$, the Moore spectrum of type G, we have a short
exact sequence

$$
\begin{equation*}
0 \rightarrow \mathrm{Ext}_{K O_{*}}\left(K O_{*-1} S G, F_{*}\right) \rightarrow[S G, F] \xrightarrow{\tilde{\kappa}_{K O}} \operatorname{Hom}_{K O_{*}}\left(K O_{*} S G, F_{*}\right) \rightarrow 0 \tag{1.9}
\end{equation*}
$$

for any associative $K O$-module spectrum F, if the abelian group G is 2-torsion free.

Given two $C W$-spectra X, W there exists a unique $C W$-spectrum $F(X, W)$, called the function spectrum, with a natural isomorphism $D_{X, W}:[Y, F(X, W)] \rightarrow$ $[X \wedge Y, W]$ for any $C W$-spectrum Y (see [12] or [18]). Let $D X$ denote the Spanier-Whitehead dual spectrum of X. Thus $D X$ is just the function spectrum $F(X, S)$ where S is the sphere spectrum.

The elementary spectra P and Q are both self-dual in the sense that $D P=$ $\Sigma^{-2} P$ and $D Q=\Sigma^{-3} Q$. So there exist duality isomorphisms $D_{P}:\left[\Sigma^{2} Y, P \wedge X\right] \rightarrow$ $[P \wedge Y, X]$ and $D_{Q}:\left[\Sigma^{3} Y, Q \wedge X\right] \rightarrow[Q \wedge Y, X]$ for any $C W$-spectra X, Y. Let $\tilde{u} \in K U^{0} P$ be the dual element of $\left(\pi_{U \wedge} 1\right)_{*} u \in K U_{2} P$ and $\tilde{v} \in K C^{0} Q$ the dual element of $\left(\pi_{c \wedge} 1\right)_{*} v \in K C_{3} Q$. Then the element \tilde{u} satisfies $i_{P}^{*} \tilde{u}=\iota_{U}$ and $\left(\varepsilon_{o} \pi_{U}^{-1}\right)_{*}$ $\tilde{u}=j_{P}^{*} \iota_{0}$, and similarly the element \tilde{v} satisfies $i_{Q}^{*} \tilde{v}=\iota_{C}$ and $\left(\tau \pi \sigma_{c}^{-1}\right)_{*} \tilde{v}=j_{Q}^{*} \iota_{0}$. Making use of these equalities and Five lemma we can show that $\kappa_{K O}(\tilde{u}): K O \wedge P \rightarrow K U$ and $\kappa_{K O}(\tilde{v}): K O \wedge Q \rightarrow K C$ are both equivalences, which give the inverses of $W_{P}(u)$ and $W_{Q}(v)$ respectively. Thus

$$
\begin{equation*}
\tilde{u}: P \rightarrow K U \quad \text { and } \quad \tilde{v}: Q \rightarrow K C \quad \text { are both quasi } K O_{*} \text {-equivalences. } \tag{1.10}
\end{equation*}
$$

Moreover we note that the following diagram is commutative

$$
\begin{array}{lrlrr}
\Sigma^{1} P \rightarrow Q & \rightarrow & P & \Sigma^{2} P \tag{1.11}\\
\tilde{u} \downarrow & \tilde{v} \downarrow & \downarrow \tilde{u} & \downarrow \tilde{u} \\
\Sigma^{1} K U & \rightarrow K C \rightarrow & & K U \rightarrow & \Sigma^{2} K U
\end{array}
$$

in which the cofiber sequences (1.2), (1.2)' are involved (cf. [3, Lemma 3.2]).
For any maps $f: Y \rightarrow K U \wedge X$ and $g: Y \rightarrow K C \wedge X$ we define a map $e_{P}(f)$: $P \wedge Y \rightarrow K U \wedge X$ to be the composite $\left(\mu_{U \wedge} 1\right)\left(1_{\wedge} f\right)\left(\tilde{u}_{\wedge} 1\right): P \wedge Y \rightarrow K U \wedge Y \rightarrow$ $K U \wedge K U \wedge X \rightarrow K U \wedge X$, and similarly a map $e_{Q}(g): Q \wedge Y \rightarrow K C \wedge X$ to be the composite $\left(\mu_{C \wedge} 1\right)\left(1_{\wedge} g\right)\left(\tilde{v}_{\wedge} 1\right): Q \wedge Y \rightarrow K C \wedge Y \rightarrow K C \wedge K C \wedge X \rightarrow K C \wedge X$. Obviously $\kappa_{K O}\left(e_{P}(f)\right)=\kappa_{K U}(f)\left(\kappa_{K O}(\tilde{u})_{\wedge} 1\right)$ and $\kappa_{K C}\left(e_{Q}(g)\right)=\kappa_{K C}(g)\left(\kappa_{K O}(\tilde{v})_{\wedge} 1\right)$. Therefore it follows immediately from (1.10) that
(1.12) i) $f: Y \rightarrow K U \wedge X$ is a quasi $K U_{*}$-equivalence if and only if $e_{P}(f): P \wedge Y$ $\rightarrow K U \wedge X$ is a quasi $K O_{*}$-equivalence.
ii) $g: Y \rightarrow K C \wedge X$ is a quasi $K C_{*}$-equivalence if and only if $e_{Q}(g): Q \wedge Y \rightarrow$ $K C \wedge X$ is a quasi $K O_{*}$-equivalence.

The following result, which states a relation between quasi $K U_{*^{-}}$and $K O_{*^{-}}$ equivalences, is very useful in proving our main theorems.

Proposition 1.1. A map $h: Y \rightarrow K O \wedge X$ is a quasi $K O_{*}$-equivalence if and only if the composite $\left(\varepsilon_{U \wedge} 1\right) h: Y \rightarrow K O \wedge X \rightarrow K U \wedge X$ is a quasi $K U_{*-e q u i v a l e n c e . ~}^{\text {- }}$ (Cf. [15, Theorem 8.14] or [13].)

Proof. Given a quasi $K O_{*}$-equivalence $h: Y \rightarrow K O \wedge X$ we consider the commutative diagram

involving the cofiber sequences (1.1), (1.1)', where $h_{1}=e_{P}\left(\left(\varepsilon_{U \wedge} 1\right) h\right)$. Applying Five lemma we see that h_{1} is a quasi $K O_{*}$-equivalence. Thus (1.12) i) shows that $\left(\varepsilon_{U \wedge} 1\right) h$ is a quasi $K U_{*}$-equivalence.

Conversely we assume that $\left(\varepsilon_{U \wedge} 1\right) h: Y \rightarrow K U \wedge X$ is a quasi $K U_{*}$-equivalence. Use the two commutative diagrams

involving the cofiber sequences (1.2), (1.2)', (1.6) and (1.6)', where $h_{1}=e_{P}\left(\left(\varepsilon_{U \wedge} 1\right) h\right)$, $h_{2}=e_{Q}\left(\left(\varepsilon_{C \wedge} 1\right) h\right)$ and $h_{3}=\left(T_{\wedge} 1\right)\left(1_{\wedge} h\right)$ for the switching map $T: R \wedge K O \rightarrow K O \wedge R$. Then Five lemma shows that h_{2} and hence h_{3} is a quasi $K O_{*}$-equivalence as h_{1} is. This implies that $h_{*}: K O_{*} Y \rightarrow K O_{*} X$ is an epimorphism as well as a monomorphism, because $K O \wedge R=K O \vee \Sigma^{4} K O$. Thus $h: Y \rightarrow K O \wedge X$ is a quasi $K O_{*}$-equivalence.
1.3. Let $f: Y \rightarrow K U \wedge X$ be a map satisfying $\left(t_{\wedge} 1\right) f=f$. Then there exists a map $g: Y \rightarrow K C \wedge X$ such that $\left(\zeta_{\wedge} 1\right) g=f$. Given such maps f, g we have a commutative diagram

$$
\begin{array}{cccccc}
\Sigma^{1} Y & \rightarrow & Y & \rightarrow & P \wedge Y & \rightarrow \tag{1.13}\\
f \downarrow \\
& & g \downarrow & & \downarrow e_{P}(f) & \downarrow \\
\Sigma^{1} K U \wedge X & \rightarrow & K C \wedge X & \rightarrow & K U \wedge X & \rightarrow \\
\Sigma^{2} K U \wedge X
\end{array}
$$

involving the cofiber sequences (1.1), (1.1)', because $\gamma \pi_{U} \zeta=\eta_{\wedge} 1: \Sigma^{1} K C \rightarrow K C$.
In other words, there exists a commutative diagram

$$
\begin{array}{cccc}
\Sigma^{1} P \wedge Y & \rightarrow Q \wedge Y & \rightarrow & P \wedge Y \\
e_{P}(f) \downarrow & e_{Q}(g) \downarrow & & \Sigma^{2} P \wedge Y \tag{1.14}\\
\Sigma^{1} K U \wedge X & \rightarrow K C \wedge X & \rightarrow & K U \wedge X \\
\Sigma_{P}(f) & \downarrow e_{P}(f) \\
\Sigma^{2} K U \wedge X
\end{array}
$$

involving (1.2), (1.2)', since [4, Theorem 1.3] says that $\gamma \mu_{U}(1 \wedge \zeta)=\mu_{C}\left(\gamma_{\wedge} 1\right)$: $K U \wedge K C \rightarrow \Sigma^{1} K C$. Applying Five lemma and (1.12) we see that
(1.15) $g: Y \rightarrow K C \wedge X$ is a quasi $K C_{*}$-equivalence if $f: Y \rightarrow K U \wedge X$ is a quasi $K U_{*}$-equivalence.

Lemma 1.2. Assume that $\left[Y, \Sigma^{1} K U \wedge X\right]=0$ and the map $\eta_{*}^{2}:\left[Y, \Sigma^{4} K O \wedge\right.$ $X] \rightarrow\left[Y, \Sigma^{2} K O \wedge X\right]$ is trivial. If a map $f: Y \rightarrow K U \wedge X$ satisfies $(t \wedge 1) f=f$, then there exists a map $h: Y \rightarrow K O \wedge X$ such that $\left(\varepsilon_{U \wedge} 1\right) h=f$.

Proof. Under the assumption that $\left[Y, \Sigma^{1} K U \wedge X\right]=0,\left(\zeta_{\wedge} 1\right)_{*}:[P \wedge Y$, $\left.\Sigma^{2} K C \wedge X\right] \rightarrow\left[P \wedge Y, \Sigma^{2} K U \wedge X\right]$ is a monomorphism. Then (1.14) implies that $\left(\varepsilon_{c} \varepsilon_{o} \pi_{U}^{-1} \wedge 1\right) e_{P}(f)=e_{Q}(g)\left(i_{Q} j_{P \wedge} 1\right)$. Hence there exists a map $h_{R}: R \wedge Y \rightarrow K O \wedge$ $R \wedge X$ making the diagram below commutative

$$
\begin{aligned}
& \Sigma^{1} K C \wedge X \rightarrow K O \wedge R \wedge X \rightarrow K U \wedge X \underset{\varepsilon_{c} \varepsilon_{0} \pi_{U}^{\overrightarrow{-1}} 1}{ } \Sigma^{2} K C \wedge X
\end{aligned}
$$

where the rows are induced by the cofiber sequences (1.5), (1.5)'. We here consider the commutative diagram

$$
\begin{aligned}
& Y \quad \xrightarrow{i_{R \wedge} 1} \quad R \wedge Y \quad \rightarrow P \wedge Y \quad \xrightarrow{j_{P \wedge} 1} \quad \Sigma^{2} Y \quad \xrightarrow{i_{Q \wedge} 1} \Sigma^{2} Q \wedge Y \\
& h_{R} \downarrow \quad \downarrow e_{P}(f) \quad \downarrow e_{Q}(g) \\
& K O \wedge X \underset{1_{\wedge} i_{R \wedge} 1}{ } K O \wedge R \wedge X \rightarrow K U \wedge X \underset{\varepsilon_{0} \pi_{U}^{-1} \wedge 1}{ } \Sigma^{2} K O \wedge X \underset{\varepsilon_{C \wedge} 1}{\rightarrow} \Sigma^{2} K C \wedge X
\end{aligned}
$$

Since $\varepsilon_{c *}:\left[Y, \Sigma^{2} K O \wedge X\right] \rightarrow\left[Y, \Sigma^{2} K C \wedge X\right]$ is a monomorphism by our second as sumption, the composite $\left(\varepsilon_{0} \pi_{U}^{-1} \wedge 1\right) e_{P}(f)\left(i_{P \wedge} 1\right): Y \rightarrow \Sigma^{2} K O \wedge X$ is trivial. So we can find a map $h: Y \rightarrow K O \wedge X$ such that $\left(\varepsilon_{U \wedge} 1\right) h=f$.

In proving our main theorems we shall often use the following result, whose proof is given in [20, Lemma 1.1 and (1.7)].

Lemma 1.3. Let $f: Y \rightarrow K U \wedge X$ be a map satisfying $\left(t_{\wedge} 1\right) f=f$ and $k: W \rightarrow$ Y be a map inducing an epimorphism $k^{*}:\left[Y, \Sigma^{1} K U \wedge X\right] \rightarrow\left[W, \Sigma^{1} K U \wedge X\right]$. Then there exist maps $h_{0}: W \rightarrow K O \wedge X$ and $g: Y \rightarrow K C \wedge X$ making the diagram below commutative

if the composite $\left(\varepsilon_{o} \pi_{\bar{U}}{ }^{1} \wedge 1\right) f k: W \rightarrow \Sigma^{2} K O \wedge X$ is trivial, in particular if $\left(\eta_{\wedge} 1\right)_{*}$: $\left[W, \Sigma^{3} K O \wedge X\right] \rightarrow\left[W, \Sigma^{2} K O \wedge X\right]$ is trivial.
1.4. Let ∇E denote the Anderson dual spectrum of E (see [4], [5], [9] or $[19, I$ and $I I]$). The $C W$-spectra E and ∇E are related by the following universal coefficient sequence

$$
0 \rightarrow \operatorname{Ext}\left(E_{*-1} X, Z\right) \rightarrow \nabla E^{*} X \rightarrow \operatorname{Hom}\left(E_{*} X, Z\right) \rightarrow 0
$$

The Anderson dual spectrum ∇E is just the function spectrum $F(E, \nabla S)$ where ∇S is the Anderson dual of the sphere spectrum S.

We now assume that E is an associative ring spectrum with unit. Note that the Anderson dual ∇E is an associative E-module spectrum $[19, I I]$. To any map $f: Y \rightarrow E \wedge X$ we may assign the E-module map $\kappa_{E}(f)^{*}: F(X, \nabla E) \rightarrow$ $F(Y, \nabla E)$ where $F(W, \nabla E)=F(W, F(E, \nabla S))=F(E \wedge W, \nabla S)$. Evidently it follows that
(1.16) the E-module map $\kappa_{E}(f)^{*}$ is an equivalence whenever $f: Y \rightarrow E \wedge X$ is a quasi E_{*}-equivalence.

For any $C W$-spectra X, Y we say that X is quasi E^{*}-equivalent to Y if there exists an E-module map $g: F(X, E) \rightarrow F(Y, E)$ which is an equivalence. Recall that $\nabla K U=K U$ as $K U$-module spectra, $\nabla K O=\Sigma^{4} K O$ as $K O$-module spectra and also $\nabla K C=\Sigma^{1} K C$ as $K C$-module spectra (see [4] or [19, I]). Then we obtain

Proposition 1.4. Let E denote the K-spectrum $K U, K O$ or $K C$. If X is quasi E_{*}-equivalent to Y, then X is quasi E^{*}-equivalent to Y.

Proof. If a map $f: Y \rightarrow E \wedge X$ is a quasi E_{*}-equivalence, then the E-module map $f^{*}: F(X, E) \rightarrow F(Y, E)$ induced by f is an equivalence because we may replace E with ∇E in this case.

A $C W$-spectrum W is said to be of finite type if $\pi_{i} W$ is finitely generated for each i. Notice that $E \wedge W=\nabla \nabla(E \wedge W)=F(F(W, \nabla E), \nabla S)$ if $E \wedge W$ is of finite type (see [19, I] or [5]). Then we obtain

Proposition 1.5. Let E denote the K-spectrum $K U, K O$ or KC. Assume that both $E \wedge X$ and $E \wedge Y$ are of finite type. Then X is quasi E_{*}-equivalent to Y if and only if X is quasi E^{*}-equivalent to Y.

Proof. We have only to prove the "if" part. Let $g: F(X, E) \rightarrow F(Y, E)$ be an E-module equivalence. Under the finiteness assumption on $E \wedge X$ and $E \wedge Y$ we get an E-module map $g^{*}: E \wedge Y \rightarrow E \wedge X$ which is also an equivalence, by replacing E with ∇E.

For the Spanier-Whitehead dual spectrum $D W=F(W, S)$ there exists an equivalence $\delta: D W \wedge E \rightarrow F(W, E)$ if W is finite. Note that the equivalence δ is an E-module map when E is an associative ring spectrum. As is easily seen, we
have
Corollary 1.6. Let E denote the K-spectrum $K U, K O$ or $K C$. Assume that X and Y are finite $C W$-spectra. Then X is quasi E_{*} equivalent to Y if and only if $D Y$ is quasi E_{*}-equivalent to $D X$.

2. Wood spectra

2.1. Let H be a finitely generated abelian group which is 2 -torsion free. Assume that the cyclic group $Z / 2$ of order 2 acts on H. Thus the abelian group H possesses an automorphism $\rho: H \rightarrow H$ with $\rho^{2}=1$. By applying the integral representation theory of the cyclic group $Z / 2$ [7] we observe that H has a direct sum decomposition $H \cong A \oplus B \oplus C \oplus C$ with C free, on which the $Z / 2$-action ρ behaves as follows:

$$
\rho=1 \text { on } A, \quad \rho=-1 \text { on } B \quad \text { and } \quad \rho=\left(\begin{array}{ll}
0 & 1 \tag{2.1}\\
1 & 0
\end{array}\right) \text { on } C \oplus C
$$

The conjugation $t: K U \rightarrow K U$ gives rise to a $Z / 2$-action t_{*} on $K U_{*} X$ for any $C W$-spectrum X. We first deal with a $C W$-spectrum X such that $K U_{0} X$ and $K U_{1} X$ are decomposed into the forms $K U_{0} X \cong A \oplus B \oplus C \oplus C$ and $K U_{1} X \cong$ $D \oplus E \oplus F \oplus F$ respectively, on which the conjuagtion t_{*} behaves as follows:

$$
\begin{align*}
& t_{*}=1 \text { on } A \text { or } D, \quad t_{*}=-1 \text { on } B \text { or } E, \quad \text { and } \tag{2.2}\\
& t_{*}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { on } C \oplus C \text { or } F \oplus F
\end{align*}
$$

For such a $C W$-spectrum X we will study K-homologies $K C_{*} X$ and $K O_{*} X$.
Lemma 2.1. i) There are short exact sequences

$$
\begin{aligned}
& 0 \rightarrow D \oplus(E \otimes Z / 2) \oplus F \rightarrow K C_{0} X \rightarrow A \oplus(B * Z / 2) \oplus C \rightarrow 0 \\
& 0 \rightarrow(A \otimes Z / 2) \oplus B \oplus C \rightarrow K C_{1} X \rightarrow D \oplus(E * Z / 2) \oplus F \rightarrow 0 \\
& 0 \rightarrow(D \otimes Z / 2) \oplus E \oplus F \rightarrow K C_{2} X \rightarrow(A * Z / 2) \oplus B \oplus C \rightarrow 0 \\
& 0 \rightarrow A \oplus(B \otimes Z / 2) \oplus C \rightarrow K C_{3} X \rightarrow(D * Z / 2) \oplus E \oplus F \rightarrow 0 .
\end{aligned}
$$

ii) $K O_{i} X \otimes Z[1 / 2] \cong(A \oplus C) \otimes Z[1 / 2],(D \oplus F) \otimes Z[1 / 2],(B \oplus C) \otimes Z[1 / 2]$ or $(E \oplus F) \otimes Z[1 / 2]$ corresponding to $i \equiv 0,1,2$ or 3 mod 4 .
iii) If $K U_{i} X$ is 2-torsion free, then the 2-torsion subgroup $K O_{i} X * Z / 2^{\infty}$ of $K O_{i} X$ is a Z/2-module.

Proof. i) Use the long exact sequence induced by the cofiber sequence (1.2).
ii) Use the exact sequence $0 \rightarrow K O_{i} X \otimes Z[1 / 2] \rightarrow K U_{i} X \otimes Z[1 / 2] \rightarrow$ $K U_{i-2} X \otimes Z[1 / 2] \rightarrow K O_{i-4} X \otimes Z[1 / 2] \rightarrow 0$ induced by the cofiber sequence (1.1).
iii) Under the 2-torsion freeness assumption on $K U_{i} X$, the complexification $\varepsilon_{U *}: K O_{i} X \rightarrow K U_{i} X$ restricted to the 2-torsion subgroup $K O_{i} X * Z / 2^{\infty}$ is
trivial. Then it follows that $2\left(K O_{i} X * Z / 2^{\infty}\right)=0$ because $\varepsilon_{o} \varepsilon_{U}=2$.
Lemma 2.2. Assume that $K U_{1} X=0$. Then
i) $K O_{1} X \oplus K O_{5} X \cong(A \otimes Z / 2) \oplus(B * Z / 2) \quad$ and $K O_{3} X \oplus K O_{7} X \cong(A * Z / 2) \oplus(B \otimes Z / 2)$.
ii) $\quad 0 \rightarrow A \oplus(B \otimes Z / 2) \oplus C \rightarrow K O_{0} X \oplus K O_{4} X \rightarrow A \oplus(B * Z / 2) \oplus C \rightarrow 0$
$0 \rightarrow(A \otimes Z / 2) \oplus B \oplus C \rightarrow K O_{2} X \oplus K O_{6} X \rightarrow(A * Z / 2) \oplus B \oplus C \rightarrow 0$
are short exact sequences.
Proof. Consider the exact sequences

$$
\begin{aligned}
& 0 \rightarrow K C_{3} X \rightarrow K O_{4} X \oplus K O_{0} X \rightarrow K U_{4} X \xrightarrow{\varphi_{2}} K C_{2} X \rightarrow K O_{3} X \oplus K O_{7} X \rightarrow 0 \\
& 0 \rightarrow K C_{1} X \rightarrow K O_{2} X \oplus K O_{6} X \rightarrow K U_{2} X \xrightarrow{\varphi_{0}} K C_{0} X \rightarrow K O_{1} X \oplus K O_{5} X \rightarrow 0
\end{aligned}
$$

induced by the cofiber sequence (1.5). Here the homomorphisms $\varphi_{2}: A \oplus B \oplus$ $C \oplus C \rightarrow(A * Z / 2) \oplus B \oplus C$ and $\varphi_{0}: A \oplus B \oplus C \oplus C \rightarrow A \oplus(B * Z / 2) \oplus C$ induced by the map $\varepsilon_{c} \varepsilon_{0} \pi_{v}^{-1}: K U \rightarrow \Sigma^{2} K C$, are respectively expressed as $\varphi_{2}\left(a, b, c_{1}, c_{2}\right)=$ $\left(0,2 b, c_{1}-c_{2}\right)$ and $\varphi_{0}\left(a, b, c_{1}, c_{2}\right)=\left(2 a, 0, c_{1}+c_{2}\right)$ because $\zeta \varepsilon_{c} \varepsilon_{o} \pi_{\bar{v}}^{-1}=\pi \bar{U}^{-1}(1-t)$. The result is now immediate.
2.2. We here deal with a $C W$-spectrum X such that $K U_{0} X$ is finitely generated, 2 -torsion free and $K U_{1} X=0$. In this case $K U_{0} X$ has a direct sum decomposition $K U_{0} X \cong A \oplus B \oplus C \oplus C$ with C free, on which the conjugation t_{*} behaves as (2.2).

Proposition 2.3. There are direct sum decompositions $A \cong A^{\prime} \oplus A^{\prime \prime}$ and $B \cong$ $B^{\prime} \oplus B^{\prime \prime}$ with $A^{\prime \prime}, B^{\prime \prime}$ free, so that $K O_{*} X \cong\left(K O_{*} \otimes A^{\prime}\right) \oplus\left(K O_{*-2} \otimes B^{\prime}\right) \oplus\left(K O_{*-4}\right.$ $\left.\otimes A^{\prime \prime}\right) \oplus\left(K O_{*-6} B^{\prime \prime}\right) \oplus\left(K U_{*} \otimes C\right)$ as $K O_{*}$-modules.

Proof. Consider the exact sequences $K U_{2 i+2} X \rightarrow K C_{2 i} X \xrightarrow{\psi_{2 i}} K O_{2 i+1} X \oplus$ $K O_{2 i+5} X \rightarrow 0$ induced by the cofiber sequence (1.5). Set $K O_{1} X=A_{1}, K O_{5} X=A_{5}$, $K O_{3} X=B_{3}$ and $K O_{7} X=B_{7}$, all of which are $Z / 2$-modules by Lemma 2.2 i). Since A and B are both 2-torsion free, we can choose direct sum decompositions $K C_{0} X \cong A^{\prime} \oplus A^{\prime \prime} \oplus C$ and $K C_{2} X \cong B^{\prime} \oplus B^{\prime \prime} \oplus C$ so that $A^{\prime} \otimes Z / 2 \cong A_{1}, A^{\prime \prime} \otimes Z / 2 \cong$ $A_{5}, B^{\prime} \otimes Z / 2 \cong B_{3}$ and $B^{\prime \prime} \otimes Z / 2 \cong B_{7}$, and moreover ψ_{0}, ψ_{2} are both the canonical epimorphisms (use $[11, \S 20]$). Here $A^{\prime \prime}, B^{\prime \prime}$ may be taken to be free.

The commutative diagram (1.4) gives rise to the following diagram

with exact rows. Denote by $L_{2 i}$ the cokernel of $\eta_{*}: K O_{2 i-1} X \rightarrow K O_{2 i} X$. It is
just the kernel of $\left(\tau \pi^{-1}\right)_{*}: K C_{2 i} X \rightarrow K O_{2 i-3} X$. Since the homomorphism $\psi_{2 i}$ is induced by the pair $\left(-\tau, \tau \pi c^{-1}\right): \Sigma^{1} K C \rightarrow K O \vee \Sigma^{4} K O$, we observe that $L_{2 i} \cong$ $K C_{2 i} X$, and the inclusions $l_{2 i}: L_{2 i} \rightarrow K C_{2 i} X$ are expressed as $l_{0}\left(a_{1}, a_{2}, c\right)=$ $\left(a_{1}, 2 a_{2}, c\right), l_{4}\left(a_{1}, a_{2}, c\right)=\left(2 a_{1}, a_{2}, c\right)$ for any $\left(a_{1}, a_{2}, c\right) \in A^{\prime} \oplus A^{\prime \prime} \oplus C$, and so on.

In order to determine the $K O_{*}$-module structure of $K O_{*} X$ we will describe explicitly the complexification $\varepsilon_{U *}=\varepsilon_{2 i}: K O_{2 i} X \rightarrow K U_{2 i} X$, admitting a factorization $K O_{2 i} X \rightarrow L_{2 i} \rightarrow K C_{2 i} X \rightarrow K U_{2 i} X$. Note that $K O_{2 i} X \cong L_{2 i} \oplus K O_{2 i-1} X$. As is easily computed, $\varepsilon_{2 i}: K O_{2 i} X \rightarrow K U_{2 i} X$ are given by the following homomorphisms:

$$
\begin{aligned}
& \varepsilon_{0}: A^{\prime} \oplus A^{\prime \prime} \oplus\left(B^{\prime \prime} \otimes Z / 2\right) \oplus C \rightarrow A^{\prime} \oplus A^{\prime \prime} \oplus B \oplus C \oplus C \\
& \varepsilon_{2}:\left(A^{\prime} \otimes Z / 2\right) \oplus B^{\prime} \oplus B^{\prime \prime} \oplus C \rightarrow A \oplus B^{\prime} \oplus B^{\prime \prime} \oplus C \oplus C \\
& \varepsilon_{4}: A^{\prime} \oplus A^{\prime \prime} \oplus\left(B^{\prime} \otimes Z / 2\right) \oplus C \rightarrow A^{\prime} \oplus A^{\prime \prime} \oplus B \oplus C \oplus C \\
& \varepsilon_{6}:\left(A^{\prime \prime} \otimes Z / 2\right) \oplus B^{\prime} \oplus B^{\prime \prime} \oplus C \rightarrow A \oplus B^{\prime} \oplus B^{\prime \prime} \oplus C \oplus C
\end{aligned}
$$

defined by $\varepsilon_{0}\left(a_{1}, a_{2}, b, c\right)=\left(a_{1}, 2 a_{2}, 0, c, c\right), \varepsilon_{2}\left(a, b_{1}, b_{2}, c\right)=\left(0, b_{1}, 2 b_{2}, c,-c\right)$, $\varepsilon_{4}\left(a_{1}, a_{2}, b, c\right)=\left(2 a_{1}, a_{2}, 0, c, c\right)$ and $\varepsilon_{6}\left(a, b_{1}, b_{2}, c\right)=\left(0,2 b_{1}, b_{2}, c,-c\right)$.

We moreover investigate the induced homomorphism $\eta_{*}=\eta_{j}: K O_{j} X \rightarrow$ $K O_{j+1} X$. Obviously $\eta_{2 i-1}$ is the canonical monomorphism. On the other hand, $\eta_{2 i}$ is obtained as the composite $K O_{2 i} X \rightarrow L_{2 i} \rightarrow K C_{2 i} X \cong K C_{2 i+4} X \rightarrow K O_{2 i+1} X$ because $\eta_{\wedge} 1=\tau \varepsilon_{c}: \Sigma^{1} K O \rightarrow K O$. Therefore $\eta_{2 i}$ is the canonical epimorphism.

The above investigations about $\varepsilon_{U *}$ and η_{*} show that $K O_{*} X \cong\left(K O_{*} \otimes A^{\prime}\right) \oplus$ $\left(K O_{*-2} \otimes B^{\prime}\right) \oplus\left(K O_{*-4} \otimes A^{\prime \prime}\right) \oplus\left(K O_{*-6} \otimes B^{\prime \prime}\right) \oplus\left(K U_{*} \otimes C\right)$ as $K O_{*}$-modules.
2.3. Using the cofiber sequences (1.1), (1.1)' we consider the commutative diagram

Here both of the two vertical arrows are identified with multiplication by 2 on Z. Evidently $K U_{0} P \cong K U_{0} \Sigma^{2} \oplus K U_{0} \Sigma^{0} \cong Z \oplus Z . \quad$ Set $\left(\pi_{U}^{-1} \varepsilon_{U}\right)_{*}(1)=(2,-n)$ for some integer n. Then $\varepsilon_{o *}(0,1)=2$ and $\varepsilon_{o *}(1,0)=n$. Note that n is odd because $\varepsilon_{o *}$ is an epimorphism. We may take n to be 1 by replacing suitably the splitting of $j_{P *}$. Since $\varepsilon_{o} t=\varepsilon_{0}$, the conjugation t_{*} on $K U_{0} P$ is represented by the matrix $\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$ where the matrix behaves as left action on $Z \oplus Z$. Thus

$$
K U_{0} P \cong K U_{0} \Sigma^{2} \oplus K U_{0} \Sigma^{0} \cong Z \oplus Z \text { on which } t_{*}=\left(\begin{array}{rr}
-1 & 0 \tag{2.3}\\
1 & 1
\end{array}\right), \text { and } K U_{1} P=0
$$

After changing the isomorphism $K U_{0} P \cong Z \oplus Z$ suitably we obtain

$$
K U_{0} P \cong Z \oplus Z \text { on which } t_{*}=\left(\begin{array}{ll}
0 & 1 \tag{2.3}\\
1 & 0
\end{array}\right), \text { and } K U_{1} P=0
$$

because the matrix $\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$ is congruent to $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
We can now prove one of our main results concerning Wood spectra (cf. [20, Theorem 1.6] or [16]).

Theorem 2.4. Let X be a $C W$-spectrum such that $K U_{0} X$ is finitely generated, 2-torsion free and $K U_{1} X=0$. Then there exist abelian groups $A^{\prime}, A^{\prime \prime}, B^{\prime}$, $B^{\prime \prime}$ and C so that X is quasi $K O_{*}$-equivalent to the wedge sum $S A^{\prime} \vee \Sigma^{2} S B^{\prime} \vee$ $\Sigma^{4} S A^{\prime \prime} \vee \Sigma^{6} S B^{\prime \prime} \vee(P \wedge S C)$.

Proof. We may write $K U_{0} X \cong A \oplus B \oplus C \oplus C$ with C free, on which t_{*} acts as (2.2). By Proposition 2.3 we admit direct sum decompositions $A \cong A^{\prime} \oplus A^{\prime \prime}$ and $B \cong B^{\prime} \oplus B^{\prime \prime}$ so that $K O_{*} X \cong\left(K O_{*} \otimes A^{\prime}\right) \oplus\left(K O_{*-2} \otimes B^{\prime}\right) \oplus\left(K O_{*-4} \otimes A^{\prime \prime}\right) \oplus$ $\left(K O_{*-6} \otimes B^{\prime \prime}\right) \oplus\left(K U_{*} \otimes C\right)$ as $K O_{*}$-modules.

Set $Y=S A^{\prime} \vee \Sigma^{2} S B^{\prime} \vee \Sigma^{4} S A^{\prime \prime} \vee \Sigma^{6} S B^{\prime \prime}$, the wedge sum of the Moore spectra. Then we can choose a map $h_{Y}: Y \rightarrow K O \wedge X$ whose induced homomorphism $\kappa_{K O}\left(h_{Y}\right)_{*}: K O_{*} Y \rightarrow K O_{*} X$ is the canonical inclusion, by means of (1.9). Putting $f_{Y}=\left(\varepsilon_{U \wedge} 1\right) h_{Y}$, its induced homomorphism $\kappa_{K U}\left(f_{Y}\right)_{*}: K U_{*} Y \rightarrow K U_{*} X$ is of course the canonical inclusion.

We next choose a map $f_{P}: P \wedge S C \rightarrow K U \wedge X$ whose induced homomorphism $\kappa_{K U}\left(f_{P}\right)_{*}: K U_{*}(P \wedge S C) \rightarrow K U_{*} X$ is the canonical inclusion. Because of (1.8) such a map f_{P} is uniquely chosen, and hence $\left(t_{\wedge} 1\right) f_{P}=f_{P}$. Note that η_{*} : $\left[P, \Sigma^{i+1} K O \wedge X\right] \rightarrow\left[P, \Sigma^{i} K O \wedge X\right]$ is always trivial as $\eta_{\wedge} 1=3 i_{P} \nu j_{P}: \Sigma^{1} P \rightarrow P$ where $\nu: \Sigma^{3} \rightarrow \Sigma^{0}$ is the stable Hopf map. We may here apply Lemma 1.2 to obtain a map $h_{P}: P \wedge S C \rightarrow K O \wedge X$ satisfying $\left(\varepsilon_{U \wedge} 1\right) h_{P}=f_{P}$.

Set $h=h_{Y} \vee h_{P}: Y \vee(P \wedge S C) \rightarrow K O \wedge X$. Obviously $\left(\varepsilon_{U \wedge} 1\right) h: Y \vee(P \wedge S C)$ $\rightarrow K U \wedge X$ is a quasi $K U_{*}$-equivalence. By making use of Proposition 1.1 we can show that the map h is a quasi $K O_{*}$-equivalence as desired.

Let $C P^{n}$ be the complex projective n-space. As is well known, $K U_{0} C P^{n}$ is the free abelian group of rank n and $K U_{1} C P^{n}=0$ [1]. So we can apply Theorem 2.4 to show

Corollary 2.5. $\quad C P_{\widetilde{K O}}^{n} \underset{t}{\vee} P$ or $\underset{t}{\bigvee} P \vee \Sigma^{2 n}$ according as $n=2 t$ or $2 t+1$. (Cf. [10].)

Proof. $K O^{*} C P^{n}$ has been computed by Fujii [8, Theorem 2]. So we can determine the additive structure of $K O_{*} C P^{n}$, by applying the universal coeffi-
cient sequence $0 \rightarrow \operatorname{Ext}\left(K O^{*+5} X, Z\right) \rightarrow K O_{*} X \rightarrow \operatorname{Hom}\left(K O^{*+4} X, Z\right) \rightarrow 0$ for any finite $C W$-spectrum X. Then the result follows immediately from Theorem 2.4.

3. Anderson spectra

3.1. We here deal with a $C W$-spectrum X such that $K U_{0} X \cong A$ and $K U_{1} X \cong D$ are finitely generated, 2-torsion free and $t_{*}=1$ on both $K U_{0} X$ and $K U_{1} X$. Then it follows from [20, Lemma 1.9] that
i) $K O_{i} X$ is 2-torsion free for each $i \equiv 0 \bmod 4$, and
ii) $K O_{j} X$ is a $Z / 2$-module for each $j \equiv 2,3 \bmod 4$.

We will first calculate K-homologies $K C_{*} X$ and $K O_{*} X$ by means of Lemma 2.1 and (3.1).

Lemma 3.1. i) $K C_{i} X \cong A \oplus D,(A \otimes Z / 2) \oplus D, D \otimes Z / 2$ or A corresponding to $i \equiv 0,1,2$ or $3 \bmod 4$.
ii) $K O_{i} X \cong A, A_{i} \oplus D, A_{i-1} \oplus D_{i+1} \oplus G_{0}$ or D_{i} for some $Z / 2$-modules A_{1}, A_{5}, D_{3}, D_{7} and G_{0}, corresponding to $i \equiv 0,1,2$ or 3 mod 4 . Here these $Z / 2$-modules hold the relations $A_{1} \oplus A_{5} \oplus G_{0} \cong A \otimes Z / 2$ and $D_{3} \oplus D_{7} \oplus G_{0} \cong D \otimes Z / 2$.

Proof. i) Consider the short exact sequence $0 \rightarrow K U_{-1} X \rightarrow K C_{0} X \rightarrow K U_{0} X$ $\rightarrow 0$ induced by the cofiber sequence (1.2). This sequence splits if tensored with $Z[1 / 2]$, since $\varepsilon_{U}=\zeta \varepsilon_{c}$ and $\varepsilon_{U *}: K O_{0} X \otimes Z[1 / 2] \rightarrow K U_{0} X \otimes Z[1 / 2]$ becomes an isomorphism by (3.1) ii). So we observe that this sequence remains split even if not tensored with $Z[1 / 2]$, because it is a pure exact sequence. Thus $K C_{0} X \cong$ $A \oplus D$. The other cases when $i \neq 0 \bmod 4$ are immediate from Lemma 2.1 i).
ii) The $i \neq 2$ mod 4 cases follow immediately from Lemma 2.1 ii), iii) and (3.1).

To show the remainders we first consider the two exact sequences

$$
\begin{aligned}
K C_{4} X & \xrightarrow{\varphi_{1}} K U_{1} X \xrightarrow{\psi_{1}} K O_{3} X \oplus K O_{7} X \rightarrow 0 \\
0 \rightarrow & K C_{3} X \xrightarrow{\varphi_{0}} K U_{0} X \xrightarrow{\psi_{0}} K O_{2} X \oplus K O_{6} X \rightarrow K C_{2} X \rightarrow 0
\end{aligned}
$$

induced by the cofiber sequence (1.6). The former gives rise to an epimorphism $D \otimes Z / 2 \rightarrow \mathrm{KO}_{3} X \oplus \mathrm{KO}_{7} X$, and the latter a short exact sequence $0 \rightarrow A \otimes Z / 2 \rightarrow$ $\mathrm{KO}_{2} \mathrm{X} \oplus \mathrm{KO}_{6} X \rightarrow D \otimes Z / 2 \rightarrow 0$ since $\varphi_{0}: A \rightarrow A$ is just multiplication by 2. Thus $K O_{3} X \oplus K O_{7} X \oplus G_{0} \cong D \otimes Z / 2$ for some $Z / 2$-module G_{0}, and $K O_{2} X \oplus K O_{6} X \cong$ $(A \oplus D) \otimes Z / 2$.

Let j be a fixed integer with $j \equiv 1 \bmod 4$. Combine the two exact sequences $0 \rightarrow K U_{j} X \rightarrow K O_{j} X \rightarrow K O_{j+1} X \rightarrow 0$ and $K O_{j} X \rightarrow K U_{j} X \rightarrow K O_{j-2} X \rightarrow 0$ induced by the cofiber sequence (1.1). Then we get a short exact sequence $0 \rightarrow K O_{j-2} X$
$\rightarrow K O_{j} X \otimes Z / 2 \rightarrow K O_{j+1} X \rightarrow 0$ because $\varepsilon_{o} \varepsilon_{U}=2$. Thus $K O_{j-2} X \oplus K O_{j+1} X \cong A_{j}$ $\oplus(D \otimes Z / 2)$ with $A_{j}=K O_{j} X * Z / 2^{\infty}$ the 2-torsion subgroup of $K O_{j} X$. On the other hand, the cofiber sequence (1.3) gives an exact sequence $K O_{j+1} X \rightarrow$ $K C_{j+1} X \rightarrow K O_{j-2} X \rightarrow 0$. Therefore we get immediately that $K O_{j+1} X \cong A_{j} \oplus$ $D_{j+2} \oplus G_{0}$, since $K C_{j+1} X \cong D \otimes Z / 2 \cong D_{3} \oplus D_{7} \oplus G_{0}$ where $D_{3}=K O_{3} X$ and $D_{7}=$ $K O_{7} X$. Then it is easily verified that $A_{1} \oplus A_{5} \oplus G_{0} \cong A \otimes Z / 2$ because $K O_{2} X \oplus$ $K O_{6} X \cong(A \oplus D) \otimes Z / 2$.

We again consider the exact sequences

$$
\begin{aligned}
K C_{4} X \xrightarrow{\varphi_{1}} K U_{1} X \xrightarrow{\psi_{1}} K O_{3} X \oplus K O_{7} X \rightarrow 0 \\
0 \rightarrow K C_{3} X \xrightarrow{\varphi_{0}} K U_{0} X \xrightarrow{\psi_{0}} K O_{2} X \oplus K O_{6} X \rightarrow K C_{2} X \rightarrow 0 .
\end{aligned}
$$

As is easily seen, $K U_{0} X$ and $K U_{1} X$ admit direct sum decompositions such that ψ_{0} and ψ_{1} are given as the canonical morphisms (use [11]). Thus they are written into the forms $K U_{0} X \cong A^{\prime} \oplus A^{\prime \prime} \oplus G$ and $K U_{1} X \cong D^{\prime} \oplus D^{\prime \prime} \oplus G$ so that $A^{\prime} \otimes Z / 2 \cong A_{1}, \quad A^{\prime \prime} \otimes Z / 2 \cong A_{5}, \quad D^{\prime} \otimes Z / 2 \cong D_{3}, \quad D^{\prime \prime} \otimes Z / 2 \cong D_{7}$ and $G \otimes Z / 2 \cong G_{0}$ where $A^{\prime \prime}, D^{\prime \prime}$ and G are taken to be free. Besides
$\psi_{0}: A^{\prime} \oplus A^{\prime \prime} \oplus G \rightarrow A_{1} \oplus D_{3} \oplus G_{0} \oplus A_{5} \oplus D_{7} \oplus G_{0}$ and $\psi_{1}: D^{\prime} \oplus D^{\prime \prime} \oplus G \rightarrow D_{3} \oplus D_{7}$ are expressed as

$$
\begin{equation*}
\psi_{0}\left(a_{1}, a_{2}, g\right)=\left(\left[a_{1}\right], 0,[g],\left[a_{2}\right], 0,[g]\right) \text { and } \psi_{1}\left(d_{1}, d_{2}, g\right)=\left(\left[d_{1}\right],\left[d_{2}\right]\right) \tag{3.2}
\end{equation*}
$$

where [] stands for the $\bmod 2$ reduction.
Hence Lemma 3.1 says that
(3.3) $K O_{*} X$ is decomposed as an abelian group into the direct sum $\left(K O_{*} \otimes A^{\prime}\right) \oplus$ $\left(K O_{*-1} \otimes D^{\prime}\right) \oplus\left(K O_{*-4} \otimes A^{\prime \prime}\right) \oplus\left(K O_{*-5} \otimes D^{\prime \prime}\right) \oplus\left(K C_{*-1} \otimes G\right)$ for some abelian groups $A^{\prime}, A^{\prime \prime}, D^{\prime}, D^{\prime \prime}$ and G.
3.2. Let X be a $C W$-spectrum such that $K U_{0} X$ and $K U_{1} X$ are finitely generated, 2-torsion free. Assume that $t_{*}=1$ on both $K U_{0} X$ and $K U_{1} X$. By studying the $K O_{*}$-module structure of $K O_{*} X$ as in Proposition 2.3 we will show

Proposition 3.2. There are direct sum decompositions $K U_{0} X \cong A^{\prime} \oplus A^{\prime \prime} \oplus G$ and $K U_{1} X \cong D^{\prime} \oplus D^{\prime \prime} \oplus G$ with $A^{\prime \prime}, D^{\prime \prime}$ and G free, so that $K O_{*} X \cong\left(K O_{*} \otimes A^{\prime}\right)$ $\oplus\left(K O_{*-1} \otimes D^{\prime}\right) \oplus\left(K O_{*-4} \otimes A^{\prime \prime}\right) \oplus\left(K O_{*-5} \otimes D^{\prime \prime}\right) \oplus\left(K C_{*-1} \otimes G\right)$ as $K O_{*-m o d u l e s . ~}^{\text {. }}$

Proof. In order to determine the $K O_{*}$-module structure of $K O_{*} X$, we will describe explicitly the complexification $\varepsilon_{U *}=\varepsilon_{i}: K O_{i} X \rightarrow K U_{i} X$ and the induced homomorphism $\eta_{*}=\eta_{i}: K O_{i} X \rightarrow K O_{i+1} X$. It is sufficient to show that

$$
\begin{array}{ll}
\varepsilon_{0}: A^{\prime} \oplus A^{\prime \prime} \oplus G \rightarrow A^{\prime} \oplus A^{\prime \prime} \oplus G & \varepsilon_{4}: A^{\prime} \oplus A^{\prime \prime} \oplus G \rightarrow A^{\prime} \oplus A^{\prime \prime} \oplus G \\
\varepsilon_{1}: A_{1} \oplus D^{\prime} \oplus D^{\prime \prime} \oplus G \rightarrow D^{\prime} \oplus D^{\prime \prime} \oplus G & \varepsilon_{5}: A_{5} \oplus D^{\prime} \oplus D^{\prime \prime} \oplus G \rightarrow D^{\prime} \oplus D^{\prime \prime} \oplus G
\end{array}
$$

are given by $\varepsilon_{0}\left(a_{1}, a_{2}, g\right)=\left(a_{1}, 2 a_{2}, 2 g\right), \varepsilon_{4}\left(a_{1}, a_{2}, g\right)=\left(2 a_{1}, a_{2}, 2 g\right), \varepsilon_{1}\left(\left[a_{1}\right], d_{1}, d_{2}, g\right)=$ $\left(d_{1}, 2 d_{2}, g\right)$ and $\varepsilon_{5}\left(\left[a_{2}\right], d_{1}, d_{2}, g\right)=\left(2 d_{1}, d_{2}, g\right)$, and moreover

$$
\eta_{0}: A^{\prime} \oplus A^{\prime \prime} \oplus G \rightarrow A_{1} \oplus D \quad \eta_{4}: A^{\prime} \oplus A^{\prime \prime} \oplus G \rightarrow A_{5} \oplus D
$$

are given by $\eta_{0}\left(a_{1}, a_{2}, g\right)=\left(\left[a_{1}\right], 0\right), \eta_{4}\left(a_{1}, a_{2}, g\right)=\left(\left[a_{2}\right], 0\right)$ and also η_{i} the canonical epimorphisms when $i \equiv 1,2 \bmod 4$.

Let j be a fixed integer with $j \equiv 1 \bmod 4$ as in the proof of Lemma 3.1. Recall (3.2) that $\psi_{1}: K U_{1} X \rightarrow K O_{3} X \oplus K O_{7} X$ is given as the canonical epimorphism $D^{\prime} \oplus D^{\prime \prime} \oplus G \rightarrow D_{3} \oplus D_{7}$. Then $\varepsilon_{j}: K O_{j} X \rightarrow K U_{j} X$ is immediately determined since ψ_{1} is induced by $\left(\varepsilon_{o} \pi_{U},-\varepsilon_{o} \pi_{\bar{U}}{ }^{1}\right)$. Note that $\varepsilon_{c *}: K O_{j+1} X \rightarrow K C_{j+1} X$ is given as the canonical morphism $A_{j} \oplus D_{j+2} \oplus G_{0} \rightarrow D_{3} \oplus D_{7} \oplus G_{0}$, and τ_{*} : $K C_{j+1} X \rightarrow K O_{j+2} X$ as the canonical epimorphism $D_{3} \oplus D_{7} \oplus G_{0} \rightarrow D_{j+2}$. Thus $\eta_{j+1}: K O_{j+1} X \rightarrow K O_{j} X$ is just the canonical epimorphism because $\eta_{\wedge} 1=\tau \varepsilon_{c}$.

We next use the exact sequences $0 \rightarrow K O_{j+3} X \xrightarrow{\varepsilon_{j+3}} K U_{j+3} X \rightarrow K O_{j+1} X \xrightarrow{\eta_{j+1}}$ $K O_{j+2} X \rightarrow 0,0 \rightarrow K U_{j} X \xrightarrow{e_{j}} K O_{j} X \xrightarrow{\eta_{j}} K O_{j+1} X \rightarrow 0$ and $0 \rightarrow K U_{j+1} X \rightarrow K O_{j-1} X \xrightarrow{\eta_{j-1}}$ $K O_{j} X \rightarrow K U_{j} X \rightarrow K O_{j-2} X \rightarrow 0$. Then ε_{j+3} and η_{j-1} are easily determined by means of η_{j+1} and ε_{j} respectively. Moreover it follows that η_{j} is the canonical epimorphism since $e_{j} \varepsilon_{j}$ is multiplication by 2 on $K O_{j} X$.

These investigations imply that $K O_{*} X \cong\left(K O_{*} \otimes A^{\prime}\right) \oplus\left(K O_{*-1} \otimes D^{\prime}\right) \oplus$ $\left(K O_{*-4} \otimes A^{\prime \prime}\right) \oplus\left(K O_{*-5} \otimes D^{\prime \prime}\right) \oplus\left(K C_{*-1} \otimes G\right)$ as $K O_{*-\text { modules. }}$

3.3. Making use of the cofiber sequence (1.3)' we see immediately

$$
\begin{equation*}
K U_{0} \Sigma^{1} Q \cong Z \text { and } K U_{1} \Sigma^{1} Q \cong Z, \text { on both of which } t_{*}=1 . \tag{3.4}
\end{equation*}
$$

Consider the commutative diagram

induced by the cofiber sequences (1.2) and (1.3). Here both of the vertical arrows are identified with multiplication by 2 on Z. Evidently $K C_{3} Q \cong K U_{3} Q$ $\oplus K U_{2} Q \cong Z \oplus Z$, and then $\varepsilon_{c *}(1)=(2,2 m+1)$ for some integer m. We may
take m to be 0 by replacing suitably the splitting of ζ_{*}. Thus

$$
\begin{equation*}
\varepsilon_{c *}: K O_{3} Q \rightarrow K C_{3} Q \text { is represented by the row (2 1): } Z \rightarrow Z \oplus Z . \tag{3.5}
\end{equation*}
$$

Let X be a $C W$-spectrum as in Proposition 3.2. Choose a map $f: \Sigma^{1} Q \wedge S G$ $\rightarrow K U \wedge X$ whose induced homomorphism $\kappa_{K U}(f)_{*}: K U_{*-1}(Q \wedge S G) \rightarrow K U_{*} X$ is the canonical inclusion. By means of (1.8) we note that such a map f is uniquely chosen, and hence $\left(t_{\wedge} 1\right) f=f$. Then there exists a map $g: \Sigma^{1} Q \wedge S G \rightarrow$ $K C \wedge X$ satisfying $\left(\zeta_{\wedge} 1\right) g=f$. The diagram (1.14) gives a commutative diagram

The two rows are split exact sequences by Lemma 3.1 i), so $K C_{3}(Q \wedge S G) \cong$ $K U_{3}\left(Q_{\wedge} S G\right) \oplus K U_{2}(Q \wedge S G)$ and $K C_{4} X \cong K U_{4} X \oplus K U_{3} X$. The central arrow $\kappa_{K c}(g)_{*}: K C_{3}(Q \wedge S G) \rightarrow K C_{4} X$ is represented by the matrix $\left(\begin{array}{lllll}0 & 0 & 1 & u & v \\ 0 & 0 & 0 & 0 & 0 \\ 1\end{array}\right)$: $G \oplus G \rightarrow A^{\prime} \oplus A^{\prime \prime} \oplus G \oplus D^{\prime} \oplus D^{\prime \prime} \oplus G$ for some homomorphisms u, v and w. Combine this expression with (3.5) to obtain
(3.6) $\kappa_{K c}(g)_{*} \varepsilon_{c *}: K O_{3}(Q \wedge S G) \rightarrow K C_{4} X$ is represented by the row
(0 $022 u 2 v 2 w+1$): $G \rightarrow A^{\prime} \oplus A^{\prime \prime} \oplus G \oplus D^{\prime} \oplus D^{\prime \prime} \oplus G$.
Lemma 3.3. $\left(\tau \pi_{c}^{-1}\right)_{*} \kappa_{K c}(g)_{*} \varepsilon_{c *}: K O_{3}(Q \wedge S G) \rightarrow K O_{1} X$ is represented by the row (0 $4 x 2 y 4 z$): $G \rightarrow\left(A^{\prime} \otimes Z / 2\right) \oplus D^{\prime} \oplus D^{\prime \prime} \oplus G$ for some homomorphisms x, y and z.

Proof. Let $i_{U}: G \rightarrow K U_{4} X \cong A^{\prime} \oplus A^{\prime \prime} \oplus G$ be the canonical inclusion and $i_{C}: G \rightarrow K C_{4} X \cong A^{\prime} \oplus A^{\prime \prime} \oplus G \oplus D^{\prime} \oplus D^{\prime \prime} \oplus G$ the injection into the former G. First we will show that $\left(\tau \pi_{c}^{-1}\right)_{*} i_{c}: G \rightarrow K O_{1} X \cong\left(A^{\prime} \otimes Z / 2\right) \oplus D^{\prime} \oplus D^{\prime \prime} \oplus G$ is represented by the row ($02 p q 2 r+1$) for some homomorphisms p, q and r. Express $\left(\tau \pi \bar{c}^{-1}\right)_{*} i_{c}: G \rightarrow\left(A^{\prime} \otimes Z / 2\right) \oplus D^{\prime} \oplus D^{\prime \prime} \oplus G$ into a form ($[s] p^{\prime} q^{\prime} r^{\prime}$), and then note that $\left(\eta_{\wedge} 1\right) \tau \pi \bar{c}^{1}=\varepsilon_{o} \pi_{U}^{-1} \zeta$ and $\zeta_{*} i_{C}=i_{U}$. Proposition 3.2 asserts that η_{*} : $K O_{1} X \rightarrow K O_{2} X$ and $\left(\varepsilon_{0} \pi_{U}^{-1}\right)_{*}: K U_{4} X \rightarrow K O_{2} X$ are respectively the canonical morphisms $\eta_{1}:\left(A^{\prime} \otimes Z / 2\right) \oplus D^{\prime} \oplus D^{\prime \prime} \oplus G \rightarrow\left(A^{\prime} \oplus D^{\prime} \oplus G\right) \otimes Z / 2$ and $e_{2}: A^{\prime} \oplus A^{\prime \prime} \oplus$ $G \rightarrow\left(A^{\prime} \oplus D^{\prime} \oplus G\right) \otimes Z / 2$ (or see the proof of Proposition 3.2). Since $\eta_{1}\left(\tau \pi c^{-1}\right) * i_{c}$ $=e_{2} i_{U}$, we then see that $\left([s]\left[p^{\prime}\right]\left[r^{\prime}\right]\right)=(00[1]): G \rightarrow\left(A^{\prime} \oplus D^{\prime} \oplus G\right) \otimes Z / 2$ where [] denotes the mod 2 reduction. Thus $[s]=0, p^{\prime}=2 p, q^{\prime}=q$ and $r^{\prime}=2 r+1$ for some homomorphisms p, q and r.

On the other hand, $\tau \pi_{c}^{-1} \gamma \pi_{U}=\varepsilon_{o} \pi_{U}^{-1}$ and $\left(\varepsilon_{o} \pi_{U}^{-1}\right)_{*}: K U_{3} X \rightarrow K O_{1} X$ is identified with the homomorphism $e_{1}: D^{\prime} \oplus D^{\prime \prime} \oplus G \rightarrow\left(A^{\prime} \otimes Z / 2\right) \oplus D^{\prime} \oplus D^{\prime \prime} \oplus G$ defined by $e_{1}\left(d_{1}, d_{2}, g\right)=\left(0,2 d_{1}, d_{2}, 2 g\right)$. Combining the above observations with (3.6), we can easily show that $\left(\tau \pi c^{-1}\right)_{*} \kappa_{K c}(g)_{*} \varepsilon_{c *}: K O_{3}(Q \wedge S G) \rightarrow K O_{4} X$ is expressed as the sum $(04 p 2 q 4 r+2)+(04 u 2 v 4 w+2): G \rightarrow\left(A^{\prime} \otimes Z / 2\right) \oplus D^{\prime} \oplus D^{\prime \prime} \oplus G$.

We can now prove another main result concerning Anderson spectra (cf. [20, Theorem 1.7]).

Theorem 3.4. Let X be a $C W$-spectrum such that $K U_{0} X$ and $K U_{1} X$ are finitely generated, 2-torsion free. Assume that $t_{*}=1$ on both $K U_{0} X$ and $K U_{1} X$. Then there exist abelian groups $A^{\prime}, A^{\prime \prime}, D^{\prime}, D^{\prime \prime}$ and G so that X is quasi $K O_{*-}$ equivalent to the wedge sum $S A^{\prime} \vee \Sigma^{1} S D^{\prime} \vee \Sigma^{4} S A^{\prime \prime} \vee \Sigma^{5} S D^{\prime \prime} \vee\left(\Sigma^{1} Q_{\wedge} S G\right)$.

Proof. By Proposition 3.2 we have direct sum decompositions $K U_{0} X \cong$ $A^{\prime} \oplus A^{\prime \prime} \oplus G$ and $K U_{1} X \cong D^{\prime} \oplus D^{\prime \prime} \oplus G$ so that $K O_{*} X \cong\left(K O_{*} \otimes A^{\prime}\right) \oplus\left(K O_{*-1} \otimes\right.$ $\left.D^{\prime}\right) \oplus\left(K O_{*-4} \otimes A^{\prime \prime}\right) \oplus\left(K O_{*-5} \otimes D^{\prime \prime}\right) \oplus\left(K C_{*-1} \otimes G\right)$ as $K O_{*}$-modules. Here $A^{\prime \prime}$, $D^{\prime \prime}$ and G may be taken to be free. Set $Y=S A^{\prime} \vee \Sigma^{1} S D^{\prime} \vee \Sigma^{4} S A^{\prime \prime} \vee \Sigma^{5} S D^{\prime \prime}$, the wedge sum of the Moore spectra, and choose a map $h_{Y}: Y \rightarrow K O \wedge X$ whose induced homomorphism $\kappa_{K O}\left(h_{Y}\right)_{*}: K O_{*} Y \rightarrow K O_{*} X$ is the canonical inclusion. Then the homomorphism $\kappa_{K U}\left(f_{Y}\right)_{*}: K U_{*} Y \rightarrow K U_{*} X$ induced by the composite $f_{Y}=\left(\varepsilon_{U \wedge} 1\right) h_{Y}$ is the canonical inclusion, too.

We next choose a map $f_{Q}: \Sigma^{1} Q \wedge S G \rightarrow K U \wedge X$ whose induced homomorphism $\kappa_{K U}\left(f_{Q}\right)_{*}: K U_{*-1}(Q \wedge S G) \rightarrow K U_{*} X$ is the canonical inclusion. Because of (1.8) it is obvious that $\left(t_{\wedge} 1\right) f_{Q}=f_{Q}$. First we will find vertical arrows g, h_{0} and h_{1} making the diagram below commutative

with $\left(\zeta_{\wedge} 1\right) g=f_{Q}$, where the cofiber sequence (1.3)' and a part of the commutative diagram (1.4) are involved. Consider the composite $f_{Q}^{\prime}=\left(\varepsilon_{o} \pi_{\bar{U}}{ }^{1} \wedge 1\right) f_{Q}\left(i_{Q \wedge} 1\right)$: $\Sigma^{1} S G \rightarrow \Sigma^{2} K O \wedge X$. The composite homomorphism $\left(\varepsilon_{o} \pi \bar{U}^{1}\right)_{*} \kappa_{K U}\left(f_{Q}\right)_{*}$: $K U_{0}\left(Q_{\wedge} S G\right) \rightarrow K U_{1} X \rightarrow K O_{7} X$ becomes trivial, since $\left(\varepsilon_{o} \pi_{U}^{-1}\right)_{*}: K U_{1} X \rightarrow K O_{7} X$ is given by the canonical epimorphism $e_{7}: D^{\prime} \oplus D^{\prime \prime} \oplus G \rightarrow D^{\prime \prime} \otimes Z / 2$. Hence $\kappa_{K O}\left(f_{Q}^{\prime}\right)_{*}: K O_{0} S G \rightarrow K O_{7} X$ is trivial. This triviality means that the composite map f_{Q}^{\prime} is in fact trivial. So we can apply Lemma 1.3 to obtain the required maps $g: \Sigma^{1} Q \wedge S G \rightarrow K C \wedge X$ and $h_{0}, h_{1}: \Sigma^{1} S G \rightarrow K O \wedge X$.

In order to show that the composite $\left(\eta_{\wedge} 1\right) h_{1}\left(j_{Q \wedge} 1\right): Q \wedge S G \rightarrow \Sigma^{1} K O \wedge X$ becomes trivial, we will find a map $k: S G \rightarrow K O \wedge X$ satisfying $\left(\eta^{2} \wedge 1\right) k=\left(\eta_{\wedge} 1\right) h_{1}$. Consider the commutative square

$$
\begin{array}{ccc}
{\left[S G, \Sigma^{-1} K O \wedge X\right]} & \stackrel{\widetilde{\kappa}}{\rightarrow} & \operatorname{Hom}\left(K O_{0}(S G), K O_{1} X\right) \\
\left(j_{Q \wedge} 1\right)^{*} \downarrow & \downarrow\left(j_{Q *}\right)^{*} \\
{\left[\Sigma^{-3} Q \wedge S G, \Sigma^{-1} K O \wedge X\right]} & \stackrel{\widetilde{\kappa}}{\rightarrow} & \operatorname{Hom}\left(K O_{3}(Q \wedge S G), K O_{1} X\right)
\end{array}
$$

in which the arrows $\tilde{\kappa}$ assign to any map f the induced homomorphism $\kappa_{K O}(f)_{*}$
in dimension 0 . Obviously $\tilde{\kappa}\left(h_{1}\left(j_{Q \wedge} 1\right)\right)$ coincides with the composite $\left(\tau \pi \bar{c}^{1}\right)_{*}$ $\kappa_{K c}(g)_{*} \varepsilon_{C *}$. Since the right vertical arrow $\left(j_{Q *}\right)^{*}$ is just multiplication by 2 on $\operatorname{Hom}\left(G, K O_{1} X\right)$, Lemma 3.2 asserts that $\tilde{\kappa}\left(h_{1}\right)$ is written into the form ([s] $2 x$ y $2 z$): $G \rightarrow\left(A^{\prime} \otimes Z / 2\right) \oplus D^{\prime} \oplus D^{\prime \prime} \oplus G$. Recall that $\eta_{*}: K O_{1} X \rightarrow K O_{2} X$ is the canonical epimorphism $\eta_{1}:\left(A^{\prime} \otimes Z / 2\right) \oplus D^{\prime} \oplus D^{\prime \prime} \oplus G \rightarrow\left(A^{\prime} \oplus D^{\prime} \oplus G\right) \otimes Z / 2$. So $\eta_{*} \kappa\left(h_{1}\right): K O_{0}(S G) \rightarrow K O_{2} X$ is represented by the row ($\left.[s] 00\right): G \rightarrow\left(A^{\prime} \oplus D^{\prime}\right.$ $\oplus G) \otimes Z / 2$. On the other hand, $\eta_{*}^{2}: K O_{0} X \rightarrow K O_{2} X$ is identified with the composite homomorphism $\eta_{1} \eta_{0}: A^{\prime} \oplus A^{\prime \prime} \oplus G \rightarrow\left(A^{\prime} \oplus D^{\prime} \oplus G\right) \otimes Z / 2$ defined by $\eta_{1} \eta_{0}$ $\left(a_{1}, a_{2}, g\right)=\left(\left[a_{1}\right], 0,0\right)$. Therefore the homomorphism $\tilde{s}=(s 00): G \rightarrow A^{\prime} \oplus A^{\prime \prime} \oplus$ G satisfies the equality $\eta_{*}^{2} \tilde{s}=\eta_{*} \tilde{\kappa}\left(h_{1}\right)$. This means that there exists a map k : $S G \rightarrow K O \wedge X$ with $\left(\eta^{2} \wedge 1\right) k=\left(\eta_{\wedge} 1\right) h$. Consequently we get a map $h_{Q}: \Sigma^{1} Q \wedge S G$ $\rightarrow K O \wedge X$ such that $\left(\varepsilon_{U \wedge} 1\right) h_{Q}=f_{Q}$, because $\varepsilon_{o} \pi_{\bar{U}}{ }^{1} f_{Q}=0$.

Set $h=h_{Y} \vee h_{Q}: Y \vee\left(\Sigma^{1} Q \wedge S G\right) \rightarrow K O \wedge X$. It is obvious that $\left(\varepsilon_{U \wedge} 1\right) h: Y \vee$ $\left(\Sigma^{1} Q \wedge S G\right) \rightarrow K U \wedge X$ is a quasi $K U_{*}$-equivalence. So we can apply Proposition 1.1 to show that the map h is a quasi $K O_{*}$-equivalence.

4. Some elementary spectra with a few cells

4.1. We first study $K U$ and $K O$ homologies of some elementary spectra with three cells. The Moore spectrum $S Z / 2 m$ is obtained by the cofiber sequence $\Sigma^{\Sigma^{2 m}} \xrightarrow{2 m} \Sigma^{0} \xrightarrow{i} S Z / 2 m \xrightarrow{j} \Sigma^{1}$. Denote by $M_{2 m}, N_{2 m}, P_{2 m}, Q_{2 m}$ and $R_{2 m}$ respectively the finite $C W$-spectra constructed by the following cofiber sequences:

$$
\begin{align*}
& \Sigma^{1} \xrightarrow{i \eta} S Z / 2 m \rightarrow M_{2 m} \rightarrow \Sigma^{2}, \quad \Sigma^{2} \xrightarrow{i \eta^{2}} S Z / 2 m \rightarrow N_{2 m} \rightarrow \Sigma^{3} \\
& \Sigma^{2} \xrightarrow{\tilde{\eta}} S Z / 2 m \rightarrow P_{2 m} \rightarrow \Sigma^{3}, \quad \Sigma^{3} \xrightarrow{\tilde{\eta} \eta} S Z / 2 m \rightarrow Q_{2 m} \rightarrow \Sigma^{4} \tag{4.1}\\
& \Sigma^{4} \xrightarrow{\widetilde{\eta} \eta^{2}} S Z / 2 m \rightarrow R_{2 m} \rightarrow \Sigma^{5}
\end{align*}
$$

where $\tilde{\eta}: \Sigma^{2} \rightarrow S Z / 2 m$ is a coextension of η satisfying $j \tilde{\eta}=\eta$.
Dually we denote by $M_{2 m}^{\prime}, N_{2 m}^{\prime}, P_{2 m}^{\prime}, Q_{2 m}^{\prime}$ and $R_{2 m}^{\prime}$ respectively the finite $C W$-spectra constructed by the following cofiber sequences:

$$
\begin{align*}
S Z / 2 m & \stackrel{\eta j}{\rightarrow} \Sigma^{0} \rightarrow M_{2 m}^{\prime} \rightarrow \Sigma^{1} S Z / 2 m, \Sigma^{1} S Z / 2 m \xrightarrow{\eta^{2} j} \Sigma^{0} \rightarrow N_{2 m}^{\prime} \rightarrow \Sigma^{2} S Z / 2 m \\
\Sigma^{1} S Z / 2 m & \xrightarrow{\bar{\eta}} \Sigma^{0} \rightarrow P_{2 m}^{\prime} \rightarrow \Sigma^{2} S Z / 2 m, \quad \Sigma^{2} S Z / 2 m \xrightarrow{\eta \bar{\eta}} \Sigma^{0} \rightarrow Q_{2 m}^{\prime} \rightarrow \Sigma^{3} S Z / 2 m \tag{4.2}\\
\Sigma^{3} S Z / 2 m & \eta^{\eta^{2} \bar{\eta}} \Sigma^{0} \rightarrow R_{2 m}^{\prime} \rightarrow \Sigma^{4} S Z / 2 m
\end{align*}
$$

where $\bar{\eta}: \Sigma^{1} S Z / 2 m \rightarrow \Sigma^{0}$ is an extension of η satisfying $\bar{\eta} i=\eta$.
The Moore spectrum $S Z / 2 m$ is self-dual in the sense that $D S Z / 2 m \cong$ $\Sigma^{-1} S Z / 2 m$ where $D X$ stands for the Spanier-Whitehead dual of X. By means of [17, Theorem 6.10] we obtain that

$$
\begin{equation*}
M_{2 m}^{\prime}=\Sigma^{2} D M_{2 m}, N_{2 m}^{\prime}=\Sigma^{3} D N_{2 m}, P_{2 m}^{\prime}=\Sigma^{3} D P_{2 m}, Q_{2 m}^{\prime}=\Sigma^{4} D Q_{2 m} \quad \text { and } \tag{4.3}
\end{equation*}
$$

$$
R_{2 m}^{\prime}=\Sigma^{5} D R_{2 m}
$$

We will first compute the $K U$ homologies of the elementary spectra mentioned above.

Proposition 4.1. The $K U$ homologies $K U_{0} X, K U_{1} X$ and the conjugation t_{*} on $K U_{0} X \oplus K U_{1} X$ are tabled as follows:

$X=$	$M_{2 m}$	$N_{2 m}$	$P_{2 m}$	$Q_{2 m}$	$R_{2 m}$
$K U_{0} X \cong$	$Z \oplus Z / 2 m$	$Z / 2 m$	Z / m	$Z \oplus Z / 2 m$	$Z / 2 m$
$K U_{1} X \cong$	0	Z	Z	0	Z
$t_{*}=$	$\left(\begin{array}{rr}1 & 0 \\ 1 & 1\end{array}\right)$	$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$	$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$	$\left(\begin{array}{ll}1 & 0 \\ m & 1\end{array}\right)$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$X=$	$M_{2 m}^{\prime}$	$N_{2 m}^{\prime}$	$P_{2 m}^{\prime}$	$Q_{2 m}^{\prime}$	$R_{2 m}^{\prime}$
$K U_{0} X \cong$	Z	$Z \oplus Z / 2 m$	$Z \oplus Z / m$	Z	$Z \oplus Z / 2 m$
$K U_{1} X \cong$	$Z / 2 m$	0	0	$Z / 2 m$	0
$t_{*}=$	$\left(\begin{array}{rr}1 & 0 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$	$\left(\begin{array}{rr}1 & 0 \\ 1 & -1\end{array}\right)$	$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

where the matrices behave as left action on abelian groups.
Proof. We will investigate the behaviour of the conjugation t_{*} on $K U_{0} X \oplus$ $K U_{1} X$ only in the cases when $X=P_{2 m}^{\prime}$ and $Q_{2 m}$. The other cases are easy.
i) The $X=P_{2 m}^{\prime}$ case: Consider the commutative diagram

	$\Sigma^{2}=$	Σ^{2}	
	$h_{P} \downarrow$	$\downarrow 2 m$	
Σ^{1}	$\xrightarrow{\eta} \Sigma^{0} \xrightarrow{i_{P}} P$ P	Σ^{2}	
$i \downarrow$	$\\| \quad k_{P} \downarrow$	$\downarrow i$	
$\Sigma^{1} S Z / 2 m$	$\underset{\bar{\eta}}{\rightarrow \Sigma^{0} \rightarrow P_{2 m}^{\prime} \rightarrow}$	$S \boldsymbol{Z} / 2 m$	

Recall (2.3) that $K U_{0} P \cong K U_{0} \Sigma^{2} \oplus K U_{0} \Sigma^{0} \cong Z \oplus Z$ on which $t_{*}=\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$. The induced homomorphism $h_{P *}: K U_{0} \Sigma^{2} \rightarrow K U_{0} P$ is given by $h_{P *}(1)=(2 m,-m)$ because $t_{*} h_{P *}(1)=-h_{P *}(1)$. Hence an easy computation shows that $K U_{0} P_{2 m}^{\prime} \cong$ $Z \oplus Z / m, K U_{1} P_{2 m}^{\prime}=0$ and the induced homomorphism $k_{P *}: K U_{0} P \rightarrow K U_{0} P_{2 m}^{\prime}$ is given by $k_{P *}(x, y)=(x+2 y, y)$. So we obtain that $t_{*}=\left(\begin{array}{rr}1 & 0 \\ 1 & -1\end{array}\right)$ on $K U_{0} P_{2 m}^{\prime} \cong$ $Z \oplus Z / m$.
ii) The $X=Q_{2 m}$ case: We next consider the commutative diagram

$$
\begin{array}{cccc}
\Sigma^{3} \xrightarrow{\eta} & \Sigma^{2} & \rightarrow \Sigma^{2} P \rightarrow \Sigma^{4} \\
\| & \downarrow \tilde{\eta} & \downarrow h_{Q} & \| \\
\Sigma^{3} & & S Z / 2 m & \rightarrow \\
{ }_{\tilde{\eta} \eta} & \downarrow & Q_{2 m} \rightarrow \Sigma^{4} \\
& P_{2 m} & & \downarrow \\
& P_{2 m}
\end{array}
$$

Evidently $K U_{0} Q_{2 m} \cong K U_{0} \Sigma^{4} \oplus K U_{0} S Z / 2 m \cong Z \oplus Z / 2 m$ and $K U_{1} Q_{2 m}=0$. We will use the induced homomorphism $h_{Q *}: K U_{-2} P \rightarrow K U_{0} Q_{2 m}$ to determine the behavior of t_{*} on $K U_{0} Q_{2 m}$. By means of (4.3) we see that $K U_{0} P_{2 m} \cong K U^{3} P_{2 m}^{\prime} \cong$ Z / m. This implies that $\tilde{\eta}_{*}: K U_{0} \Sigma^{2} \rightarrow K U_{0} S Z / 2 m$ is given by $\tilde{\eta}_{*}(1)=m$. So the induced homomorphism $h_{Q *}: K U_{-2} P \rightarrow K U_{0} Q_{2 m}$ is expressed as $h_{Q *}(1,0)=(1, n)$ and $h_{Q *}(0,1)=(0, m)$ for some integer n, where $K U_{-2} P \cong K U_{0} \Sigma^{4} \oplus K U_{0} \Sigma^{2} \cong$ $Z \oplus Z$. Since $t_{*} i_{Q *}=i_{Q *}$ on $K U_{0} S Z / 2 m$ and $t_{*} h_{Q *}=h_{Q *}\left(\begin{array}{rr}1 & 0 \\ -1 & -1\end{array}\right)$ on $K U_{-2} P$, an easy computation shows that $t_{*}=\left(\begin{array}{cc}1 & 0 \\ m & 1\end{array}\right)$ on $K U_{0} Q_{2 m} \cong Z \oplus Z / 2 m$.

We will moreover compute the $K O$ homologies of the elementary spectra treated in the above proposition.

Proposition 4.2. The $K O$ homologies $K O_{i} X$ are tabled as follows:

i	$=$	0	1	2	3	4	5	6
$M_{2 m}$	$Z / 2 m$	0	$Z \oplus Z / 2$	$Z / 2$	$Z / 4 m$	0	Z	0
$N_{2 m}$	$Z / 2 m$	$Z / 2$	$Z / 2$	$Z \oplus Z / 2$	$Z / 4 m$	$Z / 2$	0	Z
$P_{2 m}$	$Z / 2 m$	$Z / 2$	$Z / 2 \otimes Z / m$	Z	Z / m	0	0	Z
$Q_{2 m}$	$Z \oplus Z / 2 m$	$Z / 2$	$(*)_{m}$	0	$Z \oplus Z / m$	0	$Z / 2$	0
$R_{2 m}$	$Z / 2 m$	$Z \oplus Z / 2$	$(*)_{m}$	$Z / 2$	Z / m	Z	$Z / 2$	$Z / 2$
$M_{2 m}^{\prime}$	Z	$Z / 4 m$	$Z / 2$	$Z / 2$	Z	$Z / 2 m$	0	0
$N_{2 m}^{\prime}$	Z	$Z / 2$	$Z / 4 m$	$Z / 2$	$Z \oplus Z / 2$	$Z / 2$	$Z / 2 m$	0
$P_{2 m}^{\prime}$	Z	0	Z / m	0	$Z \oplus(Z / 2 \otimes Z / m)$	$Z / 2$	$Z / 2 m$	0
$Q_{2 m}^{\prime}$	Z	$Z / 2$	0	Z / m	Z	$(*)_{m}$	$Z / 2$	$Z / 2 m$
$R_{2 m}^{\prime}$	$Z \oplus Z / 2 m$	$Z / 2$	$Z / 2$	0	$Z \oplus Z / m$	$Z / 2$	$(*)_{m}$	$Z / 2$

in which $(*)_{m}$ stands for $Z / 4$ if m is odd, but $Z / 2 \oplus Z / 2$ if m is even.
Proof. Use the long exact sequences of $K O$ homologies induced by the cofiber sequences (4.1), (4.2). In computing $K O_{*} X$ for the latter five spectra X we may apply the universal coefficient sequence $0 \rightarrow \operatorname{Ext}\left(K O_{3-*} D X, Z\right) \rightarrow$ $K O_{*} X \rightarrow \operatorname{Hom}\left(\mathrm{KO}_{4-*} D X, Z\right) \rightarrow 0$ combined with (4.3) if necessary.
4.2. We next study the $K U$ and $K O$ homologies of some elementary spectra with four cells. Denote by $S_{2 m, 2 n}, T_{2 m, 2 n}, V_{2 m, 2 n}, V_{2 m, 2 n}^{\prime}$ and $W_{2 m, 2 n}$ respectively the finite $C W$-spectra constructed by the following cofiber sequneces:

$$
\begin{align*}
& S Z / 2 n \stackrel{i \eta j}{\rightarrow} S Z / 2 m \rightarrow S_{2 m, 2 n} \rightarrow \Sigma^{1} S Z / 2 n \\
& \Sigma^{1} S Z / 2 n \xrightarrow{i^{2} j} S Z / 2 m \rightarrow T_{2 m, 2 n} \rightarrow \Sigma^{2} S Z / 2 n \\
& \Sigma^{1} S Z / 2 n \xrightarrow{i \bar{\eta}} S Z / 2 m \rightarrow V_{2 m, 2 n} \rightarrow \Sigma^{2} S Z / 2 n \tag{4.4}\\
& \Sigma^{1} S Z / 2 n \xrightarrow{\tilde{\eta} j} S Z / 2 m \rightarrow V_{2 m, 2 n}^{\prime} \rightarrow \Sigma^{2} S Z / 2 n
\end{align*}
$$

$$
\Sigma^{1} S Z|2 n \xrightarrow{i \bar{\eta}+\tilde{\eta} j} S Z| 2 m \rightarrow W_{2 n, 2 n} \rightarrow \Sigma^{2} S Z / 2 n .
$$

Note that

$$
\begin{align*}
& S_{2 m, 2 n}=\Sigma^{2} D S_{2 n, 2 m}, T_{2 m, 2 n}=\Sigma^{3} D T_{2 n, 2 m}, V_{2 m, 2 n}^{\prime}=\Sigma^{3} D V_{2 n, 2 m} \quad \text { and } \tag{4.5}\\
& W_{2 m, 2 n}=\Sigma^{3} D W_{2 n, 2 m}
\end{align*}
$$

We first consider the commutative diagram

The map \bar{i}_{P} has a factorization $\bar{i}_{P}=k_{P} i_{P}$ through P where k_{P} is the map used in the proof of Proposition 4.1 i). So we see that
(4.6) the induced homomorphism $\bar{h}_{P *}: K U_{0} \Sigma^{0} \rightarrow K U_{0} P_{2 n}^{\prime}$ is identified with the homomorphism $f_{2 m, n}: Z \rightarrow Z \oplus Z \mid n$ defined by $f_{2 m, n}(1)=(4 m, 2 m)$.

We also consider the commutative diagram

Lemma 4.3. The induced homomorphism $h_{M *}: K U_{0} \Sigma^{2} \rightarrow K U_{0} M_{2 m}$ is identifi$e d$ with the homomorphism $h_{n, m}: Z \rightarrow Z \oplus Z / 2 m$ defined by $h_{n, m}(1)=(2 n, m-n)$.

Proof. Consider the induced homomorphism $h_{M *}=h_{2}: K_{2} \Sigma^{2} \rightarrow K O_{2} M_{2 m}$. An easy computation shows that $h_{2}: Z \rightarrow Z \oplus Z / 2$ is expressed as $h_{2}(1)=\left(n, q_{0}\right)$ for some $q_{0} \in Z / 2$. We will verify that $q_{0} \in Z / 2$ is non-trivial. In order to observe the complexification $\varepsilon_{U *}=\varepsilon_{2}: K O_{2} M_{2 m} \rightarrow K U_{2} M_{2 m}$ and the realification $\varepsilon_{0 *}=e_{2}$: $K U_{2} M_{2 m} \rightarrow K O_{2} M_{2 m}$ we recall that $t \varepsilon_{U}=\varepsilon_{U}, \varepsilon_{U} \varepsilon_{0}=1+t$ and $t_{*}=\left(\begin{array}{rr}1 & 0 \\ -1 & -1\end{array}\right)$ on $K U_{2} M_{2 m} \cong Z \oplus Z / 2 m$. As is easily checked, $\varepsilon_{2}: Z \oplus Z / 2 \rightarrow Z \oplus Z / 2 m$ and $e_{2}:$ $Z \oplus Z / 2 m \rightarrow Z \oplus Z / 2$ are respectively given by $\varepsilon_{2}(x, y)=(2 x, m y-x)$ and $e_{2}(z, w)=$ $(z, 0)$. We here choose a map $\rho: M_{2 m} \rightarrow \Sigma^{1}$ satisfying $\rho i_{M}=j$. Then the composite ρh_{M} is just the Hopf map $\eta: \Sigma^{2} \rightarrow \Sigma^{1}$, and hence $\rho_{*} h_{2}(1)=1 \in K O_{2} \Sigma^{1} \cong Z / 2$. On the other hand, the composite homomorphism $\rho_{*} e_{2}: K U_{2} M_{2 m} \rightarrow K O_{2} M_{2 m} \rightarrow$ $K O_{2} \Sigma^{1}$ is evidently trivial. So we see that $\rho_{*}\left(0, q_{0}\right)=1$, which means that $q_{0}=1$.

This implies that $\varepsilon_{2} h_{2}(1)=(2 n, m-n)$, and hence the result follows immediately.
We will here discuss the homomorphisms $f_{m, n}: Z \rightarrow Z \oplus Z / n$ and $h_{m, n}: Z \rightarrow$ $Z \oplus Z / 2 n$ defined by $f_{m, n}(1)=(2 m, m)$ and $h_{m, n}(1)=(2 m, n-m)$ respectively. The results (4.7)-(4.15) obtained below will be needed in studying the $K U$ homologies of $V_{2 m, 2 n}$ and $W_{2 m, 2 n}$ later. Let $C_{m, n}$ denote the cokernel of $f_{m, n}$. Thus the sequence

$$
0 \rightarrow Z \xrightarrow{f_{m, n}} Z \oplus Z \mid n \xrightarrow{g_{m, n}} C_{m, n} \rightarrow 0
$$

is exact. Write $m=2^{k} m^{\prime}$ and $n=2^{l} n^{\prime}$ with m^{\prime}, n^{\prime} odd.
In the $k \geqq l$ case it follows that
(4.7) $\quad C_{m, n} \cong Z / 2 m \oplus Z / 2^{l} \oplus Z / n^{\prime}, \quad$ and
(4.8) $g_{m, n}: Z \oplus Z / 2^{l} \oplus Z / n^{\prime} \rightarrow Z / 2 m \oplus Z / 2^{l} \oplus Z / n^{\prime}$ is given by $g_{m, n}\left(x, y_{1}, y_{2}\right)=\left(x, y_{1}\right.$, $x-2 y_{2}$). In particular, $g_{m, n}\left(1,0, \frac{n^{\prime}+1}{2}\right)=(1,0,0), g_{m, n}(0,1,0)=(0,1,0)$ and $g_{m, n}\left(0,0, \frac{n^{\prime}-1}{2}\right)=(0,0,1)$.

On the other hand, in the $k \leqq l$ case it follows that
(4.9) $\quad C_{m, n} \cong Z / 2 n \oplus Z / 2^{k} \oplus Z / m^{\prime}$, and
(4.10) $g_{m, n}: Z \oplus Z / n \rightarrow Z / 2 n \oplus Z / 2^{k} \oplus Z / m^{\prime}$ is given by $g_{m, n}(x, y)=(2 y-x, y$, $\left.\frac{\left(1+m^{\prime}\right) x}{2}\right)$. In particular, $g_{m, n}\left(-m^{\prime} a, 2^{k} b\right)=(1,0,0), g_{m, n}\left(2 m^{\prime} a, m^{\prime} a\right)=(0,1,0)$ and $g_{m, n}\left(2^{k+2} b, 2^{k+1} b\right)=(0,0,1)$ for some integers a, b with $m^{\prime} a+2^{k+1} b=1$.

Denote by $D_{m, n}$ the cokernel of $h_{m, n}: Z \rightarrow Z \oplus Z / 2 n$. Obviously $2 h_{m, n}=$ $s_{2 n} f_{2 m, 2 n}$ where $s_{2 n}: Z \oplus Z / 2 n \rightarrow Z \oplus Z / 2 n$ denotes the automorphism defined by $s_{2 n}(x, y)=(x,-y)$. So there exists a short exact sequence

$$
0 \rightarrow Z / 2 \xrightarrow{c_{m, n}} C_{2 m, 2 n} \xrightarrow{d_{m, n}} D_{m, n} \rightarrow 0
$$

Here the connecting homomorphism $c_{m, n}$ is obtained as $c_{m, n}(1)=g_{2 m, 2 n} s_{2 n} h_{m, n}(1)$. In place of $c_{m, n}$ we write with emphasis $c_{m, n}^{\prime}$ when $k \geqq l$ and $c_{m, n}^{\prime \prime}$ when $k \leqq l$.

The connecting homomorphism $c_{m, n}^{\prime}: Z / 2 \rightarrow Z / 4 m \oplus Z / 2^{l+1} \oplus Z / n^{\prime}$ is expressed as $c_{m, n}^{\prime}(1)=(2 m, m-n, 0)$. Thus $c_{m, n}^{\prime}(1)=(2 m, n, 0)$ if $k>l$, and $c_{m, n}^{\prime}(1)=$ $(2 m, 0,0)$ if $k=l$. In the $k>l$ case it follows that

$$
\begin{equation*}
D_{m, n} \cong Z / 2^{k+2} \oplus Z / 2^{l} \oplus Z / m^{\prime} \oplus Z / n^{\prime}, \quad \text { and } \tag{4.11}
\end{equation*}
$$

(4.12) $\quad d_{m, n}: Z / 4 m \oplus Z / 2^{l+1} \oplus Z / n^{\prime} \rightarrow Z / 2^{k+2} \oplus Z / 2^{l} \oplus Z / m^{\prime} \oplus Z / n^{\prime}$ is given by $d_{m, n}(u, v, w)=\left(u-2^{k+1-l} v, v, u, w\right)$. In particular, $d_{m, n}\left(m^{\prime} a, 0,0\right)=(1,0,0,0)$, $d_{m, n}\left(2^{k+1-l} m^{\prime} a, m^{\prime} a, 0\right)=(0,1,0,0), d_{m, n}\left(2^{k+2} b, 0,0\right)=(0,0,1,0)$ and $d_{m, n}(0,0,1)$ $=(0,0,0,1)$ for some integers a, b with $m^{\prime} a+2^{k+2} b=1$.

Moreover, in the $k=l$ case it follows that
(4.13) $\quad D_{m, n} \cong Z / 2 m \oplus Z / 2^{l+1} \oplus Z / n^{\prime}$, and
(4.14) $\quad d_{m, n}: Z / 4 m \oplus Z / 2^{l+1} \oplus Z / n^{\prime} \rightarrow Z / 2 m \oplus Z / 2^{l+1} \oplus Z / n^{\prime} \quad$ is the canonical epimorphism.

On the other hand, the connecting homomorphism $c_{m, n}^{\prime \prime}: Z / 2 \rightarrow Z / 4 n \oplus Z / 2^{k+1}$ $\oplus Z / m^{\prime}$ is expressed as $c_{m, n}^{\prime \prime}(1)=(2 n, m-n, 0)$. Thus $c_{m, n}^{\prime \prime}(1)=(2 n, m, 0)$ if $k<l$, and $c_{m, n}^{\prime \prime}(1)=(2 n, 0,0)$ if $k=l$. This means that

$$
\begin{equation*}
c_{m, n}^{\prime \prime}=c_{n, m}^{\prime} \quad \text { in the } k \leqq l \text { case } \tag{4.15}
\end{equation*}
$$

4.3. Using the results discussed in 4.2 we will compute the $K U$ homologies of the elementary spectra with four cells given in 4.2.

Proposition 4.4. Let $m=2^{k} m^{\prime}$ and $n=2^{\prime} n^{\prime}$ with m^{\prime}, n^{\prime} odd. The $K U$ homologies $K U_{0} X, K U_{1} X$ and the conjugation t_{*} on $K U_{0} X \oplus K U_{1} X$ are tabled as follows:

Here $A_{i}=\left(\begin{array}{cccc}a_{i} & 1-a_{i}^{2} & 0 & 0 \\ 1 & -a_{i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$ with $a_{i}=1-2^{i+1}$. The matrix A_{k-l} acts on $Z / 2^{k+2} \oplus$ $Z / 2^{l} \oplus Z / m^{\prime} \oplus Z / n^{\prime}$ and the transposed matrix ${ }^{t} A_{l-k}$ acts on $Z / 2^{k} \oplus Z / 2^{l+2} \oplus Z / m^{\prime} \oplus$ $Z \mid n^{\prime}$.

Proof. i) The $X=S_{2 m, 2 n}, T_{2 m, 2 n}$ cases are easy.
ii) The $X=V_{2 m, 2 n}$ case: From (4.6) it follows that $K U_{0} V_{2 m, 2 n} \simeq C_{2 m, n}$ and $K U_{1} V_{2 m, 2 n}=0$ where $C_{2 m, n}$ denotes the cokernel of $f_{2 m, n}$. Thus $K U_{0} V_{2 m, 2 n} \simeq$ $Z / 4 m \oplus Z / 2^{l} \oplus Z / n^{\prime}$ or $Z / 2 n \oplus Z / 2^{k+1} \oplus Z / m^{\prime}$ according as $k+1 \geqq l$ or $k+1 \leqq l$, as is shown by (4.7) and (4.9).

The induced homomorphism $\bar{k}_{P *}: K U_{0} P_{2 m}^{\prime} \rightarrow K U_{0} V_{2 m, 2 n}$ is written as the
homomorphism $g_{2 m, n}$ given in (4.8) and (4.10). To investigate the behaviour of the conjugation t_{*} on $K U_{0} V_{2 m, 2 n}$ we recall that $t_{*}=\left(\begin{array}{rr}1 & 0 \\ 1 & -1\end{array}\right)$ on $K U_{0} P_{2 n}^{\prime} \cong Z \oplus$ Z / n. By making use of (4.8) and (4.10) we can easily observe that $t_{*}=$ $\left(\begin{array}{rrr}1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -1\end{array}\right)$ on $K U_{0} V_{2 m, 2 n} \cong Z / 4 m \oplus Z / 2^{l} \oplus Z / n^{\prime}$ if $k+1 \geqq l$, and $t_{*}=\left(\begin{array}{rrr}-1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ on $K U_{0} V_{2 m, 2 n} \cong Z / 2 n \oplus Z / 2^{k+1} \oplus Z / m^{\prime}$ if $k+1 \leqq l$. Note that the latter matrix is congruent to $\left(\begin{array}{rrr}-1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$. Then the result is immediate.
iii) The $X=V_{2 m, 2 n}^{\prime}$ case: Consider the commutative diagram

This gives rise to the following commutative diagram

where the diagonal sequences are exact and the vertical arrows are both epimorphism. By means of the duality (4.5) we get that $K U_{0} V_{2 m, 2 n}^{\prime} \cong \operatorname{Ext}\left(K U_{0} V_{2 n, 2 m}, Z\right)$, and hence $K U_{0} V_{2 m, 2 n}^{\prime} \cong K U_{0} P_{2 m} \oplus\left(K U_{0} \Sigma^{2} \otimes Z / 4 n\right) \cong Z / m \oplus Z / 4 n$ if $k \leqq l+1$, and $K U_{0} V_{2 m, 2 n}^{\prime} \cong K U_{0} \Sigma^{2} S Z / 2 n \oplus K U_{0} S Z / 2 m \cong Z / 2 n \oplus Z / 2 m$ if $k \geqq l+1$.

We next investigate the behaviour of the conjugation t_{*} on $K U_{0} V_{2 m, 2 n}^{\prime}$. In the $k \leqq l+1$ case we use the short exact sequence $0 \rightarrow K U_{0} S Z / 2 m \xrightarrow{i_{V} *} K U_{0} V_{2 m, 2 n}^{\prime} \xrightarrow{j_{V *}}$ $K U_{0} \Sigma^{2} S Z / 2 n \rightarrow 0$. Here $i_{V *}: Z / 2 m \rightarrow Z / m \oplus Z / 4 n$ is expressed as $i_{V *}(1)=\left(1, q_{1}\right)$ for some integer q_{1}. Note that $m q_{1} \equiv 2 n \bmod 4 n$. As is easily verified, $t_{*}=$ $\left(\begin{array}{rr}1 & 0 \\ 2 q_{1} & -1\end{array}\right)$ on $K U_{0} V_{2 m, 2 n}^{\prime} \cong Z / m \oplus Z / 4 n$, which is congruent to the matrix $\left(\begin{array}{cr}1 & 0 \\ 2^{l+2-k} n^{\prime} & -1\end{array}\right)$. On the other hand, we use the short exact sequence $0 \rightarrow K U_{0} \Sigma^{2}$ $\otimes Z / 4 n \xrightarrow{h_{V} *} K U_{0} V_{2 m, 2 n}^{\prime} \xrightarrow{k_{V} *} K U_{0} P_{2 m} \rightarrow 0$ in the $k \geqq l+1$ case. Here $h_{V *}: Z / 4 n \rightarrow$ $Z / 2 n \oplus Z / 2 m$ is expressed as $h_{V *}(1)=\left(1, q_{2}\right)$ for some integer q_{2} satisfying $2 n q_{2} \equiv m$ $\bmod 2 m$. Then $t_{*}=\left(\begin{array}{rr}-1 & 0 \\ 2 q_{2} & 1\end{array}\right)$ on $K U_{0} V_{2 m, 2 n}^{\prime} \cong Z / 2 n \oplus Z / 2 m$, which is also con-
gruent to the matrix $\left(\begin{array}{cc}-1 & 0 \\ 2^{k-l} m^{\prime} & 1\end{array}\right)$. The result is now immediate.
iv) The $X=W_{2 m, 2 n}$ case: Lemma 4.3 implies that $K U_{0} W_{2 m, 2 n} \cong D_{n, m}$ and $K U_{1} W_{2 m, 2 n}=0$ where $D_{n, m}$ denotes the cokernel of $h_{n, m}$. Thus (4.11), (4.13) and (4.14) show that $K U_{0} W_{2 m, 2 n} \simeq Z / 2^{l+2} \oplus Z / 2^{k} \oplus Z / n^{\prime} \oplus Z / m^{\prime}, Z / 2 n \oplus Z / 2^{k+1} \oplus Z / m^{\prime}$ or $Z / 2^{k+2} \oplus Z / 2^{l} \oplus Z / m^{\prime} \oplus Z / n^{\prime}$ according as $k<l, k=l$ or $k>l$.

Note that the induced homomorphism $k_{M *}: K U_{0} M_{2 m} \rightarrow K U_{0} W_{2 m, 2 n}$ is written as the composite $d_{n, m} g_{2 n, 2 m} s_{2 m}: Z \oplus Z / 2 m \rightarrow Z \oplus Z / 2 m \rightarrow C_{2 n, 2 m} \rightarrow D_{n, m}$. Recall that $t_{*}=\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$ on $K U_{0} M_{2 m} \cong Z \oplus Z / 2 m$. The conjugation t_{*} on $K U_{0} M_{2 m}$ produces a conjugation $t_{n, m}$ on $C_{2 n, 2 m}$ through the epimorphism $g_{2 n, 2 m} s_{2 m}$. In place of $t_{n, m}$ we write with emphasis $t_{n, m}^{\prime}$ when $k \leqq l$ and $t_{n, m}^{\prime \prime}$ when $k \geqq l$. In ii) we have implicitly observed that $t_{n, m}^{\prime}=\left(\begin{array}{rrr}-1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ on $C_{2 n, 2 m} \cong Z / 4 n \oplus Z / 2^{k+1} \oplus Z / m^{\prime}$ and $t_{n, m}^{\prime \prime}=$ $\left(\begin{array}{rrr}1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -1\end{array}\right)$ on $C_{2 n, 2 m} \simeq Z / 4 m \oplus Z / 2^{l+1} \oplus Z / n^{\prime}$.

Use these matrix representations of $t_{n, m}^{\prime}$ and $t_{n, m}^{\prime \prime}$, (4.12) and (4.15). Then a routine computation shows that the conjugation t_{*} on $K U_{0} W_{2 m, 2 n}$ is represented by the matrix $-A_{l-k}$ or A_{k-l} corresponding to $k<l$ or $k>l$. Here the former matrix $-A_{l-k}$ acts on $Z / 2^{l+2} \oplus Z / 2^{k} \oplus Z / n^{\prime} \oplus Z / m^{\prime}$ and the latter A_{k-l} acts on $Z / 2^{k+2} \oplus Z / 2^{l} \oplus Z / m^{\prime} \oplus Z / n^{\prime}$. Since $A_{i}=\left(\begin{array}{cccc}a_{i} & 1-a_{i}^{2} & 0 & 0 \\ 1 & -a_{i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$ is congruent to $B_{i}=$ $\left(\begin{array}{cccc}a_{i} & -1+a_{i}^{2} & 0 & 0 \\ -1 & -a_{i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$ with $a_{i}=1-2^{i+1}$, the result follows in the $k \neq l$ cases. On the other hand, (4.14) says that $d_{n, m}: C_{2 n, 2 m} \rightarrow D_{n, m}$ is the canonical epimorphism when $k=l$. Therefore the conjugation t_{*} on $K U_{0} W_{2 m, 2 n} \cong Z / 2 m \oplus Z / 2^{l+1} \oplus Z / n^{\prime}$ is represented by the matrix $\left(\begin{array}{rrr}1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -1\end{array}\right)$, and hence the result is immediate in
the $k=l$ case.
4.4. Using the long exact sequences of $K O$ homologies induced by the cofiber sequences (4.4) we can easily compute

Proposition 4.5. The $K O$ homologies $K O_{i} X$ are tabled as follows:

i	0	1	2	3	4	5	6	7
$S_{2 m, 2 n}$	$Z / 2 m$	$Z / 4 n$	$Z / 2 \oplus Z / 2$	$Z / 2 \oplus Z / 2$	$Z / 4 m$	$Z / 2 n$	0	0
$T_{2 m, 2 n}$	$Z / 2 m$	$Z / 2$	$Z / 2 \oplus Z / 4 n$	$Z / 2 \oplus Z / 2$	$Z / 4 m \oplus Z / 2$	$Z / 2$	$Z / 2 n$	0
$V_{2 m, 2 n}$	$Z / 2 m$	0	$Z / 2 \oplus Z / n$	$Z / 2$	$(*)_{m, n}$	$Z / 2$	$Z / 2 n$	0
$V_{2 m, 2 n}^{\prime}$	$Z / 2 m$	$Z / 2$	$(*)_{n, m}$	$Z / 2$	$Z / m \oplus Z / 2$	0	$Z / 2 n$	0
$W_{2 m, 2 n}$	$Z / 2 m$	0	$Z / 2 n$	0	$Z / 2 m$	0	$Z / 2 n$	0

in which $(*)_{m, n}$ stands for $Z / 8 m$ if n is odd, but $Z / 4 m \oplus Z / 2$ if n is even.
For simplicity we denote by $V_{2 m}, V_{2 m}^{\prime}, W_{8 m}$ and $W_{8 m}^{\prime}$ the cofibers of the following maps

$$
\begin{array}{rr}
i \bar{\eta}: \Sigma^{1} S Z / 2 \rightarrow S Z / m, & \tilde{\eta} j: \Sigma^{1} S Z / m \rightarrow S Z / 2 \\
i \bar{\eta}+\tilde{\eta} j: & \Sigma^{1} S Z / 2 \rightarrow S Z / 4 m, \\
i \bar{\eta}+\widetilde{\eta} j: & \Sigma^{1} S Z / 4 m \rightarrow S Z / 2
\end{array}
$$

respectively. Thus

$$
\begin{equation*}
V_{4 m}=V_{2 m, 2}, V_{4 m}^{\prime}=V_{2,2 m}^{\prime}, W_{8 m}=W_{4 m, 2} \quad \text { and } \quad W_{8 m}^{\prime}=W_{2,4 m} \tag{4.16}
\end{equation*}
$$

But $V_{2 m}=S Z / m \vee \Sigma^{2} S Z / 2$ and $V_{2 m}^{\prime}=S Z / 2 \vee \Sigma^{2} S Z / m$ if m is odd.
As a special case Propositions 4.4 and 4.5 give
Corollary 4.6. i) The $K U$ homologies $K U_{0} X, K U_{1} X$ and the conjugation t_{*} on $K U_{0} X$ are tabled as follows:

X	$=$	$V_{2 m}$	$V_{2 m}^{\prime}$	$W_{8 m}$	$W_{8 m}^{\prime}$
$K U_{0} X \cong$	$Z / 2 m$	$Z / 2 m$	$Z / 8 m$	$Z / 8 m$	$Z / 2 m \oplus Z / 2 m$
$K U_{1} X \cong$	0	0	0	0	0
t_{*}	$=$	1	-1	$4 m+1$	$4 m-1$

ii) The KO homologies $K O_{i} X$ are tabled as follows:

i	$=$	0	1	2	3	4	5	6
$V_{2 m}$	Z / m	0	$Z / 2$	$Z / 2$	$Z / 4 m$	$Z / 2$	$Z / 2$	0
$V_{2 m}^{\prime}$	$Z / 2$	$Z / 2$	$Z / 4 m$	$Z / 2$	$Z / 2$	0	Z / m	0
$W_{8 m}$	$Z / 4 m$	0	$Z / 2$	0	$Z / 4 m$	0	$Z / 2$	0
$W_{8 m}^{\prime}$	$Z / 2$	0	$Z / 4 m$	0	$Z / 2$	0	$Z / 4 m$	0
$W_{2 m, 2 m}$	$Z / 2 m$	0						

5. Elementary $Z / 2$-actions

5.1. If the cyclic group $Z / 2$ of order 2 acts on the abelian group $Z \oplus Z / 2^{s+1}$, $s \geqq 0$, then its matrix representation is written as one of the following twelve types:

$$
\pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \pm\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \pm\left(\begin{array}{rr}
1 & 0 \\
1 & -1
\end{array}\right) \pm\left(\begin{array}{ll}
1 & 0 \\
2^{s} & 1
\end{array}\right) \pm\left(\begin{array}{ll}
1 & 0 \\
0 & 2^{s}+1
\end{array}\right) \pm\left(\begin{array}{lc}
1 & 0 \\
0 & 2^{s}-1
\end{array}\right)
$$

where the matrices behave as left action on $Z \oplus Z / 2^{s+1}$.
A $Z / 2$-action ρ on an abelian group H is said to be elementary if the pair (H, ρ) is one of the following kinds of pairs:

$$
\begin{align*}
& (A, 1)(B,-1)\left(C \oplus C,\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right)(Z / 8 m, 4 m \pm 1)\left(Z \oplus Z / 2 m, \pm\left(\begin{array}{rr}
1 & 0 \\
1 & -1
\end{array}\right)\right) \tag{5.1}\\
& \left(Z \oplus Z / 2 m, \pm\left(\begin{array}{ll}
1 & 0 \\
m & 1
\end{array}\right)\right)
\end{align*}
$$

We here deal with a $C W$-spectrum X such that the conjugation t_{*} on $K U_{0} X$ is decomposed into a direct sum of the above elementary $Z / 2$-actions, and $K U_{1} X$ $=0$. Thus

$$
\begin{align*}
& K U_{0} X \tag{5.2}\\
& \quad \cong A \oplus B \oplus(C \oplus C) \oplus A^{\prime} \oplus B^{\prime} \oplus\left(D \oplus D^{\prime}\right) \oplus\left(E \oplus E^{\prime}\right) \oplus\left(F \oplus F^{\prime}\right) \oplus\left(G \oplus G^{\prime}\right)
\end{align*}
$$

where each of the summands A^{\prime} and B^{\prime} is a direct sum of the forms $Z / 8 m$ and each of the summands $D \oplus D^{\prime}, E \oplus E^{\prime}, F \oplus F^{\prime}$ and $G \oplus G^{\prime}$ is a direct sum of the forms $Z \oplus Z / 2 m$. Moreover the conjugation t_{*} acts on each component of $K U_{0} X$ as follows:

$$
\begin{align*}
& t_{*}=1,-1,\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { on } A, B, C \oplus C . \tag{5.3}\\
& t_{*}=4 m+1,4 m-1 \text { on the component } Z / 8 m \text { of } A^{\prime}, B^{\prime} . \\
& t_{*}=\left(\begin{array}{rr}
1 & 0 \\
1 & -1
\end{array}\right),\left(\begin{array}{rr}
-1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
m & 1
\end{array}\right),\left(\begin{array}{rr}
-1 & 0 \\
m & -1
\end{array}\right) \text { on the component } \\
& Z \oplus Z / 2 m \text { of } D \oplus D^{\prime}, E \oplus E^{\prime}, F \oplus F^{\prime}, G \oplus G^{\prime} .
\end{align*}
$$

For any direct sum $H=\oplus_{i} Z / 2 m_{i}$ we denote by $H(*)$ the direct sum $\oplus_{i}(*)_{m_{i}}$ where $(*)_{m_{i}} \cong Z / 4$ or $Z / 2 \oplus Z / 2$ according as m_{i} odd or even. Besides we write $2 H=\oplus Z / m_{i}$ and $1 / 2 H=\oplus_{i} Z / 4 m_{i}$. For any $C W$-spectrum X satisfying (5.2) with (5.3) we will give a generalization of Lemmas 2.1 and 2.2.

Lemma 5.1. Assume that $K U_{1} X=0$.
i) $K C_{i} X \cong$

$$
\left(\begin{array}{l}
A \oplus(B * Z / 2) \oplus C \oplus\left(2 A^{\prime}\right) \oplus\left(B^{\prime} * Z / 2\right) \oplus\left(D \oplus D^{\prime} * Z / 2\right) \oplus E^{\prime} \oplus\left(F \oplus F^{\prime}\right) \oplus\left(G^{\prime} * Z / 2\right) \\
(A \otimes Z / 2) \oplus B \oplus C \oplus\left(A^{\prime} \otimes Z / 2\right) \oplus\left(2 B^{\prime}\right) \oplus\left(1 / 2 D^{\prime}\right) \oplus E^{\prime} \oplus(F *) \oplus\left(G \oplus 2 G^{\prime}\right) \\
(A * Z / 2) \oplus B \oplus C \oplus\left(A^{\prime} * Z / 2\right) \oplus\left(2 B^{\prime}\right) \oplus D^{\prime} \oplus\left(E \oplus E^{\prime} * Z / 2\right) \oplus\left(F^{\prime} * Z / 2\right) \oplus\left(G \oplus G^{\prime}\right) \\
A \oplus(B \otimes Z / 2) \oplus C \oplus\left(2 A^{\prime}\right) \oplus\left(B^{\prime} \otimes Z / 2\right) \oplus D \oplus\left(1 / 2 E^{\prime}\right) \oplus\left(F \oplus 2 F^{\prime}\right) \oplus G^{\prime}(*)
\end{array}\right.
$$

corresponding to $i \equiv 0,1,2,3 \bmod 4$.
ii) $K O_{2 i} X \otimes Z[1 / 2] \cong(A \oplus C \oplus D \oplus F) \otimes Z[1 / 2]$ or $(B \oplus C \oplus E \oplus G) \otimes Z[1 / 2]$ according as i even or odd, and $K O_{2 i+1} X \otimes Z[1 / 2]=0 \quad$ for any i.
iii) There are short exact sequences

$$
\begin{aligned}
& 0 \rightarrow K C_{3} X \rightarrow K O_{0} X \oplus K O_{4} X \rightarrow K C_{0} X \rightarrow 0 \\
& 0 \rightarrow K C_{1} X \rightarrow K O_{2} X \oplus K O_{6} X \rightarrow K C_{2} X \rightarrow 0
\end{aligned}
$$

and isomorphisms

$$
\begin{aligned}
& K O_{1} X \oplus K O_{5} X \cong(A \otimes Z / 2) \oplus(B * Z / 2) \oplus\left(D^{\prime} * Z / 2\right) \oplus\left(F^{\prime} \otimes Z / 2\right) \\
& K O_{3} X \oplus K O_{7} X \cong(A * Z / 2) \oplus(B \otimes Z / 2) \oplus\left(E^{\prime} * Z / 2\right) \oplus\left(G^{\prime} \otimes Z / 2\right)
\end{aligned}
$$

Proof. i) Use the exact sequences

$$
\begin{aligned}
& 0 \rightarrow K C_{4} X \rightarrow K U_{4} X \xrightarrow{\left(\pi \bar{U}^{-1}(1-t)\right)_{*} *} K U_{2} X \xrightarrow{\left(\gamma \pi_{U}\right)_{*}} K C_{3} X \rightarrow 0 \\
& 0 \rightarrow K C_{2} X \rightarrow K U_{2} X \xrightarrow{\left((1+t) \pi_{U}^{-1}\right) *} K U_{0} X \xrightarrow{\left(\gamma \pi_{U}\right)_{*}} K C_{1} X \rightarrow 0
\end{aligned}
$$

and compute the kernels and cokernels of $1 \pm t_{*}: K U_{0} X \rightarrow K U_{0} X$.
ii) First notice that $K O_{2 i+1} X \otimes Z[1 / 2]=0$ because $\varepsilon_{o} \varepsilon_{U}=2$. Then it follows that $\varepsilon_{c *}: K O_{2 i} X \otimes Z[1 / 2] \rightarrow K C_{2 i} X \otimes Z[1 / 2]$ is an isomorphism. The result is now immediate from i).
iii) The cofiber sequence (1.6) gives rise to two exact sequences

$$
\begin{aligned}
& 0 \rightarrow K O_{3} X \oplus K O_{7} X \rightarrow K C_{3} X \xrightarrow{\varphi_{0}} K U_{0} X \rightarrow K O_{2} X \oplus K O_{6} X \rightarrow K C_{2} X \rightarrow 0 \\
& 0 \rightarrow K O_{1} X \oplus K O_{5} X \rightarrow K C_{1} X \xrightarrow{\varphi_{2}} K U_{-2} X \rightarrow K O_{0} X \oplus K O_{4} X \rightarrow K C_{0} X \rightarrow 0
\end{aligned}
$$

where $\varphi_{i}(i=0,2)$ are induced by the composite $\varepsilon_{U} \tau \pi^{-1}$. Note that $\varepsilon_{U} \tau \pi_{c}^{-1} \gamma \pi_{U}=$ $(1+t) \pi_{\bar{u}}$. Then the kernels and cokernels of $\varphi_{i}(i=0,2)$ are easily obtained, since $\left(\gamma \pi_{U}\right)_{*}: K U_{i+2} X \rightarrow K C_{i+3} X$ has already computed in i).
5.2. By observing Proposition 4.1 and Corollary 4.6 we here list up some of finite $C W$-spectra X with a few cells such that the conjugation t_{*} on $K U_{0} X$ is elementary and $K U_{1} X=0$.

$X=$	$V_{2 m}$	$V_{2 m}^{\prime}$	$W_{8 m}$	$W_{8 m}^{\prime}$	$W_{2 m, 2 m}$
$K U_{0} X \cong$	$Z / 2 m$	$Z / 2 m$	$Z / 8 m$	$Z / 8 m$	$Z / 2 m \oplus Z / 2 m$
$t_{*}=$	1	-1	$4 m+1$	$4 m-1$	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
$X=$	$M_{2 m}$	$Q_{2 m}$	$N_{2 m}^{\prime}$	$P_{2 m}^{\prime}$	$R_{2 m}^{\prime}$
$K U_{0} X \cong$	$Z \oplus Z / 2 m$	$Z \oplus Z / 2 m$	$Z \oplus Z / 2 m$	$Z \oplus Z / m$	$Z \oplus Z / 2 m$
$t_{*}=$	$\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$	$\left(\begin{array}{ll}1 & 0 \\ m & 1\end{array}\right)$	$\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$	$\left(\begin{array}{rl}1 & 0 \\ 1 & -1\end{array}\right)$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

We write $Y_{H}=\bigvee_{i} Y_{2 m_{i}}$ for any direct sum $H=\oplus_{i} Z / 2 m_{i}$ when $Y=V, W, M$, Q and so on. We will here determine the quasi $K O_{*}$-type of a $C W$-spectrum X satisfying (5.2) with (5.3) under certain restrictions.

Theorem 5.2. Let X be a $C W$-spectrum such that $K U_{0} X$ has a direct sum
decomposition as (5.2), $K U_{1} X=0$ and t_{*} acts on $K U_{0} X$ as (5.3). Assume that $A \cong A_{0} \oplus A_{1}$ where A_{0} is 2 -torsion free and A_{1} is a direct sum of cyclic 2-groups. If $K O_{1} X=0=K O_{7} X$, then X is quasi $K O_{*}$-equivalent to the wedge sum $\Sigma^{4} S A_{0} \vee$ $\Sigma^{2} S B \vee(P \wedge S C) \vee V_{A_{1}} \vee W_{A^{\prime}} \vee \Sigma^{2} W_{B^{\prime}} \vee \Sigma^{2} M_{D^{\prime}} \vee M_{E^{\prime}} \vee \Sigma^{4} Q_{F^{\prime}} \vee \Sigma^{2} Q_{G^{\prime}} . \quad$ (Cf. [20, Theorem 2.5].)

Proof. Abbreviate by Y the desired wedge sum of elementary spectra with a few cells. From (5.4) it is obvious that $K U_{0} Y \cong K U_{0} X$ on both of which the conjugations t_{*} behave as the same action. Moreover we note that $K O_{1} Y=0=$ $K O_{7} Y$ by means of Proposition 4.2 and Corollary 4.6. For each component Y_{H} of the wedge sum Y we can choose a unique map $f_{H}: Y_{H} \rightarrow K U \wedge X$ whose induced homomorphism $\kappa_{K U}\left(f_{H}\right)_{*}: K U_{0} Y_{H} \rightarrow K U_{0} X$ is the canonical inclusion, because of (1.8). Here H is taken to be $A_{0}, A_{1}, B, \cdots, F^{\prime}$ or G^{\prime}. Notice that there exists a map $g_{H}: Y_{H} \rightarrow K C \wedge X$ satisfying $\left(\zeta_{\wedge} 1\right) g_{H}=f_{H}$ for each H since $\left(t_{\wedge} 1\right)$ $f_{H}=f_{H}$. We will find a map $h_{H}: Y_{H} \rightarrow K O \wedge X$ such that $\left(\varepsilon_{U \wedge} 1\right) h_{H}=f_{H}$ for each H, and then apply Proposition 1.1 to show that the map $h=\vee_{H} h_{H}: Y=\bigvee_{H} Y_{H} \rightarrow$ $K O \wedge X$ is a quasi $K O$-equivalence.
i) The $H=A_{0}$ case: Consider the commutative diagram

$$
\begin{array}{cc}
0 \rightarrow \operatorname{Ext}\left(A_{0}, K O_{2} X\right) \rightarrow\left[\Sigma^{4} S A_{0}, \Sigma^{3} K O \wedge X\right] \rightarrow \operatorname{Hom}\left(A_{0}, K O_{1} X\right) \rightarrow 0 \\
\downarrow \eta_{* *} & \left.\downarrow \eta_{\wedge} 1\right)_{*} \\
\downarrow \rightarrow \operatorname{Ext}\left(A_{0}, K O_{3} X\right) \rightarrow\left[\Sigma^{4} S A_{0}, \Sigma^{2} K O \wedge X\right] \rightarrow \operatorname{Hom}\left(A_{0}, K O_{2} X\right) \rightarrow 0
\end{array}
$$

with exact rows. Since A_{0} is 2 -torsion free and $\mathrm{KO}_{3} \mathrm{X}$ is a $Z / 2$-module by Lemma 5.1 iii), we see that $\operatorname{Ext}\left(A_{0}, K O_{3} X\right)=0$. So the central arrow $\left(\eta_{\wedge} 1\right)_{*}$ becomes trivial because $K O_{1} X=0$. This implies that the composite $\left(\varepsilon_{o} \pi_{\bar{U}}{ }^{1} \wedge\right)$ $f_{A_{0}}: \Sigma^{2} S A_{0} \rightarrow K O \wedge X$ is trivial because it coincides with the composite $\left(\eta_{\wedge} 1\right)$ $\left(\tau \pi \bar{c}^{-1} \wedge 1\right) g_{A_{0}}$. Hence there exists a map $h_{A_{0}}: \Sigma^{4} S A_{0} \rightarrow K O \wedge X$ satisfying $\left(\varepsilon_{U \wedge} 1\right) h_{A_{0}}$ $=f_{A_{0}}$.
ii) The $H=B$ case is obtained more simply than the case i), by making use of only the assumption that $K O_{7} X=0=K O_{1} X$.
iii) The $H=C$ case: We will find vertical arrows h_{0}, h_{1} making the diagram below commutative

after replacing the map g_{c} with $\left(\zeta_{\wedge} 1\right) g_{c}=f_{c}$ suitably if necessary. The homomor-
phism $\kappa_{K O}\left(g_{c}\left(i_{P \wedge} 1\right)\right)_{*}: K O_{0} S C \rightarrow K C_{0} X$ is just the canonical inclusion $C \subset K C_{0} X$, and the induced homomorphism $\left(\tau \pi_{c}^{-1}\right)_{*}: K C_{0} X \rightarrow K O_{5} X$ restricted to $C \subset$ $K C_{0} X$ is trivial by Lemma 5.1 iii $)$. Therefore $\kappa_{K O}\left(\left(\tau \pi c^{-1} \wedge 1\right) g_{C}\left(i_{P \wedge} 1\right)\right)_{*}: K O_{0} S C$ $\rightarrow K O_{5} X$ becomes trivial. As in the case i) we here use the commutative diagram

$$
\left.\begin{array}{cc}
0 \rightarrow \operatorname{Ext}\left(C, K O_{6} X\right) \rightarrow\left[S C, \Sigma^{3} K O \wedge X\right] & \rightarrow \operatorname{Hom}\left(C, K O_{5} X\right) \rightarrow 0 \\
\downarrow \eta_{* *} & \downarrow\left(\eta_{\wedge} 1\right)_{*}
\end{array}\right] \begin{aligned}
& \downarrow * * \\
& 0 \rightarrow \operatorname{Ext}\left(C, K O_{7} X\right) \rightarrow\left[S C, \Sigma^{2} K O \wedge X\right] \rightarrow \operatorname{Hom}\left(C, K O_{6} X\right) \rightarrow 0
\end{aligned}
$$

with exact rows, in which $K O_{7} X=0$. Then it follows that the composite ($\eta_{\wedge} 1$) $\left(\tau \pi \bar{c}^{-1} \wedge 1\right) g_{c}\left(i_{P \wedge} 1\right): S C \rightarrow \Sigma^{2} K O \wedge X$ becomes trivial. So we apply Lemma 1.3 to obtain maps $h_{0}: S C \rightarrow K O \wedge X$ and $h_{1}: S C \rightarrow \Sigma^{1} K O \wedge X$ as desired where the map g_{c} might be replaced suitably. However the composite $\left(\eta_{\wedge} 1\right) h_{1}: S C \rightarrow K O \wedge X$ is trivial because $K O_{7} X=0=K O_{1} X$. Consequently we get a map $h_{c}: P \wedge S C \rightarrow$ $K O \wedge X$ such that $\left(\varepsilon_{U \wedge} 1\right) h_{C}=f_{C}$.
iv) The $H=A_{1}$ case: Setting $A_{1}=\underset{i}{\oplus} Z / 2 m_{i}$ we have to find vertical arrows h_{0}, h_{1} making the diagram below commutative

as in the case iii). The complexification $\varepsilon_{U *}: K O_{0} V_{A_{1}} \rightarrow K U_{0} V_{A_{1}}$ is the canonical monomorphism $\underset{i}{\oplus} Z / m_{i} \rightarrow \underset{i}{\oplus} Z / 2 m_{i}$, and the realification $\left(\varepsilon_{o} \pi_{U}^{-1}\right)_{*}: K U_{0} X \rightarrow K O_{6} X$ restricted to $A \subset K U_{0} X$ is factorized through $A \otimes Z / 2$ by Lemma 5.1 iii). These facts imply that $\kappa_{K O}\left(\left(\varepsilon_{o} \pi_{U}^{-1} \wedge 1\right) f_{A_{1}}\right)_{*}: K O_{0} V_{A_{1} \rightarrow K O_{6} X \text { is trivial. Hence the com- }}$ posite map $\left(\varepsilon_{o} \pi_{\bar{U}}{ }^{-1} \wedge 1\right) f_{A_{1}} i_{V}: \bigvee_{i} S Z \mid m_{i} \rightarrow \Sigma^{2} K O \wedge X$ becomes trivial because $K O_{7} X$ $=0$. Applying Lemma 1.3 we get the required maps $h_{0}: \bigvee_{i} S Z / m_{i} \rightarrow K O \wedge X$ and $h_{1}: \bigvee_{i} S Z / 2 \rightarrow \Sigma^{1} K O \wedge X$, after replacing the map $g_{A_{1}}$ suitably if necessary. Then there exists a map $h_{A_{1}}: V_{A_{1}} \rightarrow K O \wedge X$ satisfying $\left(\varepsilon_{U \wedge} 1\right) h_{A_{1}}=f_{A_{1}}$ since $\left(\eta_{\wedge} 1\right) h_{1}=0$ as in the case iii).
v) The $H=A^{\prime}$ case is obtained by a quite similar discussion to the above case iv).
vi) The $H=B^{\prime}$ case: Set $B^{\prime}=\oplus_{i} Z / 2 m_{i}$ and consider the commutative diagram

$$
\begin{array}{ccc}
\vee \Sigma_{i} S Z / m_{i} \xrightarrow{i_{W}} \Sigma^{2} W_{B^{\prime}} & j_{W} \\
\Sigma_{i} \Sigma^{4} S Z / 2 \\
h_{0} \downarrow & \downarrow g_{B^{\prime}} & \downarrow h_{1} \\
K O \wedge X & \rightarrow K U \wedge X \rightarrow & \Sigma^{3} K O \wedge X \\
\| & \downarrow \zeta_{\wedge} 1 & \downarrow \eta_{\wedge} 1 \\
K O \wedge X & \rightarrow K U \wedge X \rightarrow \Sigma^{2} K O \wedge X .
\end{array}
$$

In this case we can find vertical arrows h_{0}, h_{1} more easily than the case iv), by making use of only the assumption that $K O_{7} X=0=K O_{1} X$. The map $h_{1}: \bigvee_{i} \Sigma^{1}$ $S Z / 2 \rightarrow K O \wedge X$ has an extension $h_{2}: \bigvee_{i} \Sigma^{2} \rightarrow K O \wedge X$, thus $h_{1}=h_{2}\left(\bigvee_{i} j\right)$. Hence the composite map $\left(\eta_{\wedge} 1\right) h_{1} j_{W}: W_{B^{\prime}} \rightarrow K O \wedge X$ becomes trivial because $\eta j=$ $j(i \bar{\eta}+\widetilde{\eta} j)$. So we get a map $h_{B^{\prime}}: \Sigma^{2} W_{B^{\prime}} \rightarrow K O \wedge X$ satisfying $\left(\varepsilon_{U \wedge} 1\right) h_{B^{\prime}}=f_{B^{\prime}}$.
vii) The $H=D^{\prime}, E^{\prime}$ cases are shown by similar discussoins to the case iv). Use the assumption that $K O_{7} X=0=K O_{1} X$ in the former case, and Lemma 5.1 iii) and the assumption that $\mathrm{KO}_{7} X=0$ in the latter case.
viii) The $H=F^{\prime}$ case: Setting $F^{\prime}=\underset{i}{\oplus} Z / 2 m_{i}$, we will find vertical arrows h_{0}, h_{1} making the diagram below commutative

where $S F^{\prime}=\bigvee_{i} S Z / 2 m_{i}$ and $S F=\bigvee_{i} \Sigma^{0}$. Since $K O_{1} X=0$, the composite $\left(\tau \pi \bar{c}^{-1} \wedge 1\right)$ $g_{F^{\prime}} i_{Q}: \Sigma^{1} S F^{\prime} \rightarrow K O \wedge X$ has an extension $k_{0}: \Sigma^{2} S F \rightarrow K O \wedge X$. The induced homomorphism $g_{F^{\prime} *}: K O_{2} Q_{F^{\prime}} \rightarrow K C_{6} X$ carries $K O_{2} Q_{F^{\prime}}$ onto the component $F \otimes Z / 2 \subset K C_{6} X$. On the other hand, $\left(\tau \pi \bar{c}^{-1}\right)_{*}: K C_{6} X \rightarrow K O_{3} X$ restricted to the component $F \otimes Z / 2 \subset K C_{6} X$ is trivial by Lemma 5.1 iii). Combining these facts we see that $k_{0 *}: K O_{1} S F \rightarrow K O_{3} X$ is trivial. Thus the composite $\left(\eta_{\wedge} 1\right) k_{0}: \Sigma^{3} S F$ $\rightarrow K O \wedge X$ becomes trivial, and hence the composite $\left(\varepsilon_{o} \pi_{\bar{U}} \bar{U}^{1} 1\right) f_{F^{\prime}} i_{Q}: \Sigma^{2} S F^{\prime} \rightarrow$ $K O \wedge X$ is trivial, too. So we apply Lemma 1.3 to obtain the required maps h_{0} : $\Sigma^{4} S F^{\prime} \rightarrow K O \wedge X$ and $h_{1}: \Sigma^{5} S F \rightarrow K O \wedge X$.

The coextension $\tilde{\eta}: \Sigma^{2} \rightarrow S Z / 2 m$ of η induces an epimorphism $\tilde{\eta}^{*}:\left[\Sigma^{3} S Z / 2 m\right.$, $K O \wedge X] \rightarrow\left[\Sigma^{5}, K O \wedge X\right]$ because $j \tilde{\eta}=\eta$. So there exists a map $h_{2}: \Sigma^{3} S F^{\prime} \rightarrow K O$ $\wedge X$ such that $h_{2}\left(\bigvee_{i} \tilde{\eta}\right)=h_{1}$. Then the composite map $\left(\eta_{\wedge} 1\right) h_{1} j_{Q}: \Sigma^{2} Q_{F^{\prime}} \rightarrow K O \wedge X$ becomes trivial. So we get a map $h_{F^{\prime}}: \Sigma^{4} Q_{F^{\prime}} \rightarrow K O \wedge X$ satisfying $\left(\varepsilon_{U \wedge} 1\right) h_{F^{\prime}}=f_{F^{\prime}}$ as desired.
ix) The $H=G^{\prime}$ case is obtained easily by a parallel discussion to the above case viii).

As a special case of Theorem 5.2 we have
Corollary 5.3. Let X be a $C W$-spectrum and $C, A^{\prime}, B^{\prime}$ abelian groups where A^{\prime} and B^{\prime} are direct sums of the forms $Z / 8 m$. Then $X_{\widetilde{K}}(P \wedge S C) \vee W_{A^{\prime}} \vee \Sigma^{2} W_{B^{\prime}}$ if and only if $K U_{0} X \cong C \oplus C \oplus A^{\prime} \oplus B^{\prime}, K U_{1} X=0$ and t_{*} acts on $K U_{0} X$ as in (5.3). (Cf. [20, Theorem 1.6].)

Proof. The "only if" part is evident.
The "if" part: In this case it follows from Lemma 5.1 iii) that $K_{2 i+1} X=0$ for any i. So we may apply Theorem 5.2.

As an easy application of Theorem 5.2 combined with Propositions 4.1 and 4.2 and Corollaries 1.6 and 4.6 , we obtain

Corollary 5.4. $\quad P_{4 m}^{\prime} \widetilde{K O} \Sigma^{2} M_{2 m}, \quad P_{4 m} \widetilde{K O} \Sigma^{-1} M_{2 m}^{\prime}, \quad V_{2 m} \widetilde{K O} \Sigma^{2} V_{2 m}^{\prime}, \quad W_{8 m} \widetilde{K O}$ $\Sigma^{4} W_{8 m} \widetilde{K O} \Sigma^{2} W_{8 m}^{\prime}$ and $W_{2 m, 2 m} \widetilde{K O} P \wedge S Z / 2 m$.

As a consequence of Theorem 5.2 we can finally show Theorem 3 stated in the introduction.

Proof of Theorem 3. i) The $K U_{0} X \cong Z / 2 m$ case: The conjugation t_{*} on $K U_{0} X$ behaves as one of the following four types: $t_{*}= \pm 1,4 n \pm 1(m=4 n)$. Thus the pair ($K U_{0} X, t_{*}$) is itself elementary. So we may apply Theorem 5.2 to show that X is quasi $K O_{*}$-equivalent to one of the following four elementary spectra: $V_{2 m}, \Sigma^{2} S Z / 2 m, W_{8 n}$ and $\Sigma^{2} W_{8 n}$.
ii) The $K U_{0} X \cong Z \oplus Z / 2 m$ case: The conjugation t_{*} on $K U_{0} X$ behaves as one of the following twelve types: $t_{*}= \pm\left(\begin{array}{ll}1 & 0 \\ 0 & \pm 1\end{array}\right), \pm\left(\begin{array}{cc}1 & 0 \\ 0 & 4 n \pm 1\end{array}\right)(m=4 n)$, $\pm\left(\begin{array}{rr}1 & 0 \\ 1 & -1\end{array}\right), \pm\left(\begin{array}{rr}1 & 0 \\ m & 1\end{array}\right)$. Thus the pair $\left(K U_{0} X, t_{*}\right)$ is itself elementary, too. Hence we can show that X is quasi $K O_{*}$-equivalent to one of the twelve elementary spectra given in Theorem 3 ii), by applying Theorem 5.2 again.

References

[1] J.F. Adams: Vector fields on spheres, Ann. of Math. 75 (1962), 603-622.
[2] J.F. Adams: Stable homotopy and generalized homology, Univ. of Chicago, 1974.
[3] D.W. Anderson: A new cohomogogy theory, Thesis, Univ. of California, Berkeley, 1964.
[4] D.W. Anderson: Universal coefficient theorems for K-theory, mimeographed notes, Berkeley.
[5] A.K. Bousfield: Cohomological localizations of spaces and spectra, preprint.
[6] A.K. Bousfield: A classification of K-local spectra, preprint.
[7] C.W. Curtis and I. Reiner: Methods of representation theory with applica-
tions to finite groups and orders, Pure and Applied Math. A Wiley-Interscience series of texts, monographs and tracts, 1981.
[8] M. Fujii: K_{o}-groups of projective spaces, Osaka J. Math. 4 (1967), 141-149.
[9] K. Johnson: On compact cohomology theories and Pontrjagin duality, Trans. Amer. Math. Soc. 279 (1983), 237-247.
[10] M. Karoubi and V. Mudrinski: K-théorie réelle de fibrés projectifs complexes, C.R. Acad. Sci. Paris Sér. I Math. 297 (1983), 349-352.
[11] A.G. Kurosh: The theory of groups, I, Chelsea Publ. Co., New York, 1955.
[12] H.R. Margoris: Spectra and the Steenrod algebra, Modules over the Steenrod algebra and the stable homotopy category, North-Holland Mathematical Library 29, North-Holland, 1983.
[13] W. Meier: Complex and real K-theory and localization, J. Pure and Applied Algebra 14 (1979), 59-71.
[14] M. Mimura, S. Oka and M. Yasuo: K-theory and the homotopy types of some function spaces, in preparation.
[15] D.C. Ravenel: Localization with respect to certain periodic homology theories, Amer J. Math 106 (1984), 351-414.
[16] R.M. Seymour: The real K-theory of Lie groups and homogeneous spaces, Quart. J. Math. Oxford 24 (1973), 7-30.
[17] E.H. Spanier: Function spaces and duality, Ann. of Math. 70 (1959), 338-378.
[18] R. Vogt: Boardman's stable homotpoy category, Lecture notes series 21, Aarhus Univ., 1970.
[19] Z. Yosimura: Universal coefficient sequences of cohomology theories of $C W$ spectra, I and II, Osaka J. Math. 12 (1975), 305-323 and 16 (1979), 201-217.
[20] Z. Yosimura: The quasi KO-homology types of the real projective spaces, Proc. Int. Conf. at Kinosaki, Springer-Verlag, 1418 (1990), 156-174.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan

