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1. Introduction

Symplectic manifolds are manifolds which admit a non-degenerate closed
2-form. It is well-known that the manifolds which admit a Kihler structure
are sytplectic manifolds. In this paper, a symplectic manifold M is called non-
Kdhler, if M do not admit Kihler structures. There has been recent interest
in examples of closed non-Kihler symplectic manifolds.

The first such example was constructed by Thurston [10]. This closed non-
Kihler symplectic manifold was a total space of a flat torus bundle over a torus
in [10] and was also a nil-manifold in Abbena [1] and Weinstein [12].

Other examples of closed non-Kihler symplectic manifolds have appeared
in Cordero, Fernandez and Gray [2], Cordero, Fernandez and Leon [3], Mc
Duff [8] and Watson [11]. With the exception of [8], all of these examples are
nil-manofolds, which are a generalization of Thurston’s example.

In this paper, we generalize the Thurston’s example in another way and
show that there is a new calss of closed non-Kihler symplectic manifolds. We
prove that the total spaces of flat surface bundles over closed symplectic mani-
folds whose characteristic homomorphisms satisfy some conditions have natural
symplectic structures but they are non-Kihler. To see that our symplectic
manifolds are non-Kihler, we find non-zero Massey triple products, for it is
well-known that all the Massey triple products on closed Kihler manifolds are
Zero.

We review some definitions in §2 and state our theorem in §3. As an
application of the theorem, we construct the examples of closed non-Kihler sym-
plectic manifolds in §4. We prove in §5 that our symplectic manifolds admit
non-zero Massey triple products.

2. Preliminaries

We call that a closed manifold M is non-Kdhler symplectic manifold if M
is a symplectic manifold and do not admit Kihler structures. To prove non-
existence of Kihler structures, we use the following:

Theorem. (see [4] p. 168) All Massey triple products are zero on a com-
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pact Kdahler manifold.

We review the definition of Massey triple products ([9]).

For a smooth closed manifold W, let A*(W) denote the de Rham complex
and let H3x(W) be its homology. Let A€ H%x(W), BEH% (W), CEHpr(W)
be such that 4 UB=0and BUC=0. Choose representatives a, b, ¢ and x, y&
A*(W) such that dx=aAb, dy=bAc. Then aAy+(—1)"*"'xAc is a closed
(p+q+r—1)-form. Its class in H5%*"~'(W) defines a coset modulo A-H% !
(W)+C-H5%¥ ' (W). 'This coset is called the Massey triple product of A, B and
C, and is denoted by <4, B, C).

We define Dehn twist diffeomorphisms on surfaces.

Let 3, be an oriented closed surface of genus g(>1) and {a,, -+, a,; by, -,
b,} a symplectic system of oriented simple closed curves on =, namely a; Nb;=
a;Na;=b;Nb;=¢ for i4j and q; intersects b; at one point with intersection
number +1 for i=1, -, g.

We denote by 7% a torus with a coordinate (exp (6;7/—1), exp(6,,/—1)) and
by a, b the closed curves such that a(8)=(exp(dv/—1), 1), b(0)=(1, exp(6+/—1)),
and define a neighbourhood U of aU b by

U = {(exp(6,/—1), exp(0,/ —1))ET?; —36<0,<36 or —36<0,<3&},

where §(>0) is a fixed small number such that 3¢ <z/2.

Then we have a neighbourhood U; of a;Ub;, and a diffeomorphism f;:
U,— U such that the images of a;, ; are a, b respectively.

We may assume that U,, -+, U, are disjoint.

We identify U, with U by f;. Then Dhen twist diffeomorphism T (a;) (resp.
T(b;)) along a,(resp. b;) is a diffeomorphism on X, whose support supp 7'(a;)
(resp. supp T'(b;)) is contained in U; and is defined on U; by

T(a;) (exp (0, —1), exp(0.v/ —1))
= (exp((0:+7(@2))V/ —1), exp(6:7/ —1));
(resp. T'(5;) (exp (0,v/—1), exp(6v/—1)))
= (exp(0,v/—1), exp((0+7(0))V 1)),
where y=7(0) is a smooth function on R satisfying the following conditions:
(1) (0+27) = v(0)+27;
(2) ¥(@) =0 for €-22<0<—¢ and y(0) =2z for E<SO<2z—¢
where &(>0) is the fixed small number;
(3) « is strictely increasing on [—¢€, &].

Lemma. For the fixed symplectic system {a;, b;; i=1, ---, g}, there exists a
volume form v of 3., which is preserved by T(a,), -+, T(a,) and T'(b,), ---, T'(b,).

Proof. Set v,=f¥(d0,Adb,) for i=1, ---, g. Then the 2-form v; is a
volume form of U; which is preserved by T'(a;) and T'(b;).
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We set
U, = {(exp(0,7/—1), exp(0,/—1))ET?; —26<0,<26 or —26<0,<2€}

and
Uig :f;_l(U!) fol‘ i.—: 1’ -..’g.

Let v, be a volume form of the complement U, of the union of {U,; i=1,
---,g+. 'Then, by use of the partition of unity for the covering {U,, U, -+, U}
of 3, we have a volume form v of 3, which coincide +v; on U, for i=1, ---, g
and v, on the complement of the uion of {U;; i=1, ---,g}. Since the supports
of T(a;) and T(b;) are contained in U, for i=1, -+, g, and ©v; is preserved
by T'(a;) and T(b;), the volume form v is preserved by T'(a), ---, T'(a,) and
T(b,), -+, T(b,). 'Therefore we have Lemma.

3. Theorem

Let {ay, -, a,; by, -+, b,} a symplectic system of oriented simple closed
curves on X,. By Lemma of §2, there exists a volume form » on X, which is
invariant under T'(c) for all c=ay, -+, a,, b;, ***, b,.

Now let (IV, Q) be a closed symplectic manifold admitting a homomorphism

p: m(N)—Diff (3,) which satisfies the following condition:
(*) The image of p is generated by Dehn twist diffeomorphisms T'(c,), T'(c),
-++, T'(c,) such that supp T'(c,)Nsupp T(c;)=¢ for i1, where ¢, -, ¢, are
elements of the symplectic system of oriented simple closed curves {a,, -+, a
by o+, b} '

Define a z,(N)-action on N X3, by

@,(%, 2) = (o (g) (), p(8) (2)) for gEm(N);

where z: N—N is the universal covering of N and o(g) is the covering trans-
formation corresponding to g(Em(N)).

We denote by M the quotient space of N X =, by the above z,(V)-action.
Then M is the total space of the flat =,-bundle over N whose characteristic
homomorphism is p.

Let p;: Nx3,—N and p,: Nx3,—3, be the projections. We have a
closed 2-form p¥(z*Q)+p¥ v on NXZ,. Since this closed 2-form is invariant
under the z,(/N)-action and non-degenerate, M/ has a natural symplectic structure
o which is the projection of p¥(z*Q)+p¥ v down to M.

44

Theorem. The above closed symplectic manifold (M, w) is non-Kdhler.

By Theorem, we have a new class of closed non-Kihler symplectic mani-
folds. We construct the examples of such manifolds in §4.

In §5, we prove that the manifold M has a non-zero Massey triple product.
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Then our theorem follows immediately from the well-known theorem in §2 that
all the Massey triple products on closed Kihler manifolds vanish.

The fact that total spaces of 3 -bundles (not necessarily flat) adimt a sym-
plectic structure is mentioned in Thurston [10] for g(>1), and our construction
appears essentially in Johnson [5].

4. Examples

Set N=%,(m>1), Q a symplectic structure on N. Let {a,, -+, &tp, By, =+,
Bn} be the natural system of generators of z,(3,,) which have the relation such
that [a,, By]+[@ Ba] **[ms Bu]=1, where [a;, B]=a;*B;-ai’-B7.

We define a homomorphism p,: #,(N)—Diff (Z,) (g=>2) by

pi(@) = T(a), pB)=T(a);
pic)=1d, for c=a;B;([(=2),

where {a,, --+, a,, b, +-+, b} is the symplectic system of oriented simple closed
curves on %, in §3. Then the homomorphism p, satisfies the condition (*) in
§3. Therefore, by Theorem, we have a closed non-K#hler symplectic manifold
(M), w,) of dimension 4.

The 4-dimensional closed manifold M, is also an example of almost com-
plex manifold admitting no complex structure. To see this, it is sufficient to
note the following three facts:

(1) A symplectic manifold admits always an almost complex structure (see

for example [12]);

(2) The first Betti number b,(M;) of M, is even (in fact, b,(M,;)=2m+2g—2)
and M, admits no Kihler structure (by our theorem);
(3) A compact complex surface with even first Betti number admits a Kihler

structure (see K. Kodaira [7] Theorem 25).

Moreover, in §3, we reset (V, Q)=(M,, »,) and define a homomorphism
pz: m(M,)—Diff(2,) by p,=p,opx, where p: M,—3,, is the projection of the flat
3 -bundle. Then, the homomorphism p, satisfies the condition (*). Therefore,
by Theorem, we have a closed non-Kihler symplestic manifold (M,, w,) of di-
mension 6.

Repeating this procedures, we have a closed non-Kihler symplectic mani-
fold (M,, »,) of dimension (2n+2). Thus we have a new class of closed non-
Kihler symplectic manifolds.

5. Massey products

We prove the following proposition:

Proposition. The closed manifold M constructed in §3 has a non-zero Mas-
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sey triple product.

Our method to find a non-zero Massey triple product is motivated by
Cordero, Fernandez and Gray [2], Cordero, Fernandez and Leon ]3], Griffiths
and Morgan [4] and Kawashima [6].

In this section, we fix a symplectic system {a,, -+, a,; by, **+, b,} of oriented
simple colosed curves on X,.

Let M be the symplectic manifold and p: #,(N)—Diff(%,) be the ho-
momorphism as in § 3.

By the condition (*), we have a homomorphism

p: Im p—<T(e)>
defined by

p(T(e)) = T(e), p(T(c))) = id (1=2, -+, m) §
where {T'(c,))> denotes the subgroup of Diff (Z,) generated by T'(c,).

Lemma 1. There exists an element @ of Hom (H,(N, Z), R) such that
p(x)=1 (resp. 0) for x=E(g), if (pop) (&)=T(c,) (resp. id), where E: m(N)—>H,
(N3 Z) is the Hurewicz homomorphism.

Proof. Since the image of pop is an abelian group, we have a well-defined
homomorphism p: H(M; Z)—<T(c,)> such that poE=pop. Let I: {T(¢;)>—>Z
be a natural isomorphism. Then, the desired homomorphism ¢ is defined by
p=Iop. q.e.d.

Set & the closed 1-form on N whose De Rham cohomolgy class corresponds
to the element @ of Lemma 1 under the isomorphisms Hjr(N)=H'N; R)=
Hom (H,(N; Z), R) and F a smooth function on N such that z*¢=dF, where
n: N—N is the universal covering of N.

Lemma 2. The above function F satisfies that o(g)*F=F-+1 (resp. F),
if pop(g)="T\(c,) (resp. id), where g is an element of = (N).

Proof. Let g be an element of #(IN) which is represented by an oriented
closed curve ¢ on N. We denote a lift of ¢ on N by & Note that z*£=dF,
then we have

o(g)*F—F = S; m*E = SC £ = @oE(g)

Therefore, by Lemma 1, we have Lemma 2. q.e.d.
We need Lemma 2 and the following lemma to find a non-zero Massey
triple product.

Lemma 3. There exist closed 1-forms 5, n' on 2, satisfying the following
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conditions:

(1) T()*n=n, T(c)*n'=n+7";
(2) =, are invariant under T'(c;) for i=2,:-,n;

®) S 2/A\n"'+0;
Zg
(4) S N0 for all closed 1-forms on S, such that L 7 AN
€1 I'4
Proof. We define closed 1-forms %,, %4 on a torus T? by

o = % (0, d6,, o= do,,

where (exp (6,7/—1), exp(0,3/—1)) is a coordinate of 7% and v(f) is the smooth
function which is used to define Dhen twist diffomorphisms in §2.
Then, the 1-forms satisfy the following conditions:

41 1) T@*n =12, T(@)*76=netn6;
(2) STzﬂo/\ﬂ(’)z'F();

3 San6=i=0, Sano =0;

where T'(a) is Dhen twist diffeomorphism along @ and {a, b} is the symplectic
system of oriented simple closed curves of 7% such that a=a(0)=(exp(6v/—1, 1)
and b=>b(0)=(1, exp(0/—1)).

We construct the desired closed 1-forms %, %" by use of %, 75.

We may assume that ¢,=a,.

Let f; be the diffeomorphism from U, to U as in §2. We set

n=[fn, 7' =ffn.

Since ¢;=a, and fi(a,)=a, we have (1) of Lemma 3. By the condition
(*) in §3. the union of {supp T(c;); =2, :--, n} is contained in 3,— U,, we have
(2) of Lemma 3. Moreover, by (4.1) (2), we have (3) of Lemma 3.

We prove (4) of Lemma 3. Let A be a closed 1-form on X,. Since the
closed 1-forms %, n satisfy (3) of Lemma 3 and their supports are contained in
U,, they form a basis of H'(U,, 0U,; R). Hence the 1-form A is cohomologous
to a closed 1-form A’ such that A'=nyn'-my- pu, where the support of p is con-
tained in 3,— U, and n,mcR. We have

S x=$ x'=s ' +mny
a1 a ay

= | mmtmmy = | i
a a
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and
—_— r__ r__ 4
Lg AN = Lx AN —-nL‘ n/\7n —an 70/\%0 -

Therefore, if L »AA=%0, # must be non-zero by (4.1) (2). Hence, by (4.1) (3),
we have (4) of Lemma 3. q.e.d.

In the following, we may assume that ¢,;=a,.

Let p;: Nx3,—»N and p,: NX=,—3, be the projections. We have a
closed 1-form p¥ 7 on Nx3,. By (1) and (2) of Lemma 3, p¥ 5 is invariant
under the 7z (/V)-action. Also the closed 1-form p¥(z*£) on N'x 3, is invariant
under the z,(IV)-action. Therefore, they dfinee the closed 1-forms %, £on M

“which are the projections of the closed 1-forms p¥ », p¥(z*£) down to M. We
denote their cohomology classes of %, £ by A, C respectively.

Then we have the following lemma which proves Proposition.

Lemma 4. Massey triple product <A, A, C) is non-zero.

Proof. We define a 1:form y on N X3, by

y=ptF-pfa—ptn".
Then we have
F y = pi(o (&)*F)-p¥(p(8)*n)—p¥(p(8)*n') ,
and, by (2) of Lemma 3, we get
F y = pi(a (8)*F) -p¥((por(&))*n)—p¥(por(g))*n) -

Therefore, by Lemma 2 and (1) of Lemma 3, the 1-form y is invariant under
the z,(N)-action. We denote by  the 1-form on M which is the projection
of y down to M. Since

dy = pF(dF) A\ pf n = pt(*E) A p¥ 7,
we have
a9 =ENn.
Therefore, by definition, we have
<4,4,C>=[-9AJ] mod. A-Hpr(M)+C-Hpe(M).

We remark that —p§ y A y=pF(yAn’) and note that pF(yAx’) is a closed
2-form on N'x 3, which is invariant under the z,(N)-action. Then the closed
2-form p on M which is the projection of p¥(»Azn') down to M satisfies

[—AAS] =[p] in Hpx(M).
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Now, let i: =,—M be the inclusion mapping of a fibre. Then, we have
*u=nAy".
Hence,
. . I ,
@@=, w={ #u={_ 2.

Therefore, [1] (7%([Z,.])) is non-zero by (3) of Lemma 3. That is, we have
(4.2) (1) <CA,A4,C>=[u] mod. A-Hpr(M)+C-Hpr(M);

@) [ G2 D) *0.

In the following, we prove that [u] does not belong to A-Hpr(M)+
C-Hbx(M).
First, we have

£=pre,

where p: M—N is the projection of the flat 3,-bundle. The cohomology class
C is represented by £. Therefore, if X is an element of C-Hpr(M), i*X=0
in H3z(Z,). That is, we have

(4.3) X(ix[S,]) =0 for XeC-Hba(M).

Secondly, let X be an element of A-Hpz(M). There is a closed 1-form ¢
such that X=[)A¢] (€ 4-Hpr(M)). And we have

*ANE) = p \T*¢ .

Hence,

X[z = [ ane={ #oan = anit.

i

Then, by (4) of Lemma 3, if X (74([Z,])) is non-zero, S ¢*¢ must be non-zero.

a

On the other hand, we assumed that ¢,=a,. Then, the following property of
T(c,) is well-known and is obtained easily by the definition:
T(e)«([b]) = []+[b] in H(Z,; Z).
Since x0T (c))x = ix: H\(Z,; Z) — H(M; Z),
(@) =0 in H(M; Z).

Hence, for all closed 1-form A on M, we have

Li* A = [\ (ix([a]) = 0.
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Consequently, we have

44 X0x([Z]))=0 for XcA-Hpr(M).
Now, by (4.2) (2), (4.3) and (4.4), [p] does not belong to A-Hpr(M)-+
C-Hpr(M). Hence, by (4.2) (1), we have Lemma 4. q.e.d.
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