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1. Introduction

In Hoeffding’s fundamental paper [4], he proved the weak convergence
of U-statistics under suitable conditions. Loynes [10] and later, Miller and
Sen [12] as well as Mandelbaum and Taqqu [11] respectively considered
different types of stochastic processes related with U-statistics and studied their
weak convergence. In this paper, we are concerned with a sequence of stochas-
tic processes which are similar to those developed by Mandelbaum and Taqqu
[11]. We intend to show a deeper analysis of the weak convergence of the
processes. This is achieved by using the martingale approach, a method used
extensively by Khmaladze [8], [9]. (See Rao [13] for a survey on Martingale
approach to Statistical Inference). Under this martingale approach we intend to
find natural expressions for the limits of the martingale part and compensator
of the processes associated with a sequence of U-statistics. These limits can be
expressed by using multiple Wiener integrals.

Let F be a distribution function on R and X, -+, X,, independent observa-
tions on F. Consider a parametric function §=0(F), for which there exists an
unbiased estimator. That is, §(F) may be expressed as O(F)=Eg(h (X, -+, X,,))
for some function #: R"—R, called a “kernel”, where 4 can be assumed to be
symmetric.

Let’s define:

By, ooy %) = E(R(X,, -+, X)X, = %), -+, X, = %) and
Gt = Var(hy(X,, -+, X)) for k=1,-,m,

under the assumption
(1) E(R(X,, -y X)) <00

The U-statistic for estimation of O based on the sample X,, -, X, of size
n>mis
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1
U,,:z-———-' hX,',“‘,X“ y
(&
m
where Ca={(t;, -, i) {1, -+, M} "[1<i, <+ <4, <m}.
The study of the weak convergence of U-statistics have been extensively
studied in Hoeffding [4], Gregory [3], Eagleson [6], Serfling [15], Rubin and

Vitale [14], Dynkin and Mandelbaum [2], Mandelbaum and Taqqu [11] among
others. Results and definitions about U-statistics can be found in Serfling [15].

2. Weak convergence of the U-processes

DeriNiTION.  The stochastic process associated with a U-statistic of size n
(simply, U-process), is defined by:

Ut): = 3 kX, X,), for 0<t<1

() &°
m
where [ ] is the greatest integer function, (3, -+, ,)€CE) and U,(#)=0 for

<™
n

This process is adapted to the right continuous o-field &,(t)=o[X], ---,
Xinn]- From now on, we will assume that §(F)=0 (if not, we can always take
h—0 instead of k).

Lemma 1. U,(t) is a semimartingale, its martingale part is given by:

1
(—nj C%‘] {h(Xil’ ) Xim)—h""'l(Xil’ ) Xiﬂ—l)} .
m

Following Hoeffding [4], U,(¢) can also be expressed as:

X,(0): =

_ 1 & /([nt]—k
(2) Un(t) - (n E( m—k ) Un,k(t) ’
m
where
k
3) o) = 3 { o+, 20) T diriyean—F ().
C[k:nt] j=1
Here,
{ 1 if x<y,
I(zSy) = .
0 if x>y.

Similarly, we have



A SEQUENCE OF STOCHASTIC PROCESSES 363

) X@)= (‘%2 24 AR [ ) T aix, e~ Fe)].
m

which can be obtained by using methods similar to the ones showed at the end
of the proof of Lemma 4.

Lemma 2.
(1) U, 4(t) is a martingale.
(i) EUIA1)<E) 24,
(i) P(max|n Upu(t)|>6)=0 as n—>oo for r< —%.
Proof. (i) is easily proved by noticing that
E(d(lix;cn—F (%)) Fu(9)) = 0 if  [ns]<j<[nt].

(i) B(UZA) = Q) | Al ) T4 2o —F 50
because, if (¢, --+, ) = (l, -+, ) then
E(I1 [ 1x, 509 —F (5,)) dlJtx, <5n—F (7)) = 0.
It will be enough to prove that
B s -+, 50 B, -+ 320 TL (s, 0= F () 11z, g, g~ F(5500)

is bounded by 2*§,. As
E(d(I(x,-is::,-) —F(xj)) d(I(X,-J.ij,r,) —F(x;+k)))
= l{z;ox; ) AF (x;)—dF (x;) dF (x;.,),

then, the above expectation becomes:
k
S Py(%, -+, %) By <+, %) ,-I;Il {I(’i=’:i+k} dF (x;)—dF (x;) dF (x;.)}

=2 ( I: ) (=17 ha(oey, o, 20) By, =0y %5 Xy =0y Xpm;) AF (3,) - dF (2;) «

k
§=0
By the Cauchy-Schwartz inequality:
I S hk(xI) Y xle) hk(xp oty Xy Xptny Ty xzk—i) dF(xl)dF(ka—;)l SCk )
from which we get the announced boundedness.
(i) As U, ,(t) is a martingale, by Doob’s inequality we have:

n

P F U, )| >6) <
(max |’ U, u(0)| &)< (%

)2”{,‘,,—>0 as n—> oo,
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For any kernel % there exists ¢ (1<c¢<m) such that {,=0, ---, ¢,_,=0, £.>0.
From now on, we will take ¢ fixed.

Let’s define:
nt/z( [nt] —_ C)
Y, (t):=—""C/ [, ().
n
(m)
Lemma 3.
P
) sup [n7 U,(f)— Y, (8)] =0 as n— co.

i.e. the process U, can be approximated by the c-th term process appearing in the
descomposition (2).

Proof. As §,=0, -+, &,-,=0, then A=---=h,_,=0. Using (2), the left
term of (5) can be written as:

suplndz{ 2 ([nt] —k Uk()}l_————— m (n k)SUp|U,,1,(t)|,
(m)““ " (m) "

which tends to zero by Lemma 2 (iii).

Lemma 4. The martingale part of the process Y, (t) is given by:

(©) e N () LIC A A

(n )
m
and the compensator is:

LS X) ().

( )C[m— c m—c
m

Proof. The compensator of Y, (#) is given by:

#<pt {E(Y"‘( )/97( )) Yol kn 1>}

=%ﬁ@ 2 hc( s X0

)

= h( Xy -, X,) 2

C[nt]— kmi 41 n
m
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= s B X)) (O,

(n C[nt] —1
m

where we have used
2(0)-G1)-

Then, as C*1=C1-14-Cl¥1-' X {[nt]}, we have that the martingale part
of Y, (t) is:

el ([1:;]_—;)
Z,(t) = —(:T CE?‘}“ ho( Xy -+ X, Xtan)

m

ik z',—c)
o n) CEE"'] (m—c By s Xi) -
m

Lemma 5. Asn—oo,

Supl"‘— { E m— I(Xi1’ ) Xim—l)

(&F

WXy (I (" P o

C[”’]‘ 1,—

i.e., the compensator of n/? U, and Y, (t) have the same limit.

Proof. Noting that =---=h,_,=0, and using (2) with (4), the compen-
sator of U,(t) can be written as:

It is easy to see that the compensator of Y, is n/? times the first term of
the above summation. Therefore it is enough to prove that the following
holds: as n—oo

™ Papl 25 5 (MK

( )I:-H-l C%M]—l m—Ek
m

k
x| i -+, ) T1 a0z, g —F ()| >€) > 0.
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nolz m=1 1,—k
(8) P(supl( ),,.2”1 C?E:]—l (m—k
m

k
X[ o, ) IT @l e — F) [ >€) = 0.

(7) is easily proved as in Lemma 3. (8) is proved as in Lemma 2 using the
martingale structure of the process in (8) with respect to G,(t)=o[X), :**, X1a1-1)-

A consequence of Lemmas 3 and 5 is

Lemma 6. n7* X,(t), the martingale part of n/* U,(t), can be approximated
by Z, (t), the martingale part of Y, (t).

Now, we make an assumption on the kernel function 4.

(H) There exists some ¢= LR, F) with E(¢(X))=0 and E(¢*X))=1 such
that:

oy -+, ) = 11 $(x)

Dynkin and Mandelbaum [2] as well as Mandelbaum and Taqqu [11],
work apparently under the same restirctions for 2. From now on, we assume

(H). Let

S,(t): = 33 ‘”X ),

f=1

f(t);—_—ﬁt};—ci)'

n
(=)
Then, we have

9) Z, (t) = (n)c[m ( );(Xm e, X,)

m

B " [nl] tz—l(zc—L')ﬁqs(Xij)

NOLRAEEE
S[ S[ i S[o’tzldSn(tl)'“dS,,(t).
Similarly,
(10) Vo) =10, o, aSe)-as, ).

In the following we will denote by -L(D]0, 1]), the weak convergence in D[0, 1]
under the Skorokhod topology.
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Lemma 7. Asn—oo,

L(D[0,1]) m!

@) Z..0) s [[ o= S:---S:de(tl)---dW(t,).
(i) Y,.(2) LO0 1) (m'i!c)! t""=s: S:‘...S:zaW(tl)---dW(t,).

where W 1is the Wiener process.
To prove this lemma we will make extensive use of the Skorokhod repre-

sentation theorem ([16]) and the following lemma. We denote “in probability
in D[0, 1]” by P(D[O0, 1]).

Lemma 8. Let A,, A, be locally bounded predicatable processes in D0, 1]
and M,, M, be martingales in D[0, 1] such that:

(a) M,— M, A,— A, in P(D[0, 1]).

(b) M,, 4,=C([0, 1]).

(c) sup E(M(1))<eo.

Then S A, aM,— S A, dM, in P(D[0, 1]).
0 0

Proof. As A,=C]0, 1] and, by tightness of P A;" for n=0, 1, --- we have:
() Eim sup P(stIA,,(t) | >k)=0.
(8 lsim lim P( su'palA,,(t)—A,,(s) | >€)=0 for Y &>0.
v 1£-s1<
Let pu(x) = (x+k+1) T_poy, pr(%)+Lr_p s (%) +(—2+R+1) I pai(x)
A, p = pi(4,(2)) A.(2),
t
Noa®) = [ Auats) anto),
N0 = [ 40y ant,(s).
0
As P(dy(N,up N,)>0)< P(ossup | 4,(t)| >k), where d, is the metric that
t<1

defines the Skorokhod topology in D[0, 1].
Then, because of (a), in order to prove N,—N, in P(D[0, 1]) it is enough
to prove N, ,—N, in P(D[0, 1]). Therefore, we will assume from now on, that

|4,3)|<C forVn forsome C>0.
Let "= {t,.=i'/i=0, ---,m} a partition of [0, 1], and define
m
k-1
AZ(t) = A,0) Lig(2)+ Z% A,(t) Iy, v, () -

We obtain the proof in two steps, as follows:
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P(do(j' A, aM,, g 4, ¢M0)>e)gp(ao(j' A, M, S AraM,)>£)
0 0 0 0 3

—|-P(do(S ArdM,, S Ar aMo)>£)+P(ao(s A7 M, S 4,aM)><)

0 0 3 0 0 3
= I1+Iz+l3 .

We first prove that J,—0.

t
L, <P(sup |So (4,— A"y aM, | >%)

0<s<1

0<t<1

<3 Brsup I (A —an am,).
By the Davis inequality,
<12 B(sup, 14,(0)—4,(9) |<M,, M,YHD)).
By the Cauchy-Schwartz inequality,
<12 [B(sup, | 4,()—4.9) 1) ECM,, MO,

where 8=m"'. But, sup EMZ(l)<co and E(IsulpslA,,(t)——A,,(s)Iz)->0 as
n t-s|<

n—>co and § | 0, therefore, I,—0. The proof of I;—0 is analogous.
We next prove that I,—0.

LEP(sup 33 C | Mt At)— Mty AEY)+ (M (8 A t)— Mt AD))| >§)

0<t<1 i=0
+P(sup 153 (Au(t)— A1) (Mitiss A~ Mt ) | > )
The terms on the right-hand side tend to zero by assumptions (a) and (b).

Proof of Lemma 7.

By the Skorokhod theorem, it is possible to change the sample space and
construct two processes S¥(t) and W*(z) on the new sample space, which have
the same law as S,(f) and W(t), such that S, converges a.e. to W* in D[0, 1].
As E((S¥(1)))=1, applying Lemma 8 consecutively to obtain

[ -l aszw)-asze ) SE02 (C " awe)-awe,)
[o,¢,) [o,t5) 0 i

m!
(m—c)!
representation (9), we apply Lemma 8 again; to obtain (i). At the same time
we have already proved (ii).

t™¢ and the

Noticing the uniform convergence of f,(¢) to f(¢)=
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The next theorem is a consequence of Lemmas 3, 6 and 7.

Theorem 1. Under (H), we have:

-L(DI0, 1)) m!
(m—c)!

(11) 2 U (1) fm-c S: S:‘S:z AW (t))--dW(t,) .

(12) nl? X"(t) -L(D[0,1]) m! ‘ S‘ [yl Sh‘_..gtz dW(tl).-dW(tc) .
(m—c)! Jo 0 0

(13) n*(U,(1)—X,(2))
L£(D[0, 1]) m! St s’”“’"lss---st’dW(tl)"'dW(t‘) ds.
Lo 0

(m—c— 0

Proof of (13) is a direct consequence of (11), (12), Ito’s formula and the
fact that the limit processes are continuous.

3. Remarks

3.1. The result of Theorem 1 is different from the one obtained by
Mandelbaum and Taqqu [11], Corollary 1; because we use the usual one
dimensional time Wiener process, whereas they use multidimensional Wiener
process. Also, the ‘“‘projecting” functions 4, are easier to handle in our
calculations.

3.2. Although the result of Lemma 8 is known to hold under weaker
conditions than (c) (see, for example Jakubowski, et al. [7]), this version is
suitable for our application and its proof is relatively easier. In fact, condition
(c) can be replaced by the boundness of the jumps of the processes M,, but the
proof looses its simplicity.

3.3. The proof of Theorem 1 can also be obtained by means of Hermite
polynomials, although it requires a rather complicated calculation. For example
in the case of Z, ,(z), we have from (9) that:

(19) Zod) = FuO P04/ PD— § 1200 Fusuo), 4/ EDa () ortr,
where

- GEsr)

()
Fiab)="21,(2),

H, denotes the Hermite polynomial of degree ¢ with leading coefficient 1 and
the symbol _ denotes limit from the left with respect of ¢.




370 A. Konartsu-Hica

Actually, the first term on the right of (14) is equal to Y, (¢) (see (10))
and the second term is equal to its compensator up to a term 0p(1). From
here, as the Hermite polynomials are continuous, we get the limit processes in
terms of H,.

By Ito’s formula it can be proved that these expressions coincide with (11),
(12) and (13). In the case of Z, (t) we have:

m! S: - S:S: AW (t,)---dW(2,)

m—c!
= fO FW@, v =| fO F o, v ) as.

3.4. Theorem 1 can be easily extended to the case

hc(xl’ R xc) = g A; ’I:Il‘bi(xj) ’

where ¢; is an orthonormal set of LA R, F).

This representation covers completely the case ¢=2 by taking ¢; as an
orthonormal base of LR, F).

3.5. In relation with U-processes, V-processes can be defined as (here we
can’t assume §=0)

1 [»2] [nt]
V,,(t) = .‘2.1“. izulh(Xil’ th X"m) .

Under the condition

{¥(F)= max EM@(X,, -, X,))<co,

1S S Sim<m

instead of (1), analogous lemmas and theorems can be proved. A similar
decomposition as in (2) can be obtained, i.e.,

V)= 23" 53 (7) (o, oy ) 1T d(Frane)—F (=),

h F =[n2t] 1 (X j<x)
where  Fr,a(x) ~ _‘[n—t]— ,

In this case, n*V,(t)—0), its martingale and compensator parts have the
same limits as n”2 U,(¢), n/* X,(¢) and n*(U,(t)— X,(¢)) in Theorem 1.
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