THE MAXIMAL QUOTIENT RING OF A LEFT H-RING

Dedicated to Professor Hiroyuki Tachikawa on his sixtieth birthday

JIRO KADO

(Received March 20, 1989)

In [2], M. Harada has introduced two new artinian rings which are closely related to QF-rings; one is a left artinian ring whose non-small left module contains a non-zero injective submodule and the other is a left artinian ring whose non-cosmall left module contains a non-zero projective summand. K. Oshiro called the first ring a *left H-ring* and the second one a *left co-H-ring* ([3]). However, later in [5], he showed that a ring R is a left *H*-ring if and only if it is a right co-*H*-ring. QF-rings and Nakayama (artinian serial) rings are left and right *H*-rings ([3]). As the maximal quotient rings of Nakayama rings are Nakayama, it is natural to ask whether the maximal quotient rings of left *H*-rings are left *H*-rings. In this note, we show that this problem is affirmative, by determining the structure of the maximal quotient rings of left *H*-rings.

1. Preliminaries

Throughout this paper, we assume that all rings R considered are associative rings with identity and all R-modules are unital. Let M be a R-module. We use J(M) and S(M) to denote its Jacobson radical and its socle, respectively.

Definition [3]. A module is *non-small* if it is not a small submodule of its injective hull. We say that a ring R is a *left H-ring* if R is a left artinian ring satisfying the condition that every non-small left R-module contains a non-zero injective submodule.

We note that a left *H*-ring is also right artinian by [7, Th. 3]. In [5], for a left *H*-ring *R*, K. Oshiro gave the following theorem, by using M. Harada's results of [2, Th. 3.6.]: a ring *R* is a left *H*-ring if and only if it is left artinian and its complete set *E* of orthogonal primitive idempotents is arranged as $E = \{e_{11}, \dots, e_{1n(1)}, \dots, e_{m1}, \dots, e_{mn(m)}\}$ for which

- (1) each $e_{i1}R$ is injective,
- (2) for each i, $e_{ik-1}R \simeq e_{ik}R$ or $J(e_{ik-1}R) \simeq e_{ik}R$ for $k=2, \dots, n(i)$, and
- (3) $e_{ik}R \cong e_{jt}R$ if $i \neq j$.

J. Kado

As a left *H*-ring is a *QF*-3 ring by [4], the maximal left quotient ring and the maximal right quotient ring of a left *H*-ring coincide by [9, Th. 1.4]. From now on, let *Q* be the maximal quotient ring of a left *H*-ring *R*. We shall study the structure of *Q*. Since maximal quotient rings and left *H*-rings are Morita-invariant [7], in order to investigate the problem whether *Q* is a left *H*-ring or not, we may restrict our attention to basic left *H*-rings. Therefore, hereafter, we assume that *R* is a basic left *H*-ring and *E* is a complete set of orghogonal primitive idempotents of *R*. Then *E* is arranged as $E = \{e_{11}, \dots, e_{1n(1)}, \dots, e_{m1}, \dots, e_{mn(m)}\}$ for which

- (1) each $e_{i1}R$ is injective,
- (2) for each $i, J(e_{ik-1}R) \cong e_{ik}R$ for $k=2, \dots, n(i)$.

Definition [10, p. 153]. A primitive idempotent e is called *S*-primitive if the simple module eR/eI(R) is isomorphic to a minimal right ideal.

We shall use the H.H. Storrer's characterization of the maximal quotient ring of a perfect ring [10].

Since each $e_{i1}R(i=1, \dots, m)$ is injective, there exists a unique g_i in E such that $(e_{i1}R; Rg_i)$ is an *injective pair*, that is, $S(e_{i1}R) \cong g_i R/J(g_iR)$ and $S(Rg_i) \cong Re_{i1}/J(Re_{i1})$ (cf. K.R. Fuller [1, Th. 3.1]). Each pair $\{e_{i1}, g_i\}$ $(i=1, \dots, m)$ is very important for studying left *H*-rings.

Now we shall determine all S-primitive idempotents in E. Let e be an idempotent in E. It is known that e is S-primitive if and only if $S(R_R)e \neq 0$ [10, Lemma 2.3]. Since $S(R_R) = \bigoplus_{i=1}^{m,n(m)} S(e_{ik}R)$, $S(e_{ik}R) \cong S(e_{jt}R)$ for $i \neq j$ and $S(e_{ik}R) \cong S(e_{it}R)$, we have $S(R_R)e \neq 0$ if and only if $S(e_{ik}R)e \neq 0$ for a unique *i*. Therefore e is an S-primitive idempotent if and only if $e = g_i$ for some *i*. Then $E' = \{g_1, \dots, g_m\}$ is the set of all S-primitive idempotents in E. Put $g = g_1 + \dots + g_m$ and D = RgR. Storrer has shown that D = RgR is the minimal dense ideal of R and Q is isomorphic to $\operatorname{Hom}_R(D_R, D_R) = \operatorname{Hom}_R(D_R, R_R)$ by [10, Prop. 1.2 and Th. 2.5]. Since R is a two-sided artinian ring, Q is a left artinian ring by [10, Prop. 3.1].

Lemma 1. For each e in E, e is also a primitive idempotent in Q. Therefore S(eQ) is a simple Q-module.

Proof. Since eR is a uniform right ideal, eQ is also a uniform right ideal of Q by [30, Prop. 4.4]. Thus eQ is indecomposable.

By the above lemma, we know that $E = \{e_{11}, \dots, e_{1n(1)}, \dots, e_{m1}, \dots, e_{mn(m)}\}$ is also a complete set of orghogonal primitive idempotents of Q. We shall prove that Q is left *H*-ring by showing that E satisfies the conditions (1), (2) and (3) of left *H*-rings. We again note that left *H*-rings are also right artinian by

248

[7, Th. 3] and the maximal quotient ring Q of R is a left artinian ring.

Proposition 2. In the maximal quotient ring Q, $(e_{i1}Q; Qg_i)$ is an injective pair for $i=1, \dots, m$. Consequently $e_{i1}Q$ and Qg_i are injective Q-modules.

Proof. By assumption, let $\phi: g_i R \to S(e_{i1}R)$ be an epimorphism. ϕ extends uniquely to a Q-homomorphism $\phi^*: g_i Q \to S(e_{i1}R)Q$ by [10, Prop. 4.3]. Since $S(e_{i1}R)Q = S(e_{i1}Q)$, ϕ^* is also an epimorphism and hence $g_iQ/J(g_iQ) \cong$ $S(e_{i1}Q)$. Since Q is the maximal left quotient ring of R, we have symmetrically that $Qe_{i1}/J(Qe_{i1}) \cong S(Qg_i)$. By [1, Th. 3.1], $(e_{i1}Q; Qg_i)$ is an injective pair for $i=1, \dots, m$.

Next we shall study isomorphisms among the indecomposable right ideals $e_{ik}Q$. Let f_1, f_2 be idempotents in E and we assume that there exists a monomorphism $\theta: f_1R \to f_2R$ such that $\text{Im } \theta = J(f_2R)$. Then by [10, Prop. 4], θ can be uniquely extended to a Q-homomorphism $\theta^*: f_1Q \to f_2Q$. We shall prove the following result.

Proposition 3. (1) If f_2 is not S-primitive, then the extension $\theta^*: f_1Q \rightarrow f_2Q$ is an isomorphism.

(2) If f_2 is S-primitive, then $\theta^*: f_1Q \to f_2Q$ is a monomorphism such that $\operatorname{Im} \theta^* = J(f_2Q)$.

Proof. From $0 \to f_1 R \xrightarrow{\theta} f_2 R \to M \to 0$, where $M = f_2 R / J(f_2 R)$, we have the following exact sequence

$$0 \to f_1 Q = \operatorname{Hom}(D, f_1 R) \xrightarrow{\theta^*} f_2 Q = \operatorname{Hom}(D, f_2 R) \to \operatorname{Hom}(D, M)$$

(1) It is sufficient to prove that $\operatorname{Hom}(D, M)=0$. We assume that there exists a non-zero homomorphism $\phi: D \to M$. Since $D=R(g_1+\cdots+g_m)R$ by [10, Th. 2.5], there exist some *i* and some $x \in R$ such that $xg_iR \subset \operatorname{Ker} \phi$. Then $g_iR/J(g_iR) \simeq M$. Therefore $g_iR \simeq f_2R$. This contradicts that f_2 is not S-primitive. Consequently we have that $\operatorname{Hom}(D, M)=0$, and so θ^* is an isomorphism.

(2) First we shall show that $\operatorname{Im} \theta^* = f_2 Q$. Since f_2 is S-primitive, we have that $f_2 R \subset D$ and so $D = f_2 R \oplus (D \cap (1 - f_2)R)$. Therefore the projection $\alpha: D \to f_2 R$ is not contained in $\operatorname{Im} \theta^* \subseteq \operatorname{Hom}(D, J(f_2 R))$. For any $\phi \in J(f_2 Q)$, ϕ is not an epimorphism as R-homomorphism. In fact, we shall show that any epimorphism $\alpha: D \to f_2 R$ generates $f_2 Q$. Let β be any homomorphism $D \to f_2 R$ and $\alpha': f_2 R \to D$ the split homomorphism of α . Then we have $\beta = \alpha \alpha' \beta$. Therefore any $\phi \in J(f_2 Q)$ is contained in $\operatorname{Im} \theta^*$ and so $\operatorname{Im} \theta^* = J(f_2 Q)$, because $J(f_2 Q)$ is the unique maximal submodule of $f_2 Q$.

Now we shall prove our main theorem.

J. Kado

Theorem 4. Let R be a left H-ring. Then the maximal quotient ring Q of R is also an H-ring.

Proof. Let $E = \{e_{11}, \dots, e_{in(1)}, \dots, e_{m1}, \dots, e_{mn(m)}\}$ be a complete set of orthogonal primitive idempotents of R such that

- (1) each $e_{i1}R$ is injective,
- (2) for each $i, J(e_{ik-1}R) \cong e_{ik}R$ for $k=2, \dots, n(i)$.

We have already known that Q is a left artinian ring and E is also a complete set of orthogonal primitive idempotents of Q. By Proposition 2, each $e_{i1}Q$ is an injective Q-module and by Proposition 3, $e_{ik}Q \simeq e_{ik-1}Q$ or $e_{ik}Q \simeq J(e_{ik-1}Q) k=2, \cdots$, n(i) for each *i*. We shall show that $e_{ik}Q \cong e_{ij}Q$ if $i \neq j$. If $e_{ik}Q \cong e_{ij}Q$ for some $i \neq j, k, t$, then $S(e_{ik}Q) \cong S(e_{it}Q)$. Since $S(e_{ik}Q) = S(e_{ik}R)Q$ and $S(e_{it}Q) =$ $S(e_{it}R)Q$, we have $S(e_{it}R) \simeq S(e_{it}R)$ as R-modules by [10, Th. 4.5]. This contradicts the assumption of E.

We recall that g_i is the element of E such that $(e_{i1}R; Rg_i)$ is an injective pair for $i=1, \dots, m$. Here we define two mappings

 $\sigma: \{1, \cdots, m\} \rightarrow \{1, \cdots, m\}$

 $\rho: \{1, \dots, m\} \rightarrow \{1, \dots, n(1)\} \cup \dots \cup \{1, \dots, n(m)\}$

by the rule $\sigma(i) = k$ and $\rho(i) = t$ if $g_i = e_{ki}$. We note that $\{\sigma(1), \dots, \sigma(m)\} \subseteq c$ $\{1, \dots, m\}$ and $1 \leq \rho(i) \leq n(\sigma(i))$.

Here we shall define a special left *H*-ring.

Definition [7, p. 94]. A left H-ring is Type (*) if $\{\sigma(1), \dots, \sigma(m)\}$ is a permutation of $\{1, \dots, m\}$ and $\rho(i) = n(\sigma(i))$ for all $i=1, \dots, m$.

Cororally. Let R be a left H-ring. Then the maximal quotient ring Q of R is a QF-ring if and only if R is Type (*).

Proof. It is easy by Proposition 3.

Example. Let T be a local QF-ring,
$$J=J(T)$$
 and $S=S(T)$.
 $T T T \downarrow 0 0 S \downarrow$

Put $V = \begin{pmatrix} J & T & T \\ J & J & T \end{pmatrix}$ and $W = \begin{pmatrix} 0 & 0 & S \\ 0 & 0 & S \\ 0 & 0 & S \end{pmatrix}$. The factor ring R = V/W is a left

H-ring such that e_1R is injective, $J(e_1R) \simeq e_2R$ and $J(e_2R) \simeq e_3R$, where e_i is the matrix such that its (i, i)-position is 1 and all other entries are zero. R is repre-

sented as follows: $\begin{pmatrix} \tilde{T} & T & \tilde{T} \\ J & T & \tilde{T} \\ I & I & \tilde{T} \end{pmatrix}$ where $\tilde{T} = T/S$. Since $(e_1R; Re_2)$ is injective pair by

[8, § 2], the minimal dense ideal is Re_2R . Therefore the maximal quotient ring Q of R is a left H-ring such that e_1Q is an injective module, $e_1Q \simeq e_2Q$ and $J(e_2Q) \cong e_3Q$. Since $e_1Q/J(e_1Q) \cong S(e_1Q)$, we have that $\operatorname{Hom}_Q(e_1Q, J(e_1Q)) \cong$

250

MAXIMAL QUOTIENT RING

$$J(e_1Qe_1), \operatorname{Hom}_{Q}(J(e_1Q), e_1Q) \cong e_1Qe_1/S(e_1Qe_1), \operatorname{Hom}_{Q}(J(e_1Q), J(e_1Q)) \cong e_1Qe_1/S(e_1Qe_1).$$

Moreover, since $e_1Qe_1 = e_1Re_1 = T$ by [10, Lemma 4.2], Q is
represented as a matrix ring $\begin{pmatrix} T & T & \tilde{T} \\ T & T & \tilde{T} \\ J & J & \tilde{T} \end{pmatrix}$.

References

- [1] K.R. Fuller: On indecomposable injectives over artinian rings, Pacific. J. Math. 29 (1969), 115–135.
- [2] M. Harada: Non-small modules and non-cosmall modules, Ring Theory, Proceedings of 1978 Antwerp Conference, Marcel Dekker Inc., 1979, 669-689.
- [3] K. Oshiro: Lifting modules, extending modules and their applications to QF-rings, Hokkaido Math. J. 13 (1984), 310-338.
- [4] K. Oshiro: Lifting modules, extending modules and their applications to generalized uniserial rings, Hokkaido Math. J. 13 (1984), 339-346.
- [5] K. Oshiro: On Harada-rings I, to appear in Math. J. of Okayama Univ.
- [6] K. Oshiro: On Harada-rings II, to appear in Math. J. of Okayama Univ.
- [7] K. Oshiro and S. Masumoto: The self-duality of H-rings and Nakayama automorphisms of QF-rings, Proceedings of the 18th Symposium of Ring Theory, 1985, 84-107.
- [8] K. Oshiro and K. Shigenaga: On H-rings with homogeneous socles, to appear in Math. J. of Okayama Univ.
- [9] C.M. Ringel and H. Tachikawa: QF-3 rings, J. Reine Angew. Math. 272 (1975), 49-72.
- [10] H.H. Storrer: Rings of quotients of perfect rings, Math. Z. 122 (1971), 151-165.

Depertment of Mathematics Osaka City University Sugimoto, Sumiyosi-ku Osaka, Japan

251