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R.H. Fox introduced the notion of congruence class of knots in [3], and he
gave a necessary condition for congruence in terms of Alexander matrices and
polynomials. S. Suzuki and the author [9] improved his condition and showed
that there exist infinitely many congruence classes of knots modulo #, g if n=1
and (7, g)#(2, 1), (2, 2). Further, they conjectured that all knots are con-
gruent modulo 2, 1 and 2, 2. In this note we will generalize the notion of
congruence class for links and give an alternate condition. And we will prove
that two links are congruent modulo 2, 1 if and only if the two links are Z,-
link-homologous. (The number of congruence classes of w-component links
modulo 2, 1 is just 2“*~/2) As a corollary, we have that all knots are con-

gruent modulo 2, 1.

1. Definitions and Theorems

In this note we only consider a u-component link L=K, U --- U Ky, that is
an ordered collection of yx disjoint simple closed oriented curves K;’s in a three
dimensional oriented sphere S®. Two links are said to be equivalent, if there is
an orientation preserving homeomorphism of S* onto itself, which maps one
link onto the other preserving the orientation and order of the components.
And such an equivalence class of links is called a link type. A u-component
link L=K, U --- UKy is called trivial if there exist p disjoint disks D, U -+ U Dy
in §* with 0D,=K; (=1, -+, u). Especially, we call a 1-component link a knot,
a l-component link type a knot type, and a 1-component trivial link a trivial
knot.

R.H. Fox introduced the notion of congruence classes of knots in [3], which
can be generalized for links as follows.

DerFINITION. Let # and ¢ be non-negative integers. Two yu-component
link types « and M\ are said to be congruent modulo n, q, written k=X (mod #, q),
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iff there are w-component links Ly, L;, L, *++, L;, integers ¢, ¢, *+, ¢;, and trivial
knots m,, m,, +++, m; such that

(1) L;-, and m; are disjoint,

(2) L; is obtained from L;_, by (1/c;n)-surgery along m; (see [10, 11] for
a/b-surgery),

(3) the sum of the linking numbers EM Ik(K;_,,j,m;)=0 (mod ¢) where
L = iU UK;_yp and =

(4) L, represents «, and L, represents \.

RemMARK. These relations are equivalence relations. Congruence modulo
0, g is just the link equivalence. Any two w-component link types are con-
gruent modulo 1, g. If the number of components are distinct, then the two
link types are incongruent modulo #, g.

S. Suzuki and the author [9] have studied a necessary condition for con-
gruence modulo 7, ¢ in terms of Alexander matrices, Alexander polynomials,
and elementray ideals in the sense of Fox [2]. They gave the condition only
for knot types, but their condition is clearly generalized for link types as in The-
orem 1. From an Alexander matrix A,(t, t,, **-, tu) of a y-component link type
&, we obtain a reduced Alexander matrix A () by rewriting ¢’s (i=1, 2, -+, p)
in entries of the matrix to the same £. Similarly, we obtain the reduced Ale-
xander polynomial A,(#) and the reduced elementary ideals. In the following,

o,(t) means (1—#")/(1—8)=1+t+£+ - +"L

Theorem 1. If k= (mod n, q), then, for properly chosen A(t) and A\(?),
we have

A(6)= A,(t) mod { n(1—1) = (1—2) o,(279), (1—1) 7, (89, } |

(1—12) g, (t12%9), -or, (1—1) o, (£+°9)

and hence

A,(t) = 4t A,\(t) mod { n(1—t) = (1—t) o, (9, (1—2) o, (t™9), } ,

(1—12) o, (t#'179), +, (1—1) o, (t'**9)

where 1y, ++, 1y are all divisors of n and 1<<i,<<---<iy<<n. Furthermore, we have
similar statements for the reduced elementary ideals of deficiency greater than 1.

In the above, f(t)= g(¢) mod {A,(t), hy(2), -++, h;(t)} means that f(¢) and g(z)
are in the same class of the quotient Z{t>/(h(%), hy(t), -+, k;(t)), where (h,(z),
hy(t), -, h;(2)) is the ideal generated by A,(z), &y(¢), -+, h;(¢) in Z{t>. The proof
of Theorem 1 is parallel to the proof of [9, Theorem 2], so we omit it.

Applying Theorem 1, we can find infinitely many link types that are in-
congruent modulo 7, g.
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Theorem 2. Let n be an integer greater than 1 and q a non-negative integer
such that (n, )% (2, 1), (2, 2). For congruence modulo n, q, there exist infinitely
many distinct classes of p-component link types for each p (cf. [9, Theorem 3]).

The proof of Theorem 2 will be given in the next section.
To consider the case (n, §)=(2, 1), we use the following notion.

DeriniTioN. Two links L=K,U+-UK, and L'=K{U---UK! are said
to be Z,-link-homologous if and only if p=v and Ik(K;, K;)=Ik(K{, K}) (mod 2)
for every 1Si<j=<u.

Theorem 3. Two given link types are congruent modulo 2, 1 if and only if
two links representing the link types are Z,-link-homologous.

The proof of Theorem 3 will be given in the section 3. Since all knots
are Z,-link-homologous, we have the following.

Corollary. All knot types are congruent modulo 2, 1.

This is an answer in the affirmative to one of conjectures in [9]. By his
experiment, the author have not finded the difference between congruence
modulo 2, 1 and modulo 2,2 for knot types. But we can see the difference for
link types as follows.

Proposition 4. The Borromean rings and a 3-component trivial link are con-
gruent modulo 2, 1, but incongruent modulo 2, 2.

Proof. The linking number of each pair of components of the Borromean
rings is 0 and that of a 3-component trivial link is also 0. Since the two links
are Z,-link-homologous, the two links are congruent modulo 2, 1 from Theorem
3. On the other hand, a reduced Alexander matrix of the Borromean rings is

(1—¢? 0 0]
[ 0 (1—¢? 0]’

and that of a 3-component trivial link is (0). It can be seen that
ZH[2(1—t), 1—t) (14-8%) = ZDZ,D Z,,
ZB)2(1—1), 1—t) (1+8), 1—1t)) = ZD Z, .

Therefore, (1—¢)*%0 mod {2(1—¢), (1—¢) (1+#*)}. From Theorem 1, the
Borromean rings and a 3-component link are incongruent modulo 2, 1. We
complete the proof.

Here, we raise the following conjectures which are extensions of the original
conjectures in [9].

ConNJECTURE B: If two links are link-homotopic, then the links are con-
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gruent modulo 2,2.

CoNJECTURE A: If two links are link-homotopic, then the links are defor-

mable to each other by a finite sequence of operations 7*’s, which are shown in
Fig. 1.

TX00C
|
I
SORC

Fig. 1.

Note. Conjecture A is proposed by A. Kawauchi. If Conjecture A is
true, then Conjecture B is true.

For knot types, all Alexander matrices and polynomials are equivalent up
to our condition for congruence modulo 2, 2 as follows.

Theorem 5. For all knot types, their Alexander matrices, which are chosen
properly, are congruent modulo {2(1—t), (1—t) o)(#?)}. Moreover, their Alexander
polynomials and elementary ideals are also congruent modulo {2(1—t), (1—t) o(£*)}
(cf. [9, Theorem 4]).

The proof of Theorem 5 will be given in the section 4.

2. Proof of Theorem 2

For a non-negative integer j €N,, let «; be the connected sum of j copies of
a trefoil knot. We get a y-component link A; as the split sum of «; and a
(z—1)-component trivial link. Then, the 7th reduced elementary ideal Ej(t) of
A is (0) for 1Si<p—1, (F—t+ 1)) for u<i<p-+j—1, and (1) for 1= p+j.
As in the proof in [9, §3], their reduced elementary ideals of A;’s are mutually
distinct mod {2(1—t¢), (1—12) a,(t*), (1—1) o, (#179), -+, (1—1) o, (t***9)}. Hence,
by Theorem 1, there exist infinitely many distinct classes for congruence modulo
n, ¢, completing the proof.

3. Proof of Theorem 3

To prove Theorem 3, we use the notion of A-unknotting operation [6] as
follows.

DEerFINITION. A A-unknotting operation is a local move on a link diagram
as in Fig. 2. If a diagram of a link L’ is a result of a A-unknotting operation
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on a diagram of L, then we say that L’ is obtained from L by a A-unknotting
operation.
~ l
A-unknotting /\ N
\ \/ operation

l -

Fig. 2.

DerFINITION. Two links L=K,U -+- U K, and L'=K{U --- UK/ are said to
be link-homologous if and only if p=v and k(K;, K;)=Ik(K{, K}) for every
1<i<j=up.

Proposition 6 ([6]). Two given links are link-homologous if and only if the
two links can be deformed to each other by a finite sequence of A-unknotting opera-
tions.

From the above Proposition 6 and the following Lemma, it can be seen that
if two links are link-homologous then two link types represented by the links
are congruent modulo 2,1.

Lemma. A A-unknotting operation can be realized by (+1/2)-surgeries
along trivial knots.

A ___N\/\//
N . VV/\/VA
(a) // (b)

Fig. 3.
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Proof. Watch Fig. 3. Take three trivial knots m,, m,, and m, as in Fig.
3 (a). By —1/2-surgery along m,, 1/2-surgery along m,, and 1/2-surgery along
mg, we obtain (b) from (a). Take a trivial knot m, as in Fig. 3 (c¢). By 1/2-
surgery along m,, we obtain (d) from (c). Deformation from (a) to (d) is just
a A-unknotting operation, completing the proof.

Proof of Theorem 3. Let L=K,U UKy and L'=K{U--- UK/, be Z,
link-homologous, i.e. k(K;, K;)=Ilk(K!, K}) (mod 2) for every pair ¢, j. If
there is a pair 7, j such that [k(K;, K;)#=/k(K!, K}), then take a trivial knot m
such that a disk bounded by m intersects K! (and K7) in a single point respec-
tively. By (1/2c)-surgery along m for some integer ¢, the result link L*=
K¥U--UK§E has lk(K¥, K¥)=Ik(K;, K;). Therefore, there exists a link L*
such that L* and L are link-homologous, and that two link types represented by
L* and L' are congruent modulo 2, 1. As mentioned in the above, two link
types represented by L* and L are congruent modulo 2,1. Since congruence
is an equivalence relation, two link types represented by L and L’ are congruent
modulo 2, 1. Conversely, a (1/2¢)-surgery along a trivial knot does not change
the linking number of components modulo 2 for every integer ¢. Therefore, if
two link types represented by two links L and L’ are congruent modulo 2, 1,
then L and L’ are Z,-link-homologous. Hence, we complete the proof.

4. Proof of Theorem 5

In order to show Theorem 5, we use the following.

For a y-component link L=K, U ::+ U Ky, let E=E(L)=S%—L and take the
universal abelian covering p: E,—E, associated with the epimorphism 7,(E)—
{ty, +++, tuy sending each meridian of K; to #;(i=1, -+, p), where {t,, -+, tu>
is the free abelian group with a basis #,, -++, #.. 'The first integral homology group
H(E,; Z) is a finitely generated Z<{t,, -, tu>-module and has a presentation
matrix as a Z<¢t,, -+, tuy-module, written P;(¢;, -+, u).

Concerning presentation matrices, we note the following well-known fact
(cf. [11, pp. 204-205]). For a coefficient ring A, the A-module presented by
a given matrix P is unchanged, up to A-isomorphism, by any one of the fol-
lowing operation on P:

(1) Interchange two rows or two columns.

(2) Add to any row a A-linear combination of other rows.

(3) Add to any column a A-linear combination of other columns.

(4) Multiply a row or column by a unit of A.

1 % ee %

(5) Replace P with the matrix
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(6) 'The reverse of (5).
(7) Adjoin a new row which is a A-linear combination of rows of P.
(8) Delete a row which is a A-linear combination of other rows.

Proposition 7. Two matrices, with entries in A, present isomorphic A-
module if and only if one can be deformed into the other by a finite sequence of ap-
plications of the above operations (1)—(8).

For a knot type #, an Alexander matrix A4,(¢) is very similar to a presen-
tation matrix P(t) of H(E,; Z) as a Z{t>-module. To say more strictly, we
know the following (cf. [2]).

Proposition 8. Two matrices A(t) and (P(t) O), where O has only one
column with all entries 0, are equivalent up to fundamental deformations of pre-
sentation matrices. Furthermore, there exists a knot group presentation of r whose
Alexander matrix is (P(t) O).

D. Rolfsen gave a characterization of P,(t) in [11].

Proposition 9. Up to fundamental deformations of presentation matrices,
P(t) is equivalent to a matrix of the following form; (a;;(t)) where a;;(t)=a;;(t™")
and a;;(1) is 0 when i = j, and 1 when i=j.

The entry a;;(¢) has the same properties as Alexander polynomials of knots,
so we have a;(f)=-41¢"+1 mod {2(1—%), (1—1%) o,(#*)} like as in [9, Theorem 4].
And we can regard that all a;,(¢) are 1 mod {2(1—1%), (1—%) o,(#)} up to funda-
mental deformations (4). When 7= j, the property a;;(1)=0 implies that a;;(t)=
(1—2)-h(2) for a certain Laurent polynomial %(#). It can be seen that k(2)=0,
+¢"-1, or +¢"-(1—¢) mod {2, 14+#}. So, we have a;;(t)=0, £t -(1—t), or
4+ (1—2)> mod {2(1—1¢), (1—2) ox(#*)} for i=kj.

First, we take the smallest integer ¢ such that a;;(#)=-+¢"-(1—¢) mod
{2(1—12), (1—12) o5(#*)}, and fix 2. And we take the smallest integer j such that
a;;(t)=+1t"-(1—1) mod {2(1—t), (1—1%) op()}. Adding to the 7th row the prod-
uct of the jth row by F¢"-(1—¢) (which is one of fundamental deformation),
a;;(tf) becomes 0 mod {2(1—%), (1—%) op(#*)}. Then, a;(t) becomes 1, 1F¢-
(1—2)%, or 1F£+(1—2)® mod {2(1—2), (1—%) op(#*)}. Since (1—2)*=0 mod
{2(1—1), (1—12) o, ()}, 1F£-(1—2)*=1 mod {2(1—¢), (1 —¢)a,(#*)}. Since
(1—1)?= —t(1—¢t)’=t(1 — 1)’ mod {2(1—12), (1 —¢) op(&)}, 1F¢-(1 —2t)’=1+
(1—ty=# mod {2(1—12), (1—¢t) oo(#®)}. Therefore, new a;(¢) can be regarded
to be 1 mod {2(1—¢2), (1—¢) op(#)} up to fundamental deformation (4). We
remark that the other entries a;(f)=0 or 4-#°-(1—¢)* mod {2(1—%), (1—12) o(#*)}
if k<<j. Perform these operations inductively, and we have 4;;(£)=0 or 4t -
(1—12)? mod {2(1—1), (1—12) o,(#)} for every pair 7.

Secondly, for a;;(#)=-+#"+(1—1)* mod {2(1—1), (1—1) o5(#*)}, we add to the
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ith row the product of the jth row by ¢ +(1—t)?, and a;;(#) becomes 0 mod
{2(1—1), (1—1) o5(#)}. Since (1—2)*=0 mod {2(1—12), (1—1) a,(#*)}, we can
regard the other entries are unchanged mod {2(1—%), (1—2) o(#*)}.

Hence, we have the fact that (a;;(¢)) is congruent to the unit matrix mod
{2(1—t), (1—1t) o(¥*)} up to fundamental deformations. Furthermore, (a;;(f))
is equivalent to (1) by fundamental deformations (6). Since the fundamental
deformations using in the above can be realized by exchanges of knot group
presentations of «, we have the required Theorem 5.

5. Concluding Remarks

We consider an operation 7", whih is a local move cancelling z full-twists
on a link diagram, as shown in Fig. 4. About 7" operations, S. Kinoshita
gave results in [4], which is for a special case of congruence modulo 2,2. Here,
we note a y-variable version as follows. Since the proof is parallel to that in
[4], so we omit it.

\
§ - o3
X X

n full-twists -n full-twists

Fig. 4.

Theorem 10. Let two links L and L* be deformable to each other by a finite
sequence of operations v’s.  Then, for properly chosen Ay (t,, -+, tu) and Ap(ty, ++,
tu), we have

(1—t;) oa(t: t77),
AL(tI’ °ly tp,) = AL*(tl’ ct0y ty.) mOd (1"‘t,) Un(t,‘ tj)
(1=i,j<u)

Furthermore, the Alexander polynomials and elementary ideals of A, and A+ are
congruent modulo {(1—t,) o,(¢; 27"), (1—1,) o,(t; ;) (1=, j =< p)}.

In the previous note [8], the author tried to give the P -version of the
above, but the proof has gaps. Therefore, we give it here as conjecture. If
this conjecture is valid, then we can show that the Borromean rings and a 3-
component trivial link are never deformed to each other by a finite sequence of
operations 7%’s and link-homotopies.
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CoNJECTURE. Let two links L and L* be deformable to each other by a
finite sequence of operations 7"’s. Then, for properly chosen P,(t, -+, f.) and
P«(t,, «-+, tu), we have

ou(ti t;), oa(ts £57),

(1=1) (1=1;) opa(ti 1),

(1—2;) A—12)) o, (8277
(I=4j=p)

PL(tls cty ty.) EPL*(tI’ R tp.) mod

Furthermore, the Alexander polynomials and elementary ideals of P, and P,« are
Congruent mOdulO {G"”(ti tj), U”(ti t}'_l), (l—t,) (l—tj) U”_l(t" tl)’ (1—“t,) (l—tj) Op-1
;57 (1=i,j=p)}-
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