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Let Vn>q denote the Stiefel manifold of orthogonal ^-frames in Fn where
F=R, C, H. We regard this space as the homogeneous space GnjGn_q of right
cosets modulo l g xG B _ g where Gk denotes the relevant group SO(k), SU(k) or
Sp(k). Then this space obtains a framing in a canonical way as mentioned
below [3]. We denote this framing ambiguously by £F and we write [VKtq, EF]
for an element in π% defined by the pair (Vn>qy 3ί) via the Thom-Pontrjagin
construction. In this note we prove the following

Theorem, Let l^S#^£w—1, n—\ or n according as F=R, C or H. Then

We denote by !R the right invariant framing of Gn and by SίΛ the framing
obtained by twisting 31 by a representation a [5], Also we write [Gn> a] for
[GM,3T]. Let

Pn: GnaGL(dn, R)

be the standard real representation of Gn where d=dimRF. Then by the the-
orem we have

Corollary ([1], [5]).

[SO(n), (n-ί)Pn] = 0, [SU(n), ( n - l ) p j = 0 and [Sp{n)y nPn] = 0 .

REMARK. By taking Gk=U(k) instead of SU(k) we get [U(ή), npn]=0
analogously.

The proof of the theorem uses the arguments parallel to [4]. Actually we
construct a bounding manifold for Vn>q—GnjGn^r

Let Vk denote the representation space of ρk. There is then the real vector
bundle

for k<n. If S(Vk) denote the unit sphere of Vk, then we have a canonical Gk-
equivariant diffeomorphism.
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C / G . . ! « S(Vt).

This and GnjGn_q=GnXGn_q+1Gn_q+ιjGn.q imply that the homogeneous fibre

bundle

(1) Gn^q+1/Gn_q -> Gn/Gn_q -» G M / G W _ 9 + 1

is isomorphic to the sphere bundle of f n _ ί + ] . Hence we have

where 5 ( f $) denotes the total space of the sphere bundle of ξk. D e n o t e also by

D(ξk) the total space of the disc bundle of ξk. Evidently we t h e n have

dD(ξn.q+1) « V
n>q.

T o prove the theorem it therefore suffices to show that the framing £F of VnΛ

extends over D(ξn_k+1).

So we first recall the framing of [3]. Let G be a compact connected Lie

group and H a closed subgroup of G. L e t τ(GjH) denote the tangent b u n d l e

of G/H. Consider the principal i J-bundle

T h e n we have a decomposition of the tangent bundle of G

where τH(G) is the bundle of tangents along the fibres. This isomorphism is

compatible with the right action of H, so that we obtain an isomorphism of

vector bundles over GjH

τ(G)IH « τ{GjH) 0 τH(G)IH.

Let τg{G) denote the tangent space at g^G and Rg-i: τg(G)-+τe(G)

denote the differential of right multiplication by g~ι where e is the identity ele-

ment of G. Then the right invariant framing of G

51:

is given by <R(v)—(gy Rg-i(v)) where v^τg(G). This gives

as vector bundles over G/H.

By ad# we denote the adjoint representation of H on τe(H). We consider

the differential La-i: τa(gH)-^τe(H) induced by the left multipliaction by a~ι

where aξΞgH. Then similarly we have
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τH(G)IH^Gxffτe(H)

as vector bundles over GjH where H acts on τe(H) via ad#.
Combining these three bundle equations we have

(2) GIHxτ.(G) « τ(GjH)θGxada τ,(H)

as vector bundles over G/H. So we find that if ad# is contained in the image
of the restriction map RO(G)->RO(H) of real representation rings, then formula
(2) gives rise to a framing of GjH.

Here we return to the framing of VnΛ. We consider the restrictions of
adGn and ρn to Gk for k<n. Now we write aάk=adGk briefly. Then we have

Lemma 1. (i) pn | G j f - 1 « pn.x © <M ,

(ii) zάn\Gu_1c*2An_ι®pu_ι®{d-l)Λ
where 1 denotes the trivial ί-dimensional real representation.

Proof, (i) is obvious. By observing the maximal root of Gn [2] we see that
c(ndn)=X2pny (λ}ρn) (λ*" 1^)—1 or (λ 1^) 2—\ 2p n where pn denotes the canonical
complex representation GnaGL(n, C), GL(n, C) or GL(2n, C) according as F==
Ry C or H. Here c is the complexification and λ1^^ is the ί-th exterior power of
pn. For this fact, however, we refer to [6]. So we can readily obtain (ii) using

From Lemma 1 it follows that for k<n

(3) adΛ I Gk « ad, 0 (n-k) pk 0 {{n-k) (dn-dk+d-2)/2) 1 ,

Hence we get

(4) a d n | C ί φ ι ( » , * ) l « ad Λ 0(n-Λ)p n \ G k

for ft<w where s(n, k)=(n—k) (dn-dk-d+2)/2.
Denote by Wk the representation space of ad*. Then using (2) when G=

Gn, H=Gn_g and (4) we obtain a framing of Vn>q

(5) ff: τ ( F ( l , , ) θ ( F . . < X Ϊ F . ) ® ί ( n , n - ί ) . l ex Vn>qx(re(Gn)®qVn)

where 1 denotes the trivial real line bundle.
We now give this framing £F more directly. Let W'k be a direct summand

of Wn I Gk such that Wn \ Gk^ W'k® Wk for k<n. Then we have

Lemma 2 ([1]). τ(Vn^k)^GnXGkWί for k<n.

Proof. There is an obvious isomorphism of vector bundles over Vn>n_k
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So consider the composite with the isomorphism of (2) when G=Gn, H=Gk

Gnx

Then we see that this map sends identically the direct summand Gn X Gk Wk to
that on the right-hand side and isomorphically another direct summand Gn X Gk

W'k to τ(Vntn-k), and so the result follows.

Using Lemma 2 we can interpret £F of (5) as follows. By (4) we have

(6) Wi

This gives rise to an isomorphism of real vector bundles associated with the
principal GΛ_9-bundle Gn-+Vnq with modules on both sides as fibres. It is
easily seen that this isomorphism induces ΞF of (5) precisely.

Proof of Theorem. By the second formula of (3) it follows that

Taking the sum of this and the framing ? of F B > r l we have

(7) τ(F,. f_,) θf,_ f + 1 θ ( Γ . . . M X Wn)φ(s(n, n-q)-l) 1

since s(n,n—q)=s(n>n—q-\-l)J

rd(q—1)+1. Now from the above arguments
about the fibre bundle of (1) it is clear that

where π is the projection map of (1). Therefore by pulling the isomorphism
of (7) back along π we obtain another framing of Vn>q

3Ί τ(Vn>q)@(Vn,qxWn)®s(n,n-q)-l « VnΛ X (τe(Gn) θ qVn).

Denote by 9c the canonical projection map D(ξn_q+1)->Vntq^1. Moreover
we then have

τ(D(ξn_q+1)) « τt*(τ(Vntq^)®ξΛ^+1) ,

so that by pulling the isomorphism of (7) back along π again we obtain a framing
of D(ξn_q+ι). Identifying VnjQ with S(ξn_q+1), this framing is obviously an ex-
tension of £Fr over D(ξn_q+1) since π\Vn =π. Hence it follows \VHtV 3 ' / ]=0
and so it suffices to show that 3 agrees up to sign with ΞF'.

By (3) we have

Using this and Lemma 2 we can verify that formula (6) also gives rise to either
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3' or — 3' in the same way as the case of 3. Therefore this proves the the-

orem.

Proof of Corollary. Since Vn>n_} = SO(n)y SU(n) and Vntn=Sp(n), we set

Vn>q=Gn in (5) and so in defining 3 we consider adM_9=0. Hence by definition

it follows that 3 is just the framing twisting Si of Gn by adw—qpn, so that by the

theorem it follows [Gw, adw—qpn]=:O. Therefore we have [Gny ?pw]=0 by [5].
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