STIEFEL MANIFOLDS AS FRAMED BOUNDARIES

Haruo MINAMI

(Received February 8, 1989)

Let $V_{n, q}$ denote the Stiefel manifold of orthogonal q-frames in F^{n} where $\boldsymbol{F}=\boldsymbol{R}, \boldsymbol{C}, \boldsymbol{H}$. We regard this space as the homogeneous space G_{n} / G_{n-q} of right cosets modulo $1_{q} \times G_{n-q}$ where G_{k} denotes the relevant group $S O(k), S U(k)$ or $S p(k)$. Then this space obtains a framing in a canonical way as mentioned below [3]. We denote this framing ambiguously by \mathscr{F} and we write [$V_{n, q}, \mathscr{F}$] for an element in π_{*}^{S} defined by the pair ($V_{n, q}, \mathscr{F}$) via the Thom-Pontrjagin construction. In this note we prove the following

Theorem. Let $1 \leqq q \leqq n-1, n-1$ or n according as $\boldsymbol{F}=\boldsymbol{R}, \boldsymbol{C}$ or \boldsymbol{H}. Then

$$
\left[V_{n, q}, \mathscr{F}\right]=0 .
$$

We denote by \mathcal{R} the right invariant framing of G_{n} and by \mathcal{R}^{α} the framing obtained by twisting \mathcal{R} by a representation α [5]. Also we write $\left[G_{n}, \alpha\right]$ for [$\left.G_{n}, \mathcal{R}^{\alpha}\right]$. Let

$$
\rho_{n}: G_{n} \subset G L(d n, \boldsymbol{R})
$$

be the standard real representation of G_{n} where $d=\operatorname{dim}_{R} F$. Then by the theorem we have

Corollary ([1], [5]).

$$
\left[S O(n),(n-1) \rho_{n}\right]=0,\left[S U(n),(n-1) \rho_{n}\right]=0 \quad \text { and } \quad\left[S p(n), n \rho_{n}\right]=0
$$

Remark. By taking $G_{k}=U(k)$ instead of $S U(k)$ we get [$U(n), n \rho_{n}$] $=0$ analogously.

The proof of the theorem uses the arguments parallel to [4]. Actually we construct a bounding manifold for $V_{n, q}=\boldsymbol{G}_{n} / \boldsymbol{G}_{n-q}$.

Let V_{k} denote the representation space of ρ_{k}. There is then the real vector bundle

$$
\xi_{k}: G_{n} \times G_{k} V_{k} \rightarrow G_{n} / G_{k}
$$

for $k<n$. If $S\left(V_{k}\right)$ denote the unit sphere of V_{k}, then we have a canonical $G_{k^{-}}$ equivariant diffeomorphism.

$$
G_{k} / G_{k-1} \approx S\left(V_{k}\right) .
$$

This and $G_{n} / G_{n-q}=G_{n} \times{ }_{G_{n-q+1}} G_{n-q+1} / G_{n-q}$ imply that the homogeneous fibre bundle

$$
\begin{equation*}
G_{n-q+1} / G_{n-q} \rightarrow G_{n} / G_{n-q} \xrightarrow{\pi} G_{n} / G_{n-q+1} \tag{1}
\end{equation*}
$$

is isomorphic to the sphere bundle of ξ_{n-q+1}. Hence we have

$$
G_{n} / G_{n-q} \approx S\left(\xi_{n-q+1}\right)
$$

where $S\left(\xi_{k}\right)$ denotes the total space of the sphere bundle of ξ_{k}. Denote also by $D\left(\xi_{k}\right)$ the total space of the disc bundle of ξ_{k}. Evidently we then have

$$
\partial D\left(\xi_{n-q+1}\right) \approx V_{n, q} .
$$

To prove the theorem it therefore suffices to show that the framing \mathscr{F} of $V_{n, q}$ extends over $D\left(\xi_{n-k+1}\right)$.

So we first recall the framing of [3]. Let G be a compact connected Lie group and H a closed subgroup of G. Let $\tau(G / H)$ denote the tangent bundle of G / H. Consider the principal H-bundle

$$
H \rightarrow G \xrightarrow{\pi} G / H .
$$

Then we have a decomposition of the tangent bundle of G

$$
\tau(G) \cong \pi^{*} \tau(G / H) \oplus \tau_{H}(G)
$$

where $\tau_{H}(G)$ is the bundle of tangents along the fibres. This isomorphism is compatible with the right action of H, so that we obtain an isomorphism of vector bundles over G / H

$$
\tau(G) / H \cong \tau(G / H) \oplus \tau_{H}(G) / H
$$

Let $\tau_{g}(G)$ denote the tangent space at $g \in G$ and $R_{g^{-1}:} \tau_{g}(G) \rightarrow \tau_{e}(G)$ denote the differential of right multiplication by g^{-1} where e is the identity element of G. Then the right invariant framing of G

$$
\mathcal{R}: \tau(G) \cong G \times \tau_{e}(G)
$$

is given by $\mathcal{R}(v)=\left(g, R_{g^{-1}}(v)\right)$ where $v \in \tau_{g}(G)$. This gives

$$
\tau(G) / H \cong G / H \times \tau_{e}(G)
$$

as vector bundles over G / H.
By ad_{H} we denote the adjoint representation of H on $\tau_{e}(H)$. We consider the differential $L_{a^{-1}}: \tau_{a}(g H) \rightarrow \tau_{e}(H)$ induced by the left multipliaction by a^{-1} where $a \in g H$. Then similarly we have

$$
\tau_{H}(G) / H \cong G \times_{H} \tau_{e}(H)
$$

as vector bundles over G / H where H acts on $\tau_{e}(H)$ via ad ${ }_{H}$.
Combining these three bundle equations we have

$$
\begin{equation*}
G / H \times \tau_{e}(G) \cong \tau(G / H) \oplus G \times_{\mathrm{ad}_{\boldsymbol{Z}}} \tau_{e}(H) \tag{2}
\end{equation*}
$$

as vector bundles over G / H. So we find that if ad_{H} is contained in the image of the restriction map $R O(G) \rightarrow R O(H)$ of real representation rings, then formula (2) gives rise to a framing of G / H.

Here we return to the framing of $V_{n, q}$. We consider the restrictions of $\operatorname{ad}_{G_{n}}$ and ρ_{n} to G_{k} for $k<n$. Now we write $\operatorname{ad}_{k}=\operatorname{ad}_{G_{k}}$ briefly. Then we have

Lemma 1. (i) $\left.\rho_{n}\right|_{G_{n-1}} \cong \rho_{n-1} \oplus d \cdot 1$,

$$
\text { (ii) }\left.\quad \mathrm{ad}_{n}\right|_{G_{n-1}} \simeq \mathrm{ad}_{n-1} \oplus \rho_{n-1} \oplus(d-1) \cdot 1
$$

where 1 denotes the trivial 1-dimensional real representation.
Proof. (i) is obvious. By observing the maximal root of G_{n} [2] we see that $c\left(\operatorname{ad}_{n}\right)=\lambda^{2} \tilde{\rho}_{n},\left(\lambda^{1} \tilde{\rho}_{n}\right)\left(\lambda^{n-1} \tilde{\rho}_{n}\right)-1$ or $\left(\lambda^{1} \tilde{\rho}_{n}\right)^{2}-\lambda^{2} \tilde{\rho}_{n}$ where $\tilde{\rho}_{n}$ denotes the canonical complex representation $G_{n} \subset G L(n, \boldsymbol{C}), G L(n, \boldsymbol{C})$ or $G L(2 n, \boldsymbol{C})$ according as $F=$ $\boldsymbol{R}, \boldsymbol{C}$ or \boldsymbol{H}. Here c is the complexification and $\lambda^{i} \tilde{\rho}_{n}$ is the i-th exterior power of $\tilde{\rho}_{n}$. For this fact, however, we refer to [6]. So we can readily obtain (ii) using (i).

From Lemma 1 it follows that for $k<n$

$$
\begin{align*}
& \left.\operatorname{ad}_{n}\right|_{G_{k}} \cong \operatorname{ad}_{k} \oplus(n-k) \rho_{k} \oplus((n-k)(d n-d k+d-2) / 2) \cdot 1, \tag{3}\\
& \left.\rho_{n}\right|_{G_{k}} \cong \rho_{k} \oplus d(n-k) \cdot 1
\end{align*}
$$

Hence we get

$$
\begin{equation*}
\left.\left.\operatorname{ad}_{n}\right|_{G_{k}} \oplus s(n, k) \cdot 1 \cong \operatorname{ad}_{k} \oplus(n-k) \rho_{n}\right|_{G_{k}} \tag{4}
\end{equation*}
$$

for $k<n$ where $s(n, k)=(n-k)(d n-d k-d+2) / 2$.
Denote by W_{k} the representation space of ad_{k}. Then using (2) when $\boldsymbol{G}=$ $G_{n}, H=G_{n-q}$ and (4) we obtain a framing of $V_{n, q}$

$$
\begin{equation*}
\mathscr{F}: \tau\left(V_{n, q}\right) \oplus\left(V_{n, q} \times W_{n}\right) \oplus s(n, n-q) \cdot 1 \cong V_{n, q} \times\left(\tau_{e}\left(G_{n}\right) \oplus q V_{n}\right) \tag{5}
\end{equation*}
$$

where 1 denotes the trivial real line bundle.
We now give this framing \mathscr{E} more directly. Let W_{k}^{\prime} be a direct summand of $\left.W_{n}\right|_{G_{k}}$ such that $\left.W_{n}\right|_{G_{k}} \cong W_{k}^{\prime} \oplus W_{k}$ for $k<n$. Then we have

Lemma $2([1]) . \quad \tau\left(V_{n, n-k}\right) \cong G_{n} \times{ }_{G_{k}} W_{k}^{\prime} \quad$ for $k<n$.
Proof. There is an obvious isomorphism of vector bundles over $V_{n, n-k}$

$$
G_{n} \times{ }_{G_{k}}\left(\left.W_{n}\right|_{G_{k}}\right) \cong V_{n, n-k} \times \tau_{e}\left(G_{n}\right) .
$$

So consider the composite with the isomorphism of (2) when $G=G_{n}, H=G_{k}$

$$
G_{n} \times{ }_{G_{k}}\left(\left.W_{n}\right|_{G_{k}}\right) \cong \tau\left(V_{n, n-k}\right) \oplus G_{n} \times{ }_{G_{k}} W_{k} .
$$

Then we see that this map sends identically the direct summand $G_{n} \times{ }_{G_{k}} W_{k}$ to that on the right-hand side and isomorphically another direct summand $G_{n} \times G_{k}$ W_{k}^{\prime} to $\tau\left(V_{n, n-k}\right)$, and so the result follows.

Using Lemma 2 we can interpret \mathscr{F} of (5) as follows. By (4) we have

$$
\begin{equation*}
\left.W_{k-q}^{\prime} \oplus\left(\left.W_{n}\right|_{G_{n-q}}\right) \oplus s(n, n-q) \cdot 1 \cong\left(W_{n} \oplus q V_{n}\right)\right|_{G_{n-q}} \tag{6}
\end{equation*}
$$

This gives rise to an isomorphism of real vector bundles associated with the principal G_{n-q}-bundle $G_{n} \rightarrow V_{n, q}$ with modules on both sides as fibres. It is easily seen that this isomorphism induces \mathscr{F} of (5) precisely.

Proof of Theorem. By the second formula of (3) it follows that

$$
\xi_{n-q+1} \oplus d(q-1) \cdot 1 \cong V_{n, q-1} \times V_{n}
$$

Taking the sum of this and the framing \mathscr{F} of $V_{n, q-1}$ we have

$$
\begin{align*}
& \tau\left(V_{n, q-1}\right) \oplus \xi_{n-q+1} \oplus\left(V_{n, q-1} \times W_{n}\right) \oplus(s(n, n-q)-1) \cdot 1 \tag{7}\\
& \quad \cong V_{n, q-1} \times\left(\tau_{e}\left(G_{n}\right) \oplus q V_{n}\right)
\end{align*}
$$

since $s(n, n-q)=s(n, n-q+1)+d(q-1)+1$. Now from the above arguments about the fibre bundle of (1) it is clear that

$$
\tau\left(V_{n, q}\right) \oplus 1 \cong \pi^{*}\left(\tau\left(V_{n, q-1}\right) \oplus \xi_{n-q+1}\right)
$$

where π is the projection map of (1). Therefore by pulling the isomorphism of (7) back along π we obtain another framing of $V_{n, q}$

$$
\mathscr{F}^{\prime}: \tau\left(V_{n, q}\right) \oplus\left(V_{n, q} \times W_{n}\right) \oplus s(n, n-q) \cdot 1 \cong V_{n, q} \times\left(\tau_{e}\left(G_{n}\right) \oplus q V_{n}\right)
$$

Denote by $\tilde{\pi}$ the canonical projection map $D\left(\xi_{n-q+1}\right) \rightarrow V_{n, q-1}$. Moreover we then have

$$
\tau\left(D\left(\xi_{n-q+1}\right)\right) \cong \tilde{\pi}^{*}\left(\tau\left(V_{n, q-1}\right) \oplus \xi_{n-q+1}\right)
$$

so that by pulling the isomorphism of (7) back along $\tilde{\pi}$ again we obtain a framing of $D\left(\xi_{n-q+1}\right)$. Identifying $V_{n, q}$ with $S\left(\xi_{n-q+1}\right)$, this framing is obviously an extension of \mathscr{F}^{\prime} over $D\left(\xi_{n-q+1}\right)$ since $\left.\tilde{\pi}\right|_{V_{n, q}}=\pi$. Hence it follows $\left[V_{n, q}, \mathscr{F}^{\prime}\right]=0$ and so it suffices to show that \mathscr{F} agrees up to sign with \mathscr{F}^{\prime}.

By (3) we have

$$
\left.W_{n-q}^{\prime} \oplus 1 \cong\left(W_{n-q+1}^{\prime} \oplus V_{n-q+1}\right)\right|_{G_{n-q}}
$$

Using this and Lemma 2 we can verify that formula (6) also gives rise to either
\mathscr{F}^{\prime} or $-\mathscr{F}^{\prime}$ in the same way as the case of \mathscr{F}. Therefore this proves the theorem.

Proof of Corollary. Since $V_{n, n-1}=S O(n), S U(n)$ and $V_{n, n}=S p(n)$, we set $V_{n, q}=G_{n}$ in (5) and so in defining \mathscr{F} we consider $\mathrm{ad}_{n-q}=0$. Hence by definition it follows that \mathscr{F} is just the framing twisting \mathcal{R} of G_{n} by $\mathrm{ad}_{n}-q \rho_{n}$, so that by the theorem it follows $\left[G_{n}, \operatorname{ad}_{n}-q \rho_{n}\right]=0$. Therefore we have $\left[G_{n}, q \rho_{n}\right]=0$ by [5].

References

[1] L. Astey, M.A. Guest and G. Pastor: Lie groups as framed boundaries, Osaka J. Math. 25 (1988), 891-907.
[2] N. Bourbaki: Groupes et algèbres de Lie, Hermann, Paris, 1968.
[3] P. Löffler and L. Smith: Line bundles over framed manifolds, Math. Z. 138 (1974), 35-52.
[4] H.V. Pittie and L. Smith: Generalized flag manifolds as framed boundaries, Math. Z. 142 (1975), 191-193.
[5] B. Steer: Orbits and the homotopy class of a compactification of a classical map, Topology 15 (1976), 383-393.
[6] I. Yokota: Groups and representations (in Japanese), Shôkabô, Tokyo, 1973.

Department of Mathematics Naruto University of Education Naruto, Tokushima 772
Japan

