A FUNDAMENTAL DOMAIN FOR SOME QUASI-FUCHSIAN GROUPS

Takehiko SASAKI

(Received November 28, 1988)
(Revised April 1, 1989)

1. Introduction

Let A and B be two loxodromic elements of $\operatorname{SL}(2, C)$ having no common fixed point and subjected to the condition that $A B A^{-1} B^{-1}$ is parabolic. Writing $\operatorname{tr} A=x, \operatorname{tr} B=y$ and $\operatorname{tr} A B=z$, one sees that the condition on the commutator of A and B reduces to $x^{2}+y^{2}+z^{2}=x y z$. In [1] Keen observed the case $z>2$, which is a special case considered there, and obtained a sufficient condition on traces x, y, z for which the group $\langle A, B\rangle$ generated by A and B is Kleinian. Her idea is first to take a symmetric normalization of the fixed points of A and B and then to construct a symmetric fundamental polygon for $\langle A, B\rangle$. In this article we shall take another normalization and construct a fundamental domain to show the following.

Theorem. Let $A=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$ and $B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), b c \neq 0$, be loxodromic elements of $\mathrm{SL}(2, \boldsymbol{C})$ such that $A B A^{-1} B^{-1}$ is parabolic and let $G=\langle A, B\rangle$. If, for each integer n, the inequality

$$
\begin{equation*}
\frac{\left|\alpha^{n} a\right|+\left|\beta^{n} d\right|}{\left|\alpha^{n} a+\beta^{n} d\right|}<\frac{|\alpha|+|\beta|}{|\alpha-\beta|} \tag{1}
\end{equation*}
$$

holds, then G is quasi-Fuchsian and represents a pair of once punctured tori.
Restricting to the case $z>2$, one might wish to compare (1) with the Keen condition $\left({ }^{* *}\right)$ of Theorem 5.1 in [1]. This will be discussed elsewhere.

The auther would like to thank the referee for careful reading and valuable suggestions.

Remark 1. Since A is an element of $\operatorname{SL}(2, C), \beta=1 / \alpha$. Also since A is loxodromic, $|\alpha| \neq 1$ and we may assume $|\alpha|>1>|\beta|$. Hence the left hand side of (1) tends to 1 as the absolute value of n tends to ∞. If one examines (1) for $n=0$ and if it holds, then the right hand side of (1) must be greater than 1. Therefore, for given A and B, we may examine (1) only for a finite number of integres n.

Remark 2. Geometric meaning of (1) appears in the course of the proof of Theorem. It is given stepwise in Propositions 2 and 4 and in Section 3. In Propositions 2 and 4 we examine some restricted cases and use some simple conditions instead of (1).

2. Preliminary and special cases

Let $A=\left(\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right)$ and $B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), b c \neq 0$, be loxodromic elements of $\operatorname{SL}(2, C)$ such that $A B A^{-1} B^{-1}$ is parabolic. We first note that the parabolicity of $A B A^{-1}$ B^{-1} and the inequalities (1) are invariant under the conjugations by $\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)$ and $\left(\begin{array}{cc}k & 0 \\ 0 & 1 / k\end{array}\right)$, where $i=\sqrt{-1}$ and k is a non zero complex number. They are also invariant under the change of generators A and B to A and $B A^{n}$. Now, conjugating A and B by $\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)$, if necessary, and by $\left(\begin{array}{cc}k & 0 \\ 0 & 1 / k\end{array}\right)$ with a suitable k, we may assume and do hereafter that

$$
\begin{equation*}
|\alpha|>1 \quad \text { and } \quad c=\frac{\alpha+\beta}{\alpha-\beta} . \tag{2}
\end{equation*}
$$

The explicit form of the matrix $A B A^{-1} B^{-1}$ is

$$
\left(\begin{array}{ll}
a d-\alpha^{2} b c & \left(\alpha^{2}-1\right) a b \tag{3}\\
\left(\beta^{2}-1\right) c a & a d-\beta^{2} b c
\end{array}\right)
$$

so from the condition that (3) is parabolic (or from the equality $x^{2}+y^{2}+z^{2}=$ $x y z$ with $x=\alpha+\beta, y=a+d, z=\alpha a+\beta d)$ we obtain easily

$$
\begin{equation*}
a d=\left(\frac{\alpha+\beta}{\alpha-\beta}\right)^{2} \tag{4}
\end{equation*}
$$

Using (2) and (4) we have the following equalities:

$$
\begin{align*}
& a d=c^{2}, b c=c^{2}-1, c / d=a / c \\
& \alpha^{2}=(c+1) /(c-1), \alpha^{2}-\beta^{2}=4 c /\left(c^{2}-1\right) \text { and } \tag{5}\\
& \beta^{2}-1=-2 /(c+1)
\end{align*}
$$

Using these equalities, we see from (3) that the fixed point of $A B A^{-1} B^{-1}$ is

$$
-\left(\alpha^{2}-\beta^{2}\right) b c / 2\left(\beta^{2}-1\right) c d=(c+1) / d=a / c+1 / d
$$

We denote it by p_{1}. We put $p_{2}=A^{-1}\left(p_{1}\right), p_{3}=B^{-1} A^{-1}\left(p_{1}\right)$ and $p_{4}=A B^{-1} A^{-1}\left(p_{1}\right)$. By the aid of (5) we calculate them and obtain

$$
\begin{array}{ll}
p_{1}=a / c+1 / d, & p_{2}=a / c-1 / d \tag{6}\\
p_{3}=-d / c+1 / a, & p_{4}=-d / c-1 / a
\end{array}
$$

Let $C_{1}=\left\{z| | z-a / c|=1 /|d|\}\right.$ and $C_{2}=\{z| | z+d / c|=1 /|a|\}$. Note that the center of C_{1} (resp. C_{2}) coinsides with that of the isometric circle of B^{-1} (resp. B) and that (6) implies that the segment connecting p_{1} with p_{2} (resp. p_{3} with p_{4}) is a diameter of C_{1} (resp. C_{2}). Denoting by D_{i} the inside of $C_{i}(i=1,2)$, we have the following.

Proposition 1. B maps C_{2} to C_{1} such that B maps the exterior of D_{2} to D_{1}.
Proof. Let l be the line passing through p_{3} and p_{4}. Since B maps p_{3}, p_{4} and ∞ to p_{2}, p_{1} and a / c, respectively, $B(l)$ is a line passing through p_{2}, p_{1} and the center of C_{1}. Since C_{2} and C_{1} are orthogonal to l and $B(l)$, respectively, B maps C_{2} to C_{1}. Since the center of C_{1} is $B(\infty), B$ maps the exterior of D_{2} onto D_{1}.

In case A is hyperbolic, a suitable position of C_{1} and C_{2} gives us some fundamental domain for G, the picture of which is easy to draw. As a fundamental idea of this aritcle we show the following.

Proposition 2. Let $A=\left(\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right)$ and $B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), b c \neq 0$, be hyperbolic and loxodromic elements of $\mathrm{SL}(2, C)$, respectively, such that $A B A^{-1} B^{-1}$ is parabolic and let $G=\langle A, B\rangle$. If C_{1} and C_{2} are separated by the imaginary axis, then G is quasi-Fuchsian and represents a pair of once punctured tori.

Proof. By Proposition 1 we see that the assumption on C_{1} and C_{2} implies that the exterior of $D_{1} \cup D_{2}$ is a fundamental domian for $\langle B\rangle$. We shall construct a fundamental domain R for $\langle A\rangle$ such that $R \supset D_{1} \cup D_{2}$. Since A is hyperbolic, the action of A is a streching from the origin so that p_{1} and p_{2} (resp. p_{3} and p_{4}) lie on a ray emanating from the origin. Let H_{i} be one of the half planes $\{z \mid \operatorname{Re} z>0\}$ and $\{z \mid \operatorname{Re} z<0\}$ containing $D_{i}(i=1,2)$. We put

$$
\begin{aligned}
& R_{1}=\left\{z| | p_{2}\left|<|z|<\left|p_{1}\right|\right\} \cap H_{1}\right. \text { and } \\
& R_{2}=\left\{z| | p_{3}\left|<|z|<\left|p_{4}\right|\right\} \cap H_{2} .\right.
\end{aligned}
$$

Then $R_{i} \supset D_{i}(i=1,2)$. If the set $\bar{R}_{1} \cap \bar{R}_{2}$ consists of two closed intervals on the imaginary axis, then we put

$$
R=R_{1} \cup R_{2} \cup \operatorname{Int}\left(\bar{R}_{1} \cap \bar{R}_{2}\right)
$$

where \bar{R}_{i} denotes the closure of R_{i} and Int $\left(\bar{R}_{1} \cap \bar{R}_{2}\right)$ denotes two open intervals lying on the imaginary axis. If $\bar{R}_{1} \cap \bar{R}_{2}$ consists of at most two points, then we change the generators for G so that we are in the same situation just above. This is done simply by changing B to $B A^{n}$ with a suitable integer n. Since the ring $\left\{z\left|\left|p_{2}\right| \leqq|z|<\left|p_{1}\right|\right\}\right.$ is a fundamental set for $\langle A\rangle$, there is an integer n such that $\left|p_{2}\right| \leqq\left|A^{-n}\left(p_{3}\right)\right|<\left|p_{1}\right|$. For this n we see that $\bar{R}_{1} \cap A^{-n}\left(\bar{R}_{2}\right)$ containes more than two points. Changing B by $B A^{n}$ and conjugating it with a
suitable matrix of the form $\left(\begin{array}{ll}k & 0 \\ 0 & 1 / k\end{array}\right)$, we are in the same situation cited above. In any case we have a fundamental domain R for $\langle A\rangle$ such that $R \supset D_{1} \cup D_{2}$. Let J_{i} be the closed boundary curve of R passing through $p_{i}(i=3,4)$. Then putting $J_{i}=C_{i}(i=1,2)$, the proof of the proposition is completed by the following.

Proposition 3. Let J_{1} and J_{2} be disjoint circles passing through p_{1}, p_{2} and p_{3}, p_{4}, respectively, such that $B\left(J_{2}\right)=J_{1}$ and that J_{1} and J_{2} bound a fundamental domain for $\langle B\rangle$, where p_{i} are the points in (6). Assume that there are disjoint Jordan curves J_{3} and J_{4} passing through p_{2}, p_{3} and p_{1}, p_{4}, respectively, such that $A\left(J_{3}\right)=J_{4}, J_{1} \cap J_{3}=\left\{p_{2}\right\}, J_{1} \cap J_{4}=\left\{p_{1}\right\}, J_{2} \cap J_{3}=\left\{p_{3}\right\}, J_{2} \cap J_{4}=\left\{p_{4}\right\}$ and that J_{3} and J_{4} bound a fundamental domain for $\langle A\rangle$. Then G is quasi-Fuchsian and represents a pair of once punctured tori.

Our proof of Proposition 3 is somewhat long, so it is given in Section 4.
Next, assuming A is hyperbolic, we treat the case where C_{1} and C_{2} are not necessarily separated by the imaginary axis. As is shown in the proof of Proposition 2, we may assume and do hereafter that the center of the isometric circle of B lies in a ring $\left\{z\left|\left|p_{2}\right| \leqq|z|<\left|A\left(p_{2}\right)\right|\right\}\right.$.

Proposition 4. Let $A=\left(\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right)$ and $B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), b c \neq 0$, be hyperbolic and loxodromic elements of $\mathrm{SL}(2, C)$, respectively, such that $A B A^{-1} B^{-1}$ is parabolic and let $G=\langle A, B\rangle$. Assume that $\left|p_{2}\right| \leqq|-d| c\left|<\left|p_{1}\right|\right.$, where p_{1} and p_{2} are in (6). If the inequality

$$
\begin{equation*}
\frac{|a|+|d|}{|a+d|}<\frac{\alpha+\beta}{\alpha-\beta} \tag{7}
\end{equation*}
$$

holds, then G is quasi-Fuchsian and represents a pair of once punctured tori.
Proof. First we show that (7) means that two discs D_{1} and D_{2} lie in a positive distance. The centers and the radii of D_{1} and D_{2} are $a / c,-d / c$ and $1 /|d|$, $1 /|a|$, respectively. Hence the condition that D_{1} and D_{2} lie in a positive distance is equivalent to

$$
1 /|a|+1 /|d|<|(a+d) / c|
$$

By (2) and (4) we see easily that this inequality is equivalent to (7). If $\left|p_{3}\right|=$ $\left|p_{2}\right|$, then by (5) and (6) we have $|a|=|d|=c$. Hence we see that the circles C_{1} and C_{2} are symmetric with respect to the imaginary axis so that we are in a situation of Proposition 2. So assume $\left|p_{3}\right|<\left|p_{2}\right|$. Draw a circle $C=\{z| | z \mid=$ $\left.\left|p_{2}\right|\right\}$. Then C intersects C_{2} at two points. Denoting by D the inside of C, we put

$$
J=\left(C \cap D_{2}^{c}\right) \cup\left(C_{2} \cap D\right)
$$

Then the ring domain bounded by J and $A(J)$ is a fundamental domain for $\langle A\rangle$ and contains D_{1} and D_{2} in it. Since $J \cap C_{2} \neq\left\{p_{3}\right\}$, we need a slight deformation of a part of J lying on C_{2} to apply Proposition 3. We put $C_{2}^{*}=\{z| | z+(1+$ $\varepsilon / c) d / c|=(1+\varepsilon) /|a|\}$ with a so small positive number ε that $C_{2}^{*} \cap C_{1}=\emptyset$. This is possible, for we have shown that the condition (7) is equivalent to $C_{1} \cap C_{2}=\emptyset$. We put

$$
J_{3}=\left(C \cap\left(D_{2}^{*}\right)^{c}\right) \cup\left(C_{2}^{*} \cap D\right),
$$

where D_{2}^{*} denotes the inside of C_{2}^{*}. Now it is easy to see that the curves $J_{1}=C_{1}, J_{2}=C_{2}, J_{3}$ and $J_{4}=A\left(J_{3}\right)$ satisfy the conditions of Proposition 3. Thus we have Proposition 4.

Remark 3. Let $A=\left(\begin{array}{cc}2 & 0 \\ 0 & 1 / 2\end{array}\right)$ and $B=\left(\begin{array}{cc}(5 / 6) e^{i \theta} & 16 / 15 \\ 5 / 3 & (10 / 3) e^{-i \theta}\end{array}\right), 0<|\theta|<\pi / 2$. Since the square of the absolute value of the trace of B is $225 / 36+(100 / 9) \cos ^{2} \theta$, B is loxodromic. We see by (2) and (4) that $A B A^{-1} B^{-1}$ is parabolic. Since $\cos \theta \neq 0$, the square of the left hand side of (7) is smaller than $25 / 9$. The right hand side of (7) is $5 / 3$ so that (7) holds. Thus we have seen that A and B satisfy the assumptions of Proposition 4 except for $\left|p_{2}\right| \leqq|-d / c|<\left|p_{1}\right|$. Since $A B=\left(\begin{array}{cc}(5 / 3) e^{i \theta} & 32 / 15 \\ 5 / 6 & (5 / 3) e^{-i \theta}\end{array}\right)$, the trace of $A B$ is $(10 / 3) \cos \theta$. Hence we can find a θ such that $A B$ is elliptic of the infinite order. This implies that $\langle A, B\rangle$ is not necessarily Kleinian. Hence the assumption on the absolute value of $-d / c$ can not be dropped.

3. Proof of Theorem

Finally we Shall go into the case where A and B are not necessarily hyperbolic. Recall that when A is hyperbolic we are in a good situation in which the line tangent to C_{1} at p_{2} (resp. C_{2} at p_{3}) is mapped by A to the line tangent to C_{1} at p_{1} (resp. C_{2} at p_{4}), which enables us easily to draw fundamental domains for $\langle A\rangle$ and $\langle B\rangle$ by which the condition of the Klein combination theorem is satisfied. We are now not in the same situation. That is, for a non-hyperbolic A, the line tangent to C_{1} at p_{2} is mapped by A to a line not tangent to C_{1} at p_{1}. So we shall introduce new circles C_{1}^{\prime} and C_{2}^{\prime} such that the exterior of both D_{1}^{\prime} and D_{2}^{\prime} is a fundamental domain for $\langle B\rangle$ and that the line tangent to C_{1}^{\prime} at p_{2} (resp. C_{2}^{\prime} at p_{3}) is mapped by A to the line tangent to C_{1}^{\prime} at p_{1} (resp. C_{2}^{\prime} at p_{4}), where D_{i}^{\prime} denotes the disc bounded by $C_{i}^{\prime}(i=1,2)$. Then we will be in a similar situation as before.

Let θ be the argument of α lying in the interval $(-\pi / 2, \pi / 2]$. The left hand side of (1) is not smaller than 1 , so the right hand side of (1) is greater than 1. This implies that $\theta \in(-\pi / 2, \pi / 2)$. The action of A is a stretching from the
origin of magnitude $|\alpha|^{2}$ followed by a rotation about the origin of the angle 2θ. We define the new circles as follows:

$$
\begin{align*}
& C_{1}^{\prime}=\{z| | z-a / c+i(\tan \theta) / d|=1 /|d| \cos \theta\} \quad \text { and } \\
& C_{2}^{\prime}=\{z| | z+d / c-i(\tan \theta) / a|=1 /|a| \cos \theta\}, \tag{8}
\end{align*}
$$

where $i=\sqrt{-1}$. Note that by (2) and (4) we see that the centers of C_{1}^{\prime} and C_{2}^{\prime} are respectively

$$
\begin{equation*}
\frac{|\alpha|+|\beta|}{d(\alpha-\beta) \cos \theta} \text { and }-\frac{|\alpha|+|\beta|}{a(\alpha-\beta) \cos \theta} \tag{9}
\end{equation*}
$$

Since the vector from p_{1} to the center of C_{1}^{\prime} is $-(1+i \tan \theta) / d=-\alpha / d|\alpha| \cos \theta$, the line l_{1} tangent to C_{1}^{\prime} at p_{1} has the form with a real parameter s

$$
l_{1}: p_{1}+i s \alpha|d| \alpha \mid \cos \theta
$$

Likewise we see that the line l_{2} tangent to C_{1}^{\prime} at p_{2} has the form with a real parameter t

$$
l_{2}: p_{2}+i t \beta / d|\beta| \cos \theta
$$

Since $A(z)=\alpha^{2} z$ and $A\left(p_{2}\right)=p_{1}$, we have $A\left(l_{2}\right)=l_{1}$. We can also see that the line tangent to C_{2}^{\prime} at p_{3} is mapped by A to the line tangent to C_{2}^{\prime} at p_{4}. Hence we have our first requirement. Another requirement is that the exterior of both D_{1}^{\prime} and D_{2}^{\prime} is a fundamental domain for $\langle B\rangle$. To see this we may only to show that $B\left(C_{2}^{\prime}\right)=C_{1}^{\prime}$, because the center of the isometric circle of B is the mid point of p_{3} and p_{4} so that it lies in D_{2}^{\prime} and is mapped by B to ∞. Since $B\left(p_{3}\right)=p_{2}$ and $B\left(p_{4}\right)=p_{1}$, it suffices to show that a point on $C_{2}^{\prime} \backslash\left\{p_{3}, p_{4}\right\}$ is mapped by B to a point on C_{1}^{\prime}. From (8) we see that the points $q=-d / c+i(\tan \theta+$ $1 / \cos \theta) / a$ and $q^{\prime}=a / c-i(\tan \theta-1 / \cos \theta) / d$ lie on C_{2}^{\prime} and on C_{1}^{\prime}, respectively. A direct calculation shows $B(q)=q^{\prime}$ and we have our another requirement.

Now we have two chains of circles $\left\{A^{n}\left(C_{1}^{\prime}\right)\right\}$ and $\left\{A^{n}\left(C_{2}^{\prime}\right)\right\}$ such that, for each integer $n, A^{n}\left(C_{i}^{\prime}\right)$ and $A^{n+1}\left(C_{i}^{\prime}\right)$ are tangent at $A^{n}\left(p_{1}\right)$ if $i=1$ and at $A^{n}\left(p_{4}\right)$ if $i=2$ and that they tend to 0 and ∞ as n tends to $-\infty$ and ∞, respectively. We show that the inequalities (1) imply that two chains of circles $\left\{A^{n}\left(C_{i}^{\prime}\right)\right\}$ are disjoint. Since $\left\{A^{n}\left(C_{i}^{\prime}\right)\right\}$ are invariant under A, it suffices to show that C_{1}^{\prime} and $\left\{A^{n}\left(C_{2}^{\prime}\right)\right\}$ are disjoint. From (8) and (9) we see that the center and the radius of $A^{n}\left(C_{2}^{\prime}\right)$ are respectively

$$
\begin{equation*}
-\alpha^{2 n}(|\alpha|+|\beta|) / a(\alpha-\beta) \cos \theta \quad \text { and } \quad|\alpha|^{2 n} /|a| \cos \theta \tag{10}
\end{equation*}
$$

By (9) and (10), the distance between the centers of C_{1}^{\prime} and $A^{n}\left(C_{2}^{\prime}\right)$ is

$$
((|\alpha|+|\beta|) /|\alpha-\beta| \cos \theta)\left|1 / d+\alpha^{2 n} / a\right|
$$

and by (8) and (10) the sum of the radii of C_{1}^{\prime} and $A^{n}\left(C_{2}^{\prime}\right)$ is

$$
(1 / \cos \theta)\left(1 /|d|+|\alpha|^{2 n} /|a|\right) .
$$

Hence the condition that C_{1}^{\prime} and $A^{n}\left(C_{2}^{\prime}\right)$ are disjoint becomes

$$
1 /|d|+|\alpha|^{2 n} /|a|<((|\alpha|+|\beta|) /|\alpha-\beta|)\left|1 / d+\alpha^{2 n} / a\right|,
$$

which is clearly equivalent to (1).
Taking $J_{i}=C_{i}^{\prime}(i=1,2)$, we shall draw a simple closed curve J_{3} satisfying the condition of Proposition 3. As we noted after Proposition 3, we may assume that $\left|p_{2}\right| \leqq|d / c|<\left|p_{1}\right| . \quad$ Let $c=\left\{z| | z\left|=\left|p_{2}\right|\right\}\right.$ and denote by D the disc enclosed by C. We put

$$
\begin{align*}
& J=\left(C \cap\left(\cup A^{n}\left(D_{1}^{\prime} \cup D_{2}^{\prime}\right)\right)^{c}\right) \cup\left({ }^{*}\right) \cup\left({ }^{* *}\right), \\
& \left(^{*}\right)=\bigcup_{n \geq 0} A^{n}\left(C_{1}^{\prime} \cup C_{2}^{\prime}\right) \cap D \text { and } \tag{11}\\
& \left({ }^{* *}\right)=\bigcup_{n<0} A^{n}\left(C_{1}^{\prime} \cup C_{2}^{\prime}\right) \cap D^{c} .
\end{align*}
$$

That is, J is a Jordan curve separating $\left\{A^{n}\left(D_{i}^{\prime}\right)\right\}_{n=0}^{\infty}$ from $\left\{A^{n}\left(D_{i}^{\prime}\right)\right\}_{n=-1}^{-\infty}$. A sligh deformation of parts of J which lie on $\left\{A^{n}\left(C_{i}^{\prime}\right)\right\}$ will give us J_{3}. We need a finite number of replacements as follows:

Let ε be a positive number. Let m be the maximum number of n such that $C \cap A^{n}\left(C_{1}^{\prime} \cup C_{2}^{\prime}\right) \neq \emptyset$. If $m>0$, then we put

$$
C_{i, m, n}^{\prime \prime}=\left\{z| | z-q_{i} \mid=r_{i}+\varepsilon n / m\right\}
$$

and replace

$$
\begin{equation*}
A^{n}\left(C_{i}^{\prime}\right) \text { by } A^{n}\left(C_{i, m, n}^{\prime \prime}\right) \quad(n=1, \cdots, m), \tag{12}
\end{equation*}
$$

where q_{i} and r_{i} denote the center and the radius of C_{i}^{\prime}, respectively. Replace

$$
\begin{equation*}
C_{i}^{\prime} \text { by } C_{i}^{*}=\left\{z| | z-\left(q_{i}+\delta\left(q_{i}-p_{i+1}\right)\right) \mid=(1+\delta) r_{i}\right\} \tag{13}
\end{equation*}
$$

where $\delta=\varepsilon / 2 m r_{i}$. Let m_{i} be the minimum number of n such that $C \cap A^{n}\left(C_{i}^{\prime}\right) \neq$ \emptyset. We put

$$
C_{i, m_{i}, n}^{\prime \prime}=\left\{z| | z-q_{i} \mid=r_{i}+\varepsilon n / m_{i}\right\} .
$$

If $m_{1}<-1$, then replace

$$
\begin{equation*}
A^{n}\left(C_{1}^{\prime}\right) \text { by } A^{n}\left(C_{1, m_{1}, n}^{\prime}\right) \quad\left(n=-2, \cdots, m_{1}\right) . \tag{14}
\end{equation*}
$$

If $m_{2}<0$, then replace

$$
\begin{equation*}
A^{n}\left(C_{2}^{\prime}\right) \text { by } A^{n}\left(C_{2, m_{2}, n}^{\prime \prime}\right) \quad\left(n=-1, \cdots, m_{2}\right) \tag{15}
\end{equation*}
$$

We put

$$
C_{1}^{* *}=\left\{z| | z-\left(q_{1}+\delta_{1}\left(q_{1}-p_{1}\right)\right) \mid=\left(1+\delta_{1}\right) r_{1}\right\}
$$

and replace

$$
\begin{equation*}
A^{-1}\left(C_{1}^{\prime}\right) \quad \text { by } \quad A^{-1}\left(C_{1}^{* *}\right) \tag{16}
\end{equation*}
$$

where $\delta_{1}=\varepsilon / 2\left|m_{1}\right| r_{1}$. In the case where $\left|p_{3}\right|=\left|p_{2}\right|$, we need a modification. If so, then we put

$$
C_{2}^{* *}=\left\{z| | z-\left(q_{2}+\delta_{2}\left(q_{2}-p_{4}\right)\right) \mid=\left(1+\delta_{2}\right) r_{2}\right\}
$$

and replace

$$
\begin{equation*}
A^{-1}\left(C_{2}^{\prime}\right) \text { by } A^{-1}\left(C_{2}^{* *}\right) \tag{17}
\end{equation*}
$$

where $\delta_{2}=\varepsilon / 2\left|m_{2}\right| r_{2}$. The result of these replacements of $A^{n}\left(C_{i}^{\prime}\right)$ and the corresponding $A^{n}\left(D_{i}^{\prime}\right)$ in (11) denote we by J_{3}.

Now, we show that, for a small $\varepsilon, J_{1}, J_{2}, J_{3}$ and $J_{4}=A\left(J_{3}\right)$ satisfy the conditions of Proposition 3. It is already shown that J_{1} and J_{2} are disjoint circles passing through p_{1}, p_{2} and p_{3}, p_{4}, respectively, such that $B\left(J_{2}\right)=J_{1}$ and that J_{1} and J_{2} bound a fundamental domain for $\langle B\rangle$. Since the replacements above are the deformations of a finite number of circular arcs on J in small neighborhoods of them and do not move p_{2} and p_{3}, we see that, for a small ε, J_{3} is a Jordan curve passing through p_{2} and p_{3}. By (11), (13), (16) and (17) we see that, except for one point p_{i+1}, C_{i}^{\prime} and $A^{-1}\left(C_{i}^{\prime}\right)$ lie outside and inside of J_{3}, respectively, $(i=1,2)$ so that $J_{1} \cap J_{3}=\left\{p_{2}\right\}, J_{1} \cap J_{4}=\left\{p_{1}\right\}, J_{2} \cap J_{3}=\left\{p_{3}\right\}$ and $J_{2} \cap J_{4}=\left\{p_{4}\right\}$. To see that J_{3} and J_{4} are disjoint and that they bound a fundamental domain for $\langle A\rangle$ it suffices to show the former, because this and two facts that J_{3} separates the fixed points of A and $J_{4}=A\left(J_{3}\right)$ imply the latter. Assume that J_{3} and J_{4} are not disjoint and let p be a point lying on both J_{3} and J_{4}. This implies that both p and $A^{-1}(p)$ lie on J_{3}.

Assume that $|p|>\left|p_{2}\right|$. Then by (11), (14), (15), (16) and (17) we see that p lies on one of the circles $A^{-1}\left(C_{1}^{* *}\right), A^{n}\left(C_{i, m_{i}, n}^{\prime}\right)$ and $A^{-1}\left(C_{2}^{* *}\right)$. Assume that p lies on $A^{-1}\left(C_{1}^{* *}\right)$. There are two cases. The first case is that $m_{1}<-1$. It is easy to see that $C_{1}^{* *}$ is contained in the inside of $C_{1, m_{1},-2}^{\prime \prime}$ so that $A^{-2}\left(C_{1}^{* *}\right)$ is contained in the inside of $A^{-2}\left(C_{1, m_{1},-2}^{\prime}\right)$. Since J_{3} does not pass through the inside of $A^{-2}\left(C_{1, m_{1},-2}^{\prime \prime}\right)$, we see that this case does not occur. The second case is that $m_{1}=-1$. Then $A^{-2}\left(C_{1}^{\prime}\right)$ is disjoint to C. Hence the distance between J_{3} and $A^{-2}\left(C_{1}^{\prime}\right)$ is positive. Since $A^{-2}\left(C_{1}^{* *}\right)$ lies in a small neighborhood of $A^{-2}\left(C_{1}^{\prime}\right)$, we see that, for a small $\varepsilon, A^{-2}\left(C_{1}^{* *}\right)$ does not meet J_{3}. Hence this case does not occur, too. Assume that p lies on $A^{n}\left(C_{1, m_{1}, n}^{\prime \prime}\right)$. There are two cases. The first case is that $m_{1}<n$. Then $A^{-1}(p)$ lies on $A^{n-1}\left(C_{1, m_{1}, n}^{\prime}\right)$. Since $C_{1, m_{1}, n}^{\prime}$ is a circle concentric with $C_{1_{1} m_{1}, n-1}^{\prime \prime}$ and the radius of the former is smaller than that of the latter, we see that $A^{n-1}\left(C_{1, m_{1}, n}^{\prime}\right)$ is contained in the inside of $A^{n-1}\left(C_{1, m_{1}, n-1}^{\prime}\right)$. Since J_{3} does not pass through the inside of $A^{n-1}\left(C_{1, m_{1}, n-1}^{\prime}\right)$, we see that this case does not occur. The second case is that $n=m_{1}$. Then $A^{n-1}\left(C_{1}^{\prime}\right)$ is disjoint to
C and $A^{n-1}\left(C_{1, m_{1}, n}^{\prime}\right)$ lies near $A^{n-1}\left(C_{1}^{\prime}\right)$. By the same argument in the case where p lies on $A^{-1}\left(C_{1}^{* *}\right)$ and $m_{1}=-1$ we see that this case does not occur, too. The rested two cases where p lies on $A^{n}\left(C_{2,{ }_{2}, n}^{\prime \prime}\right)$ and on $A^{-1}\left(C_{2}^{* *}\right)$ are treated similarly with a remark on the minor change (17) and we see that those two cases do not occur. Hence we conclude that $|p| \leqq\left|p_{2}\right|$.

Assume that $|p| \leqq\left|p_{2}\right| . \quad$ By (11), (12) and (13) we see that $A^{-1}(p)$ lies on one of the circles C_{i}^{*} and $A^{n}\left(C_{i, m, n}^{\prime \prime}\right)$. Assume that $A^{-1}(p)$ lies on C_{i}^{*}. Then p lies on $A\left(C_{i}^{*}\right)$. There are two cases. The first case is that $m>1$. It is easy to see that C_{i}^{*} is contained in the inside of $C_{i, m, 1}^{\prime \prime}$ so that $A\left(C_{i}^{*}\right)$ is contained in the inside of $A\left(C_{i, m, 1}^{\prime \prime}\right)$. Since J_{3} does not pass through the inside of $A\left(C_{i, m, 1}^{\prime \prime}\right)$, we see that this case does not occur. The second case is that $m=1$. Then $A\left(C_{i}^{\prime}\right)$ is disjoint to C. Hence the distance between J_{3} and $A\left(C_{i}^{\prime}\right)$ is positive. Since $A\left(C_{i}^{*}\right)$ lies in a small neighborhood of $A\left(C_{i}^{\prime}\right)$, we see that, for a small ε, $A\left(C_{i}^{*}\right)$ does not meet J_{3}. Hence this case does not occur, too. Assume that $A^{-1}(p)$ lies on $A^{n}\left(C_{i, m, n}^{\prime}\right)$. There are two cases. The first case is that $n<m$. Then p lies on $A^{n+1}\left(C_{i, m, n}^{\prime \prime}\right)$. Since $C_{i, m, n}^{\prime \prime}$ is a circle concentric with $C_{i, m, n+1}^{\prime \prime}$ and the radius of the former is smaller than that of the latter, we see that A^{n+1} $\left(C_{i, m, n}^{\prime}\right)$ is contained in the inside of $A^{n+1}\left(C_{i, m, n+1}^{\prime \prime}\right)$. Since J_{3} does not pass through the inside of $A^{n+1}\left(C_{i, m, n+1}^{\prime \prime}\right)$, we see that this case does not occur. The second case is that $n=m$. That this case does not occur is shown similarly by the method used above.

Thus we have shown that J_{3} and J_{4} are disjoint. Therefore we have checked all the conditions of Proposition 3. Hence Proposition 3 completes the proof of Theorem.

4. Proof of Proposition 3

Let D_{1} and D_{2} be the fundamental domains for $\langle A\rangle$ and $\langle B\rangle$ bounded by J_{3}, J_{4} and by J_{1}, J_{2}, respectively. Let Q_{1} (esp. Q_{2}) be the component of $D_{1} \cap D_{2}$ on whose boundary four points p_{1}, p_{2}, t_{3} and p_{4} lie clockwise (resp. counterclockwise). The Klein combination theorem (see, for example, page 139 of [3]) tells us that Q_{1} and Q_{2} are contained in the region of discontinuity $\Omega(G)$ of G and no two points of $Q_{1} \cup Q_{2}$ are equivalent under G. To see G is quasi-Fuchsian it suffices to show that the component Ω_{i} of G which contains Q_{i} is an invariant one ($i=1,2$) and that Ω_{1} and Ω_{2} are disjoint (for a proof of this fact see [2]). First we show that Ω_{1} is an invariant component of G. Denote by a the open $\operatorname{arc} J_{3} \cap \partial Q_{1} \backslash\left\{p_{2}, p_{3}\right\}$ and let $a^{\prime}=A(a)$, where ∂Q_{1} denotes the boundary of Q_{1}. Then we see that $a^{\prime}=J_{4} \cap \partial Q_{1} \backslash\left\{p_{1}, p_{4}\right\}$. Also denote by b the open arc $J_{2} \cap \partial Q_{1} \backslash$ $\left\{p_{3}, p_{4}\right\}$ and we see that $b^{\prime}=J_{1} \cap \partial Q_{1} \backslash\left\{p_{1}, p_{2}\right\}$, where $b^{\prime}=B(b)$.

Lemma 1. Four arcs a, a^{\prime}, b and b^{\prime} on ∂Q_{1} are contained in $\Omega(G)$.
Proof. If there is a limit point p on one of the four arcs, say a, then there
is a fixed point of a loxodromic element of G in any neighborhood of p. Since p is an interior point of $Q_{1} \cup a \cup A^{-1}\left(Q_{1}\right)$, this implies that there is a loxodromic element g of G with the attractive fixed point on a. Since $g\left(Q_{1}\right) \cap Q_{1}=\emptyset$, we see that $g\left(Q_{1}\right) \cap A^{-1}\left(Q_{1}\right) \neq \emptyset$. Hence $\operatorname{Ag}\left(Q_{1}\right) \cap Q_{1} \neq \emptyset$. Since $A g$ is not the identity, this contradicts the fact that no two points of Q_{1} are equivalent. Thus we have Lemma 1.

By Lemma 1 we see that $A\left(Q_{1}\right), A^{-1}\left(Q_{1}\right), B\left(Q_{1}\right)$ and $B^{-1}\left(Q_{1}\right)$ which are adjacent ${\underset{\sim}{1}}_{1}$ along $a^{\prime}, a, b^{\prime}$ and b, respectively, are contained in Ω_{1}. Writing each element of G by a word in generators A and B and appealing to the induction for lengths of words, we see easily that, for each g of $G, g\left(Q_{1}\right)$ is contained in Ω_{1} so that Ω_{1} is an invariant component of G. Likewise we see Ω_{2} is so, too.

It remains to show that Ω_{1} and Ω_{2} are disjoint. In order to show this we need several lemmas. We shall consider the G-orbit of the circle J_{1}. It is easy to show the following lemma.

Lemma 2. The set of circles $\left\{A^{n}\left(J_{i}\right) \mid i=1,2 ; n \in \boldsymbol{Z}\right\}$ has the following properties:
i) $A^{n}\left(J_{1}\right)$ and $A^{n+1}\left(J_{1}\right)$ are tangent at $A^{n}\left(p_{1}\right)$,
ii) $A^{n}\left(J_{2}\right)$ and $A^{n+1}\left(J_{2}\right)$ are tangent at $A^{n}\left(p_{4}\right)$,
iii) $A^{n}\left(J_{i}\right)$ and $A^{m}\left(J_{i}\right)$ are disjoint whenever $|n-m|>1$,
iv) $\lim _{n \rightarrow \infty} A^{n}\left(J_{i}\right)=\infty$.
v) $\lim _{n \rightarrow-\infty} A^{n}\left(J_{i}\right)=0$ and
vi) for any n and $m, A^{n}\left(J_{1}\right)$ and $A^{m}\left(J_{2}\right)$ are disjoint.

We denote by K_{1} the set of circles $\left\{A^{n}\left(J_{i}\right) \mid i=1,2 ; n \in \boldsymbol{Z}\right\}$.
Lemma 3. The set $K_{1} \cup\{0, \infty\}$ separates Q_{1} from Q_{2}.
Proof. By Lemma 2 we see that $\left\{A^{n}\left(J_{1}\right)\right\}$ constitutes a chain of circles which are tangent successively in the sence of i) and iii) of Lemma 2 and that its ends tend toward 0 and ∞. This is also true for $\left\{A^{n}\left(J_{2}\right)\right\}$. These and vi) of Lemma 2 imply the lemma.

Now consider the sst of circles $\left\{B(c) \mid c \in K_{1} \backslash\left\{J_{2}\right\}\right\}$ (resp. $\left\{B^{-1}(c) \mid c \in K_{1} \backslash\right.$ $\left.\left\{J_{1}\right\}\right\}$. There are two circles in this set one of which is tangent to J_{1} at p_{1} (resp. J_{2} at p_{3}) and the other at $p_{2}\left(\right.$ resp. $\left.p_{4}\right)$. Except for these two, each circle of the set is contained in the inside of J_{1} (resp. J_{2}). Let K_{2} be the set of circles

$$
\left\{A^{n} B(c) \mid c \in K_{1} \backslash\left\{J_{2}\right\} ; n \in \boldsymbol{Z}\right\} \cup\left\{A^{n} B^{-1}(c) \mid c \in K_{1} \backslash\left\{J_{1}\right\} ; n \in \boldsymbol{Z}\right\} .
$$

It is easy to see that

$$
K_{2}=\left(\left\{A^{n} B(c) \mid c \in K_{1} ; n \in \boldsymbol{Z}\right\} \cup\left\{A^{n} B^{-1}(c) \mid c \in K_{1} ; n \in \boldsymbol{Z}\right\}\right) \backslash K_{1} .
$$

It is easy to see that Lemma 3 holds when we change K_{1} by K_{2}. Inductively we put

$$
\begin{aligned}
K_{i} & =\left(\left(^{*}\right) \cup\left({ }^{* *}\right)\right) \backslash\left(K_{1} \cup \cdots \cup K_{i-1}\right), \\
\left({ }^{*}\right) & =\left\{A^{n} B(c) \mid c \in K_{i-1} ; n \in \boldsymbol{Z}\right\} \quad \text { and } \\
\left({ }^{* *}\right) & =\left\{A^{n} B^{-1}(c) \mid c \in K_{i-1} ; n \in \boldsymbol{Z}\right\}
\end{aligned}
$$

and have the following.
Lemma 4. The set $K_{i} \cup\{0, \infty\}$ separates Q_{1} from Q_{2}.
Lemma 5. Let $\left\{k_{i}\right\}$ be a sequence of circles such that $k_{i} \in K_{i}$ and that, for each i, k_{i} is contained in the closed disc bounded by k_{i-1}. Then the sequence of the diameters of k_{i} 's converges to 0 .

The proof of Lemma 5 is given later. Now we show that Ω_{1} and Ω_{2} are disjoint. Assume contrarily that $\Omega_{1}=\Omega_{2}$. Then there is an arc J lying in $\Omega(G)$ and connecting a point of Q_{1} to a point of Q_{2}. By Lemmas 3 and 4 we see that, for each opsitive integer i, there is a circle k_{i} of K_{i} which intersects J. Since each circle of K_{i} is contained in the closed disc bounded by a circle of K_{i-1}, we may assume that $\left\{k_{i}\right\}$ satisfies the condition of Lemma 5. On the other hand, there is a positive number r such that each open disc centered at a point of J with radius r is contained in $\Omega(G)$. By Lemma 5 we see that there is circle k_{i} which is contained entirely in $\Omega(G)$. But k_{i} is an element of G-orbit of J_{1} and there is a fixed point p_{1} of a parabolic element $A B A^{-1} B^{-1}$ on J_{1}, we have a contradiction. Therefore Ω_{1} and Ω_{2} are distinct.

Before going to prove Lemma 5 we need two more lemmas.
Lemma 6. For each positive integer $n,\left(A B A^{-1} B^{-1}\right)^{n}\left(J_{1}\right),\left(A^{-1} B A B^{-1}\right)^{n}\left(J_{1}\right)$, $\left(A^{-1} B^{-1} A B\right)^{n}\left(J_{2}\right)$ and $\left(A B^{-1} A^{-1} B\right)^{n}\left(J_{2}\right)$ are circles of $K_{2 n}$ passing through p_{1}, p_{2}, p_{3} and p_{4}, respectively. Moreover, they are disjoint to both insides of J_{1} and J_{2}.

Proof. We show the lemma for $A B A^{-1} B^{-1}$. The other cases are shown similarly. Since $A B A^{-1} B^{-1}\left(J_{1}\right)=A B A^{-1}\left(J_{2}\right)$ and $A^{-1}\left(J_{2}\right)$ is an element of K_{1} different from J_{2}, we see that $A B A^{-1} B^{-1}\left(J_{1}\right)$ is an element of K_{2} lying in the closed disc bounded by $A\left(J_{1}\right)$. The fixed point of $A B A^{-1} B^{-1}$ is p_{1} and is a point on J_{1}, so $A B A^{-1} B^{-1}\left(J_{1}\right)$ passes through p_{1}. This describes completely the action of the parabolic transformation $A B A^{-1} B^{-1}$, so we have Lemma 6.

Lemma 7. There exists a positive constant M such that, for any two disjoint circles k and k^{\prime} of $K=\cup K_{i}$, the module of the ring domain bounded by k and k^{\prime} is not smaller than M.

Proof. We denote by $R\left(k, k^{\prime}\right)$ the ring domain bounded by k and k^{\prime}. We recall that the modules are conformally invariant and satisfy the comparison
principle as follows: if $R\left(k, k^{\prime}\right)$ is contained in $R\left(k^{\prime \prime}, k^{\prime \prime \prime}\right)$ and if k separates the complementary components of $R\left(k^{\prime \prime}, k^{\prime \prime \prime}\right)$, then the module of $R\left(k, k^{\prime}\right)$ is not greater than that of $R\left(k^{\prime \prime}, k^{\prime \prime \prime}\right)$. Since each element of K is equivalent to J_{1}, we may assume that $k^{\prime}=J_{1}$. There are three cases.

Case 1. k is an element of $K_{1} \backslash\left\{J_{1}, A\left(J_{1}\right), A^{-1}\left(J_{1}\right)\right\}$ or lies in the closed disc bounded by it.

Case 2. k is contained in one of the closed discs bounded by $A\left(J_{1}\right)$ and $A^{-1}\left(J_{1}\right)$.

Case 3. k is contained in the inside of J_{1}.
In Case 1, by the comparison principle of the modules we may assume that k is an element of $K_{1} \backslash\left\{J_{1}, A\left(J_{1}\right), A^{-1}\left(J_{1}\right)\right\}$. By iii) $\sim \mathrm{vi}$) of Lemma 2, we see that there is a positive number d such that no element of $K_{1} \backslash\left\{J_{1}, A\left(J_{1}\right), A^{-1}\left(J_{1}\right)\right\}$ meets the open disc concentric with J_{1} and having the radius $r+d$, where r is the radius of J_{1}. Also by the comparison principle we see that the module of $R\left(k, J_{1}\right)$ is not smaller than $\log (r+d) / r$. We denote this number by M_{1}.

Case 2. Let k be contained in the closed disc bounded by $A\left(J_{1}\right)$. Another case with respect to $A^{-1}\left(J_{1}\right)$ is treated similarly. It is easy to see that $A B A\left(J_{2}\right)$ and $A B A^{-1}\left(J_{2}\right)$ are the elements of K_{2} which are contained in the closed disc bounded by $A\left(J_{1}\right)$ and tangent to $A\left(J_{1}\right)$ at $A\left(p_{1}\right)$ and p_{1}, respectively, and that all other elements of K_{2} lying inside of $A\left(J_{1}\right)$ are $\left\{A B(c) \mid c \in K_{1}\right\} \backslash\left\{A B A\left(J_{2}\right), A B A^{-1}\right.$ $\left.\left(J_{2}\right), A\left(J_{1}\right)\right\}$. If k lies in the closed disc bounded by an element of the last set, then the images of k and J_{1} under $B^{-1} A^{-1}$ are contained in the closed discs bounded by an element of $K_{1} \backslash\left\{A\left(J_{2}\right), J_{2}, A^{-1}\left(J_{2}\right)\right\}$ and by J_{2}, respectively. The comparison principle implies that this case is reduced to Case 1 with a change J_{1} by J_{2}. We denote by M_{2} the lower bound of modules of the present case. If k lies in the closed disc bounded by $A B A\left(J_{2}\right)$, then the module of $R\left(k, J_{1}\right)$ is not smaller than that of $R\left(A B A\left(J_{2}\right), J_{1}\right)$. We denote this module by M_{3}. If k lies in the closed disc bounded by $A B A^{-1}\left(J_{2}\right)$, then there is a positive integer n such that k lies in the closed domain bounded by $\left(A B A^{-1} B^{-1}\right)^{n}\left(J_{1}\right)$ and $\left(A B A^{-1} B^{-1}\right)^{n+1}$ $\left(J_{1}\right)$. Operating $\left(A B A^{-1} B^{-1}\right)^{-n}$, we see that k is transformed in the closed disc bounded by an element of either $K_{1} \backslash\left\{A\left(J_{1}\right), J_{1}\right\}$ or $\left\{A B(c) \mid c \in K_{1}\right\} \backslash\left\{A B A^{-1}\left(J_{2}\right)\right.$, $\left.A\left(J_{1}\right)\right\}$ and J_{1} is transformed to a circle lying in the closed disc bounded by J_{1} and being tangent to J_{1} at p_{1}. If the transformed k lies in the closed disc bounded by $A^{-1}\left(J_{1}\right)$, then operating A once more, we can reduce this case to the previously considered case with respect to $R\left(A B A\left(J_{2}\right), J_{1}\right)$. If k is transformed in the closed disc bounded by an element of $K_{1} \backslash\left\{A\left(J_{1}\right), J_{1}, A^{-1}\left(J_{1}\right)\right\}$, then by the comparison principle we reduce this case to Case 1 . If k is transformed in the closed disc bounded by an element of $\left\{A B(c) \mid c \in K_{1}\right\} \backslash\left\{A B A^{-1}\left(J_{2}\right), A\left(J_{1}\right)\right\}$, then replacing J_{1} by the transformed J_{1} and using the comparison principle, we reduce this case to a case already considered in this paragraph.

Case 3. By the action of B we see that $B^{-1}\left(J_{1}\right)=J_{2}$ and $B^{-1}(k)$ lies in the
closed disc bounded by an element of $K_{1} \backslash\left\{J_{2}, A\left(J_{2}\right), A^{-1}\left(J_{2}\right)\right\}$. By the same reasonning in Case 1 we see that the module of $R\left(B^{-1}\left(J_{1}\right), B^{-1}(k)\right)$ is not smaller than a positive constant. We denote it by M_{4}.

Now, we conclude that $M=\min \left(M_{1}, M_{2}, M_{3}, M_{4}\right)$ is the desired constant.
We return to Lemma 5.
Proof of Lemma 5. If there is a subsequence of $\left\{k_{i}\right\}$ such that any two of which are disjoint, then Lemma 7 implies that the diameters of elements of the subsequence must converge to 0 , so that that of $\left\{k_{i}\right\}$ must do, too. Hence we consider the case where there is no subsequence of $\left\{k_{i}\right\}$ such that any two of which are disjoint. We assert that there are a positive integer i_{0} and a point p equivalent to p_{1} such that, for each $i>i_{0}, k_{i}$ passes through p. Assuming the contrary of the assertion, we shall construct a subsequence having the property that any two of which are disjoint. We first note that only two points p_{1} and p_{2} on J_{1} are the points at which elements of $K \backslash\left\{J_{1}\right\}$ can meet J_{1} and that each k_{i} is equivalent to J_{1}. Put $k_{i_{1}}=k_{1}$. If k_{1} and k_{2} are disjoint, then put $k_{i_{2}}=k_{2}$. If k_{1} and k_{2} are not disjoint, then denote by $p_{1,2}$ the tangent point of them. Since $p_{1,2}$ is equivalent to p_{1}, there is a number $i_{2}>2$ such that $k_{i_{2}}$ does not pass through $p_{1,2}$ so that k_{1} and $k_{i_{2}}$ are disjoint. If $k_{i_{2}}$ and $k_{i_{2}+1}$ are disjoint, then put $k_{i_{3}}=$ $k_{i_{2}+1}$. If $k_{i_{2}}$ and $k_{i_{2}+1}$ are not disjoint, then denote by $p_{i_{2}, i_{2}+1}$ the tangent point of them. Since $p_{i_{2}, i_{2}+1}$ is equivalent to p_{1}, there is a number $i_{3}>i_{2}+1$ such that $k_{i_{3}}$ does not pass through $p_{i_{2}, i_{2}+1}$, and so on. Then the subsequence $\left\{k_{i j}\right\}$ has the property stated above, a contradiction. Thus we have our assertion. Let g be an element of G such that $g(p)=p_{1}$. Then $\left\{g\left(k_{i}\right)\right\}_{i>i_{0}}$ is an infinite subset of K passing through p_{1}. Lemma 6 tells us that the diameter of $g\left(k_{i}\right)$ tends to 0 . Hence that of k_{i} tends to 0 , too.

Now, we have shown that Ω_{1} and Ω_{2} are disjoint so that G is quasi-Fuchsian. To complete the proof of Proposition 3 we must show that G represents a pair of once punctured tori. Let $G^{\prime}=\left\langle A^{\prime}, B^{\prime}\right\rangle$ be a Fuchsian group keeping the real axis invariant and f be a quasiconformal mapping such that $A=f A^{\prime} f^{-1}$ and $B=f B^{\prime} f^{-1}$. Then we see that the commutator of A^{\prime} and B^{\prime} is parabolic. Writing $A^{\prime}=\left(\begin{array}{cc}\alpha^{\prime} & 0 \\ 0 & \beta^{\prime}\end{array}\right)$ and $B^{\prime}=\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right)$, we may assume that the equalities (2) $\sim(6)$ hold for the letters with a prime $\alpha^{\prime}, \cdots, d^{\prime}$ and p_{i}^{\prime}. Then we have that

$$
\begin{aligned}
& p_{1}^{\prime} p_{2}^{\prime}=\left(\left(c^{\prime}\right)^{2}-1\right) /\left(d^{\prime}\right)^{2}>0, \quad p_{3}^{\prime} p_{4}^{\prime}=\left(\left(c^{\prime}\right)^{2}-1\right) /\left(a^{\prime}\right)^{2}>0 \quad \text { and } \\
& p_{1}^{\prime} p_{3}^{\prime}=-\left(\left(c^{\prime}\right)^{2}-1\right) /\left(c^{\prime}\right)^{2}<0 .
\end{aligned}
$$

Hence we see that two circles orthogonal to the real axis and passing through $p_{1}^{\prime}, p_{2}^{\prime}$ and $p_{3}^{\prime}, p_{4}^{\prime}$ are separated by the imaginary axis. Now it is clear that two quadrilateral domains bounded by four circles which are orthogonal to the real
axis and pass through $p_{1}^{\prime}, p_{2}^{\prime} ; p_{3}^{\prime}, p_{4}^{\prime} ; p_{1}^{\prime}, p_{4}^{\prime}$ and $p_{2}^{\prime}, p_{3}^{\prime}$, respectively, form a fundamental domain for G^{\prime} so that G^{\prime} represents a pair of once punctured tori. As G is a quasiconformal deformation of G^{\prime}, G also represents a pair of once punctured tori. Thus we have complered the proof of Proposition 3.

References

[1] L. Keen: Teichmiiller spaces of punctured tori : I, Complex Variables, 2 (1983), 199211.
[2] I. Kra and B. Maskit: Involutions on Kleinian groups, Bull. Amer. Math. Soc. 78 (1972), 801-805.
[3] B. Maskit, Kleinian Groups: Grund. der Math. Wiss. 287, Springer, Berlin, 1988.

Department of Mathematics
Faculty of Education
Yamagata University
Kojirakawa-machi 1-4-12
Yamagata 990, Japan

