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1. Introduction

In this paper we study the wave equation in the exterior of a moving
obstacle. Our body may move or change its shape smoothly, as long as it remains
in a fixed sphere and moves slower than the wave speed. The scattering theory
for such obstacles is not highly developed yet. One of the reasons is that we do
not know much about the behaviour in time of the local energy. We do not
know in general when the global energy is bounded.

The decay of the local energy and the boundedness of the global one for
the wave equation in the presence of a moving obstacle O(i) have been studied
by J. Cooper [2], J. Cooper and W. Strauss [4, 5], etc. In their works the
obstacle O (t) has been assumed star-shaped with respect to the origin. H. Tamura
[12] improved their results allowing O(t) to be star-shaped with respect to a
center a(t) moving slower than the wave speed. V. Georgiev and V. Petkov [6]

investigated the decay of the local energy for non-trapping obstacles provided the
global energy is bounded. Recently, J. Cooper [3] constructed an example of
two periodically mowing obstacles for which the local energy is not uniformly
bounded in time.

We turn now to an outline of our results. Let Ω be a domain in RtxR",
ra>2, with a smooth boundary 2. Denote by Ω,— {x^Rn\ (t, #)eΩ} the (open)
cross-section of Ω at time t, Σ,—{#Gΐi?w; (ί, #)GϊΣ}. We assume that the
obstacle O(t)=Rn\Ωt remains in a fixed bounded set

(1.1) 0(f)c5Λo = {*<Ξ/T; |*| ^R0} .

Denote by v=(vt, vx) the unit normal vector to 2 pointing into Ω. We assume
that the speed of motion of O(t) is less than one, which means that

(1.2) \vλ<\v*\ for (t,x)
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For a pair of functions /=(/1,/2) with /υ/2 e CJΓ(Ωf) the local energy in a

domain KdΩf is defined by

||/||Q, is the energy norm of /. Let Mt be the completion of CiΓ(Ωf)x
C<Γ(Ωf) in the energy norm. Consider the mixed problem

utt—Δu = 0 in Ω

(1.3) f* = 0 on Σ

K(j, #) = /ι(*)» tt,(ί, Λ?) = /2(*), Λ?eΩ f

According to [4] there exists a unique solution u(t,x) of (1.3) for initial data

fξΞMs. Moreover, the two-parameter family of operators

tf(ί,ί): MsΈ>f^ (u(t, •), «,(*, ))e.#,

is continuous with respect to (s, i).
In this paper we investigate the local energy \\U(t,s)f\\Qtf\Bs, R>RQ, for

f^Ms when £->oo. For periodically moving obstacles we find some condi-

tions on the boundary Σ which guarantee the existence of initial data fξΞMs

such that the local energy of U(t,s)f grows exponentially as t->oo. We also

consider motions of Σ which are not periodic in time. If the body expands
whenever a fixed trapping ray hits the boundary we prove that the local energy

is not bounded in time.

In Section 2 we describe the broken rays for moving obstacles emphasiz-
ing the change of the variable r dual to the time t when a reflection at the

boundary occurs. If τ~(τ+) is the value of τ on the incoming (outgoing) ray

hitting the boundary at a point p^T* Σ, then τ*=μτ~ where μ depends only
on the velocity of the moving boundary Σ and the direction of the incoming ray

at p. In this section we formulate our main result-Theorem 1.
In Section 3 we construct some global in time asymptotic solutions of (1.3)

which are concentrated near a broken ray. For this purpose we use Maslov's

canonical operators. In Section 4 we evaluate the local energy of these solutions.

We suppose that a broken ray 7 hits Γ*Σ at infinitely many points pj and μ^
Ol, thus ry—>°o. We show that the principal symbols of the correspond-

ing asymptotic solutions are proportional to | τ, |1/2 near p; . This enables us to
prove that the local energy grows exponentially in time. In Section 5 we
present two examples of periodically moving obstacles which illustrate Theorem
1. We first consider a convex body O2(t) moving periodically backwards and

forwards another fixed convex body Olβ If the distance between ox and o2(t) varies

near Γ/2, T being the period of motion, we prove that the local energy grows
exponentially.
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A similar example was studied by J. Cooper in [3] who used the geometric
optics procedure of J. Ralston [11] to construct approximate solutions of (1.3)
whose local energy is not uniformly bounded in time. The boundary 2* of

the obstacle O(ί)=O1Uθ2(ί) in [3] is planar in a neighbourhood of each point
of contact with a fixed trapping ray which simplifies the construction of the
asymptotic solutions.

As a second example we consider a periodically moving body O(t) with a
time-like boundary which is star-shaped for each t^3ll with respect to a mov-
ing center a(t) €=O(t). Allowing a(t) to move faster than the sound we prove that
the local energy grows exponentially in time.

2. Broken rays and increasing of the local energy

Our main assumption on Ω concerns the existence of a suitable trapping
generalized bicharacteristic arc in T*Ω which hits the boundary jΓ*Σ transver-
sally. Let γ be a broken bicharacteristic arc of the operator Π = 9ί — Δ issuing
from a point p=(s,y, τ, η)^T*Ω (for definition see [9], sect. 24.2). For the
sake of convenience we shall parametrize γ by the time t. More precisely, denote
by B={tj(ρ)\j^Z+} the sequence of times at which <y hits the boundary 7*2
and set t0(ρ)— 0, /=[0, oo). The broken ray γ consist of linear segments in T*Ω

(2.1) I\BΞSt^ Φ*(p) = (s+t, x\p\

defined by

X'(p) = Xj(p)-(t-tj) £,/Ty, T'(p) = Ty, £'(p) = ξj

for f e/,=(ίχp), tj+1(p)),j=0, 1, ~, where Φ°(p)=P,

Λ + V) = **'-°(p) = *XP)

while the codirections fy— (τy, ξj) are constant vectors in Ijy ξ0= (r, 07), and

(2.2) e? = τ?,j = 0,l,

According to ([9], sect. 24), the codirections ζj_1 and fy of the incident and the
reflected ray are determined at #y=(£y(p), #y(p))eΣ, j^Z+, by

Identifying T*.(Rn+1) and T2j(Rn+1) via the Euclidean metric in /2Λ+1 we obtain

(2.3) ey-ey.^αyίpJir^yeZ,

for some ύTy(/o)Φθ. Taking the scalar prodict of (2.3) by (τy+τy_!, —ξj—ξj- ^
and using (2.2) we have

(2.4) "/(ry+Ty.O-O,, ξj+ξj-ϊ = 0 .
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On the other hand,

which implies

(2.5) aj(P) = 2(Vt(s,) Ty^-O.CΛ £,_,» M*,)2-^*/)2)-1

Thus (2.1), (2.3), (2.5) determine the broken rays in T*Ω completely.
Following [1], we denote by Vj(ρ) the velocity-vector of Σ at the point

I *,(*,) I I ",(*,) I '

Let 9>y(p) be the angle between Vj(p) and —ξj^/Tj^ at #y(p), 9>y=0 if z>y=0
and 0<9>y<τr. Now (2.3), (2.5) yield

(2.6) Ty = μj(p) Ty_! ,

W(p) = (1-21^)10)8^^+1^) I 2 ) (1-|^ I 2 )" 1 -

Note that | Vj(ρ) \<l and /*y(p)>0.

Theorem 1. Suppose that Ωt is periodically moving, i.e. Ωt+τ=Ωt for any
t&R1 and some T>0. Let the broken ray (2.1) issuing from p—(s,y, r,
intersect Σ βί infinitely many points, ίy(p)-^00 as j->w} and

(2.7) Π

OO, δ>0. Then for each neighbourhood K of y in Ωs and 6<δ/2
exists f=(fί,f2)&<4ls with suppfdK such that

(2.8)

R>R0+Tand Cl=Cl(Sί s , f ) .

Now for n-odd and 0>Λ denote by Za(t, s)=Pa

+U(t, s) PL the local evolu-
tion operator [5]. Then we have

Za(t+s, s)f = P*U(t+s, s)f = C7(ί+f, ί)/

where ί>0 and / is given by Theorem 1 with supp faKdBR. Thus
||r(Γ+ί,ί)"/||Q.>||^(«Γ+,,ί)/||0.nBs=||^«Γ+ί,ί)/||0,nΛB>C*-tΓ There-
fore the spectral radius of Za(T-{-sfs) is greater than 1 and spec Za(T-\-s,s){\
{^eC; |^|>l}Φφ (see also [3]). It is interesting to know if Za(T+sys) has
eigenvalues in {#GΞC; |5*|>1} since they correspond to the resonances in
{#eC; I 8 1 >!} (see [5]). Probably there exist infinitely many resonances # with
Im z<Q in the circumstances of theorem 1.
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3. Construction of asymptotic solutions near trapped rays

Let u(ty x) be the solution of (1.3) with initial data/e^s. For any open

S and any R>R0 denote by |||t/(ί, S)|||JΓ,Λ the local energy norm

\\\U(t,s)\\\Q>R = sup
l l / l l o ,

Theorem 1 follows immediately from the next.

Theorem 2. Let (1.1), (1.2) be fulfilled. Suppose that the broken ray Φ'(p°)
intersects Γ* ^Rn+l infinitely many times for some pQ=(sίyίτyη)€ΞT*Ω,s. Then

(3.1) ITO+*,*)fe> Π
*j&

for each t>0, and each neighborhood KCLΩ,sofy.

Proof of theorem 1. Let φ^Co(Rn), φ(x)=0 outside BR, R>R0, and -ψ e

C%(K), ψ>(x)=l in a neighborhood of y in Ωs. Then

4. = e-*mτ φU(mT+s, s) ψ, 0<6<δ/2, m^Z+ ,

form a family of bounded operators in Ms which are not uniformly bounded
with respect to m^Z+ in view of theorem 2. Then there exists g^<2ls such
that \\Am g\\Qs-*°° as w->oo according to Banach-Steinhaus theorem. Moreover,

where f=Ψg. This proves theorem 1 since for t^[(m— 1) Γ, mT] we have

| |^(wΓ+ί,ί)/lknBΛ<lll^ί+ί-wϊOllkΛ | |^^^

To prove theorem 2 we need some preliminaries. Denote

Φj(p) = (ί+ί, *}(p), τy, f y), Λ}(p)

and

(3.2) Ay = {Φj(p); P = (J, Λ, T, 97

where Γ is a neighbourhood of y, £>0 and 0<j </. For the sake of simplicity

set ί=0. We can assume that the curve (fy— £, ί>+1+ε)3ί^Φy(ρ), 0<j<J,
intersects T*Rn+1 \ ^ only for ί=ίy, ίy+1 and the intersection is transversal. Then
Ay is a Lagrangian submanifold of T*Rn+1 with respect to the symplectic form

We shall construct an asymptotic solution of (1.3) concentrated near the ray
[0, tj\ B ί->Φf(p), p=(0, y, T, 77), \η\= — T— 1, given as a sum of global oscillatory

functions associated with Ay (see [8]). Let Ojtp,p=l, ~ ,pj be a suitable open
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covering of {(t,Xj(p)); f e ( fy— £, ίy+1+£)},.7=0, 1, ••-,/. We look for an as-
ymptotic solution of the form

(3.3)
;=o

where

Vitp(t, x, k) = ' exp(ΛΦy.,(f, x, θ)) ajtp(t, x, θ, k) dθ

Here Φjtp is a smooth, real-valued and non-degenerate phase function defined in

OjtpXΓjιp, TjtpCLRqj>p,qj>p~^Q, is open and relatively compact and Φjtp defines

Ay over Ojtp (see [8]). The amplitudes ajtp are given by

ajtp(t, x, θ, k) = Σ aj>PJ(t, x, θ) k-1

where ΛΓ>(«+3)/2 and ajtptl <Ξ Co(OJtp X Γyfί). We look for V(t, x, k) such that

(3.4) ΠV(t,x,k) = 0(k-N+W) for χt=nt,t€Ξ[09tj],

(3.5) F|2-0(r^+w/2)

(3.6) F(0, x, k) = k-1 e'*<* *> φ(x)+0(k-N+n/2)

Vt(Q, x, k) - -#*

for some ^>eCΓ(Γ) and

(3.7) suppΛ

It is convenient to consider V(t, x, K) as a half-density in Ω rather than

as a function, which can be achieved by multiplying the scalar functions by

the standard half-density | dt \ 1/2(g) | dx \ 1/2 in R*+l. The principal symbol of

V j(ty x, k) (which is of order —1) has the form (see [8])

where AJtp,p= l, •• ,pj, form a section Aj in L(Λy)®Ω1/2(Λy), L(Ay) is Keller-
Maslov line bundle and Ω1/2(Λy) is the half-density bundle on Ay. The density

part σy of Aj can be described as in [9], sect. 25.1. Let (λx, ••-, λΛ+1) be some

local coordinates in

Λ, x Γy. , dθ Φjtί>(t, x} θ} = 0}
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and denote

dc= \D(\,dθΦj>p)ID(x,θ)\-1\d\\

where \d\\ is the Lebesgue density of Cjtp. Translating (ajtpj \ Cjyp) \fdc via the

map

Cj.p(t, x, θ) -̂  (t, x, dt ΦJ>P) dx Φj>p) e Ay

we obtain the half-density part α, of Aj on τr(Cy f ί)cΛy. Let Σ' be a hypersur-

face in a neighbourhood of a point zQ<=Rn+1 given by 2'— {F(z)=Q}, F(zQ)=Qy

VF(*°)ΦO, and Λ$=Λy Π (T*ΛlH~1ιs). For any n+l— form ω on Λy denote by
\ω\" the corresponding α-density. Denote ωιΛς— **ω where i: Λj— »Λy is the

inclusion map.

Lemma l Lέ?f Λy fo? transversal to T*R*+1&, βί p°— (*°, f°)eΛ?
Ay /ί β Lagrangίan submanifold of Γ*Σ' w^β^ p° ^^rf V j\^ is a global oscillatory
function of order — 1 associated to Λy. Suppose that σ j=a\ω/\ d(F\A.) \ 1/2 for some
αeC°°(Λy) α^J αw n-form ω on Ajf such that ω/\d(F\Aj) does not vanish near p°.
Then the half -density part σ° of the principal symbol of V j\^ equals

REMARK. This lemma can easily be derived from [10] (see also [7] sect. 7).
For the sake of completeness we prove it directly using the arguments in [10].

Proof of Lemma 1. First note that σy is uniquely determined. Suppose
th^σj=a\ωM(FlAj)\l/2=ά\ώ/\d(F{J,J)\1/2

y then arg β(p)=arg 3(p) and |α|2ω

=a\8\ω+ω1/\d(F\Aj) near p° for some α(p)eC, |α|=l, and an n-form ω1?

which proves the uniqueness.
There exists local coordinates in Rn+l near #° such that the projection ΛyΞ3

(z> ζ)~*ζ is a diffeomorphism near p°=(z°, ζ°) (see [9], sect. 21). In these

coordinates Σ' is given by zn+1=f(z')> zf=(sf19 — , ^r,). Letjy(sr)=(ar', ^«+ι— /(^r))>
97=(ίD<y(sr))""1 ξ. The projection Λy3(y, Ty)-^?; is still a diffeomorphism near p°,
thus Λy={(Jη ^(97), 97)} for some smooth hλ and Σ'^ί^+i^O} near ρQ=(y°,ηQ).

Moreover, 32 Aj/θ^+i^JφO in view of the transversality condition. Thus there

exists a smooth function ηn+ι= ηn+ι(η'}, η'=(ηι, •••, ^7«), such that dhjdηn+l

(ηr, ηn+l(η'))=Q. Perform a new sympletic change of the variables ξ'=η', ξn+1

=ηn+ι—ηn+ι(η'), x=(?Dξ(τri)Yl y and set h(ξ)=hl(η(ξ)). In these coordinates Σ'
is still given by {*w+1=0}, Λ,= {(rfe h(ξ)9 ξ}} while dh/dξn+1(ξ', 0)=0 and A?=

', 0), 0, f ', 0)} . The phase functions

?.̂ ', f ') = <X, f '>-A(f ', 0)

generate Λy and Λy respectivily. The stationary phase method yields
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Vj(x', 0, k) = (klW+l* J expίίfeΦyΛ*', 0, £)) aifl(ξ, k) dξ
Rn + 1

Rn

where the principal part djtp,\(ζ') of a\p equals a(ξ', 0) and a(ξ) is given by

Setω=rff1Λ "Λ</f.. Then

while σ°j=a(ξ', 0)|ωιΔo|1/2. Going back to the old coordinates we prove the

lemma.

We are going to solve (3.4)— (3.6) modulo some oscillatory functions of
order —2. Since the Maslov factors are constants locally, (3.4) yields

(3.8) Larσf = Q 9 j = 0,1, -,/,

where LHr is the Lie derivative along the Hamilton vector field Hr, r=τ2—ξ2

(see [8]). First we construct some half-densities on Λ, invariant with respect to

Lffr. Define the functions fj

h /=!, •••, n by (Φ})*fj

l=χl and set ωj=df{/\ ••• Λ

dfί. Then dt/\ωj is a volume form on Λy, so σ~ <zy | dt/\ω; | 1/2 for some smooth

#,. e C°°(Λy) . Moreover,

^r σy = (H, aj) I ΛΛω y 1 1/2+2τyβy - - (ΦJ)* | ΛΛω,

and (3.8) yields

(3.9) fl rβ/ = 0

Shrinking Γ if necessary and choosing 6 small enough, we can arrange Vj==

O(k~M+n/2) near {̂ 0} for ;=!, 2, -,/. Then (3.6) and lemma 1 imply

(3.10) *oii-o = 0>(*)

Similarly Γ/la=O(ft"JV+ll/2) near .̂(p) for /Φ;— l,j and (3.5) yields

(3.11) (

in a neighborhood Σy of sfy(p).
We are going to determine the amplitude as in the density part <r, of the

principal symbol of Vj. We fix somej > 1 and suppose that Σy= {F(.2r)=0} near
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%j where V-F(#y)Φθ. To find af we write the volume form dt/\ωj on Λy near
(Zjyζj) as ω; ΛcLF times a smooth function and use lemma 1 as well as (3.9)-
(3.11).

Denote as before py =(*y(p), £//>)), pj=(*y(p), fy-^p)) and py=(*y(p), f J(
where fy(p) is the restriction of ?y(p) on Tz . Σy. We have

) = α, <ί(f ,Δ,)+ Σ Ay «*(/*. Ay)

near py. Applying//, to the both sides of the equality we obtain {r, F} (ρ) =
2 TJ cXj(ρ) for p in Λy since the functions f ] are invariant under the flow of Hr.
Moreover, the Poisson brackets {r, F} (ρ)Φθ at py since Hr is transversal to the
hypersurface {F(z)=Q} in T*R*+1. Therefore,

<TJ = a j \ 2 T ir, F} ~\p) \ * \ a>j/\d(FlA .) | ̂

over any p^Λy and in view of lemma 1 the half-density part σ] of the principal
symbol of the operator Vj\χj equals

o ί = α,(P;) 1 2 Ty{r, F> -\pj) \ * \ ωy,Λ? 1 1/2

over p; where

Analogously, for the half-density part σj of the principal symbol of the operator

Vj-ι\χ. we obtain

σj-ι = βy-ι(p7) 1 2 ry-ifr, F} -^7) I V* I ω y_ l l Ao | 1/2

Since the restrictions of ω; and ω; _! coincide on Λy we obtain using (3.11) the
equality

r^F}-^)^ = 0

On the other hand (2.4) yields

(3.13) {r, F}(p7) - 2(τy_ x *,-<f ,._lf ^» I VF(*y) | =- {r, F}(pt)

Now, using (3.9), (3.10), (3.12) and (3.13) we obtain

-1/2φ(x)jP = (0,^^77), for tj-β<t<t j+6 ,

since τ(p)— 1. Therefore, the half-density part σ-y of the principal symbol of
V j equals

(3.14) a' = (-iX(Φy-')*(|τy|- I*9>)|ΛΛω,| 1 ' 2

Multiplying (3.14) by the corresponding Maslov's factors and by exp(ίΦy§^) we
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obtain the principal symbol of Vj which determines Fy uniquely modulo some
oscillatory integrals of order —2. Repeating this procedure we obtain some

Vj(t,x,k), !<;</, whose sum V satisfies (3.4)— (3.7) for 0<t<tj. Adding

a function Ϋ(t, x, k) such that

(3.15) D1D%Ϋ= 0(k-M+»'2+*+M), a+\β\<N,

we can satisfy (3.5) and (3.6) exactly.

4. Estimates of the asymptotic solutions

We are going to evaluate the energy norm of (V,F)|Q/, z==(t, #), for any t
fixed, tm<t<tm+ly Q<m<J—l. First we write (V«Fy)|Q/, 0<j</, as a sum

of oscillating integrals of the form

(V.F,.,)io,(«, k) = ik (^-Y' * ( exp (ikΦj,p(t, x, θ))
\ Ln / J ry,/>

X (V.Φ,.,) (ί, *, 0) «y.,§1(f, * ,

modulo lower order terms for \<p<pj. The oscillatory integral (VzFy)|Q/ of
order zero is associated with the Lagrangean manifold

Λ/*) = {(*, f ) e T*Ω, (ί, ̂  - I f I , I) €= Λ,}

The additional factor VzΦjtp is transformed to (τy, f y) under the map π : Cjtp-+

Λy described in §3 thus the principal symbol of the oscillatory integral V,Fy

equals

Using lemma 1 and the equality (φ/)*(ω(Λyω)— dy it is easy to see that the half-

density part of the principal symbol of (V^Fy) | Q/ equals

(4.1) σ} = ί(-iχ (Φ7')*(9Ίτy|-1/2(τ,,

if Λy(ί)=t=0 and it equals 0 otherwise. Fix some G , ̂ >0. Shrinking Γ if neces-

sary we can suppose that Λy(ί) = φ for any/, m<J,j=£m, when Zw-ι+£<£<£m—
£. Therefore VFy(/,Λ?,Λ)=O/(Λ~Λr) for any t^(tm_1+8Jtm—6) and any j
J, m<J. Moreover, we suppose that

(4.2) |τ.(0f *, 1, *)-r.(0,y, 1, ^)| <^/2

for any #eΓ and m</. To evaluate the L2-norm of the function (V,F*)|Q/

we use formula (1.3.15) from [8] as well as (2.6), (4.1) and the relation

= Λ0(0) = {(*,,);
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We have

.Γ.ίί, x,k)\2dx=(
J Λw(ί)

XP) 1 9**) 1 2

where ρ=(O, xy — I, η). Now using (4.2) we get from the last estimate

(4.3) ||(VzFlΩ/)||!2(

p°— (0,y, — 1,97) for any £ in the complement //>8 of the union of the intervals
(tm-ι—£,tm+S}, m<J, in [0, tj). The estimate (4.3) holds for the function
u(t, x, k)= V(t, xf k)+Ϋ(t, x, K) too in view of (3.15). Let u^t, x, k) solve

D #ι = D u in Ω

w i U - o

"llί-O = («l)ίlί-0 = 0 .

Using DuhameΓs formula we obtain

«!(*, Λ, ft) - Γ t/(ί, ί) Πu(s, x, K) ds
Jo

and it is easy to see that

(4.4) H(V.ιι1,Qf)||i-(Q/nBJI) = 0/(A-1) for *e=/Λ.

The function u(t,x,k)=u(t,x,k) — u^t.x^k) solves (1.3) with initial data fk=

fιk(x) = k~l exp(/ft<Λ?, ^7» φ(x) , f2k(x) = —ί exp(/ft<^ 97)) φ(x) .

Suppose that the L2-norm of the function φ equals 1. Then the energy norm
offk equals l + O/(ft-1) and according to (4.3) and (4.4) we have

\\U(t, θ)ΛII|ίnβ

for any ί^//>β. Choose k so that

\\U(t,

for any t^IJtZ. This proves (3.1), since the positive constants £, £t and/ can
be chosen arbitrary.
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5. Examples

We are going to consider two examples illustrating theorem 1. The first

example studies the local energy for two periodically moving bodies which are

assumed convex for simplicity.

EXAMPLE 1. Consider a convex body moving back and fort another fixed

convex body. More precisely, let .βn\Ω,= O^t) UO2(i) where the body Oj(t)=

0^0) = Ol has a stationary boundary dO1 and O2(t+T)=O2(t) for each ί>0 and

O1 Π O2(t)=φ. Denote d(t) = dist (O19 O2(t)) and set d1=min d(t), 4= max d(t).

Assume that

(ί) dl<Tβ<d2

(it) there exists y1^QO1 such that rf(f) = dist (/, y2(t)) for some y2 (t)<=QO2(t)

and each t^O.

(iίΐ) the velocity v(y2(t)} does not vanish unless d(t)=dl or d(t)—d2.

Lemma 2 Suppose (ί)—(iii) are fulfilled. Then there exists p=(x,y, r, η)

6Ξ T*Ω, I T I = I ΎI I = 1 /or which the conditions of theorem 1 are fulfilled.

Proof. Let ω(t) be the unit vector ω(t)=(y2(t)— /)/!/(*)— / 1'1. Ac-

cording to (ίϊ) a?(ί) is always orthogonal to Tyι(QO^> thus w(t)=w(0)=w for ί>0.

It is easy to see that

(5.1) "(ί./W) = (rf'W. -ω) (l+^'(ί)2)-1/2, t>0 .

Then |rf'(ί) I <1 in view of (1.2).

Consider the broken ray Φ'(p), p=(s,y, — \, ω), ί>0 where j is an arbitrary

point of the linear segment [y1, y2(s)] CΩS. Then

xi(p)==xj(p)-(t-tj)ξj(p)lrj(p), for ie(tf>tj+1)

and ξj(p)/Tj(ρ) is always colinear to ±ω. Therefore ^(p) G [j\ 3^2(ί)] f°Γ

Using (ί), (ίV), we can find some sQ>Q so that

(5.2) d(s0)=T/2, d'(s0)<0.

Choose some s<.s0 closed to s0 and set pQ=(s,y, — 1, ω) where y=y2(sQ) — (s0 — s) ω.

Then tl(p0)=s0—s and

Denote ^(ή^dist (y1, #f(p°), ί>0. The graph of the function g(t) consists

of linear segments defined in £e[£, (p), tj+1(ρ)] and making an angle π/4 with the

ί-axis since | ω | = 1 . Therefore
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Since \d'(f)\<\, ίeίl1, there exists at least one point t=tz(p^^Sll such that
dist iy-*ί(p°)| =d(t), ^(p°)=^(p°)-(t-t2(P

Q)) ξ2lr2 and in view of d(t2(p°)+
Γ/2)=rf(ί1(p^)=Γ/2==dist|y-Λ;ί«(^+Γ^(p0)|we obtain ί3(p°)=/ι(p°)+ϊ1. There-
fore the ray ί->Φ'(p°) hits the boundary at infinitely many points, £/p0)=fι(p0)+

0-1) Γ/2, WP°H/(*ι+^H/(0> *2/P°)=y, ξ*lτ2j=-ω, ξ2j+l!r2j+1=ω.
According to (5.1) and (5.2) we have v2j+l(pQ)=d'(t1)y v2j(p°)=Q and φ2j +1=π.

Therefore

= (1+ I «/'(*,

Now we have

with

»-£o
EXAMPLE 2. We consider a periodically moving body in Rn which is star-

shaped with respect to a point a(t)^Rn. H. Tamura proved in [12] that the
local energy of the solutions of (1.3) decays exponentially in time when the speed
of a(f) is less than one. In this case no trapped rays occur. We shall construct
a periodically moving star-shaped obstacle which traps some rays allowing the
point a(t), internal for the body O(t), to move faster than the sound.

Let OoCΛ* with boundary Γ0= {/(#); *eS"-1},/eCββ(Sί|-1), Sn'l={x^
R*\ \ x \ =1}, be bounded, non-convex, and star-shaped with respect to any point
of an open convex set t/cO0, i.e.

Choose some y^ΓQ9 /=!, 2, so that the linear segment (yί9y2) does not intersect

Γ0 and set cύ=(y2—yι)l 1 1X2—^1 1 Suppose that

(5.3) {yj+y; y^R\ <y, ω> - 0} Π C/Φφ, j = 1, 2 .

\x-y}\
<δ} and

(5.4) /^) = (- 1)1+* 8 only for x=xj9 j =1,2 where 5>0, δ>0 .

The boundary Γ; >s— {/(#)+$//#) ω, Λ e^""1} is star-shaped for any δ^[0, 1]
provided £ is small enough. In view of (5.3), (5.4) we can assume that ω is

orthogonal to Tyjω(ΓjtS) for \s- -l |<£/4 where yj(ή=f(xj)+sfί(xj)ω. Set
e/8)/χΛ?y), ΓH*!— *2|. Let <pj<=Co(Rl)y j— 1,2 be such that

l, and
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supp Ψl Π [0, T\ = [Γ/8, 3Γ/8] , supp φ2 Π [0, T] = [57)8, 7T/8]

(5.5) φι(T/4) = 9>2(3Γ/4) = (l-C/8), φl(T/4) = 0,$(3T/4)>0 .

Consider the obstacle O(t) with boundary

Γ(ί) = {/

The body O(ί) is star-shapped for any ZGίjβ1, since supp φί Π supp φ2=φ and it
moves with a period T. Choosing TJ6 large we obtain sup | φ'j(ί) \ small enough,
thus Γ(ί) moves with a speed less than 1.

Moreover, the broken ray issued from the point p°=(0, (z^z^β, —1, ω) is
periodic, γ(t+T)=γ(t) and γ(T/4)=z19 7(3T/4)=z2 Arguing as in lemma 2
and using (5.4), (5.5), it is easy to prove that

IT μj(p*)>Ce*<
U ίyCP°)<ί}

for some C>0, δ>0.
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