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1. Introduction

In this paper we study the wave equation in the exterior of a moving
obstacle. Our body may move or change its shape smoothly, as long as it remains
in a fixed sphere and moves slower than the wave speed. The scattering theory
for such obstacles is not highly developed yet. One of the reasons is that we do
not know much about the behaviour in time of the local energy. We do not
know in general when the global energy is bounded.

The decay of the local energy and the boundedness of the global one for
the wave equation in the presence of a moving obstacle O(¢) have been studied
by J. Cooper [2], J. Cooper and W. Strauss [4, 5], etc. In their works the
obstacle O(#) has been assumed star-shaped with respect to the origin. H. Tamura
[12] improved their results allowing O(?) to be star-shaped with respect to a
center a(t) moving slower than the wave speed. V. Georgiev and V. Petkov [6]
investigated the decay of the local energy for non-trapping obstacles provided the
global energy is bounded. Recently, J. Cooper [3] constructed an example of
two periodically mowing obstacles for which the local energy is not uniformly
bounded in time.

We turn now to an outline of our results. Let ) be a domain in R, X R},
n>2, with a smooth boundary 3. Denote by Q,={x&R"; (¢, x) €Q} the (open)
cross-section of Q at time ¢, 3,={x&R"; ({,x)3}. We assume that the
obstacle O (t)=R"\, remains in a fixed bounded set

(1.1) O(t)C By, = {xER"; |x| <R} .

Denote by v=(v,, v,) the unit normal vector to 3 pointing into Q. We assume
that the speed of motion of O (%) is less than one, which means that

1.2) vl <|v.| for (t,x)EX.
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For a pair of functions f=(f,f,) with f,, ,L=C7(Q,) the local energy in a
domain K (), is defined by

2 ___ 1 2 £12
It = 2§ (VA1 41 ds

and ||f]|q, is the energy norm of f. Let 4, be the completion of CF(£;)X
C7(€;) in the energy norm. Consider the mixed problem

uy—Au=0 in Q
(1.3) u=0 on X
u(s, X) = fi(x), u(s, x) = fo(x), xEQ,

According to [4] there exists a unique solution (¢, x) of (1.3) for initial data
fEeH,. Moreover, the two-parameter family of operators

U(t,s): HDf— (u(t, *), ult, ) EI,;

is continuous with respect to (s, 2).

In this paper we investigate the local energy ||U(2,s) flla,npg R>Ro, for
feH, when t—oco. For periodically moving obstacles we find some condi-
tions on the boundary 3 which guarantee the existence of initial data fe 4,
such that the local energy of U(¢,s)f grows exponentially as #—oco. We also
consider motions of % which are not periodic in time. If the body expands
whenever a fixed trapping ray hits the boundary we prove that the local energy
is not bounded in time.

In Section 2 we describe the broken rays for moving obstacles emphasiz-
ing the change of the variable = dual to the time # when a reflection at the
boundary occurs. If 77(7%) is the value of 7 on the incoming (outgoing) ray
hitting the boundary at a point p&T* =, then 7*=p7~ where p depends only
on the velocity of the moving boundary % and the direction of the incoming ray
at p. In this section we formulate our main result-Theorem 1.

In Section 3 we construct some global in time asymptotic solutions of (1.3)
which are concentrated near a broken ray. For this purpose we use Maslov’s
canonical operators. In Section 4 we evaluate the local energy of these solutions.
We suppose that a broken ray o hits 7*X at infinitely many points p; and p;>
C>1, thus 7f—>00. We show that the principal symbols of the correspond-
ing asymptotic solutions are proportional to |7;|¥? near p;. 'This enables us to
prove that the local energy grows exponentially in time. In Section 5 we
present two examples of periodically moving obstacles which illustrate Theorem
1. We first consider a convex body O,(t) moving periodically backwards and
forwards another fixed convex body O,. If the distance between o, and 0,(¢) varies
near T2, T being the period of motion, we prove that the local energy grows
exponentially.
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A similar example was studied by J. Cooper in [3] who used the geometric
optics procedure of J. Ralston [11] to construct approximate solutions of (1.3)
whose local energy is not uniformly bounded in time. The boundary 3, of
the obstacle O(£)=0,U O,(¢) in [3] is planar in a neighbourhood of each point
of contact with a fixed trapping ray which simplifies the construction of the
asymptotic solutions.

As a second example we consider a periodically moving body O(¢) with a
time-like boundary which is star-shaped for each & R' with respect to a mov-
ing center a(£)€O(#). Allowing a(f) to move faster than the sound we prove that
the local energy grows exponentially in time.

2. Broken rays and increasing of the local energy

Our main assumption on  concerns the existence of a suitable trapping
generalized bicharacteristic arc in 7%Q which hits the boundary 7*3, transver-
sally. Let v be a broken bicharacteristic arc of the operator [J=08;— A issuing
from a point p=(s,y, 7, 7)ET*Q (for definition see [9], sect. 24.2). For the
sake of convenience we shall parametrize v by the time . More precisely, denote
by B={t;(p); jEZ,} the sequence of times at which v hits the boundary T*3,
and set #,(p)=0, I=[0, o). The broken ray v consist of linear segments in 7*Q

@1 I\B31 > ®(p) = (s++1, ¥(p), 7(p), E(p)) ET*Q
defined by
x(p) = x;(p)—(t—1;) Ejl7;, (p) = 7) E'(P) = &;
for t&L;—(t,(p), tn(p)), j=0, 1, -, where @(p)—p,
#*(p) = a7(p) = x,(p)
while the codirections §;=(7;, £;) are constant vectors in I;, {,=(r, 5), and
(22) B=rhi=01,

According to ([9], sect. 24), the codirections ¢;_, and ¢; of the incident and the
reflected ray are determined at z;=(t;(p), x;(p)) EX, j=Z,, by

fj—llr,jz = ler,jz

Identifying 7% (R"**') and T (R"*") via the Euclidean metric in R"** we obtain

(2.3) Ei—Li-1=a;(p) v(2;), JEZs

for some aj(p)=#0. Taking the scalar prodict of (2.3) by (7;47;-1, —&;—&;-1)
and using (2.2) we have

(2'4) vt(7j+7j—l)_<vx; §j+fj—x> =0.
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On the other hand,
v (1j—7;20) =< Ei—E;D=a,(p) (Wi —vY)

which implies

(2.5) a;(p) = 2(vi(2)) Tj-1—<v<(2;), £5-0) (w2 (=) —wi (%)) 7" .

Thus (2.1), (2.3), (2.5) determine the broken rays in 7*Q completely.
Following [1], we denote by v,(p) the velocity-vector of 3 at the point

#(p), ie.

ooy vz va(3)
Z),(p)— |yz(2‘j)l ll’z(zi)[

Let @;(p) be the angle between v,(p) and —&;_,/7;_; at 2;(p), ;=0 if v;=0
and 0<@;<z. Now (2.3), (2.5) yield

(2.6) i = wi(P) Tj-1,
pi(p) = (1=2]vj(p) | cosp;+ [ v,(p) |) (1—[v;]%) "
Note that |v;(p)| <1 and w;(p)>0.

Theorem 1. Suppose that Q, is periodically moving, i.e. Q7= for any
tER' and some T>>0. Let the broken ray (2.1) issuing from p==(s,y,7,7)ET*Q
intersect 3, at infinitely many points, t;(p)—> oo as j—>oo, and
2.7) I u(p)>Ce¥, [0, o]

it t
{is J.(P)é)

for some C>0, §>0. Then for each neighbourhood K of y in Q, and E<3(2 there
exists f=(f, f.) €I, with supp fC K such that

(2.8) [|U(¢t+s, s)_fl[‘,,MM,R>C1 e, te[s, o0)
where R=Ry+T and Ci=C\(§, s, f).

Now for n-odd and a>>R denote by Z°(t, s)=P5 U (¢, s) P2 the local evolu-
tion operator [5]. Then we have

Z%(t+s,5) f = PU(t+s,8) f= U(t+s,9)f

where t>0 and f is given by Theorem 1 with supp fCKCB; Thus
1Z5(T+5, " flla, > 1Z(mT+5, ) fllay 0 =1 UGMT-+5, ) flla, 0 5> CemT There-
fore the spectral radius of Z°(T+s,s) is greater than 1 and spec Z*(T+s, s)N
{z€C; |2|>1} +¢ (see also [3]). It is interesting to know if Z*(T+s,s) has
eigenvalues in {2&C; |z|>1} since they correspond to the resonances in
{zC; | 2| >1} (see [5]). Probably there exist infinitely many resonances 2 with
Im 2<0 in the circumstances of theorem 1.
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3. Construction of asymptotic solutions near trapped rays
Let u(z, x) be the solution of (1.3) with initial data fe.%,. For any open
KcCQ, and any R>R, denote by |[|U(%, 5)|||x,z the local energy norm

U 9llla.e = sup {Mm—m;feﬂs, supp fC K, || flla, 40}

Theorem 1 follows immediately from the next.

Theorem 2. Let (1.1), (1.2) be fulfilled. Suppose that the broken ray ®*(p°)
intersects T* s R"*' infinitely many times for some p°=(s,y, 7,7)ET*Q,. Then

(3.1) U@+, lllk.e2 I 25(e°)
for each t=0, and each neighborhood K C ), of y.

Proof of theorem 1. Let o= C§(R"), p(x)=0 outside Bz, R>R,, and Y&
C7(K), Y(x)=1 in a neighborhood of y in Q,. Then

A, = e QU (mT+s, s) v, 0<E<8[2, mEZ, ,

form a family of bounded operators in 4, which are not uniformly bounded
with respect to meZ, in view of theorem 2. Then there exists g9, such
that ||4,, g||g,—>o° as m—> oo according to Banach-Steinhaus theorem. Moreover,

14 glla, < Ce™**||U(mT+s, $)|lan s,
where f=Wg. This proves theorem 1 since for t&[(m—1) T, mT] we have
U (mT+s, 5) flla,n e <INU(s, s+-t—mT)lllo,z U 5) fllos Q = Qs N Brar
To prove theorem 2 we need some preliminaries. Denote
@i(p) = (s+1, %i(p), 7j, £3), %i(p) = x;—(t—1;) §j[7j, tE(t;—E, t1111E)
and
3.2) A; = {Di(p); p = (5, %, 7, 1), tE(t;—E, tj1,+E), x €T CTQ}

where T is a neighbourhood of y, >0 and 0<j<J. For the sake of simplicity
set s=0. We can assume that the curve (t;—§, t;,,+€)2t—>®i(p), 0<5< ],
intersects T*R"*!| 5 only for t=t;, t;,, and the intersection is transversal. 'Then
A; is a Lagrangian submanifold of T*R"*! with respect to the symplectic form

dr A\dt+ zj‘,ldfj/\dx,-.

We shall construct an asymptotic solution of (1.3) concentrated near the ray
[0, t;]12t—>D!(p), p=(0, y, T, 7), 7| =—7=1, given as a sum of global oscillatory
functions associated with A; (see [8]). Let O;,, p=1, -+, p; be a suitable open
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covering of {(¢, xi(p)); tE(t;—E, t;,+E)}, j=0, 1, ---, J. We look for an as-
ymptotic solution of the form

(3.3) Vit % R) = 3 Vit %, B)
where
45
Vi(t) X, k) = PZ Vi.D (t’ X, k) )

k

45,52 .
) H | exp (i ft, %, ) 4y e, %, 0, 1) O
T

Riip

Vst B) = (

Here @; , is a smooth, real-valued and non-degenerate phase function defined in
0;,XT;, I';,CR%»,q,;,>0, is open and relatively compact and ®; , defines
A; over O;, (see [8]). 'The amplitudes a; , are given by
N
aj'p(t, X, 6, k) == 2 a,-,i,,,(t, X, 0) k-l
=1

where N>(n+3)/2 and a; ,,€C7(0;,,xT;,). We look for V(t, x, k) such that

(3.4) I:IV(t’ X, k) = O(k—N+(n+2)/2) fOI' xEQh te [07 t]] )
(3.5) V0|g = O(k~V+n2)
(3.6) V (0, x, k) = k! 5" @ (x)-O (R~ N+/2)

V0, x, k) = —ie* =™ @ (x)4-O (k=N +n+D/z)
for some = Cy(T") and
3.7) supp, VCBy.

It is convenient to consider V(¢,x, k) as a half-density in Q rather than
as a function, which can be achieved by multiplying the scalar functions by
the standard half-density |d#|Y2® |dx|'? in R"*'. The principal symbol of
V(t, x, k) (which is of order —1) has the form (see [8])

12
E ek ™ A (X)), AEA;,

where A; ,, p=1, -+, p;, form a section A; in L(A;)QQ,,(A;), L(A;) is Keller-
Maslov line bundle and Q,.,(A;) is the half-density bundle on A;. The density
part o; of 4; can be described as in [9], sect. 25.1. Let (A, -**, A,.4,) be some
local coordinates in

Cj;i’ = {(t, X, Q)EOM,X Fj,p; dg ¢j,p(t) X, 0) = O}‘
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and denote
de = |D(N, dy @, ,)/D(x, 6)| 7 dN]

where |d)] is the Lebesgue density of C;,. Translating (a; ,,/lc;,,) Vd, via the
map

C,,(t, %, 0) > (t, x,d, @, ,,d, @, ,)EA,

we obtain the half-density part «; of 4; on z(C;,)CA;. Let 3’ be a hypersur-
face in a neighbourhood of a point 2’ R"**! given by 3'={F(2)=0}, F(2°)=0,
VF(2%)#0, and A}=A;N(T*R"*"5). For any n+1— form o on A; denote by
lo|® the corresponding a-density. Denote wjso=i*» where i: Aj—A,; is the

inclusion map.

Lemma 1- Let A; be transversal to T*R*™5, at p°=(2% £)EAS. Then
A} is a Lagrangian submanifold of T*S' near p° and V s/ is a global oscillatory
function of order —1 associated to Aj. Suppose that o ;=a|w Nd(F\y;) | for some
asC”(A;) and an n-form w on A;, such that w \d(F\,;) does not vanish near p°.
Then the half-density part o} of the principal symbol of V ;15/ equals

o5 = (aIA‘,’) 'COIA}?II/Z .
RemMARK. This lemma can easily be derived from [10] (see also [7] sect. 7).
For the sake of completeness we prove it directly using the arguments in [10].

Proof of Lemma 1. First note that o} is uniquely determined. Suppose
that o;=ale Ad(F\s;)|"*=a|& ANd(F),,)|"?, then arg a(p)=arg d(p) and |a|’e
=a|G@|®+w,Ad(F\,;) near p° for some a(p)eC, |a|=1, and an zn-form o,
which proves the uniqueness.

There exists local coordinates in R"*! near 2° such that the projection A;>
(2,8)—=>¢ is a diffeomorphism near p°=(2°¢°) (see [9], sect. 21). In these
coordinates 3’ is given by 2,,,=f(2"), 2'=(2,, :**, 2,). Let y(2)=(2’, 2,4.:—f(2")),
n=(*"Dy(2))"*¢. The projection A;>(y, n)—n is still a diffeomorphism near p°
thus Aj={(d, hy(n), )} for some smooth A, and %'={y,,,=0} near p°=(»", 7).
Moreover, 82 h,/075+1(n") =0 in view of the transversality condition. Thus there
exists a smooth function %,,,=9,+;(n"), 2’=(n1, ***, 7,), such that 8h,[/07,
(%'y 7a11(n"))=0. Perform a new sympletic change of the variables &'=%’, &,
=Npir—ns1(n’), ¥=DE(n)) "' v and set h(E)=hy(n(£)). In these coordinates =’
is still given by {x,,,=0}, A;={(d¢ h(E), £)} while 8k/0E,,,(£', 0)=0 and Aj=
{(dg h(E',0),0,&’,0)}. The phase functions

D; (%, &) = <x, E>—h(E), ®j o(x’, £') = <", ED—h(E’, 0)

generate A; and Aj respectivily. The stationary phase method yields
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mwmquwmwwgem@@Aﬁaamwg@ﬁ

Rn+1

= (kf2e)" | exp (3 (x', £) a3 €', B) dE"

R
where the principal part a} , 1(£") of 4} , equals a(&’, 0) and a(£) is given by
a(§) = a;,5.(£)0” h0g7.1(E) | 72 .
Set w=dE, A+ AdE,. Then
7= a;p.(E) Vs, = aj,p.(E) 0 AdE,1, |
= a(€)| o Ad(x,s014,) [

while oj=a(&’,0)|wi|". Going back to the old coordinates we prove the
lemma.

We are going to solve (3.4)—(3.6) modulo some oscillatory functions of
order —2. Since the Maslov factors are constants locally, (3.4) yields

(3.8) Ly o;=0, j=0,1,-,7],
where Ly is the Lie derivative along the Hamilton vector field H,, r=7"—§?
(see [8]). First we construct some half-densities on A; invariant with respect to
Ly, . Define the functions f4, I=1, ---, n by (®})*fi=ux; and set w;=df{ A+ A
dfj. Then dtAw, is a volume form on A, so o;=a;|dt Aw;|"* for some smooth
a,eC>(A;). Moreover,
LH, 0'] = (H' aj) | thwJ|1/2+2Tja] —;L (@j)* | dt/\m, | l/2|$=0
s
= (H, a;)|dt Ao |
and (3.8) yields
3.9 H,a;=0

Shrinking T if necessary and choosing & small enough, we can arrange V ;=
O(k~M+#2) near {t=0} for j=1,2, -, J. Then (3.6) and lemma 1 imply

(3.10) @li=0 = P (%)
Similarly V,3=0 (k~V*+"/) near z,(p) for I+ j—1, j and (3.5) yields
(3.11) (Vi+Vi-)iz = O(k™V*7)

in a neighborhood 3; of 2;(p).
We are going to determine the amplitude a; in the density part o; of the
principal symbol of V;. We fix some j>1 and suppose that = ;= {F(2)=0} near
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z; where VF(2;)#0. To find a; we write the volume form dtAw; on A; near
(2, ¢;) as w; AdF times a smooth function and use lemma 1 as well as (3.9)-
(3.11).

Denote as before pj=(2;(p), £1(p)), p7=(2i(p), £;-1(p)) and p;=(z;(p), £3(p))
where £}(p) is the restriction of ¢;(p) on T, 2;. We have

d(Fiy;) = a;d(tin)+ 33 Bid(fha))

near p;. Applying H, to the both sides of the equality we obtain {r, F} (p)=
21;ap) for p in A; since the functions fi are invariant under the flow of H,.
Moreover, the Poisson brackets {r, F} (p)==0 at p} since H, is transversal to the
hypersurface {F(2)=0} in T*R"*". Therefore,

o;=a;|27;{r, F} 7(p) |"*| ;A d(Fi5,) |"*

over any pEA; and in view of lemma 1 the half-density part o} of the principal
symbol of the operator V5, equals

ot = a)(p}) |2 7dr, F} (p}) M2 wojine|
over p; where
Aj = A;N(T*R™3))

Analogously, for the half-density part o; of the principal symbol of the operator
V;j-1s, We obtain

o1 = a;y(p7) 12 711, F} H(p7) || 0y o]
Since the restrictions of w; and w;_; coincide on A} we obtain using (3.11) the
equality
a;(p7) |2 75 8r, FY Xp7) '+ a(pf) |2 754r, F} Y(p7) |2 = 0
On the other hand (2.4) yields
(3.13) {r, F}(p7) = 2(7j1v—<E-, v0) | VF(3;) | =—{r, F}(p])
Now, using (3.9), (3.10), (3.12) and (3.13) we obtain
a;(®5(p)) = (=1 |7i(p)| " p(x), p = (0, %, 7, %), for t;—€<t<t;te€,

since 7(p)=1. Therefore, the half-density part o; of the principal symbol of
V; equals

(3.14) o/ = (=D)(@7)(I;| " ) |dt No; |

Multiplying (3.14) by the corresponding Maslov’s factors and by exp (®;,,) we



890 G. Porov aND T's. RANGELOV

obtain the principal symbol of 7; which determines V; uniquely modulo some
oscillatory integrals of order —2. Repeating this procedure we obtain some
Vi(t, x, k), 1<j<J, whose sum V satisfies (3.4)—(3.7) for 0<t<¢;. Adding
a function V(z, , k) such that

(3.15) D% D8V = Q(R~M+n2+2+1B)) | |B| <N,

we can satisfy (3.5) and (3.6) exactly.

4. Estimates of the asymptotic solutions

We are going to evaluate the energy norm of (V,V)q,, 2=(t, x), for any ¢
fixed, ¢,<t<t,.;, 0<m< J—1. First we write (V,V})iq, 0<j<J, as a sum
of oscillating integrals of the form

o k% .
(Ve k) = ik ()" | exp(ihe, ft, 2, 0)

X(V.®;,,) (t, x, 0) a;,,,(t, x ,0) dO

modulo lower order terms for 1<p<p,;. The oscillatory integral (V,V;)iq, of
order zero is associated with the Lagrangean manifold

Aft) = A(x E)ET*Q; (¢, %, — |E], E)EA}

The additional factor V,®; , is transformed to (7, £;) under the map »: C; ,—~
A described in §3 thus the principal symbol of the oscillatory integral V,V;
equals

(=D (@7 ) @71 7 %(r), E)) | dE A, |
Using lemma 1 and the equality (®*)*(w)s,n)=dy it is easy to see that the half-
density part of the principal symbol of (V,V;)|q, equals
(#.1) o =i(—1)/ (@7 (@l 7;| () E l@ia 0 "

= i(—1) (@7 )*(p| ;| ™X(r), £;) 1 dy |'P)
if A;(#)=#0 and it equals 0 otherwise. Fix some &, &>0. Shrinking I" if neces-
sary we can suppose that A;(#)=¢ for any j, m< J, j&=m, when t,_,+E<t<t,—

€. Therefore VV(t, x, k)=0;(k~") for any t&(t,-,+6E,t,—E) and any j==m,
7,m<J. Moreover, we suppose that

(4'2) ITm(Oy X, 1’ 77)_7'm(0, 2 1, 77)' S‘91/2

for any x&T and m<J. To evaluate the L?*-norm of the function (V,V,)q,
we use formula (1.3.15) from [8] as well as (2.6), (4.1) and the relation

D3 (An(t)) = A0) = {(x, 7); x€T}
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We have
% SMBR V.Vt %, k) |2 dx — SAM(‘)O';tn L0, (kY
= {170, 2 =1, )19 (3)1? d+ 05 (k)

= [T no) (o) 2 de+-O, (™)

(7 tj<t)
where p=(0, x, —1, ). Now using (4.2) we get from the last estimate

(43 IVl = (L )= 3) | 1917 det-0,k7)

p"'=(0,y, —1, ) for any ¢ in the complement I; , of the union of the intervals
(tp-1—E, t,+E), m< J, in [0,2;). The estimate (4.3) holds for the function
u(t, x, )=V, x, k) V(t, x, k) too in view of (3.15). Let u,(t, x, k) solve

Du,: Ou in Q
=0

thli—o = (#)ilt=o = 0.
Using Duhamel’s formula we obtain
(2, x, k) = S: Ut s) Ou(s, x, k) ds
and it is easy to see that
(4.4) (V. o )220 5 = Os(k7Y) for tel;,

The function u(¢, x, R)=u(t, x, K)—u,(t, », k) solves (1.3) with initial data f,=

(flk!f:zk)’
fu(x) = k7" exp (tk<x, D) (%), fur(%) = —1 exp (<, 7)) p(x) -

Suppose that the L?-norm of the function @ equals 1. Then the energy norm
of f, equals 14+0;(k™") and according to (4.3) and (4.4) we have

12, 0) fllesnma> I (e — 5+ Os(k™)
for any tI;,. Choose k so that
U 0) fillfn s = (T i(p)—EII filll,

for any tel;,. This proves (3.1), since the positive constants &, & and J can
be chosen arbitrary.
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5. Examples

We are going to consider two examples illustrating theorem 1. The first
example studies the local energy for two periodically moving bodies which are
assumed convex for simplicity.

ExampLE 1. Consider a convex body moving back and fort another fixed
convex body. More precisely, let R™\Q,=O,(#) U O,(t) where the body O,(t)=
0,(0)=0, has a stationary boundary 80, and O,(¢+ T')=0,(¢) for each t>0 and
O,NO,(t)=¢. Denote d(¢)=dist (O,, Oy(t)) and set d,=min d(¢), d,=max d(t).
Assume that
(0) d,<Tl2<d,

(#75) there exists ' €80, such that d(¢f)=dist (y', y*(t)) for some y* (£)E00,(t)
and each ¢>0.
(#77) the velocity v(y*(¢)) does not vanish unless d(¢)=d, or d(t)=d,.

Lemma 2- Suppose (i)—(ii7) are fulfilled. Then there exists p=(x, v, T, 1)
eT*Q, |7|=|n|=1 for which the conditions of theorem 1 are fulfilled.

Proof. Let w(f) be the unit vector w(f)=(3*#)—y")/|y&)—y'|~". Ac-
cording to (i) w(t) is always orthogonal to T, (90,), thus w(t)=w(0)=w for t=>0.
It is easy to see that

(5.1) v(t, Y4(t) = (d'(t), —o) (1+d'(#)?) 12, >0 .

Then |d'(t)| <1 in view of (1.2).
Consider the broken ray ®f(p), p=(s,y, —1, o), =0 where y is an arbitrary
point of the linear segment [y', y*(s)]CQ,. Then

x'(p) == x;(p)—(t—t;) Ei(p)[Ti(p), for 1E(2,t1)

and £,(p)/7(p) is always colinear to +ew. Therefore x*(p)E[y', y*(#)] for ¢<0.
Using (2), (i), we can find some s,>>0 so that

(5.2) d(s) = T)2, d'(s5)<0.

Choose some s<Cs, closed to s, and set p°=(s, ¥, — 1, ) where y=y%(so)—(so—5) w.
Then #,(p%)=s,—s and

b5 (p") = (%0, ¥*(50)s —1, ) .

Denote g(f)=dist (3", x*(p°), £=0. The graph of the function g(¢) consists
of linear segments defined in 2&[t;(p), ¢;4:,(p)] and making an angle 7/4 with the
t-axis since |w|=1. Therefore

t(p°) = 1(p°)+g(t(p%) = t(p")+T)2 .
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Since |d'(t)| <1, t€ R, there exists at least one point t=#;(p")E R! such that
dist | y'—x5(p%) | =d(2), x5 (p°) =2, (p") —(2—2,(p°)) &,/7, and in view of d(#,(p°)+
T/2)=d(t,(p°)=T/2=dist | y*—x52®"*T/p°) | we obtain t;(p°)=2,(p°)+T. There-
fore the ray t—®*(p°) hits the boundary at infinitely many points, ¢,(p%)=2,(p")+
(J=1) T2, 2511(p°) =y (s Hi T)=Y(t1), %2/(P°)=Y", Ess|T2i=— 0, Ezja[Toj =0

According to (5.1) and (5.2) we have v,;,,(p°)=d’(,), v,;(p")=0 and @,;,,=n.
Therefore

12(P°) = 1, poja(p°) = (14 |d'(8,) ) (1—|d'(%) ) >1
Now we have

(0)=Ce® t>0
U;:!-—]L” ll‘!(p)/ » 6Z

with
8 = = (n(1+ |&'(8) ) —In(1—|2'@)|, C>0.

ExampLE 2. We consider a periodically moving body in R"” which is star-
shaped with respect to a point a(f)R". H. Tamura proved in [12] that the
local energy of the solutions of (1.3) decays exponentially in time when the speed
of a(t) is less than one. In this case no trapped rays occur. We shall construct
a periodically moving star-shaped obstacle which traps some rays allowing the
point a(t), internal for the body O(t), to move faster than the sound.

Let O,C R" with boundary Ty={f(x); x&S* %}, feC~(S"™"), S*'={xc
R"; |x| =1}, be bounded, non-convex, and star-shaped with respect to any point
of an open convex set UCO,, i.e.

v (y), y—a><0,ac U, yeT,.

Choose some y;ET, i=1, 2, so that the linear segment (y,, ¥,) does not intersect
T, and set o=(y,—1)/| ¥2—¥:|. Suppose that

(5.3) {y;+y; yE€R" {y,0p =0 NU=*¢,j=1,2.

Let f;&€C>(S*™), 0< fy(x) <&, —E< fi(x) <0, supp f,C By(y;)={x=R"; |x—y;|
<&} and

(5.4) fi(x) = (=D& onlyfor x=x;j=1,2 where &£>0,8>0.

The boundary T; = {f(x)+sf;(x) o, x&S*"'} is star-shaped for any 8&[0, 1]
provided & is small enough. In view of (5.3), (5.4) we can assume that o is
orthogonal to T, (T;,,) for |s—1]<<€/4 where y;(s)=f(x;)+sfi(*;) ®. Set
zj=f(x;)+(1—&/8) fi(x;), T=|2z—2,|. Let p,€C5(R"), j=1,2 be such that
P+ T)=p,(2), 0<p,<1, and
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supp ¢, N[0, T] = [7/8,3T/8], supp @, N[0, T] = [57}8, 7T/8]
(55 @TH) = 9,3TH) = (1—€/8), Pi(T/4) = p(3T4)>0.
Consider the obstacle O(t) with boundary

T(2) = {f()+2:0) fi(x) 0+ @:(t) fo(x) 03 xE S} .

The body O(?) is star-shapped for any z& R, since supp @, N supp @,=¢ and it
moves with a period T. Choosing T/ large we obtain sup |@7(¢)| small enough,
thus I'(¢) moves with a speed less than 1.

Moreover, the broken ray issued from the point p°=(0, (2,+2,)/2, —1, ) is
periodic, y(t+T)=v(t) and v(T/4)==z,, v(3T/4)=z2,. Arguing as in lemma 2
and using (5.4), (5.5), it is easy to prove that
pi(p%) = Ce*

(i s tjPO<t)

for some C >0, §>0.
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