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m

Let L(x, D)= Σ Pi(D)(aij(x)Qj(D)) be a pseudo differential operator and

denote by B the sesquilinear form

B(u, v): = i^ J ^j(x) Q^DΪ^P^D^x) dx
'""a"

defined on CJΓ(Ω), where ΩcΛ" is an open set. Furthermore let H°P'
1(Ω)c:

L2(Ω) be a Hubert space which contains CSΓ(Ω) as a dense subspace. In addi-
tion, suppose that B is bounded on Hp^Ω), i.e. that

\B(u9v)\^c\\u\\Pfί\\v\\p.ι

holds for all u, v^Hp'^Ω) (or, equivalently, for all u, v<= C7(Ω)). It is well-
known that the representation problem:

Find all u^Hp ^Ω) such that for a given / <Ξ L2(Ω)

holds for all

is a resaonable generalization of the Dirichlet problem. (This formulation of the
Dirichlet problem is essentially the same as that given by H. Kumano-go and
C. Tsutsumi in [13].)

Assume that H°P'
1(ΩI) is compactly embedded into L2(Ω). Then one can

prove Fredholm's alternative to hold for the representation problem, provided

that B satisfies a Gdrding-type inequality, i.e.

for all uGH°P

 l(Ω) (or, equivalently, for all u<=Co(Ω)).
In this paper we will consider a class of anisotropic pseudo differential

operators in generalized divergence form with non-smooth symbols. With



858 N. JACOB

these operators we can associate a continuous sesquilinear form defined on a
certain anisotropic Sobolev space. We will prove a Garding-type inequality
for this sesquilinear form.

The symbol class under consideration is not contained in any of the classi-
cal classes and it is impossible to apply some symbolic calculus to the operators
in this paper. Our proof of Garding's inequality follows essentially the original
proof of L. Garding [5], However, as in the case of differential operators we
have to distinguish two cases depending on whether a partition of the unity may
be used or not (see [10] and [12]). Moreover we have to handle the non-local
character of the pseudo differential operators involved.

In [11] we pointed out that pseudo differential operators with negative defi-
nite functions as symbols arise very naturally in the theory of Dirichlet spaces.
The symbol class considered in this paper is large enough to include the negative
definite functions occuring in the theory of Dirichlet spaces.

The reader is referred to [8], chap. XXII, where lower bounds (Garding's
inequality) for pseudo differential operators with C°°-coefficients are treated,
especially the results of A. Melin are discussed and compared with a sharp form
of G&rding's inequality.

Our notations are essentially standard, see [6] — [8] (or [11]). Whenever we
use PlanchereΓs theorem, we normalize the Lebsegue measure in such a way
that constants do not appear in the formula. For any distribution u we denote
by ύ or Fu its Fourier transform (provided that it is defined).

1. Auxiliary Propositions

Denote by λ(n) the w-dimensional Lebesgue measure and let P: Rn-^R
be a continuous function satisfying the following conditions :
P.\.ι For all £eΛ" we have P(?)>0 and \M{ξ(=Rn, P(ξ)=Q}=0.
P.2.: There exists a constant c>0 and a real number r>0 such that

(1.1) P(ξ)<c(l+\ξ\Ύ2 holds for all ξ^Rn .

The set of all functions satisfying P.I and P.2 is denoted by P. Let P^P and
, s>0. We define the norm \\ \\PtS by

(1.2) \\φ\\ 2P.s

for φ^Co(R"). The completion of Co(Rn) with respect to the norm (1.2) is
the Hubert-space HS

P(RM). In particular, let A: Rn-*R be the function defined
by Λ(ξ)—\ξ\. For some t^R, ί>0, the corresponding norm [ML,* is the
usual Sobolev-space norm and denoted by || ||* Moreover, instead of Hs

A(Rn)
we write HS(R"). For any open set Ωc/2n the space C<Γ(Ω) consists of all
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elements φ ̂ C%(R") with compact support supp^cfϊ, i.e. functions of
are difined on the whole space Rn. By definition if /> S(Ω) is the completion of
CSΓ(Ω) with respect to the norm (1.2). Again, the space H^S(Ω.) is denoted
by £Γ° (Ω).

Obviuosly we have

Proposition 1.1. Let Plt P2^P and suppose that for two constants c>0 and
ρ>0 the estimate

(1.3) Pι(Q<icPJg)

holds for all ξ^R*, \ ξ \ >p. Then for each s>0 the space Hp2(R") is continuously
embedded in the space Hs

Pl(Rn).

Corollary 1.1. Let P1 and P2 satisfy the assumption of Proposition 1.1.
Then for any open set ΩdR" and s>0 the space Hp'*(Ω) is continuously embedded
in the space H°P'ϊ(Ω).

The following proposition determines the dual space of the space HS

P(RΛ).

Proposition 1.2. Let s>0 and PeP. Then the dual space of HS

P(R") is
the completion of L2(R") with respect to the norm

(1.4) 11/11,.-.:= sup
IMIp..

Moreover, for f e L2(R") we have

(1.5) ll/IU-.= J (l+P\ξ)Γs\Ff(ξ)\2dξ .

*"

Since L2(R") is dense in [HS

P(R*)]* with respect to the norm || |lj>.-« we nave

[H*P(R*)]*=H-P>(Rn}.

In the case of the usual Sobolev space, i.e. P=Λ, the result can be found
in [14], p. 31. The proof of Proposition 1.2 follows essentially the lines of the
considerations in [2], p. 201-203, where the assertion is proved for periodic fun-
ctions but general elements P^P, and it is left to the reader.

Let us recall Proposition 1.4 from [3]:

Proposition 1.3. (Poincarέ's inequality) Let PeP and suppose that the
embedding of HQ

P'
5(£Ϊ) into L2(Ω) is compact, where ΩcR" is an open set. Then the

estimate

(1.6)
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holds for all utΞH°ps(Ω).

DEFINITION 1.1. A continuous function a: R"-*R is said to belong to the

class Σ(P, s), PeP, $eΛ, if there exists a constant ca>0 such that

(1-7)

holds for all

Let 0eΣ(P, s). On C<r(/Z*) we define the operator a(D) by

(1.8) a(D)u(x) = *< <* %(

Propostion 1.4. Let 0eΣ(P, s) and define a(D) as in (1.8). Γfeii α(Z>) ά a
continuous operator from Co(Rn) into C°°(RH). Moreover, for each t^R the
operator a(D) has a continuous extension (again denoted by a(D)) from Hp+s(Rn)

into Hp(R"), provided s>0.

Proof. Let (wv)veΛΓ be a sequence of elements wveCS3(ΛΛ) converging in

the topology of C%(R") to an element u^C%(Rn). Then (wv)vejv converges to u

in each of the spaces //"'(Λ*), ί>0. Now, for aEΞNo and any compact set

KdR" we have

sup I Z>5(fl(Z))(ι<v-fO)(*) I <sup I Z>J(£i(Z))(ttv-ιι))(Λ) |
*ejc χ*R

and it follows with some appropriate constant r^R, r>0, (see P.2) that

-u)} (x) \ = \ J Z>5(^eχe)(ώv(f )-

R

<c\(l+\ξ\2Γ^<\l+\ξ\2γw+'+>

R°

<cn\\uv—tίllui+H-,,-!,

hence the operator a(D) is continuous from C%(R") into C°°(Rn). Now let

I, and u^C%(Rn). We find

<c J
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which implies the second statement of the proposition.

DEFINITION 1.2. We say that a continuous function a: Rn—*R belongs to
the class Σ0(P, *), PeP, ί>0, if

lim

holds.

Obviously we have Σ0(P, s)cΣ(P, s).

Proposition 1.5. A. Let α<Ξ2(P, s), then for all u<= Co(Rn) we have

(1.9) \\a(D)u\\l<c\\(l+P\D)}sf2u\\l

<c[\\P\D)u\\l+\\u\\l\ .

B. Let fleΣ0(P, s), then for each £>0 there exists a constant £(£)>0 such
that

(1.10) ||«(Z))^||g<£||Ps(D)z/|

holds/or allu^C o(Rn).

Proof. A. Let u<Ξ C*(Rn), we find

R

<ca\(l+P\ξ))s\ύ(ξ)\2dξ,

RH

which implies the first inequality. The second inequality is an immediate con-
sequence of the estimate

(111)( υ

which holds for all ί^O and all
B. Since aG'Σ0(P, s), it follows that for each £>0 there exists a constant

/>(£)> 0 such that

(1.12)

holds for all? eΛ", \ξ\>p(6). Using (1.12) we find

dξ= J |α(

<£
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which implies (1.10).

For later purposes we need an estimate for the commutator of an operator
a(D) with a smooth function φ.

DEFINITION 1.3. Let 0e2(P, 1) and φ&C~(Rn). We denote by [a(D), φ]
= — [φ, a(D)] the operator defined on Co(Rn) by

(1.13) [a(D), φ\u(x): = a(D)(φu)(X)-φ(X)a(D)u(x) .

Proposition 1.6. Let αeΣ(P, 1) and assume for <p<=C~(R") Π L°°(Rn) that

(1.14) \\[a(D\ φ}u\\l<Cl\\P(D}u\\l+cmi

holds for all u^C%(Rn). Then we have with suitable constants c{ and c'2

(1.15) \\a(D)(φu)\\l<c(\\P(D)u\\l+cί\\u\\l .

Proof. Let we Co(R"), then it follows that

\\a(D)(φu)\\l = \\φa(D)u+[a(D), φ]u\\l

<2[\\φa(D)u\\t+\\la(D),φ]u\\l],

which proves the proposition.

Finally, let us remark that in general for PeP, 9>eC7(Λn) and
s>Q, it does not follow that φu^Hs

P(Rn) and that the estimate

\\φu\\P>s<c(φ)\\U\ P.s

holds. This estimate does not hold even in the case where P is a polynomial.
For example take P(£, rj)=£V, (?, -η) eΛ2, and apply Theorem 2 in [1], p. 212.

2. Pseudo Differential Operators in Generalized Divergence Form

We want to consider pseudo differential operators in generalized divergence
form and related sesquilinear forms. Let L(x, D) be given by

mo
(2.1) L(x, D)=Σ Pi(D)aifj(x)Qj(D)

»»y=ι

where mQ€ΞN. We pose the following conditions on L(x, D).
Let P6ΞP be fixed, then we assume:

L.2.: a^L^R") for all 1 <i, j<mQ.
First we prove
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Proposition 2.1. Let L(x, D) be a pseudo-differential operator in generalized
divergence form (2.1) satisfying condition LΛ—L.2. Then L(x,D) is continuous
from H$(Rn} into Hj\R").

Proof. For u e C%(Rn) we have

||L( , D)ιι||i.-ι -

Now we find

(L( , D}uY(ξ) = [

and it follws that

Hence, using L.I we get

R
<4c \ (l+P\ξ )Γ\ί+P\ξ)) { Σ I M )α φ)«)Λ(?) 1

«/ *>y~~ι

and by PlanchereΓs theorem we have

J »»o
ΣJβ

which proves the proposition.

We want to define a sesquilinear form determined by a pseudo differential
operator in generalized divergence form satisfying L.I— L.2. First let φ, ψ e

CJΓ(Λ"). We set
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(2.2) B(φ, ψ): = (L(x, D)φ, ψ)0.

Using PlanchereΓs theorem we find the following representation of B (see [11],

section 5, for the calculation):

m0

(2.3) B(φ, -ψ ) = Σ (aij(*)Qj(D)9>9 pi(D)Y)o

Proposition 2.2. Let L(x, D) be a pseudo differential operator in generalized
divergence form satisfying LΛ—L.2 and let B be the sesquilinear form corresponding

to L(x, D). Then B is continuous on HP(Rn), i.e. there exists a constant c>0
such that for all u, v^Hl

P(R") we have the estimate

(2.4) \B(u,v}\<c\\u\\Ptl\\v\\Ptl.

Proof. Since C7(/2n) is dense in HP(R") it is sufficient to prove (2.4) for
all φ, Λlr^Co(Rn). By (2.3) we have

"Ό

I B(φ, -ψ ) I <, "Σ I (#ι;( * )Qj(D)φ> -Pi(O)^)o I

using L.2 and the Cauchy-Schwarz inequality it follows that

\B(φ^)\<c/^Σί\\{

and by L.I and Proposition 1.4 it follows that

holds for all φ, ψ&C%(Rn)y which implies the assertion of the proposition.

From Proposition 2.2 we get immediately

Corollary 2.1. The sesquilinear form B is continuous on HQ

P'
l(Ω) for any

open set ΩcJ?n.

In the next section we will use the following formula

Proposition 2.3. Let Qj(D) and Pi(D], I<i,j<m0, be operators satisfying
LΛ and let a^^C. Furthermore assume that for a real valued function
C°°(Rn) we have for all u<=ΞC*(Rn]

(2.5) ||[£/D), φ}u\\l<c(\\P(D)u\\l+\\u\\l)

and

(2.6) \\[Pi(D), φ]u\\l£c(\\P(D)u\\l+\\u\\l) .

Given an open set ΩcΛn, then we have for
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supp φ

= j%α
R
- j aιj \Q,(D), φ] u(X) [PAP), φ\u(X)dx .

Λ"-supp Ψ

Proof. For u&H*P \Ω) it follows that

x)dx

- J ί
Λ*-supp v

J ̂

Λ*-supp φ

—φ(x)Pi(D)u(x)]dx

Λ"-supp <P

where the last line follows from the fact that

0 = j φ(X)aij ρχ/>X*) [PAP), φ}u(X)dx

Λn-suρp φ

Rn-supp φ

= \ φ2^, Qi(D)u(X)Pί(D)y{x)dx .
upp ψ

3. A Girding Inequality

Let L(x, D) be a pseudo differential operator in generalized divergence
form satisfying L.I—L.2. In the last section we proved that there exists a
continuous sesquilinear form B on Hl

P(Rn) (or H°p1(Ω,)) generated by L(x, D).
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The purpose of this section is to prove a (generalized) Girding inequality for
B under suitable additional assumptions on L(x, D). As already mentioned in

the introduction we have to distinguish two cases.
First let us assume the following conditions:

L.3.: There is a point x0^Rn such that with two constants cQ>0 and ρQ>Q
the estimate

(3.1) Re Σ <tij(xo)Pi(ξ)Qj(ξ)>c<>P2(ξ)

holds for all ξ <=R" with | ξ \ >p0.
LA.: Let CQ be the constant in (3.1) then we suppose for some σ, 0<<r<l,

C\ 9\ TΠQV ClltΛ 1/7 /'v^ Π fΎ \\<^^r *{o.Δj max sup \(*ij\x)—^fyv, o / 1 — — "̂

to be satisfied, where £ is a constant such that

and

\\Pi(D)u\\0<c[\\P(D)u\\0+\\u\\0]

holds for all u^Co(R") and \<iyj<mQ. (Note, that by Proposition 1.5
such a constant does exist!)

Now we can proev

Theorem 3.1. Let L(x, D) be a pseudo differential operator in generalized
divergence form satisfying LΛ—LA. Then we have

(3.3) Re B(U) u)>(\-σ)c,\\P(D)u\\l-c(σ}\\u\\l

forallu<=C%(R").

Proof. Using (2.3) we find

Re B(uy u) = Re Σ \ a^x) Qj(D)u(x)Pi(D)u(x)dx = /x.
tt3=\n

We estimate Jl:

Re^g j ίX^) Q^uWP^uWdx
t>J l
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+Re Σ (ίχ*j-^foj) Qi(D)u(X)Pi(D)u(X)dX

'" R

-,!§ J kX*0)-«, X*)l \Qj(D)u(x)\

'"~

- supj ΣJα. yW I I Qi(ξ) I |P,(f) I +4.TO \*\\\u\\\

- Σ sup. I α,χ*)-α,X*b) I ||ρχZ>)φ)||0||P,.(£)Φ)llo

where we used in the last line assumption L.4 and Proposition 1.5. The con-
stant ct depends on σ, m^ and c. Hence we have

(3.4) .Λ^oα-oOII^MIo-CilMlo .

In order to solve a generalized Dirichlet problem we give a formulation of
Theorem 3.1 in the case of an open set Ωdl?n. For this it is suitable to
assume instead of L.4 the following condition

L.4'.: Let CQ be the constant in (3.1), then we suppose for some σe(0, 1)

(3 5) ^52 K<*)-

where c is the same constant as in L.4.

Corollary 3.1. Assume that L(x, D) is apseudo differential operator satisfying
L.l—L.3 and LA'. Furthermore assume aij(x)= <zlV(#0) for all x^Rn—Ω, where
XQ^Ω is the point mentioned in L.3. Then there exists a constant £(σ)>0 such
that

(3.6) Re B(u9 ιι)^(l-σ)||P(D)iί||ί-ι<σ)||ιι|| j

holds for all neC?(Ω).
(Remember that elements of C Γ(Ω) are defined on Rn\)

The proof of Corollary 3.1 is just the same as that of Theorem 3.1, but by
our assumptions we have now
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Re Σ ( (α,χ*)-α,Λ*b)) Q£D)u(x}PJp)u(s)dx

'"=1 i
= Re Σ j (%W-^

In order to handle the second case, we need the follwoing

Lemma 3.1. Let ΩcJ?" be an open bounded set and assume
, \x\<r} for some r>0. Furthermore let {Ωt , \<i<N— 1} be an open

covering of B2r(Q). Then there exist functions φi^C^(Ω,i), I <i<N—l, and a
function φN e C°°(Rn) with the following properties :

i) 0<?>,.(*)<1 for l<i<N;_

ii) φN(x)>Q for x£ΞRn-Br(ϋ)\
Hi) supp<pNc:Rn-Br(0);
iv) φV2ξΞC~(Rn) for \<i<N\

v) ljϊφ2i(x) = l for xtΞR".

We call (φ^i^N a partition of unity subordinated to the covering {Ω, , 1 <

i<N} \JRH—Br(Q). The proof of Lemma 3.1 is an obvious modification of
Lemma 9.16 in [17].

Instead of L.3 and L.4 let us now assume

L.5.: Let ΩdjBr(0) be a bounded open set in Rn. Assume that there are two
constants c0>0 and pQ>0 such that

Re Σ Λ,,

holds for all x^B2f(0) and all £EΞ Rn, \ξ\>p0.
L.6. : For 1 < /, j < mQ suppose that

holds for all x,yEiB3r(Q), where g: R+-^>R+ is a function satisfying

L.7.: Let φ<=C°°(Rn) such that D*φ<=C%(Rn) for all atΞNl, αφO. It is
assumed that for any 77>0, we can find a constant c(η)>0 such that for

all wEiCo^f!), where Ω, is the set considered in L.5, we have the estimates

(3.7) \\(P(D), φWtedWDMβ+cWMΪ ,

(3.8) \\[Qi(D),φ}u\\l<r,\\P(D)u\\l-i-c(r])\\u\\l,

and

(3.9)
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Theorem 3.2. Let ΩccΛn be an open set and let L(x, D) be a pseudo
differential operator in generalised divergence form satisfying L.l—L.2 and L.5 —

L.7. Then for each £e(0, c0/2) we have

(3.10) ReJB(u,

foralltfeC5r(Ω).

Proof. Again, by (2.3) we have

Re B(u, u) =

We have to prove

Now, let {Ω*, l<k<N— 1} a finite open covering of B2r(Q)y note that Ωcΰr(0),

such that

(3.11) max max

where c' is a constant such that for 1 <i, j<mQ

\\Qj(D)u\\2

ΰ<c'[\\P(D)u\\2

0+\\u\\t]

and

\\Pt(D)u\\tecΊ\\P(D)u\\l+\\u\\ϊ\

hold. (Note that such a covering always exists by L.6.) Furthermore, let
be a partition of unity subordinated to the covering {Ωk, l<k<N—l}

\jRn—Br(Q) having the properties stated in Lemma 3.1 (in the following we set

ΩN: =Rn—Br(0)). It follows that

Re Σ ί a{j(x) Qj(D)u(x)Pi(D)u(x)dx

R

(x)"ιt») Qj(D)u(x)Pi(D)u(x)dx
supp φk

supp φk

where
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Σ Σ
k=ι ί,y = ι

supp <PΛ

xKP^D), φk}u(x}dx
supp φk

and

Σ Σ
*=ι ι,y=ι

4 = Re Σ ίfΣ

Let us estimate ^42, A3 and ^44. First we find

Σ Σ
*=ι ί,y=ι

Σ Σ=ι

where τ>0 is an arbitrarily chosen non-negative number. By Proposition
1.6 we find

(3.12)

and by assumption L.7 for each η>0 the estimate (3.13) follows:

(3.13)

Thus we obtain

Now, given £>0 and choose 57 such that c(τ)η=τ, then it follows with τ=

(3.14)

Analogously we find

\A3\ <c Σ Σ
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which gives again for any 6 >0

(3.15) \A3\<(6/8)\\P(D)u\\2

Q+c2(G)\\u\\2

0 .

Moreover, it follows that

I Λ I < Σ Σ I «<X*) 1 1 \Ωi(D^ **X*) 1 1 [p. (£>), 9>J«(*) I dx

<c Σ <Σ \\[Qi(D], ^H

Since by our assumption L.7 for each 77 >0 we have the estimates

and

we find

which gives with η=ε(8cmlN)~1

(3.16) |

So far we have proved

(3.17) Re 12 ««(«

where c'(5)=Σ3^)

Now let us consider ^4^ For l<k<Nwe have by Proposition 2.3 with

supp <PΛ

- J <a^-
supp <PΛ

ίχ^o [ρχz>),
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)-β*X*)) Qj(D)(φku)(x)Pi(D)(φllu)(X)dX

{(D), φk}u\\0

- sup

Now we get

(3.18) AΞ>ReΣ Σ ^
*=ι *,y=ι J

R

-Re Σ f|

-Ref Σ sup
k=ι ι,y=ι

By L.5 we find

Re Σ ̂  5 ̂ (̂ y* 1 ,., 1^

Moreover, using L.7 it follows that for any £>0

Re ΣJ ^Σ^^IItβ

holds.
In order to estimate the last term in (3.17), note that supp u(~]suppφN=φ
and therefore R(D)(φNu)=0 for any pseudo differential operator. Further by

our assumptions on the support of φk, l<k<N—l, we have

sup I HfXa^-βfX*) I <Cs(2mlc'Yl,

which implies that

Σ Σ sup
*=ι ί,y=ι jf

= Σl Σ sup

£fo>/2)Σ
JSΓ

Σ
* = ι
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where we have used the estimates for Oj(D) and Pi(D) given subsequent to (3.11),

noting that φku^C%(Ω) for l<k<N— 1. Now, we have proved

Σ

Finally consider the term \\P(D)(φku)\\l. By (3.7) we find for any £>0

\\P(D)(φku)\\l = J \(φJ\D)u+[P(D), ?>*]«(*) I '<**

R"
> J 9>!(*) I P(Z>χ*) 1 '<fe-2 J 1 9>*(*) I I P(D)u(x) \ \ [P(D), φt]u(x) \ dx

R" R"
-\\[P(D), Ψk}u\\l

and we obtain

Σ

-(eι\d)\\p(D)u\\l-t(\u\\l

Using (3.14), (3.15) and (3.16) the last estimate yields

Re Σ ( *M Qi(D)tl(X)Pi(D)u(X)dX^((c0l2)-(ll2)6)\\P(D)u\\l-c\ \u\\l
i,j = l J

Rn

which proves the theorem.

4. On the Commutator [Q(-D), φ']

In the last section we proved in Theorem 3.2 a generalized Garding in-
equality for pseudo differential operators

satisfying L.I — L.2 and L.5 — L.7. In particular the estimates (3.7)— (3.9) have
been of greater importance. In this section we want to give a sufficient condi-

tion in order that for a symbol Q^Σ(P, 1) we have the estimate

for a suitable class of functions φ^C°°(Rn), see L.7. The proof of the follow-

ing theorem requires some lemmas:
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Lemma 4.1. ([16], Lemma 2.2.4) Let K^L\Rn)f then we have for all

(4.1) I J [ J5Γ(e-*χ*

Lemma 4.2. A. ([16], Lemma 2.2.1) For any q&R and all ξ,
the inqeuality

(4.2) (l+l?Γ)ί(l+My^2'"(l+|f->?l2)l«l

holds.

B. ([16], Lemma 2.2.2) For θ e [0, 1], geΛ <mrf *my f , ηtΞR" we have the
inequality

(4.3)

Now we can prove

Theorem 4.1. Let φ^C°°(Rn) such that for \<i<n we have d
Furthermore, let ge2(P, 1) Π C \Rn} and assume

(4.4) |grad Q(ξ)\<c(l+\ξ\Y*

for some q^R, q>0, and all ξ^R*. In addition suppose

(4.5) limίl±ϋl^ = 0,
V ; iίi*- \P(ξ)\

i.e. (1 + I 1 2)i/2e2o(P, 1). Then for each £>0 the estimate

(4.6) \\[Q(D), 9,]«||S^e||P(D)β||S+e(6)||«||5

holds for all u<=Hl(Rn).

Proof. By our assumptions we have 9,<peC;Γ(.R'')> 1< i <,n, which implies

φ\n*-Br(o)=M, MG.R, where 5r(0)CjB* contains U supp Qtφ. Hence, we find

φ— M eC^-R") and supp (φ— M)cB,(Q). For any MeCjr(Λ") we have

Q(D)(φu)(X)-φ(X)Q(D)u(x)

= Q(D)(((φ-M)+M)u)(X)-((φ(X)-M)+M)Q(D)u(X)

Therefore the theorem is proved, if we have shown (4.6) for any function

). Now, using
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= *(*) J ei

875

and

we find

= J

R

Furthermore, for any vZΞL\Rn} we have

({((^J I J

=jj5 ι̂-,
Consider the expression

In order to apply Lemma 4.1 we want to show

Using the mean value theorem we find

which implies

= Σ
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Since by our assumption D, -ψ>eCS'(Λ"), \<i<n, we find (see [18], p. 146),

for any m^O. This implies together with (4.4)

1

(I + !>?12)"2

Now, by (4.3) we have

and by (4.2) we obtain

Finally we get

Taking m^^+^+l it follows by Lemma 4.1 that

I J { j

R R

or

which gives

\\\Q(D),+]u\\tec\\u\\l.

By (4.5) we conclude that (1+ | |2)ff/2eΣ0(P, 1) and using Proposition 1.5. B it
follows that

holds for any 8 >0. This implies the theorem.

5. The Dirichlet Problem

We want to solve a generalized Dirichlet problem and later an associated
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boundary value problem for a pseudo differential operator L(x, D) of the initial
form given in (2.1). First let us formulate the weak Dirichlet problem:

PROBLEM 5.1. Let Ωci?n be an open set and L(x, D) be a pseudo differen-
tial operator of form (2.1). Moreover let /eL2(ίl) be a given function. Find
all elements u^H°P

tl(Ωl) such that

(5.1) B(u,φ) = (f,φ\

holds for all <p^C%(Q), where B is the sesquilinear form (2.3).
Note, that for a certain class of pseudo differential operators with smooth

symbols belonging to some class Sp^ίl), Problem 5.1 is the formulation of the
weak Dirichlet problem given by H. Kumano-go and C. Tsutsumi in [13],
p. 165. For translation invariant pseudo differential operators the weak
Dirichlet-problem was handled in [3] and in a special case in [9]. In [11] we
handled Problem 5.1 for pseudo differential operators the symbols of which are
negative definite functions.

Theorem 5.1. Let ΩdR" be an open set,f^L2(Ω) and L(x, D) a pseudo
differential operator satisfying L.I—L.2. Moreover, assume that with two con-
stants c0>Q and £j>0 the inequality

(5.2) ReB^u^ColMfr-cMlt

holds for all uςΞHQp>l(Ω).
A. If c1=0y then Problem 5.1 has a unique solution for allf^L2(Ω).
B. If C!>Q and if the embedding of H*P'

l(Ω) into L2(Ω) is compact, then
for Problem 5.1 Fredholm's alternative holds.

Proof. A. Since B is continuous on H°P

1(Ω)y the statement is nothing
but the statement of the Lax-Milgram theorem (see [18], p. 92).

B. This part of the theorem follows using the continuity of B on H°P

l(Ω)y

Garding's inequality (5.2) and the compactness of the embedding of H%tl(Ω)
into L2(Ω) by the same arguments as Theorem 1.14.6 in [4].

By Corollary 3.1 and Theorem 3.2 we get

Corollary 5.1. Suppose that Hp ^Ω) is compactly embedded into L2(Ω)

and that the operator L(x, D) fulfills either L.3 and LA' or L.5 to L.I. Then for
the weak Dirichlet problem Fredholm's alternative holds.

Let us also mention

Corollary 5.2. Let PeP and suppose that the embedding of Hp l(Ω) into
L2(Ω) is compact. Then the weak Dirichlet problem posed for the operator P\D)
has a unique solution.
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This follows from Proposition 1.3 and the Lax-Milgram theorem. For

general PeϊP we cannot decided whether or whether not the embedding of

H°p1(Ωl) into L2(Ω), Ωc dRn, is comapct. However there exist several sufficient

conditions, see [7], Theorem 10.1.10 and for polynomials [12], Theorem 4.

An obvious criterion is

Proposition 5.1. Suppose that H°P

>l(Ω) is continuosly embedded into the

space #°''(Ώ) for some t>Q. Then the embedding of H0

P'
l(Ω) into L2(Ω) is

compact, provided λ(w)(Ω)< oo .

The proof of Proposition 5.1 follows from the fact that for λ(n)(Ω)<°o the

space /f° '(Ω), t>0, is compactly embedded into L2(Ω).

REMARK. Note that all considerations in this paper remains true if L(x, D)

is substituted by the operator

K(x, D) = L(x, D)+ Σ P
V = l l,k = l

where mμ^N for μ=l, 2, 3, and we pose the following conditions on K(x, D).

Let P eP be fixed, then we assume:

KΛ.: ~L(x, D) satisfies the condition L.I and L.2;

KΛ.: R(

k

l\ S(,2)eΞΣ(P, 1) for all \<k<ml and l</</«2;

K.2.: R(

k

2\ R%\ S?\ S^eΣoίP, 1) for all l<l<mly I<k<m2 and 1<

for all l<βv, /v<mv for z/=l, 2, 3.

In that case L(x, D) becomes a generalized principal part of K(x, D).
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