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1. Introduction

In 1948 Frucht [2] proved that for any finite group G there is a connected
3-regular graph Γ with AutΓ^G. Sabidussi [3] extended this result: For any
finite group G and any integer τz^3 there are infinitely many connected n-
regular graphs Γ with AutΓ^G. Moreover Vogler [5] extended this one of
Sabidussi: For any finite group G and any link graph Δ (cf. [5]) with at least
one isolated vertex and at least three vertices there are infinitely many connected
graphs Γ with constant link Δ and AutΓ^G. We note that AutΓ acts semi-
regularly (cf. [6]) on FT in every above result. In this paper we shall study
the following probelm: When can a given abstract finite group be represented
as the automorphism group of a cnnected regular graph in which some vertex
is left invariant by the automorphism group ?

First we remark

Lemma 1. Let p be a prime and Γ be a connected n-regular graph. If
there is a subgroup G of AutT with \G\ =p such that some vertex v of Γ is fixed
by G, then n^p holds.

Proof. Let vly v2, •••, vn be the vertices adjacent to v. Let us suppose n<p.
Since G fixes {v^ v2, •••, vn} as a set, G must fix all v f s (/= 1, 2, •••, n) (cf. Lemma
2). Similarly, all vertices adjacent to v{ (l^i^ri) are fixed by G. Because of
the connectedness of Γ, G fixes all vertices of Γ by continuing the above
argument. Hence we have G=l (the identity group), a contradiction.

The following theorem is the main result of this paper and the condition
wΞ> I G| is necessary by Lemma 1.

Theorem 1. Let G be a finite group and t be a positive integer. Then
for any integer n^max {|G|, 3} there exist infinitely many connected n-regular
graphs Γ such that AutT^G and Γ has t vertices a^ a2> •"><** with AutΓ=
(AutΓ%lββ2...Λί, that is, AutT is ίsomorphic to G and fixes some t vertices al9 α2, •••
and at.

2. Preliminaries

First let us fix some conventions. By a graph we mean an undirected graph
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without loops and multiple edges. All graphs considered are finite in this paper

except Remark 1. VT and £T denote the set of vertices and edges of a graph

Γ respectively. If an edge e joins two vertices u and vy we write e=[u, v] = [v, u].

By AutΓ we denote the automorphism group of Γ. If AutΓ=l, Γ is called

asymmetric. For a vertex v in Γ, N(v] denotes the subgraph of Γ induced by

the vertices adjacent to v. If Γ is connected and if for some vertex v the sub-

graph induced by VT— {v} is disconnected, then v is called a cut-vertex of Γ.

For vertices u and v, d(u, v) denotes the distance between u and v. We define
the distance between subsets A and B of VT by Q(AS B)=min {d(uy v):

Now we introduce a notion of the type (cf. [2]) (aly a2y •••, ar) (r=( m j) of

a vertex v of valency m in Γ. Let uly u2y •••, um be the adjacent vertices of v.

We define the number a{j (i<j) as follows:

(Xjj = the minimum length of circuits which contain the two edges \uiy v] and

[v, Uj] if there exists such a circuit,
= oo otherwise.

By ranging ί J numbers of α, /ί in increasing order, we get the type (aly a2y •••,

ar) o f v y where r="Ϊ> a^a^ — ̂ a, and {aly a2y •••, ar} = {aij\ l

We shall make substantial use of methods of Sabidussi [3,4]: For graphs
k

Γx, Γ2, ••• and I\ we define the product Π ΓI =Γ1XΓ2X — Xl\ by
k k

J/(Π rf ) = Π VTt (the cartesian product of the sets FΓt),

Γf ) = {[(«!, u2) —, uk), (vly v2y ••-, vk)]: {i: u^viy l^i^k} is
= l

one-element set {/} satisfying \ujy Vj]^ETj}.

It is obvious that the product of connected graphs is connected. A graph Γ is
called prime if Γ is non-trivial and if Γ^ΛxΠ implies that Λ or Π is trivial,
where a trivial graph is a vertex-graph. Two graphs Γ and Δ are called relative-

ly prime if Γ^Γ'xΠ and Δ^Δ'xΠ imply that Π is a trivial graph. We say

that a connected graph Γ can be decomposed into prime factors if there exist
r

connected prime graphs Γ^ Γ2, •••, Γr satisfying Γ^ Π Γ, .
ί = l

A graph Γ which is attached a graph isomorphic with a graph Δ to a
graph Π so as to correspond vertices uly u2y •••, um of Δ to vertices vly v2y * yvm of

Π respectively is a following graph:

VT = VΠ U FΛ, FΠ Π VK = {vly v2ί -, vm} ,

where Λ is a graph isomorphic with Δ such that there is an isomorphism / from
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Λ to Δ with /(ϋ,) =:*/,.(/= 1, 2, •••, m).
For groups H and G,H^G denotes that H is a subgroup of G. For a

subset T of a group G, <Γ> is a subgroup of G generated by T. Let G be a

permutation group on a set Ω. For elements α^, #2, •"> #* in Ω, GΛlΛ2...Λt denotes
a subgroup {^eG: g(a^ai (i=l, 2, ••-,£)} of G. G is said to act semiregul-
arly on Ω if GΛ=l holds for any

Lemma 2 [6]. Let G be a permutation group on Ω. Then for any

= \GΛ\ \G(a)\ holds.

Lemma 3. Let uy v be vertices of graphs T, Δ respectively. Then the
valency of (u, v) in T X Δ is the sum of the valencies of u and v.

Lemma 4 [3]. // in a connected graph T there is an edge which is not con-

tained in a \-cycle, then T is prime.

Theorem 2 [4]. Let Tlf Γ2, •••, I\ be connected relatively prime graphs.
Then

Π
ί=l

A u t ( Π Γ f ) » Π A u t Γ , .

Theorem 3 [4], If a connected graph Γ has a prime factor decomposition,
then the prime factor decomposition of Γ is unique up to isomorphisms.

Corollary 1. Any connected graph has the unique prime factor decomposition

up to isomorphisms.

REMARK 1. The above corollary does not necessarily hold for infinite

graphs (cf. [4]).

Lemma 5. Let T, Δ be hamiltonίan graphs with \ VT \ even. Then Γ X Δ
is a hamίltonίan graph.

Proof. Let u1—u2—^'—uq—u1 be a hamiltonian circuit of Γ and vl— v2—
••• — vr — v1 be that of Δ, where q is even. Then we get the following hamiltonian

circuit of ΓxΔ: fa, vλ)— (ult v2] ----- (u1} vr}—(u2ί vr)—(u2, zv-i) ----- (u2, ι>ι)—

fa, *>i)—fa, v2) ----- fa, vr)-(u4J vr)-(u4, υ,^) ----- (u4, Όj—fa, »ι) -----

(up.ly vr_ύ—(uq-ι, vr)—fa> vr}-(uq, %_ι) ----- (uq, vO— (MI, Vi).

We note the following as a particular case of Theorem 2.

Lemma 6. Let Γ, Δ be connected relatively prime graphs with AutΓ= 1 and
AutΔΦl. Then Aut Δ^Aut(ΓxΔ)={φ: φeAutΔ} holds, where φ is a per-

mutation on FΓX FΔ defined by φ(u, v)=(u} φ(v)) for u^ VT and v^. FΔ.

Theorem 4 [1], Let T be a connected 3-regular graph which is not ίsomor-
phic to K4. Then there exists a hamίltonίan 3-regular graph Γ' such that Aut Γ'
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, I FT" I =6 1 FT I, the girth of Γ'^4 and that Γ" has an edge which is
not contained in a 4-cycle.

Lemma 7. Let m be an even integer with m^l2. Then there exists a con-

nected 3-regular asymmetric graph Γ with \ VT \ — m.

Proof. Let Γ be a graph defined by

EΓ = {[1, 2], [1, ml [1, m-1], [2, 3], [2, 6], [3, 4], [3, 5], [4, 5], [4, 6]} U

{[i, ί+2], D'+l, ί+3], [ί+2, i+3]: ί - 5, 7, 9, -, m-3} .

Then Γ is a connected 3-regular graph with | FT| =m. Let σ be an automor-
phism of Γ. We want to show σ=l. Now the types of vertices 1, 2, 3, 4, 5,
6, 7, 8, m— 1, and m are (3, ro/2, ifi/2+1), (4, τw/2, τw/2+1), (3, 4, 5), (3, 4, 5),
(3,5,6), (4,5,6), (4,5,7), (4,5,7), (3,4,5) and (3,4,5) respectively and the
type of every other vertex / (i=9, 10, •••, m—2) is (4, 4, 6). Hence σ fixes 1, 2, 5

and 6. Since F(ΛΓ(2))Π V(N(5))={3} and Γ(ΛΓ(5))n Fr(-ZV(6)) = {4}, σ fixes 3
and 4. By noticing N(5) and Λf(6), we find that σ fixes 7 and 8 respectively.
So by noticing N(7) and Λf(8), we find that σ fixes 9 and 10 respectively. Simi-
larly, σ fixes every other vertex of Γ.

Lemma 8. Let m be a positive integer. Then there exist infinitely many
connected 3 -regular graphs Γ which are asymmetric, hamiltonian and prime such
that \ VT I is divisible by m and the girth of Γ^4.

Proof. Let ml be an even multiple of m with #2^12, where there are
infinitely many choices of mx. By Lemma 7 there is a connected 3-regular
asymmetric graph Γ\ with \VTl\=ml. Then by Theorem 4 there exists a
hamiltonian 3-regular asymmetric graph Γ' such that | FT'[ — 6| FΓΊ| and the
girth of Γ'^4 and that Γ' has an edge which is not contained in a 4-cycle. By
Lemma 4 Γ' is also prime.

Lemma 9. There is a connected asymmetric graph Σ such that some vertex
o/Σ has valency 1 and every other vertex has valency 5.

Proof. Let Σ be a graph defined by

EΣ = {[1, 5], [1, 7], [1, 10], [1, 12], [1, 13], [2, 3], [2, 5], [2, 6], [2, 9],
[2, 13], [3, 5], [3, 7], [3, 8], [3, 13], [4, 7], [4, 8], [4, 11], [4, 12],
[4, 13], [5, 6], [5, 11], [6, 7], [6, 9], [6, 10], [7, 9], [8, 10], [8, 11],
[8, 12], [9, 10], [9, 12], [10, 11], [11, 12], [13, 14]}.

Then 2 is a connected graph in which the vertex 14 has valency one and every
other vertex has valency five. Let σ be an automorphism of Σ. Then σ fixes
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and (4,£). Since (3, g) is the unique vertex which is adjacent to (2, g) and (1, g)>
it is fixed by r. By noticing N((3,g)) and ΛΓ((4,^)), we find that r fixes (6,g)
and (2s+5yg) respectively. By our choice of 5, the circuit (2s+5,g) — (4,^)—

(!,£)— (3,£)— (6, £)-(?,£) ----- (2s+4,g)-(2s+5yg) is the unique shortest one
which contains a path (2s+5,g)— (4,#)— (!,£)— (3,£)— (6,#) but does not con-
tain a vertex of type (3, *, *) except (l,g) and (3,^). Hence r fixes all vertices

of the circuit, and τ(v)=v holds for any vertex v of Δ(<§
r). Therefore r fixes

(2z+5, #,-£) (ί=l, 2, -••, j). Hence we have τ(5, Λ?^)=(5, #,-£) (ί=l, 2, •••, s),
because if τ(5, Xjg)= (5, j>), then by the similar argument to the above we have

T (2/+5, Λ?y^)=σ(jcyί)-ι,(2;+5, Λ?, ίr)=(2;+5,jy). Thus again by the similar ar-
gument we have that τ(v)=v holds for any vertex v of Δ(Λ?, #) i= 1 , 2, •••,$).

Hence we have τ=l because of <(̂ , #2, •"> #,>={?.

Lemma 11. The following graph Γ4 ά α connected prime graph satisfying

that AutΓ4 is isomorphic to G and acts semίregularly on VΓ4 and that just \G\
vertices have valency 3 with type (4,4,4), just \G\ vertices have valency 3 with

type (4, 4, 6) and every other vertex has valency 4:

FΓ4 = FΓ3U {(i',g): i = 2, 3, -,

5Γ4 = EΓ3\J{[(i,g), ψ,g)]: 2<ίi<^2s+5,gεΞG} U {[(1̂ ), (5', g)],

l(2',g), &',g)], [(V ̂ g), (3' g)], 1(2', g), (S',g)]9

[(3',^), ( 6 ' 9 g ) ] , [(4',*), (5',£)], [(4',^), ((2,+5)',^)]:^eG}

U W,g), ((t+iy, g)]: 6^i^2s+4, g^G} U
{[((2^+4)',^), ((21+5)', xig)]ι \^ί^sy ^eG},

where Γ3 is the graph defined in Lemma 10.

Proof. Since the proof is similar to that of Lemma 10, we describe it briefly.

Let g be any element in G and Δ(^) be a subgraph of Γ4 induced by {(i,g),
(j',g): l^/5*2ί+5, 2^y^2ί+5}. Since Δ(#) is connected and < ,̂ x2, •• , ŝ)

>

— G, Γ4 is connected. Since [(1,^), (3,^)] is not contained in a 4-cycle, Γ4 is
prime by Lemma 4. It is obvious that (5,^) has valency 3 with type (4, 4, 4),
(4',#) has valency 3 with type (4, 4, 6), and any (i,g) (*'Φ5) and any (j',g) OΦ4)
have valency 4. Now for any AeG, let us define a bijection σh: FΓ4-> J^Γ4 by

σh(i, g)=(iy gh) and σh(i', g)=(i', gh). Then σh is an automorphism of Γ4, and we
have Aut Γ4^ {σh: h^G}^G.

Let σ be any automorphism of Γ4. From now on we are to show σ=σh for
some h&G. For an element £ in G there is an element g' in G with σ(5,g)=
(5,^'). Let us set h=g~ lgr and τ=σϊ1 σ, then we have <rh(5,g)=(5Jg') and

τe(Aut Γ4)(5^). If τ=l is shown, then Aut Γ4={crA: h^G} holds, and Aut Γ4

acts semiregularly on FT4. First we can easily find that r fixes (1,^), (2,#),

(3,ί), (4,ί), (5,^), (6,^), (2s+5,g), (2',g), (3',^), (4',^), (5',^), (6',g) and((2ί+
5)', g) because of τ(5, g)=(5, g). Next by our choice of S, the circuit (2? +5, g)—
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14, and so σ fixes 13 which is adjacent to 14. Since the adjacent vertices of 13
are 1, 2, 3, 4 and 14 and since N(l), N(2)9 N(3) and ΛΓ(4) have just zero, four,
two and three edges respectively, σ fixes 1, 2, 3 and 4. Therefore F(ΛΓ(1))Π

F(ΛΓ(2))={5, 13} follows σ(5)=5 and so F(ΛΓ(1))Π V(N(3))={5, 7, 13} fol-
lows σ(7)=7. Hence σ fixes 8 and 12, because V(N(3))Π V(N(4))={7, 8, 13}
and F0/V(l))n F(ΛΓ(4))={7, 12, 13} respectively. By noticing N(l) and ΛΓ(4),
we find that σ fixes 10 and 11 respectively. Then V(N(5))={1, 2, 3, 6, 11}
follows <r(6)=6, and so σ fixes the rest 9. Thus we have σ=l.

REMARK 2. In §3 we often use similar arguments to those in Lemmas 7

and 9.

3. Proof of Theorem 1

Let G be a finite group. If G=l, Theorem 1 holds obivously by [2] or [3].

Hence hereafter we assume G>1, and we are to complete the proof of Theorem
1 by Propositions 1, 2, ••• and 8. Let S={x19 x2, •••, #s} be a subset of G whose
number of elements is minimum in all subsets which generate G.

Lemma 10. The following graph Γ3 is a connected prime graph satisfying

that Aut Γ3 is isomorphίc to G and acts semiregularly on VT3 and that just \ G \
vertices have valency 2 with type (4) and every other vertex has valency 3 :

VT3 = {(i,£): ί = 1, 2, -.., 2s+5, gtΞG} ,

), (2,£)], [(!,£), (3, *)], [(!,£), (4,£)], [(2,g), (3,g)],

), (5,*)], [(3,*), (6,*)], [(4,*), (S,g)]9 [(4,£), (2s+5,g)]:

} U {[(ί,̂ ), (*+!,£)]: 6^ί^2ί+4,^eG} U

Proof. Let ̂  be any element in G and Δ (g) be a subgraph of Γ3 induced

by (i,g): l^i^2s+5}. Then Δ(^) is connected. Since ζxl9 x2> — , #S>=G and
since there exists an edge of which one end is in Δ(#) and the other end is in

Δ(#, £) for ί"=l, 2, •••, s, Γ3 is connected. Since [(1, £), (3, ̂ )] is not contained in
a 4-cycle, Γ3 is prime by Lemma 4. It is obvious that (5, g) has valency 2 with

type (4) and (j,g) (jΦ5) has valency 3. Now for any AeG, let us define a bijec-
tion σΛ: VΓ3-*VΓ3 by <rh(i,g)=(i,gh). Then σA is an automorphism of Γ3, and
we have Aut Γ3^ {σk: h^G}^G.

Let σ be any automorphism of Γ3. From now on we are to show σ=σh for

some AeG. For an element £ in G there is an element g' in G with σ(5,£)=

(5, g'). Let us set h=g~1 g' and τ=σΐί<r9 then we have σA(5, g)=(5, ̂ ') and re
(Aut Γ3)(5ι£). If τ= 1 is shown, then Aut T3= {σh : Λe G} holds, and Aut Γ3 acts
semiregularly on VT3. Now the adjacent vertices of (5,£) are (2,^) and (4,#)
which have types (3, *, *) and (4, *, *) respectively. Hence r fixes both of them.
Therefore r fixes (1, g), because it is the unique vertex which is adjacent to (2, g)
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(4, £)-(!, g) - (3, g) - (6,g) - (7, g) - (8, g) ----- (2»+4, g)-(2s+5, g) is the
unique shortest one which contains a path (2s-\-5,g)—(4,g)—(l,g)—(3,g)—(6,g)
but contains neither a vertex of valency 3 nor a vertex of type (3, *, *, *, *, *)
except (1,£) and (3,^). Hence r fixes all vertices of the circuit, and τ(v)=v
holds for any vertex v of Δ(g). Therefore since T fixes (7, xlg), (9, #2£),
(11, #3£), ... and (2ί+5, #,£), τ(w)=» holds for any vertex v of Δ (x{ g) (»'=!, 2,
•• ,ί) by the similar argument to the above. Hence we have τ=l because of
<*!, x2, —, xsy=G.

Lemma 12. The following graph Γ5 is a connected prime graph satisfying
that Aut Γs w isomorphic to G and acts semiregularly on FT5 and that just \ G \
vertices have valency 4 with type (4, 4, 4, 4, 4, 5) and every other vertex has valency
5:

FΓ5 = FΓ4U {(lg), (Γ,g): i = 2, 3, »

EΓ5 = £Γ4U {[(i,g), (7,g)], [(i',g), (Γ,g)], [(?,£), (?

2gi£2s+S,gf=Gl U {[_(!,,?), (5̂ )], [(2,g),

[&*), (5) ] , [(2',̂ ), (3',̂ )], [(2',* )̂, (3',

', g}} U

U {[(2ι+4,̂ ), (2ί+5,

[((27+47,*), ((

where Γ4 is the graph defined in Lemma 11.

Proof. Since the proof is similar to that of Lemma 10, we describe it briefly.

Let g be any element in G and Δ(#) be a subgraph of Γ5 induced by {(/, g), (/', g)y

( j , g ) , (j',g) l^ί^2ί+5, 2^j^2s+5}. Since Δ(^) is connected and ζxl9x2,
•••> x»)=G9 Γ5 is connected. Since [(1,^), (3,#)] is not contained in a 4-cycle,

Γ5 is prime by Lemma 4. It is clear that (5', #) has valency 4 with type

(4, 4, 4, 4, 4, 5) and that any (/, g), any (i'9 g), any (/, g) and any (jf, g) (j Φ5) have
valency 5. Now for any h&G, let us define a bijection σA : FΓ5~^ VT5 by σA(ί, ̂ )

=(ί, gh), σh(ir, g)=(i', gh\ σh(t, g)=(ι, gh) and σ^t7, j?)=(?, £*)• Then σA is an
automorphism of Γ5, and we have Aut Γ5^ {σh: h^G} ^G.

Let σ be any automorphism of Γ5. From now on we are to show σ=σh for

some h&G. For an element g in G there is an element g' in G with σ(5', g)=

(5',£'). Let us set h=g~l g' and τ=σi"1σ, then we have σA(5/,^)=(5/,^r/) and

T e (Aut Γ5)(ptf > . If τ= 1 is shown, then Aut Γ5= {σh : Λ e G} holds, and Aut Γ5

acts semiregularly on FΓ5. Let A be the set of vertices of valency 4, B be the

set of vertices of type (3, *, *, •••,*) and C be the set of vertices which are
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adjacent to some vertex in B. Then A= {(S7, g):g^G}> B= {(1, g), (2, g), (3, g) :

gtΞG} and C={(l,g), (2,g), (2,g), (2\^)>(3^),(3^),(3^)>(4,^5,ί),(£^),

(5',£)> (6,£): g(ΞG} hold. Now the adjacent vertices of (5', g) are (2', g), (4', 5),

(fΓ,£) and (5',£) which are at distances two, three, one and one from B respec-

tively. Moreover the types of (5,g) and (5',£) are (4, 4, •••, 4) and (4, 4, •••, 4, 5)

respectively. Hence we can easily find that r fixes (l,g)9 (*',£), (*',£)> (*>#) anc*

(ί77, ?) (2=2, 3, 4, 5, 6, 2*+5). Next by our choice of S, the circuit (2s+59g)—

(*>g)-(l>g)-(3,g)-(6,g)-(7,g)-(*,g) ----- (2s+4,*)-(2,+5,*) is the
unique shortest one which contains a path (2ί+5, £)— (4, #) — (1, #)— (3, £)— (6, £)
but contains neither a vertex in A nor a vertex in B except (1,£) and (3, g) nor a
vertex in C except (6,g) and (4,£). Hence r fixes all vertices of the circuit, and

τ(v)=v holds for any vertex v of Δ(^). Therefore since r fixes (7, x1g), (9, x2g)>
(11, #3£), ••• and(2ί+5, xsg)y τ(v) =v holds for any vertex z> of Δ(Λ?, ̂ ) (ί=l,2, •••,
ί) by the similar argument to the above. Hence we have τ= 1 because of <X, Λ:2>

Lemma 13. Let m0 be max { |G|, 3} and iQ be an integer with 0
Suppose that Theorem 1 holds for n=mQ-\-i0. Then Theorem 1 holds for n=mQ-\-

Ό+3/(/=0, 1,2,-..).

Proof. Let M be any positive integer. Then there exist different connected

(m0+/0)-regular graphs Γj, Γ2, •••, ΓM each of which has £ vertices a19 <X2, ••-, ̂
with AutΓf^AutΓ^^...^^*?. By Lemma 8 and Corollary 1 there exists a

connected 3 -regular graph Γ0 which is asymmetric and prime and which is not a
prime factor of Γf (/=l,2, .. ,M). Hence by Lemma 6 we get different con-
nected (w0+/0+3)-regular graphs Π^ Π2, ••-, ΠM each of which has t vertices

<*n «2> —i «/ with Aut Π^AutΠ..̂ ...̂ ^ where Πt.=Γ0xΓ,.(l^^M). If
we continue the above argument, then for each j=2, 3, 4, ••• we get different con-
nected (m0+/0+3/)-regular graphs Ax, Δ2, " ,ΔM each of which has t vertices
a19 α2, ••-, at with Aut Δl =(AutΔ, )ΛlΛ2...rt,^G. Since M is any positive integer,
we complete the proof.

Proposition 1. Theorem 1 holds in the case where \G\^4 and n= 0 (mod 3).

Proof. Let m be an integer with \G\^*m<^\G\+2 and m=0 (mod 3).
By Lemma 13 in order to prove Proposition 1, it is sufficient to prove it for
n— m. Let us set d=m/3. By Lemma 8 there exist non-isomorphic connected
3-regular graphs Γ\, Γ2, •••, Td,1 such that they are asymmetric, hamiltonian and
prime and the girth of every Γt is at least 4 and | VTd_1 \ is divisible by (2m— 1),
where the number of choices of {Γ\, Γ2, •••, Γ }̂ is infinite. Let us set Γ0=
Γ^xΓjjX ••• XΓ r f_i. Then by Lemmas 3, 5 and Theorem 2, Γ0 is a hamiltonian
(m— 3)-regular asymmetric graph with the girth of Γ0^4 and 2(m— 1) | VTQ\ .
Let us denote FΓ0={1, 2, •••, q}y and we may assume that 1— 2— 3 — --- q— 1
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is a hamiltonian circuit of Γ0.
On the other hand by Lemma 10, there exists a connected prime graph

Γd satisfying that AutΓrf is isomorphic to G and acts semiregularly on VΓd

and that just | G \ vertices have valency 2 with type (4) and every other vertex
has valency 3. Let / be a bijection from G to the set of vertices of valency 2 in
VTd. We define a graph Π0 as follows:

FΠ0 - F(Γ0XΓ,) U {vig: ί = 1, 2, -, q\(m-\\g^G} U

{#!, α2, •• ,«<?/(w-ι)},

EΠQ = E(ΓQxΓd) U {K, (j,
(ί-l)(w
U {[«„»

Now we divide our argument into three cases: m=|G| , w=|G|+l and m=
\G\+2.

First let us suppose m= \G\. Obviously Π0 is a connected w-regular
graph. We show that AutΠ0 is isomorphic to G and fixes al9 a2, •••, aq/(m-ι).
By Lemma 6,

Aut(Γ0xΓrf) = {φ: φeAutΓJ ^AutΓ^G,

where φ is a permutation on F(Γ0xΓrf) with Φ(w,y)~(w> Φ(y)) Now we ex-
tend φ to a permutation <$ on FΠ0 as follows:

φ(v) for ^

= vir(g) (l^i^ί/(ifi~l),^eG) , where r =/-

Then <^ is an automorphism of Π0, and we have

Let σ be any automorphism of Π0. We want to show σ=$ for some φ e Aut Γrf.
For any vig(l^i^q/(m~ l),^eG) there exist just m— 1 incident edges e such
that e is contained in a 3-cycle, because (1, /(#))— (2, /(#))— (3,
(q,f(g))— (l>f(g)) is a hamiltonian circuit of the subgraph induced by
l^j^^} and αf is not contained in a 3-cycle. Conversely any vertex other than
vig(\^i^ql(m—V)^g^G) has not the same property, because the girth of Γ0 is
at least 4 and the type of f ( g ) (g^G) is (4) in iγ Hence σ fixes {vig: l^i^q/
(m— l),£eG} as a set. Therefore since σ fixes F(Γ0xΓ(/) as a set, the restric-
tion of σ to F(Γ0 X Γrf) is an automorphism of Γ0 X Γrf, that is, φ for some φ e
Aut iγ Hence we find σ=$ easily. So Aut Π0= {<f> : φ e Aut Γ }̂ holds. Thus
Π0 is a connected wz-regular graph of which the automorphism group is isomorphic

to G and fixes aί9 a2, ••
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Next when m=\G\ + l, |G|+2, we define graphs Πj, Π2 respectively as
follows:

VΠ, = VΠ0 ,

EΠ, =

FΠ2 -

EU2 = £Π0U {[*,•-!, αj: 2^ι ̂ /(m-l)} U

Then by the similar argument to that for Π0, we have that Π, is a connected
w-regular graph of which the automorphism group is isomorphic to G and fixes
<*ι,α2, s <*,/(„_!)(*= 1,2).

Since the number of choices of {Γly Γ2> *"> Γ</-ι} *s infinite, the one of
choices of Γ0 is infinite. In particular for an arbitrary positive integer t, the
number of choices of q(=\VT0\) with q/(m— l)^t is also infinite. Hence
Theorem 1 holds in the case where | G | ̂ 4 and w=0 (mod 3).

Proposition 2. Theorem 1 holds in the case where \ G \ ̂  5 and n=l (mod 3).

Proof. Since the proof is similar to that of Proposition 1, we describe it
briefly. Let m be an integer with |G|^m^|G|+2 and m=l (mod 3). By
Lemma 13 in order to prove Proposition 2, it is sufficient to prove it for n=m.
Let us set d=(m—l)l3. By the same argument to the first part of the proof of
Proposition 1, we get infinitely many hamiltonian (m— 4)-regular asymmetric
graphs Γ0 with the girth of Γ0^4 and 2(m— 1)|| 7Γ0| . Let us denote FΓ0=
{1,2, •••,?}, and we may assume that 1— 2— 3— •••— q— 1 is a hamiltonian
circuit of Γ0.

On the other hand by Lemma 11, there exists a connected prime graph
Γrf satisfying that Aut Γ^ is isomorphic to G and acts semiregularly on VTd

and that just |G| vertices have valency 3 with type (4, 4, 4), just |G| vertices
have valency 3 with type (4, 4, 6) and every other vertex has valency 4. Let
/! and /2 be bijections from G to the set of vertices of type (4, 4, 4) and to the
set of vertices of type (4, 4, 6) respectively. We define a graph Π0 as follows:

) U {*,„ «,,: i=l, 2, .-, }/(m-l), g^G} U

te ,/3, :l=g*^?/(™-l)},

- E(Γ0xΓd) U {[*„, O',/̂ ))], [uig, (

Now we divide our argument into three cases: m—\G\, m=|G|+l and m=

First let us suppose m=\G\. Obviously Π0 is a connected w-regular
graph. By Lemma 6,
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= {φ: φeAut Γrf}

where φ is a permutation on V(T0xΓd) with φ(w,y)—(w, φ(y)). Now we ex-
tended φ to a permutation φ on FΉ0 as follows:

φ» = φ» for ϊ>eF(Γ0xΓrf),

<£(*>.>) = ̂  τ(ί) (l^ί'^?/(»ί-l), £<Ξ<3), where r =/ΓJ φ/u

φ*(«fί) = uif(g) (l^i^ί/(m-l), £eG), where p ̂ /F1 φ/2>

By the similar argument to that in the proof of Proposition 1, we have Aut Π0=
{φ : φ e Aut Γ</} ̂  Aut Td ̂  G. Thus Π0 is a connected w-regular graph of which

the automorphism group is isomorphic to G and fixes al9 cc2y ••*, #4/(«-ι)> A> A,

••', βq/(m-ϊ)

Next when m=|G|+l, |G|+2, we define graphs Πlf Π2 respectively as
follows:

i = EΠ0(J {[a2i^ a2il [β2i^ β2i]: l^^

FΠ2 = 7Π0,

EU2 = £Π0U {[«,-!, αj, D8,-!, A]: 2^ί:gϊ/(m-l)} U

Then by the similar argument to that for Π0, we have that Πf is a connected
Tw-regular graph of which the automorphism group is isomorphic to G and fixes

aίy <X2, ••«, α^Cw-i), βί9 β2, •••, βqf(m-l) (Z'=l» 2).

By the similar argument to that in the last part of the proof of Proposition
1, we complete the one of Proposition 2.

Proposition 3. Theorem 1 holds in the case where \G\ ^6 and n=2 (mod

3).

Proof. Since the proof is almost same as that of Proposition 1 except using
Lemma 12 in place of Lemma 10, we omit it.

REMARK 3. The following Propositions 4, 5, 6, 7 and 8 show that The-

orem 1 holds for the cases (i) | G \ =5, (ii) G is a cyclic group with | G\ =4, (iϋ)
G is an abelian group of type (2,2), (iv) |G|=3 and (v) \G\=2 respectively.
Though in each proof of the propositions we show for an arbitrary integer
t that the existence of a connected ^-regular graph Γ satisfying AutΓ=

(AutΓ)rtlΛ2...Λ/^G for some t vertices a19 a2, •••, at of Γ, the existence of an
infinite number of such graphs is found by the argument of each proof.

Proposition 4. // |G|=5, Theorem 1 holds.
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Proof. First let us suppose n=5. Let {ak} be a sequence defined by ak=

(k-\- I)kj2 and m be an integer with 2m^max {4, 2t}. Let us set

^m} U {02J, B = {02*: l^k^m-1} .

Let Π be a graph defined by

VU = {ah: h^A} U {(/,;): i €={1, 2, 3, -, *2J-Λ j = 1, 2, -, 5} ,

= {[αlf(2,j)]: l£/£5> U {[«,,(*- U): Λe^-{l>, l£j£5}U

fcΛ (*,-!,.;)], IKΛ, te+U)], [K j), (*ί+ι+ι,ΛL
[(*„./), K >y+l)]: ^efi, 1^5} (put j+l=l if j+1 = 6)

U {[(i>j), (i—l,j): both ί and i—1 are elements in

Then Π is a connected graph in which every ah(h^A) and every (/,/) (i
l^j^S) have valency 5 and every other vertex has valency 2. Let us denote

X=iah:h(=A}, Y=i(i,j): ie{l, 2, 3, •••, a2m}-A, l^ ^S}, ^={(1, j): ίe
ΰ, l^ ^S} and Y^Y-Y,.

Let Δ be a graph defined by

Then Δ is a connected graph in which v10 has valency 1, VQ has valency 2 and

every other vertex has valency 5. We remark that 3(^0>
 vιo)~ 4 and that any

vertex of Δ other than z;10 is contained in a 3 -cycle. Furthermore we can easily

find AutΔ= 1.
Let Γ be a graph which is attached for each ίe{l, 2, 3, •••, a2m}— (A\JB)

and each/=l, 2, ••-, 5 a graph isomorphic with Δ to Π so as to correspond the

vertex v0 of Δ to the vertex (/, j) of Π and the vertex v1Q of Δ to the vertex (ί, j-\- 1)
of Π (ρutj+l = l if j+l=6). Then Γ is a connected 5-regular graph, and we

are to show that Aut Γ has order 5 and fixes all ah^X. Let us denote Z=VΓ

— (X (J Y) Now let T be an automorphism of Π defined by

= ah for ah^X ,

=6 for i , )e7.

Then T has order 5 and is uniquely extended to an automorphism τ of Γ. Of
course |τ | =5 and Aut Γ^<f> hold.

Let σ be any automorphism of Γ. Since in Γ the type of ah^X is (5, 5, 5,
5, 5, *, *, *, *, *) (h=l) or (6, 6, 6, 6, 6, *, *, *, *, *) (AΦ 1) and the type of any

vertex in Z\J Y2 is (3, *,*,•••,*) and the type of any vertex in Yl is different
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from the above types, σ fixes X, Z U Y2 and Y1 as a set respectively. Therefore

σ fixes all ah^X, because 3(αΛ, Y1)^d(aky YI) necessarily holds for hήpk^A.
Hence for each *e{l, 2, 3, •••, a2m}— A, σ fixes {(ί,j): l^j'^5} as a set. Hence

we can find σe<f)>. Thus Proposition 4 holds for n=5.
On the other hand, Proposition 4 holds for w=6, 7 by Propositions 1, 2

respectively. Hence we complete the proof by Lemma 13.

Proposition 5. If G is a cyclic group with | G | =4, Theorem 1 holds.

Proof. First let us suppose w=4. Let {ak} be a sequence defined by ak=

(k-\-l)k/2 and m be an integer with 3m+2^max {5, 2t}. Let us set

{a3m+1, a3m+2}, B = fe^

Let Π be a graph defined by

FΠ = {ah: h<=A} U {(*,;): ie{l, 2, 3, -, a3m+2}-A,j = 1, 2, 3, 4},

^y^4} U {[(i,j), (ί-l,j): both
x and i— 1 are elements in {1, 2, 3, •••, a3m+2}— (A\JB), l<^j ̂

Then Π is a connected graph in which every ah (h^A) and every

l<^j<^4) have valency 4 and every other vertex has valency 2. Let us denote

e{l, 2, 3, -.., ^+2}~Λ l^j'^4}, ^={(1, j):
and F2=y-ylβ

Let Δ be a graph defined by

, V3], [V2, V4], [V2y VQ],

^lθ], [VS, V7], [V59 V9],

Then Δ is a connected graph in which VQ and ^12 have valency 1 and every
other vertex has valency 4. We remark that d(v0yV12)=4 and that any vertex

of Δ other than v0 and v12 is contained in a 3-cycle. Furthermore we can

easily find Aut Δ= 1.

Let Γ be a graph which is attached for each i e {1, 2, 3, •••, ^3w,+2}~(^ U B)
and each j=l, 2, 3, 4 a graph isomorphίc with Δ to Π so as to correspond the
vertex v0 of Δ to the vertex (i,j) of Π and the vertex v12 of Δ to the vertex

(ij+l) of Π (ρutj + 1 — 1 if y+l=5). Then Γ is a connected 4-regular graph,

and we are to show that Aut Γ is a cyclic group of order 4 and fixes all ah^X.

Let us denote Z—VΓ—(X\J Y). Now let r be an automorphism of Π defined

by
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τah = ak for
=l if>+l=5) for (i,j)<=Y.

Then T has order 4 and is uniquely extended to an automorphism *r of Γ. Of
course |τ| =4 and Aut Γ^<>> holds.

Let σ be any automorphism of Γ. Since in Γ the type of any ah^X is
(6, 6, 6, 6, *, *) and the type of any vertex in Y1 is not (6, 6, 6, 6, *, *) and since
{ut=VT: d(u, C)^2 holds for any 3-cycle C} =X U Y1 holds, σ fixes X, Fx and
ZU Y2 as a set respectively. Therefore σ fixes all αAeX, because Q(ahy Yι)Φ
3(αΛ, YΊ) necessarily holds for hήpk^A. Hence for each ie {1, 2, 3, •••, «3w,+2}
— ̂ 4, σ fixes {(ί,j): l^S/^4} as a set. Hence we can find σe<τ*>. Thus
Proposition 5 holds for n=4.

Next let us suppose n=5. Let Γ be a graph which is attached for each
vertex u of the above Γ a graph isomorphic with Σ in Lemma 9 to Γ so as to
correspond the vertex of valency one of 2 to u of Γ. So we remark that the
set of cut-vertices of Γ is FΓ. Hence any automorphism of Γ induces an
automorphism of Γ. Conversely any automorphism of Γ is uniquely extended
to an automorphism of Γ. Hence Aut Γ is a cyclic group of order 4 and fixes
all ah^X. Thus Proposition 5 holds for n—5.

On the other hand, Proposition 5 holds for n=6 by Proposition 1. Hence
we complete the proof by Lemma 13.

Proposition 6. If G is an abelian group of type (2,2), Theorem 1 holds.

Proof. First let us suppose n=4. Let {ak}y my Ay B, Π, Xy Y, YI and
Y2 be the same as in Proposition 5. Let Δ be a garph defined by

= {[vl9 vs], [v5, v6], |>6, v2], [v2, ϋ4], [04, uj, [ι>β, 07], [v7 yv3],

[»8> V& K V7], K, uj, [V6, V9], [ϋβ, Vj, [V7> Vβ]f [VΛ, V9]}.

Then Δ is a connected graph in which vly v2y v3 and v± have valency 2 and every
other vertex has valency 4. We can easily find that Aut Δ is an abelian group

of type (2,2), where

μ =

Let Γ be a graph which is attached for each ie {1, 2, 3, •••, aZm+2} —(A\JB)
a graph isomorphic with Δ to Π so as to correspond vertices vly v29 v3 and v4 of Δ
to vertices (/, 1), (/, 2), (/, 3) and (/, 4) of Π respectively. Then Γ is a connected

4-regular graph. Let us denote Z=VT—(X\JY). Now μ and η uniquely
determine automorphisms jz and η of Γ respectively, where

•μ (ah) = αA> η (ah) = ah for ah e X ,
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Tt(i, 1) = (i, 3), 71(1, 3) = (ί, 1), μ(i, 2) = (ί, 4), 71(1, 4) = (i, 2) ,

η(i, 1) = (*, 2), i j f t 2) = (i, 1), η(i, 3) = (i, 4), q(i, 4) == (ί, 3)

for ie{l, 2, 3, •••, a3m+2}—A. We want to show that AutΓ is equal to an
abelian group </z, ^> of type (2, 2). Let σ be any automorphism of Γ. Since in
Γ {we FΓ: the type of u is (3, 3, 5, 5, 6, 6)}=Jί and {we FΓ: the type of « is
(6, *, *, *, *, *)} = Y! hold, σ fixes X, Yx and Z U Y2 as a set respectively. There-
fore σ fixes all akGX9 because d(ak, Yι)Φ9(βτ*, Yj) necessarily holds for λΦfte
A. Hence for each ίe{l, 2, 3, •••, a3m+2}—A, σ fixes {(i,j): l^j^4} as a set.
Hence we can find σe<j&, ^>. Thus Proposition 6 holds for n=4.

Now Proposition 6 holds for n=5 by the similar argument to that in the
rear part of the proof of Proposition 5. Furthermore Proposition 6 holds for
n=6 by Proposition 1. Hence we complete the proof by Lemma 13.

Proposition 7. If \G\ =3, theorem 1 holds.

Proof. First let us suppose n=3. Let {ak}, m, A and B be the same as
in Proposition 4. Let Π be a graph defined by

7Π = {ah: h^A} U {(/,/): ί€={l, 2, 3, •-, a2m}-AJ = 1, 2, 3},

i[aly(2J)]: lsS/£3> U {[αΛ, (A-l,j)]: *e^-{l}f l^j^3> U

y l^y ̂ 3} U {[(ί,j), (i— l>j)]: both ί and /— -1 are elements

Then Π is a connected graph in which every ah (h^A) and every (i,j) (i
l^y^3) have valency 3 and every other vertex has valency 2. Let us denote
X={ak: ht=A}> Y={(iJ): ie{l, 2, 3, -, a2m}-A, lgj£3}9 Y1=i(iJ): ie
JS, 1 ;̂ ̂ 3} and YX=Y- Y2.

Let Δ be a graph defined by

EΔ =

: * = 0, 1, 2} U

Then Δ is a connected graph in which vly v7 and v13 have valency 1 and every
other vertex has valency 3. We can easily find that Aut Δ is a cyclic group

of order 3, where

5

= Π («*!
4 = 0

Let Γ be a graph which is attached for each / e {1, 2, 3, •••, a2m} — (A U -B) a
graph isomorphic with Δ to Π so as to correspond vertices vly v7 and v13 of Δ to
vertices (i, 1), (/, 2) and (/, 3) of Π respectively. Then Γ is a connected 3-regular
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graph. Let us denote Z=VT—(X U F). Now η uniquely determines an auto-
morphism TJ of Γ, where

η (ah) = ah for ah^X ,

3j(ί, l)=(f, 2), 9(i, 2)=(ι, 3), 9(1, 3)=(ι, 1) for ίe{l, 2, 3, -, *2J-A We
want to show that Aut Γ is equal to a cyclic group <?/> of order 3. Let σ be any
automorphism of Γ. Since in Γ {u^VT: Q(uy C)^3 holds for any 3-cycle C}
=ZU F! and {z/eFΓ: the type of u is (8, 8, 8)}=X hold, σ fixes <ϊ, Fx and
ZU F2 as a set respectively. Therefore σ fixes all αΛe.XΓ, because d(ah, F^Φ
9(αΛ, Fj) necessarily holds for Aφ&eA Hence for each ie {1, 2, 3, •••, tf2J —
^4, σ fixes {(ί, 1), (i, 2), (i, 3)} as a set. Hence we can find σe<^>. Thus Pro-
position 7 holds for #=3.

Next let us suppose n=4. Let {ak}, m, A and B be the same things as in
Proposition 5. Let Π be a graph defined by

VΠ = {ah: h^A} U {(i,j): i e {1, 2, 3, -, a3m+2}-AJ = 1, 2, 3} U

= {K, (2, 1)], [a,, (2, 2)], [al9 (2, 3)], [αι, (3, 4)]} U {[ah, (A-l, 1)],
K, (A-l, 2)], [αA, (A-l, 3)], [αA, (δA, 4)]: Ae^-{l}, bh -
max {ieE: έ<A}} U {[(#/, 4), (αy_3, 4)]: both #y and ay_3 are

elements in B} U {[(<W), (βf-1,./)], [(«/, j), K+l,.;)],
K^,Λ, (^ι+l,j)], [fa,;'), K+2+l,y)]: fl,eJB, 1^;^3} U
{[(ί,y), (i— 1, j)]: both i and /—I are elements in

Then Π is a connected graph in which every ah(h^A) and every (/,j)
l^J ' ̂ 4) have valency 4 and every other vertex has valency 2. Let us denote
X={ah: h^A}, Y^WJ): iϊΞB, 1^;^3}, Fa={(i,4): ίeB}, F3={(ί,y): ̂
{1,2,3, -,a3m+2}-(A\jB)9 lgj£3} and F=F1U F2U F,.

Let Δ be the same as in Proposition 5. Let Γ be a graph which is attached
for each *'ε{l, 2, 3, •••, a3m+2}— (A\JB) and each j=l, 2,3 a graph isomorphic
with Δ to Π so as to correspond the vertex v0 of Δ to the vertex (ί,j) of Π and
the vertex vl2 of Δ to the vertex (i,j+l) of Π (put j+ 1 = 1 if j+l=4). Then Γ
is a connected 4-regular graph, and we are to show that Aut Γ has order 3 and
fixes all ah^X. Let us denote Z=VT— (X\J Y). Now let r be an automo-
rphism of Π defined by

τ(ak) = ah for aht=X ,

τ(ί,4) = (ί,4) for (ί,4)eF2,

τ(ί,Λ = (i, J+l) (put j+1 - 1 if y+1 = 4) for (ι,j)e FXU F3

Then T has order 3 and is uniquely extended to an automorphism T of Γ, Of
course |f |=3 and AutΓ^<τ> holds.
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Let σ be any automorphism of Γ. Since in Γ

{u<=VΓ: 8(ιι, C)^3 holds for any 3-cycle C} = F2,

: d(u, C) = 0 holds for some 3-cycle C} = Z,

: Q(u, C) = 1 holds for some 3-cycle C and 8(ιι, C")^ 1
holds for any 3-cycle C"} = Y3,

{uZΞVΓ: 8(n, C) = 2 holds for some 3-cycle C and d(u, C")^2
holds for any 3-cycle C"} =X (J FI and

{utΞVΓ: d(u, C) = 2 holds for some 3-cycle C, 9(w, C")^2 holds
for any 3-cycle C' and any w e V(N(u)) is adjacent to a vertex
on some 3-cycle} = Y19

σ fixes Xy Yv Y2, Y3 and Z as a set respectively. Let ΓΓ be a subgraph induced
by -XΊJ F! U F3. Then in Π' 3(αΛ, yjΦθO**, YI) necessarily holds for &Φ&e
^4. Therefore in Γ σ fixes all ah^Xy and σ fixes all (i, 4)e Y2. Hence for each
ie {1, 2, 3, —, ̂ 3w+2} —^4, <r fixes {(/, 1), (i, 2), (i, 3)} as a set. Hence we can find
σe<τ >. Thus Proposition 7 holds for n=4.

Now Proposition 7 holds for n=5 by the similar argument to that in the
rear part of the proof of Proposition 5. Hence we complete the proof by
Lemma 13.

Proposition 8. If \G\ =2, Theorem 1 holds.

Proof. First let us suppose n=3. Let m be an odd integer with w^max
{5, t+l}. Let Γ be a graph defined by

FΓ = {(1, 1), (m, 1), (m-1, 1), («-l, 2)} U {(/,;): i = 2, 3, -, m-2,
j=l,2,3},

£Γ - {[(1, 1), K 1)], [(1, 1), (2, 1)], [(1, 1), (2, 2)], [(m, 1), (m-1, 1)],
[(m, 1), (nι-1, 2)], [(m-1, 1), (m-1, 2)], [(m-2, 1), (m-1, 1)],
[(m-2, 2), (m-1, 2)]} U {[(ί,j), (i+l,j)]: 2^ί^m-3,j=l, 2} U

ί[ft 1)> ft 3)], [(i, 2), (i, 3)]: 2^/^m-2} U {[(/, 3),(i+l, 3)]:
i = 2, 4, 6, •••, m—1, m—3}.

Then Γ is a connected 3-regular graph. Furthermore we can find that Aut Γ is
wi-l

<τ>, where r is a tranposition Π ((&> 1), (k> 2)). Thus Proposition 8 holds for
^ * = 2n=ό.
Next let us suppose n~4. In this case we modify the proof with the case

n=4 of Proposition 6, that is, we alter Δ in the place as follows:

VΔ = {vl9v2, — ,t>7},

EΔ = {[vl9 v5], [v5, v2]y [v2, v7]y [v7J v,]y [ϋ4, ϋ3], [ϋ3, z;6], [»β, vj,
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Then Δ is a connected graph in which vl9 v2, v3 and v4 have valency 2 and every

other vertex has valency 4. Furthermore we have Aut Δ=<^7>, where η=

(vly v2) (̂ 3, v4) (vβ, v7). So by the similar argument to that in the place, we can

easily find that Aut Γ has order 2 and fixes all ah^X.

Now Proposition 8 holds for n=5 by the similar argument to that in the

rear part of the proof of Proposition 5. Hence we complete the proof by

Lemma 13.

REMARK 4. By the proofs of the propositions, we may add "Aut Γ is semi-

regular on FT—/(Aut Γ)" to the conclusion of Theorem 1, where /(AutΓ) is

the set of vertices v satisfying A.utT(v)=v.
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