ALMOST IDENTICAL IMITATIONS OF (3, I)-DIMENSIONAL MANIFOLD PAIRS

Aкio KAWAUCHI
Dedicated to Professor Fujitsugu Hosokawa on his 60th birthday

(Received March10, 1989)

By a 3-manifold M, we mean a compact connected oriented 3-manifold throughout this paper. Let $\partial_{0} M$ be the union of torus components of ∂M and $\partial_{1} M=\partial M-\partial_{0} M$. In the case that $\partial_{1} M=\emptyset$, if Int M has a complete Riemannian structure with constant curvature -1 and with finite volume, then we say that M is hyperbolic and we denote its volume by Vol M. Next we consider the case that $\partial_{1} M \neq \emptyset$. Then the double, $D_{1} M$, of M pasting two copies of M along $\partial_{1} M$ has $\partial_{1} D_{1} M=\emptyset$. If $D_{1} M$ is hyperbolic in the sense stated above, then we say that M is hyperbolic and we define the volume, $\operatorname{Vol} M$, of this M by $\operatorname{Vol} M=\operatorname{Vol} D_{1} M / 2$. In this latter case, M is usually said to be hyperbolic with $\partial_{1} M$ tatally geodesic (cf. [T-1]), but we use this simple terminology throughout this paper. When M is hyperbolic, ∂M has no 2 -sphere components and by Mostow rigidity theorem (cf. [T-2], [T-3]), Vol M is a topological invariant of M. By a 1-manifold in M, we mean a compact smooth 1 -submanifold L of M with $\partial L=L \cap \partial M$ and the pair (M, L) is simply called a (3,1)-manifold pair. A 1 -manifold L in M is called a link if $\partial L=\emptyset$, a tangle if L has no loop components, and a good 1 -manifold if $\left|L \cap S^{2}\right| \geq 3$ for any 2 -sphere component S^{2} of ∂M. A (3,1)-manifold pair (M, L) is also said to be good if L is a good 1manifold in M. In [Kw-1], we defined the notions of imitation, pure imitation and normal imitation for any general manifold pair. In Section 1 we shall define a notion which we call an almost identical imitation $\left(M, L^{*}\right)$ of (M, L), for any good (3,1)-manifold pair (M, L). Roughly speaking, this imitation is a normal imitation with a special property that if $q:\left(M, L^{*}\right) \rightarrow(M, L)$ is the imitaiton map, then $q \mid\left(M, L^{*}-a^{*}\right):\left(M, L^{*}-a^{*}\right) \rightarrow(M, L-a)$ is ∂-relatively homotopic ${ }^{1}$ to a diffeomorphism for any connected components a^{*}, a of L^{*}, L with $q a^{*}=a$. Let P be a polyhedron in a 3 -manifold M. For a regular neighborhood N_{P} of P in M (meeting ∂M regularly), the diffeomorphism type of $E(P, M)=\mathrm{cl}_{M}\left(M-N_{P}\right)$ is uniquely determined by the topological type of the

[^0]pair (M, P) and we call $E(P, M)$ the exterior of P in M. Then our main result of this paper, stated in Theorem 1.1 precisely, asserts the existence of an infinite family of almost identical imitations (M, L^{*}) of every good (3,1)-manifold pair (M, L) such that the exterior $E\left(L^{*}, M\right)$ of L^{*} in M is hyperbolic.

The proof of Theorem 1.1 will be given in Section 5. Several applications to spatial graphs, links and 3-manifolds are given throughout Sections 2-4. In Section 2, we prove the existence of an almost trivial spatial $\tilde{\Gamma}$-graph, for every planar graph $\tilde{\Gamma}$ without vertices of degrees ≤ 1, affirming a conjecture of Simon and Wolcott. In Section 3, we show a construction of a non-trivial fusion band family from a trivial link to a trivial knot, and a construction of a tangle with hyperbolic exterior in any link. In Section 4, we show that if a closed 3-manifold M is obtained from a link L with two or more components by Dehn's surgery, then M is also obtained from a hyperbolic link L^{*}, which is a normal link-imitation of L, by Dehn's surgery with the same surgery coefficient data, and that every 3 -manifold without 2 -sphere boundary component has a hyperbolic 3-manifold as a normal imitation.

This paper is a revised version of a main part of $[\mathbf{K w}-\mathbf{0}]$ and a prelude to the principal theorem of [$\mathbf{K w} \mathbf{w} \mathbf{2}$] where furhter consequences are announced.

1. An almost identical imitation of a good (3,1)-manifold pair. Let $I=[-1,1]$. For a (3,1)-manofold pair (M, L) we call an element $\alpha \in$ Diff $(M, L) \times I)$ a reflection in $(M, L) \times I$ if $\alpha^{2}=1, \alpha(M \times 1)=M \times(-1)$ and $\operatorname{Fix}(\alpha, M \times I)$ is a 3 -manifold. In this case, $\operatorname{Fix}(\alpha,(M, L) \times I)$ is a (3,1)-manifold pair in our sense (See [Kw-1]). We say that a reflection α in $(M, L) \times I$ is standard if $\alpha(x, t)=(x,-t)$ for all $(x, t) \in M \times I$, and normal if $\alpha(x, t)=(x,-t)$ for all $\alpha(x, t) \in \partial(M \times I) \cup U_{L} \times I$, with U_{L} a neighborhood of L in M. A reflection α in $(M, L) \times I$ is said to be isotopically standard if $h \alpha h^{-1}$ is the standard reflection in $(M, L) \times I$ for an $h \in \operatorname{Diff}_{0}((M, L) \times I \text {, rel } \partial((M, L) \times I))^{2}$. For a good (3,1)-manifold pair (M, L) a reflection α in $(M, L) \times I$ is isotopically almost standard if ϕ is isotopically standard in $(M, L-a) \times I$ for each connected component a of L. A smooth embedding ϕ from a (3,1)-manifold pair $\left(M^{*}, L^{*}\right)$ to $(M, L) \times I$ with $\phi\left(M^{*}, L^{*}\right)=\operatorname{Fix}(\alpha,(M, L) \times I)$ is called a reflector of a reflection in $(M, L) \times I$. Let $p_{1}:(M, L) \times I \rightarrow(M, L)$ be the projection to the first factor. In [Kw-1], we defined that $\left(M^{*}, L^{*}\right)$ is an imitation (or a normal imitation, respectively) of (M, L), if there is a reflector $\phi:\left(M^{*}, L^{*}\right) \rightarrow(M, L)$ $\times I$ of a reflection (or normal reflection, respectively) α in $(M, L) \times I$, and the composite $q=p_{1} \phi:\left(M^{*}, L^{*}\right) \rightarrow(M, L)$ is the imitation map.

Definition. A $(3,1)$-manifold pair $\left(M^{*}, L^{*}\right)$ is an almost identical imitation

[^1]of a good $(3,1)$-manifold pair (M, L) if there is a reflector $\phi:\left(M^{*}, L^{*}\right) \rightarrow(M, L)$ $\times I$ of an isotopically almost standard normal reflection α in $(M, L) \times I$, and the composite $q=p_{1} \phi:\left(M^{*}, L^{*}\right) \rightarrow(M, L)$ is the imitation map.

In this definition, $\left(M^{*}, L^{*}\right)$ is also a good $(3,1)$-manifold pair and $q \mid L^{*}$: $L^{*} \rightarrow L$ is a diffeomorphism and $q \mid\left(M^{*}, L^{*}-a^{*}\right):\left(M^{*}, L^{*}-a^{*}\right) \rightarrow(M, L-a)$ is ∂-relatively homotopic to a diffeomorphism. We identify M^{*} with M so that $q \mid \partial M$ is the identity on ∂M. We may write any almost identical imitation of (M, L) as $\left(M, L^{*}\right)$. We state here our main theorem.

Theorem 1.1. For any number $K>0$ and any good (3,1)-manifold pair (M, L) there are a number $K^{+}>K$ and an infinite family of almost identical imitations $\left(M, L^{*}\right)$ of (M, L) such that the exterior $E\left(L^{*}, M\right)$ of L^{*} in M is hyperbolic with $\operatorname{Vol} E\left(L^{*}, M\right)<K^{+}$and $\operatorname{Sup}_{L^{*}} \operatorname{Vol} E\left(L^{*}, M\right)=K^{+}$.
2. An almost identical spatial graph imitation. Let $\left(M^{0}, L\right)$ be a good (3,1)-manifold pair such that ∂M^{0} has at least one 2 -sphere component. For some 2 -sphere components $S_{1}, S_{2}, \cdots, S_{r}$ of ∂M^{0}, let (M_{+}^{0}, L_{+}) be a pair obtained from $\left(M^{0}, L\right)$ by taking a cone over $\left(S_{i}, S_{i} \cap L\right)$ for each i. Then note that M_{+}^{0} is a 3 -manifold and L_{+}is a finite graph which we may consider to be smoothly embedded in M_{+}^{0} except the vertices of degrees ≥ 3. We call this pair $\left(M_{+}^{0}, L_{+}\right)$the spherical completion of $\left(M^{0}, L\right)$ associated with the 2 -spheres S_{1}, S_{2}, \cdots, S_{r}. A graph Γ embedded in a 3 -manifold M is said to be good if (M, Γ) is diffeomorphic to the spherical completion $\left(M_{+}^{0}, L_{+}\right)$of a good $(3,1)$-manifold pair $\left(M^{0}, L\right)$ associated with some 2 -sphere components of ∂M^{0}.

Definition. For good graphs Γ^{*}, Γ in a 3-manifold M the pair $\left(M, \Gamma^{*}\right)$ is an almost identical imitation of the pair (M, Γ) if there are a good (3,1)-manifold pair (M^{0}, L) and some 2 -sphere components $S_{1}, S_{2}, \cdots, S_{r}$ of ∂M^{0} and an almost identical imitation $\left(M^{0}, L^{*}\right)$ of (M^{0}, L) such that the spherical completions $\left(M_{+}^{0}, L_{+}^{*}\right)$ and $\left(M_{+}^{0}, L_{+}\right)$of (M^{0}, L^{*}) and (M^{0}, L) associated with the 2 -spheres $S_{1}, S_{2}, \cdots, S_{r}$ are diffeomorphic to $\left(M, \Gamma^{*}\right)$ and (M, Γ), respectively.

Note that there is a map $q:\left(M, \Gamma^{*}\right) \rightarrow(M, \Gamma)$ uniquely determined by the imitation map $q^{0}:\left(M^{0}, L^{*}\right) \rightarrow\left(M^{0}, L\right)$. We also call this map q the imitation map of the almost identical imitation $\left(M, \Gamma^{*}\right)$ of (M, Γ). Since, in this definition, the exterior $E\left(\Gamma^{*}, M\right)$ of Γ^{*} in M is diffeomorphic to $E\left(L^{*}, M^{0}\right)$, the following theorem follows directly from Theorem 1.1:

Theorem 2.1. For each good graph Γ in a 3-manifold M and a positive number K, there are a number $K^{+}>K$ and an infinite family of almost identical imitations $\left(M, \Gamma^{*}\right)$ of (M, Γ) such that $E\left(\Gamma^{*}, M\right)$ is hyperbolic with $\operatorname{Vol} E\left(\Gamma^{*}, M\right)$ $<K^{+}$and $\operatorname{Sup}_{\Gamma^{*}} \operatorname{Vol} E\left(\Gamma^{*}, M\right)=K^{+}$.

Let $\tilde{\Gamma}$ be a finite graph without vertices of degrees ≤ 1. If a good graph Γ in the 3 -sphere S^{3} is obtained by an embedding of $\tilde{\Gamma}$, then we call this Γ a spatial $\tilde{\Gamma}$-graph. Two spatial $\tilde{\Gamma}$-graphs $\Gamma^{\prime}, \Gamma^{\prime \prime}$ are equivalent if there is an orientation-preserving diffeomorphism $h: S^{3} \rightarrow S^{3}$ with $h\left(\Gamma^{\prime}\right)=\Gamma^{\prime \prime}$. The occurring equivalence classes of spatial $\tilde{\Gamma}$-graphs are called the knot types of spatial Γ-graphs. These knot types were studied by Kinoshita, Suzuki (cf. [Su-1]) as a generalization of the usual knot theory and are now studied in a connection with the synthetic study in molecular chemistry by, for example, Walba [Wa], Simon [Si], Sumners [Sum]. We say that a finite graph in S^{3} is trivial if it is on a 2-sphere smoothly embedded in S^{3}. A spatial $\widetilde{\Gamma}$-graph Γ is said to belong to an almost trivial knot type, if Γ is not trivial but the graph in S^{3} resulting from Γ by removing any open arc is necessarily trivial. Simon and Wolcott (cf. [Si]) conjectured that for every planar graph $\tilde{\Gamma}$ without vertices of degrees ≤ 1, there exists a spatial $\tilde{\Gamma}_{-g r a p h}$ belonging to an almost trivial knot type. Several examples supporting this conjecture were given by Kinoshita [Ki], Suzuki [Su-2], M. Hara(unpublished) and Wolcott [Wo]. Theorem 2.1 solves this conjecture affirmatively. In fact, we have the following stronger result:

Corollary 2.2. For every planar graph $\tilde{\Gamma}$ without vertices of degrees ≤ 1 and any number $K>0$, there are a number $K^{+}>K$ and an infinite family of spatial $\tilde{\Gamma}$ graphs Γ^{*} belonging to infinitely many almost trivial knot types such that $E\left(\Gamma^{*}, S^{3}\right)$ is hyperbolic with $\operatorname{Vol} E\left(\Gamma^{*}, S^{3}\right)<K^{+}$and $\operatorname{Sup}_{\Gamma^{*}} \operatorname{Vol} E\left(\Gamma^{*}, S^{3}\right)=K^{+}$and the quotient group $\bar{\pi}_{1}\left(E\left(\Gamma^{*}, S^{3}\right)\right.$ of $\pi_{1}\left(E\left(\Gamma^{*}, S^{3}\right)\right)$ by the intersection of the derived series of $\pi_{1}\left(E\left(\Gamma^{*}, S^{3}\right)\right.$) is a free group of rank $\beta_{1}\left(\Gamma^{*}\right)$ with a basis represented by meridians of Γ^{*} in S^{3}, where $\beta_{1}\left(\Gamma^{*}\right)$ denotes the first Betti number of Γ^{*}.

Proof. Let Γ be a trivial spatial Γ-graph. By Theorem 2.1, there are a number $K^{+}>K$ and an infinite family of almost identical imitations (S^{3}, Γ^{*}) of (S^{3}, Γ) such that $E\left(\Gamma^{*}, S^{3}\right)$ is hyperbolic with $\operatorname{Vol} E\left(\Gamma^{*}, S^{3}\right)<K^{+}$and $\operatorname{Sup}_{\Gamma^{*}} \operatorname{Vol}$ $E\left(\Gamma^{*}, S^{3}\right)=K^{+}$. Clearly, this Γ^{*} belongs to an almost trivial knot type. If q : $\left(S^{3}, \Gamma^{*}\right) \rightarrow\left(S^{3}, \Gamma\right)$ is the imitation map, then q induces a meridian-preserving isomorphism $\bar{\pi}_{1}\left(S^{3}-\Gamma^{*}\right) \cong \bar{\pi}_{1}\left(S^{3}-\Gamma\right)$ (See $[\mathbf{K w}-1]$). Since $\pi_{1}\left(S^{3}-\Gamma\right)$ is a free group of rank $\beta_{1}(\Gamma)$ with a basis represented by meridians of Γ in S^{3}, we see from [L-S, p. 14] that $\bar{\pi}\left(S^{3}-\Gamma\right)=\pi_{1}\left(S^{3}-\Gamma\right)$, so that $\bar{\pi}_{1}\left(E\left(\Gamma^{*}, S^{3}\right)\right) \cong \bar{\pi}_{1}\left(S^{3}-\Gamma^{*}\right)$ is a free group with a desired property. This completes the proof.
3. Applications to links. We discuss here two applications to links. One concerns a construction of a non-trivial fusion band family from a trivial link to a trivial knot and the other, a construction of a tangle with the exterior hyperbolic in any link. We say that a mutually disjoint band family $\left\{B_{1}^{0}, B_{2}^{0}, \cdots\right.$, $\left.B_{i}^{0}\right\}$ in S^{3} spanning a trivial link L_{0} (as 1-handles) is trivial if the union $L_{0} \cup B_{1}^{0} \cup$ $B_{2}^{0} \cup \cdots \cup B_{i}^{0}$ is on a 2 -sphere smoothly embedded in S^{3}. Let a trivial link L_{0}
have $r+1$ components. We consider mutually disjoint r bands $B_{1}, B_{2}, \cdots, B_{r}$ in S^{3} which give a fusion from L_{0} to a trivial knot (that is to say, which $\operatorname{span} L_{0}$ and along which the surgery of L_{0} produces a trivial knot). We say that this family $\left\{B_{1}, B_{2}, \cdots, B_{r}\right\}$ is a fusion band family from L_{0} to a trivial knot. For $r=1$, Scharlemann [Sc] proved that any fusion band family $\left\{B_{1}\right\}$ is necessarily trivial. For $r=2$, Howie and Short [H-S] gave an example of a non-trivial fusion band family $\left\{B_{1}, B_{2}\right\}$ (cf. [Kw-2, Figure 4]). In their example, the exteroir $E=E$ $\left(L_{0} \cup B_{1} \cup B_{2}, S^{3}\right)$ is easily seen to have a solid torus as a disk summand and hence it is not hyperbolic. As a corollary to Theorem 2.1, we have an infinite family of non-trivial fusion band families with such exteriors hyperbolic.

Corollary 3.1. For any number $K>0$ and any integer $r \geq 2$, there are a number $K^{+}>K$ and an infinite family of non-trivial fusion band families $\beta^{*}=\left\{B_{1}^{*}, B_{2}^{*}\right.$, $\left.\cdots, B_{r}^{*}\right\}$ from an $(r+1)$-component trivial link L_{0} to a trivial knot such that the exterior $E_{\beta^{*}}=E\left(L_{0} \cup B_{1}^{*} \cup B_{2}^{*} \cup \cdots \cup B_{r}^{*}, S^{3}\right)$ is hyperbolic with $\operatorname{Vol} E_{\beta^{*}}<K^{+}$and $\operatorname{Sup}_{\beta^{*}} \operatorname{Vol} E_{\beta^{*}}=K^{+}$and $\bar{\pi}_{1}\left(E_{\beta^{*}}\right)$ is a free group of rank $r+1$ with a basis represented by meridians of L_{0}.

Proof. Consider a trivial fusion band family $\left\{B_{1}, B_{2}, \cdots, B_{r}\right\}$ from L_{0} to a trivial knot. Let L_{0}^{\prime} be an r-component trivial link obtained from L_{0} by surgery along B_{r}. When we regard the band B_{r} as a band spanning L_{0}^{\prime}, we denote it by B_{r}^{\prime}. Note that a spine $\Gamma=L_{0}^{\prime} \cup b_{1} \cup b_{2} \cup \cdots \cup b_{r}^{\prime}$ of $L_{0}^{\prime} \cup B_{1} \cup B_{2} \cup \cdots \cup B_{r}^{\prime}$ is a good planar graph in S^{3}. By Theorem 2.1, we have a number $K^{+}>K$ and an infinite family of almost identical imitations $q:\left(S^{3}, \Gamma^{*}\right) \rightarrow\left(S^{3}, \Gamma\right)$ such that $\operatorname{Vol} E\left(\Gamma^{*}, S^{3}\right)$ $<K^{+}$and $\operatorname{Sup}_{\Gamma^{*}} \operatorname{Vol} E\left(\Gamma^{*}, S^{3}\right)=K^{+}$. Regard the bands $B_{1}, B_{2}, \cdots, B_{r}^{\prime}$ as very narrow bands. Then since $r \geq 2$ and q is an almost identical imitation map, we may consider that q defines a map $\left(S^{3}, L_{0}^{\prime} \cup B_{1}^{*} \cup \cdots \cup B_{r-1}^{*} \cup B_{r}^{\prime}\right) \rightarrow\left(\left(S^{3}, L_{0}^{\prime} \cup B_{1}\right.\right.$ $\cup \cdots \cup B_{r-1} \cup B_{r}^{\prime}$), where B_{i}^{*} denotes a band given by $B_{i}^{*}=q^{-1} B_{i}$ for each $i \leq r-1$. Then we see that the bands $B_{1}^{*}, B_{2}^{*}, \cdots, B_{r}^{*}$ with $B_{r}^{*}=B_{r}$ form a fusion band family from L_{0} to a trivial knot. Clearly, the exterior E of $L_{0} \cup B_{1}^{*} \cup B_{2}^{*} \cup \cdots \cup B_{r}^{*}$ in S^{3} is diffeomorphic to $E\left(\Gamma^{*}\right)$. By the proof of Corollary 2.2, $\bar{\pi}(E)$ is seen to be a desired free group. This completes the proof of Corollary 3.1.

Remark 3.2. In the above proof, we can see that the band family $\left\{B_{1}^{*}, \cdots\right.$, $\left.B_{i-1}^{*}, B_{i+1}^{*}, \cdots, B_{r}^{*}\right\}$ spanning L_{0} is trivial for each i with $1 \leq i \leq r-1$. In particular, if $r \geq 3$, then each band $B_{i}^{*}(1 \leq i \leq r)$ spans L_{0} trivially.

As another application, we shall show the following:
Corollary 3.3. For any link L in S^{3} we take 3-balls B, B^{\prime} in S^{3} so that $B^{\prime}=S^{3}-\operatorname{Int} B$ and $T=B \cap L$ is a trivial tangle with 2 or more strings in B and $T^{\prime}=B^{\prime} \cap L$ is a good 1-manifold in B^{\prime}. Then for any number $K>0$, there are a number $K^{+}>K$ and an infinite family of almost identical imitations ($B^{\prime}, T^{\prime *}$)
of $\left(B^{\prime}, T^{\prime}\right)$ such that the exterior $E\left(T^{*}, B^{\prime}\right)$ is hyperbolic with $\operatorname{Vol} E\left(T^{*}, B^{\prime}\right)<K^{+}$ and $\operatorname{Sup}_{T^{\prime *}} \operatorname{Vol} E\left(T^{\prime *}, B^{\prime}\right)=K^{+}$, and the extension $q^{\prime+}:\left(S^{3}, L^{*}\right) \rightarrow\left(S^{3}, L\right)$ of the imitation map $q^{\prime}:\left(B^{\prime}, T^{*}\right) \rightarrow\left(B^{\prime}, T^{\prime}\right)$ by the identity on (B, T) is homotopic to a diffeomorphism.

Proof. Let T be a good tree graph in B obtained by joining the components of \hat{T} by arcs so that R collapses to \hat{T}, and Γ the union of \hat{T} and T^{\prime} which is a good graph in S^{3}. By Theorem 2.1 we have a number $K^{+}>K$ and an infinite family of almost identical imitations $\left(S^{3}, \Gamma^{*}\right)$ of $\left(S^{3}, \Gamma\right)$ such that the exterior $E\left(\Gamma^{*}, S^{3}\right)$ is hyperbolic with $\operatorname{Vol} E\left(\Gamma^{*}, S^{3}\right)<K^{+}$and $\operatorname{Sup}_{\Gamma^{*}} \operatorname{Vol} E\left(\Gamma^{*}, S^{3}\right)$ $=K^{+}$. By replacing B by a slender regular neighborhood of \hat{T} in B, we can consider that the almost identical imitation map $q:\left(S^{3}, \Gamma^{*}\right) \rightarrow\left(S^{3}, \Gamma\right)$ induces the identity on B and the restriction $q^{\prime}=q \mid B^{\prime}$ induces an almost identical imitation map $\left(B^{\prime}, T^{* *}\right) \rightarrow\left(B^{\prime}, T^{\prime}\right)$ with $T^{* *}=q^{\prime-1} T^{\prime}$. Moreover, we see that the extension $q^{\prime+}:\left(S^{3}, L^{*}\right) \rightarrow\left(S^{3}, L\right)$ of q^{\prime} by the identity on (B, T) is homotopic to a diffeomorphism. Noting that $E\left(T^{* *}, B^{\prime}\right)$ is diffeomorphic to $E\left(\Gamma^{*}, S^{3}\right)$, we complete the proof of Corollary 3.3.

This corollary includes a hyperbolic version of Nakanishi's result [\mathbf{N}], telling that every link is splittable by a 2 -sphere into a prime 1 -manifold and a trivial two-string tangle.
4. Applications to 3 -manifolds. Let $T_{i}, i=1,2, \cdots, r$, be mutually disjoint tubular neighborhoods of the components $k_{i}, i=1,2, \cdots, r$ of a link L in S^{3}. Remove Int T_{i} from S^{3} for each i and then attach T_{i} again by using an $h_{i} \in \operatorname{Diff} \partial T_{i}$ for each i. By this operation, we obtain from S^{3} a closed 3-manifold M. Let m_{i} be a meridian of T_{i}, and l_{i} a longitude of T_{i} determined by $T_{i} \subset S^{3}$. Write $h_{i *}\left[m_{i}\right]=a_{i}\left[m_{i}\right]+b_{i}\left[l_{i}\right]$ in $H_{i}\left(\partial T_{i} ; Z\right)$ with integers a_{i}, b_{i}. Then we see that the diffeomorphism type of M depends only on the pairs $\left(k_{i}, c_{i}\right)$ with $c_{i}=a_{i} / b_{i} \in Q \cup\{\infty\}, i=1,2, \cdots, r$, and we say that M is obtained from S^{3} by Dehn's surgery along the knots k_{i} with coefficients $c_{i}(i=1,2, \cdots, r)$ or that M has a surgery description $\left(S^{3} ;\left(k_{1}, c_{1}\right),\left(k_{2}, c_{2}\right), \cdots,\left(k_{r}, c_{r}\right)\right)$. It is well known that every closed connected orientable 3-manifold M has a surgery description ($S^{3} ;\left(k_{1}, c_{1}\right)$, $\left.\left(k_{2}, c_{2}\right), \cdots,\left(k_{r}, c_{r}\right)\right)$ (cf. [We], [L]). We obtain from Theorem 1.1 the following:

Corollary 4.1. For any number $K>0$ and any surgery description $\left(S^{3} ;\left(k_{1}, c_{1}\right)\right.$, $\left(k_{2}, c_{2}\right), \cdots,\left(k_{r}, c_{r}\right)$) of any closed 3-mcnifold M with $r \geq 2$, there are a number $K^{+}>K$ and an infinite family of normal imitations $\left(S^{3}, L^{*}\right)$ of $\left(S^{3}, L\right)$ such that the exterior $E\left(L^{*}, S^{3}\right)$ is hyperbolic with $\operatorname{Vol} E\left(L^{*}, S^{3}\right)<K^{+}$and $\operatorname{Sup}_{L^{*}} \operatorname{Vol} E\left(L^{*}, S^{3}\right)$ $=K^{+}$and $\left(S^{3} ;\left(k_{1}^{*}, c_{1}\right),\left(k_{2}^{*}, c_{2}\right), \cdots,\left(k_{r}^{*}, c_{r}\right)\right)$ is a surgery description of M with $k_{i}^{*}=q^{-1} k_{i}, i=1,2, \cdots, r$ for the imitation map $q:\left(S^{3}, L^{*}\right) \rightarrow\left(S^{3}, L\right)$.

Proof. Let M^{\prime} be the manifold with surgery description $\left(S^{3} ;\left(k_{r}, c_{r}\right)\right)$. Let
k_{r}^{\prime} be a core of the solid torus in M^{\prime} resulting from the Dehn surgery. Regard that $k_{1}, k_{2}, \cdots, k_{r-1}$ are in M^{\prime}. Let $L^{\prime}=k_{1} \cup \cdots \cup k_{r-1} \cup k_{r}^{\prime}$. By Theorem 1.1, we have a number $K^{+}>K$ and an infinite family of almost identical imitations $\left(M^{\prime}, L^{\prime *}\right)$ of $\left(M^{\prime}, L^{\prime}\right)$ such that $E\left(L^{\prime *}, M^{\prime}\right)$ is hyperbolic with $\operatorname{Vol} E\left(L^{\prime *}, M^{\prime}\right)<K^{+}$ and $\operatorname{Sup}_{L^{\prime *}} \operatorname{Vol} E\left(L^{\prime *}, M^{\prime}\right)=K^{+}$. Let $k_{i}^{*}=q^{\prime-1} k_{i}, i=1, \cdots, r-1$, and $k_{r}^{\prime *}=q^{\prime-1} k_{r}^{\prime}$ for the imitation map $q^{\prime}:\left(M^{\prime}, L^{\prime *}\right) \rightarrow\left(M^{\prime}, L^{\prime}\right)$. Since q^{\prime} is an almost identical imitation map, we may consider that $k_{r}^{\prime *}=k_{r}^{\prime}$, so that q^{\prime} induces a normal imitation map $q:\left(S^{3}, L^{*}\right) \rightarrow\left(S^{3}, L\right)$ with $L^{*}=k_{1}^{*} \cup \cdots \cup k_{r-1}^{*} \cup k_{r}^{*} \subset S^{3}$ and $k_{r}^{*}=k_{r}$ such that $\left(S^{3} ;\left(k_{1}^{*}, c_{1}\right), \cdots,\left(k_{r-1}^{*}, c_{r-1}\right),\left(k_{r}, r_{r}\right)\right)$ is a surgery description of M. Since $E\left(L^{*}, S^{3}\right)$ is diffeomorphic to $E\left(L^{\prime *}, M^{\prime}\right)$, we complete the proof of Corollary 4.1.

Remark 4.2. In the above proof, the restriction $q \mid\left(S^{3}, L^{*}-k_{i}^{*}\right):\left(S^{3}, L^{*}\right.$ $\left.k_{i}^{*}\right) \rightarrow\left(S^{3}, L-k_{i}\right)$ is homotopic to a diffeomorphism for each $i, 1 \leq i \leq r-1$. In particular, if $r \geq 3$, then k_{i}^{*} and k_{i} belong to the same knot type for all $i, 1 \leq i \leq r$.

As a final application, we have the following:
Corollary 4.3. For any number $K>0$ and any 3-manifold M such that ∂M has no 2-sphere components, there are a number $K^{+}>K$ and an infinite family of normal imitations M^{*} of M such that M^{*} is hyperbolic with $\operatorname{Vol} M^{*}<K^{+}$and $\operatorname{Sup}_{M^{*}} \operatorname{Vol} M^{*}=K^{+}$.

Proof. For a trivial knot O in $\operatorname{Int} M$, we obtain from Theorem 1.1 an almost identical imitation $\left(M, O^{*}\right)$ of the good pair (M, O) such that $E\left(O^{*}, M\right)$ is hyperbolic with $\operatorname{Vol} E\left(O^{*}, M\right)>K$. For an integer $n \neq 0$, let M_{n}^{*} be a 3manifold obtained from M by Dehn surgery along O^{*} with coefficient $1 / n$. Since the diffeomorphism type of M is unaffected by Dehn surgery along O with coefficient $1 / n$, the imitation map $q:\left(M, O^{*}\right) \rightarrow(M, O)$ induces a normal imitation map $q_{n}^{*}: M_{n}^{*} \rightarrow M$. Let $K^{+}=\operatorname{Vol} E\left(O^{*}, M\right)$. By Thurston's theorem on hyperbolic Dehn surgery [T-2], [T-3], there is an integer $N>0$ such that M_{n}^{*} is hyperbolic for all n with $|n| \geq N$, and for all such $n, \operatorname{Vol} M_{n}^{*}<K^{+}$and $\operatorname{Sup}_{n} \operatorname{Vol} M_{n}^{*}=K^{+}$. This completes the proof.
5. Proof of Theorem 1.1. We first show that Theorem 1.1 is obtained from the following:

Lemma 5.1. For any good (3,1)-manifold pair (M, L), there is an almost identical imitation $\left(M, L^{*}\right)$ of (M, L) such that $E\left(L^{*}, M\right)$ is hyperbolic.

Proof of Theorem 1.1 assuming Lemma 5.1. We can see from J ϕ rgensen's theorem (cf. [T-2],[T-3]) that for any number $K>0$ there is an integer $N^{\prime}>0$ such that every hyperbolic 3 -manifold M^{\prime} with $\operatorname{Vol} M^{\prime} \leq K$ has the homology
group $H_{1}\left(M^{\prime} ; Z\right)$ generated by at most N^{\prime} elements. Let $L^{+}=L \cup L_{0}$ with L_{0} an N^{\prime}-component trivial link in $\operatorname{Int}(M-L)$. By Lemma 5.1, there is an almost identical imitation map $q:\left(M, L^{+*}\right) \rightarrow\left(M, L^{+}\right)$such that $E\left(L^{+*}, M\right)$ is hyperbolic. Let $K^{+}=\operatorname{Vol} E\left(L^{+*}, M\right)$. Since

$$
H_{1}\left(E\left(L^{+*}, M\right) ; Z\right) \cong H_{1}\left(E\left(L^{+}, M\right) ; Z\right) \cong H_{1}(E(L, M) ; Z) \oplus_{N^{\prime}} Z
$$

(cf. [Kw-1]), we see that $H_{1}\left(E\left(L^{+*}, M\right) ; Z\right)$ can not be generated by N^{\prime} elements, so that $K^{+}>K$. Let $L^{*}=q^{-1} L$ and $L_{0}^{*}=q^{-1} L_{0}$. Note that L_{0}^{*} is a trivial link in Int M. For an integer $n \neq 0$, let $\left(M, L_{n}^{*}\right)$ be a good (3,1)-manifold pair obtained from $\left(M, L^{*}\right)$ by Dehn surgery of M along each component of L_{0}^{*} with coefficient $1 / n$. Then q induces an almost identical imitation map $q_{n}:\left(M, L_{n}^{*}\right) \rightarrow$ (M, L). By Thurston's theorem on hyperbolic Dehn surgery [T-2], [T-3], there is an integer $N>0$ such that $E\left(L_{n}^{*}, M\right)$ is hyperbolic for all n with $|n| \geq N$ and, for all such $n, \operatorname{Vol} E\left(L_{n}^{*}, M\right)<K^{+}$and $\operatorname{Sup}_{n} \operatorname{Vol} E\left(L_{n}^{*}, M\right)=K^{+}$. This completes the proof of Theorem 1.1 assuming Lemma 5.1.

We say that a tangle T in a 3-ball B is trivial if T is on a disk smoothly and properly embedded in B.

Proof of Lemma 5.1. We can see from arguments on Heegaard splitting of M and on isotopic deformation of L that M is splitted by a compact connected surface F with $\partial F \cap L=\emptyset$ into two handlebodies $H_{i}, i=1,2$, of the same genus, say g, such that
(1) $F_{i}^{c}=\partial H_{i}-\operatorname{Int} F$ is a planar surface with the same component number as ∂M,
(2) Each component of L meets F transversely,
(3) Each disk component of F_{i}^{c} meets L,
(4) There is a 3-ball $B_{i} \subset H_{i}$ separated by a proper disk D_{i} such that $T_{i}=$ $L \cap H_{i}$ is a trivial tangle of s_{i} strings in B_{i} where $s_{i} \geq 1$ and $g+s_{i} \geq 3$.

Our desired situation is illustrated in Figure 1. This situation is made up by the following procedure: When $\partial M=\emptyset$, we take any Heegaard splitting (H_{1}, $\left.H_{2} ; F\right)$ of M. When $\partial M \neq \emptyset$, we split M by a connected surface F_{M} into two 3-submanifolds $M_{i}, i=1,2$, such that ∂M_{i} is connected and ∂M_{i} - $\operatorname{Int} F_{M}$ is a planar surface with the same component number as ∂M. Then note that $\partial M_{i}, i=1,2$ have the same genus. We obtain a Heegaard splitting $\left(H_{1}, H_{2} ; F\right)$ of M with condition (1) from ($M_{1}, M_{2} ; F_{M}$) by boring along 1 -handles in M_{i} attaching to F_{M}. Next, we deform L so that L is disjoint from ∂F and has (2), (3) by an isotopic deformation of L in M. Finally, we deform L so that L has (4) by an isotopic deformation of L in M keeping ∂M fixed and increasing the geometric intersection number with F. We proceed to the proof of Lemma 5.1 by assuming the following lemma:

Figure 1
Lemma 5.2. For any integer $r \geq 3$ let T be a trivial tangle of r strings in a 3-ball B. Then there is an almost identical imitation $\left(B, T^{*}\right)$ of (B, T) such that $E\left(T^{*}, B\right)$ is hyperbolic.

Since H_{i} is the exterior of a trivial g-tangle in a 3-ball and $g+s_{i} \geq 3$, we obtain from Lemma 5.2 an almost identical imitation map $q_{i}:\left(H_{i}, T_{i}^{*}\right) \rightarrow\left(H_{i}, T_{i}\right)$ such that $E\left(T_{i}^{*}, H_{i}\right)$ is hyperbolic. Let U_{L} be a tubular neighborhood of L in $M-\partial F$ meeting ∂H_{i} regularly. We can assume that $U_{i}=U_{L} \cap H_{i}$ is a tubular neighborhood of T_{i} in $B_{i}-D_{i}$ and $E(L, M)=\mathrm{cl}_{M}\left(M-U_{L}\right)$ and $E\left(T_{i}, H_{i}\right)=$ $\mathrm{cl}_{H_{i}}\left(H_{i}-U_{i}\right)$ and $E\left(T_{i}^{*}, H_{i}\right)=q_{i}^{-1} E\left(T_{i}, H_{i}\right)$. Clearly, q_{1} and q_{2} define an almost identical imitation map $q:\left(M, L^{*}\right) \rightarrow(M, L)$ with $L^{*}=T_{1}^{*} \cup T_{2}^{*}$. Note that $E\left(L^{*}, M\right)=q^{-1} E(L, M)$ is a union of $E\left(T_{1}^{*}, H_{1}\right)$ and $E\left(T_{2}^{*}, H_{2}\right)$ pasting along a surface $F^{E}=\operatorname{cl}_{F}\left(F-F \cap U_{L}\right)$. Then we see from the following lemma that $E\left(L^{*}, M\right)$ is hyperbolic:

Lemma 5.3. Let a 3-manifold M be splitted into two 3-submanifolds $M_{i}, i=$ 1,2 , by a proper surface F. If the following conditions are all satisfied, then M is hyperbolic:
(1) M_{1} and M_{2} are hyperbolic,
(2) F has no disk, annulus, torus components,
(3) $\quad F_{i}^{c}=\partial M_{i}-$ Int F has no disk components.

This lemma is a direct consequence of Myers' lemmas (Lemmas 2.4, 2.5) in [My] and Thurston's hyperbolization theorem in [T-3], [Mo]. We complete the proof of Lemma 5.1, assuming Lemma 5.2.

Proof of Lemma 5.2. We construct a pure r-braid σ with strings b_{1}, b_{2}, \cdots, b_{r} in the 3-cube I^{3} as follows (cf. Kanenobu [Kn]): Take $b_{1} \cup b_{2} \cup \cdots \cup b_{r-1}$ to be a trivial $(r-1)$-braid. Then take b_{r} so that b_{r} represents the $(r-2)$ th commutator $\left[x_{1}, x_{2}, \cdots, x_{r-1}\right.$] in the free group $\pi=\pi_{1}\left(S^{3}-\hat{b}_{1} \cup \hat{b}_{2} \cup \cdots \cup \hat{b}_{r-1}, *\right)$ with a basis $x_{1}, x_{2}, \cdots, x_{r-1}$ represented by meridians of $\hat{b}_{1}, \hat{b}_{2}, \cdots, \hat{b}_{r-1}$, for the closure link

Figure 2
$\hat{\sigma}=\hat{b}_{1} \cup \hat{b}_{2} \cup \cdots \cup \hat{b}_{r}$ in S^{3}. For $r=3$, 4, we illustrate σ in Figure 2. Note that this r-braid σ has the following important property: That is, if we drop any one string b_{i} from σ, then the resulting $(r-1)$-braid is a trivial braid. The link $\hat{\sigma}$ is a typical example of a link with Brunnian property (cf. Rolfsen [R]), or in other words, an almost trivial link (cf. Milnor [Mi]). From this r-braid $\sigma \subset I^{3}$ and any two-string tangle $T \subset B$, we construct a new r-string tangle $T^{\oplus} \subset B^{\oplus}$ as it is illustrated in Figure 3.

Figure 3
This construction has been suggested by Kanenobu [Kn, Figure 7]. A two-string tangle $T \subset B$ is said to be simple, if it is a prime tangle and the exterior $E(T, B)$ has no incompressible torus (cf. [So]) [Note: $E(T, B)$ may have an essential annulus as we observe in Remark 5.6]. The following lemma is obtained from Kanenobu's results in [Kn, Theorem 3 and Proposition 4] and Thurston's hyperbolization theorem [T-3], [Mo]:

Lemma 5.4. If a two-string tangle $T \subset B$ is simple, then the exterior $E\left(T^{\oplus}, B^{\oplus}\right)$ of the resulting new tangle $T^{\oplus} \subset B^{\oplus}$ is hyperbolic.

Let $T^{\wedge} \subset B^{\wedge}$ be a one-string tangle obtained from a two-string tangle $T \subset B$ by adding a trivial one-string tangle $a_{0} \subset B_{0}$ as it is illustrated in Figure 4(1).

Figure 4

Figure 5
Let $T_{0} \subset B$ be a trivial two-string tangle illustrated in Figure 4(2). Assume that there is a normal reflection α in $\left(B, T_{0}\right) \times I$ such that $\operatorname{Fix}\left(\alpha,\left(B, T_{0}\right)\right.$ $\times I) \cong(B, T)$. Let α^{\wedge} be the normal reflector in $\left(B^{\wedge}, T_{0}^{\wedge}\right) \times I$, extending α naturally, so that $\operatorname{Fix}\left(\alpha^{\wedge},\left(B^{\wedge}, T_{0}^{\wedge}\right) \times I\right) \cong\left(B^{\wedge}, T^{\wedge}\right)$. If α^{\wedge} is isotopically standard, then we would have an almost identical imitation map $q:\left(B^{\oplus}, T^{\oplus}\right)$ $\rightarrow\left(B^{\oplus}, T_{0}^{\oplus}\right)$. Since $\left(B^{\oplus}, T_{0}^{\oplus}\right)$ is a trivial tangle, we complete the proof of Lemma 5.2 when we assume the following lemma:

Lemma 5.5. There are a simple two-string tangle $T \subset B$ and a normal reflection α in $\left(B, T_{0}\right) \times I$ with $T_{0} \subset B$ a trivial two-string tangle such that $(B, T) \cong$ Fix $\left(\alpha,\left(B, T_{0}\right) \times I\right)$ and the extending normal reflection α^{\wedge} in $\left(B^{\wedge}, T_{0}^{\wedge}\right) \times I$ is isotopically standard.

Proof of Lemma 5.5. Consider a two-string tangle $T=a_{1} \cup a_{2} \subset B$ illustrated in Figure 5. Since a_{1} is a non-trivial arc in $B\left[\operatorname{In}\right.$ fact, $E\left(a_{1}, B\right)$ is diffeomorphic to the exterior of the 11-crossing Kinoshita-Terasaka knot (cf. [K-T], [Kw-1])] and the one-string tangle $T^{\wedge} \subset B^{\wedge}$ is trivial, it follows from a result of Nakanishi
[\mathbf{N}, Lemma 5.4] that (B, T) is a prime tangle. This tangle $T \subset B$ can be obtained from the Kinoshita-Terasaka tangle $T^{\prime}=a_{1}^{\prime} \cup a_{2}^{\prime} \subset B$, illustrated in Figure 6 , by sliding a boundary point of a_{1}^{\prime} along ∂B and a_{2}^{\prime}.

Figure 6
This means that $E(T, B) \cong E\left(T^{\prime}, B\right)$, so that $T \subset B$ is a simple tangle, because $T^{\prime} \subset B$ is known to be simple (cf. Soma [So]). Let F be a union of two proper disks in $B \times I$ illustrated in Figure 7 by the motion picture method (cf. [K-S-S]). We denote by α_{0} the standard reflection in $B \times I$ and by $\alpha_{0}^{\hat{~}}$ the extension to $B^{\wedge} \times I$. Let G be a 1 -manifold with a band in B given by $(B, G) \times(1 / 4)=(B \times I, F) \cap B \times(1 / 4)$. We take annuli A, A^{\prime} in the figure of $G \subset B$ as we illustrate in Figure 8. In Figure 8, $\left\{C_{1}, C_{2}\right\},\left\{C_{1}^{\prime}, C_{2}^{\prime}\right\}$ denote the boundary components of A, A^{\prime} and the intersections $A \cap G, A^{\prime} \cap G$ denote disks attaching to the circles C_{1}, C_{1}^{\prime}, respectively. Let $\left(B^{\wedge} \times I, F^{\wedge}\right)$ be a (4,2)-disk pair obtained from ($B \times I, F$) by adding (B_{0}, a_{0}) $\times I$ with (B_{0}, a_{0}) in Figure 4(1). Note that C_{2}, C_{2}^{\prime} bound disjoint disks D, D^{\prime} in $B^{\wedge}-G^{\wedge}$ (where $G^{\wedge}=G \cup a_{0}$) so that $\bar{A}=A \cup D, \bar{A}^{\prime}=A^{\prime} \cup D^{\prime}$ are disjoint disks in B^{\wedge} with $\partial \bar{A}=C_{1}, \partial \bar{A}^{\prime}=C_{1}^{\prime}$. Let F^{\prime} be a union of two proper disks in $B \times I$ illustrated in Figure 9 , and ($B^{\wedge} \times I, F^{\prime \wedge}$)

Figure 7

Figure 8
a $(4,2)$-disk pair obtained from ($B \times I, F^{\prime}$) by adding $\left(B_{0}, a_{0}\right) \times I$. Let G^{\prime} be a 1 -manifold with a band in B given by $\left(B, G^{\prime}\right) \times(1 / 4)=\left(B \times I, F^{\prime}\right) \cap B \times(1 / 4)$. Note that there is an $f \in \operatorname{Diff}_{0}\left(B^{\wedge}, \operatorname{rel}\left(B^{\wedge}-R\right)\right)$ with $f\left(G^{\wedge}\right)=G^{\prime \wedge}$ for a regular neighborhood R of $\bar{A} \cup \bar{A}^{\prime}$ in $\operatorname{Int} B^{\wedge}$ by sliding the disks $\bar{A} \cap G^{\wedge}, \bar{A}^{\prime} \cap G^{\wedge}$ along the disks $\bar{A}, \bar{A}^{\prime}$. This means that there is an $\bar{f} \in \operatorname{Diff}\left(B^{\wedge} \times I, \operatorname{rel}\left(B^{\wedge} \times I-R \times I^{\prime}\right)\right)$ with $I^{\prime}=[-1 / 2,1 / 2]$ such that \bar{f} is α_{0}-invariant and $\bar{f}\left(F^{\wedge}\right)=F^{\prime \wedge}$. Next, note that there is a $g \in \operatorname{Diff}_{0}\left(B^{\wedge} \times I, \operatorname{rel} \partial\left(B^{\wedge} \times I\right) \cup F^{\wedge} \cup F^{\prime \wedge}\right)$ such that $g\left(\left(\bar{A} \cup \bar{A}^{\prime}\right) \times\right.$ $\left.I^{\prime}\right) \subset B \times I$ by pushing $D \times I^{\prime}, D^{\prime} \times I^{\prime}$ into $B \times(1 / 2,3 / 4)$.

Figure 9
Then we may consider that $g\left(R \times I^{\prime}\right) \subset B \times I$. Let $h=g f g^{-1} \in \operatorname{Diff}\left(B^{\wedge} \times I\right.$, rel $\partial\left(B^{\wedge} \times I\right)$). Then since $h(B \times I)=B \times I$, we can define an $h^{\prime} \in \operatorname{Diff}(B \times I$, rel $\partial(B \times I))$ by $h^{\prime}=h \mid B \times I$. Note that $h^{\prime}(F)=F^{\prime}$. Since the bands appearing in Figure 7 are untied, we see that there is a $d \in \operatorname{Diff}(B \times I$, rel $\partial(B \times I))$ such that d is α_{0}-invariant and $d(F)=T_{0} \times I$, where T_{0} is a trivial two-string tangle in B determined by $T_{0} \times 1=F \cap B \times 1$. Let $\alpha_{1}=d h^{\prime-1} \alpha_{0} h^{\prime} d^{-1}$. Then α_{1} defines a
reflection in $\left(B, T_{0}\right) \times I$ with $\operatorname{Fix}\left(\alpha_{1},\left(B, T_{0}\right) \times I\right) \simeq(B, T)$. Further, we can find an $e \in \operatorname{Diff}_{0}\left(\left(B, T_{0}\right) \times I\right.$, rel $\left.\partial(B \times I)\right)$ such that $\alpha=e \alpha_{1} e^{-1}$ is a normal reflection in $\left(B, T_{0}\right) \times I$ by the fact that $\operatorname{Diff}(D, \operatorname{rel} \partial D)=\operatorname{Diff}_{0}(D, \operatorname{rel} \partial D)$ for a 2 -disk D and the isotopy extension theorem and the uniqueness of tubular neighborhoods. Then

$$
\operatorname{Fix}\left(\alpha,\left(B, T_{0}\right) \times I\right) \cong(B, T)
$$

and

$$
\alpha^{\wedge}=e^{\wedge} d^{\wedge} h^{-1} \alpha_{0}^{\wedge} h\left(d^{\wedge}\right)^{-1}\left(e^{\wedge}\right)^{-1}
$$

where d^{\wedge} and e^{\wedge} denote the extension of d and e to $B^{\wedge} \times I$ by the identity, respectively. Let

$$
h^{*}=e^{\wedge} d^{\wedge} h^{-1} \bar{f}\left(d^{\wedge}\right)^{-1}
$$

Then

$$
h^{*}=e^{\wedge} d^{\wedge} g \bar{f}^{-1} g^{-1} \bar{f}\left(d^{\wedge}\right)^{-1} \in \operatorname{Diff}_{0}\left(\left(B^{\wedge}, T_{0}^{\wedge}\right) \times I, \operatorname{rel} \partial\left(B^{\wedge} \times I\right)\right)
$$

because $g \in \operatorname{Diff}_{0}\left(B^{\wedge} \times I, \operatorname{rel} \partial\left(B^{\wedge} \times I\right) \cup F^{\wedge} \cup F^{\prime \wedge}\right)$, and

$$
h^{*-1} \alpha^{\wedge} h^{*}=d^{\wedge} \bar{f}^{-1} \alpha_{0}^{\wedge} \bar{f}\left(d^{\wedge}\right)^{-1}=\alpha_{0}^{\wedge}
$$

because \bar{f} and d^{\wedge} are $\alpha_{\hat{0}}^{\hat{0}}$-invariant. Hence α^{\wedge} is isotopically standard. This completes the proof of Lemma 5.5.

Therefore, we complete the proof of Theorem 1.1.
Remark 5.6. The exterior of the tangle $T \subset B$ in Figure 5, that is, the exterior of the Kinoshita-Terasaka tangle $T^{\prime} \subset B$ in Figure 6 has an essential annulus, as it is illustrated in Figure 10. Hence it is not hyperbolic in our sense.

Figure 10

References

[H-S] J. Howie and H. Short: The band sum problem, J. London Math. Soc. 31 (1985), 572-576.
[Kn] T.Kanenobu: Hyperbolic links with Brunnian properties, J. Math. Soc. Japan 38 (1986), 295-308.
[Kw-0] A. Kawauchi: Hyperbolic imitations of 3-manifolds, Preliminary unpublished version (1987).
[Kw-1] A. Kawauchi: An imitation theory of manifolds, Osaka J. Math. 26 (1989), 447-464.
[Kw-2] A. Kawauchi: Imitations of (3,1)-dimensional manifold pairs, Survey article in Japanese, Sugaku 40 (1988), 193-206; English translation, Sugaku Expositions 2 (1989), 141-156.
[K-S-S] A. Kawauchi, T. Shibuya and S. Suzuki: Descriptions on surfaces in four-space, I, Math. Sem. Notes, Kobe Univ. 10 (1982), 75-125; II, 11 (1983), 31-69.
[Ki] S. Kinoshita: On elementary ideals of polyhedra in the 3-sphere, Pacific J. Math. 42 (1972), 89-98.
[K-T] S. Kinoshita and H. Terasaka: On unions of knots, Osaka Math. J. 9 (1957), 131-151.
[L] W.B.R. Lickorish: A representation of orientable combinatorial 3-manifolds, Ann. of Math .76 (1962), 531-540.
[L-S] R. C. Lyndon and P.E. Schupp: Combinatirial Group Theory, Erg. d. Math., Springer-Verlag, 1977.
[Mi] J.W. Milnor: Link groups, Ann. of Math. 59 (1954), 177-395.
[Mo] J.W. Morgan: On Thurston's uniformization theorem for three dimensional manifolds, in The Smith Conjecture, (H. Bass and J.W. Morgan, eds.), Academic Press, 1984, 37-125.
[My] R. Myers: Homology cobordisms, link concordances, and hyperbolic 3-manifolds, Trans. Amer. Math. Soc. 273 (1983), 75-92.
[N] Y. Nakanishi: Primeness of links, Math. Sem. Notes, Kobe Univ. 9 (1981), 415440.
[R] D. Rolfsen: Knots and Links, Publish or Perish, Berkeley, California, 1976.
[Sc] M. Scharlemann: Smooth spheres in R^{4} with four critical points are standard, Invent. Math. 79 (1985), 125-141.
[Si] J. Simon: Molecular graphs as topological objects in space, J. Computational Chemistry 8 (1987), 718-726.
[So] T. Soma: Simple links and tangles, Tokyo J. Math. 6 (1983), 65-73.
[Su-1] S. Suzuki: On linear graphs in 3-sphere, Osaka J. Math. 7 (1970), 370-396.
[Su-2] S. Suzuki: Almost unknotted θ_{n}-curves in the 3-sphere, Kobe J. Math. 1 (1984), 19-22.
[Sum] D. W. Sumners: The role of knot theory in DNA research, in Geometry and Topology, Marcel Dekker, 1987, 297-318.
[T-1] W.P. Thurston: Hyperbolic geometry and 3-manifolds, in Low-Dimensional Topology, London Math. Soc., Lecture Note Series 48, Cambridge Univ. Press, 1982, 9-25.
[T-2] W.P. Thurston: There dimensional manifolds, Kleinian groups and hyperbolic
geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381.
[T-3] W.P. Thurston: The Geometry and Topology of 3-Manifolds, preprint from Princeton Univ. (1978-1980).
[Wa] D.M.Walba: Topological stereochemistry, Tetrahedron 41 (1985), 3161-3212.
[We] A.H. Wallace: Modifications and cobounding manifolds, Can. J. Math. 12 (1960), 503-528.
[Wo] K. Wolcott: The knotting of theta-curves and other graphs in S^{3}, in Geometry and Topology, Marcel Dekker, 1987, 325-346.

Department of Mathematics
Osaka City University
Sugimoto, Sumiyoshi-ku
Osaka 558, Japan

[^0]: ${ }^{1}$ This homotopy can be taken as a one-parameter family of normal imitation maps.

[^1]: ${ }^{2}$ Diff $_{0}$ denotes the path connected component of the topological diffeomorphism group Diff containing 1 (cf. [Kw-1]).

