ALMOST IDENTICAL IMITATIONS OF (3, 1)-DIMENSIONAL MANIFOLD PAIRS

Akio KAWAUCHI

Dedicated to Professor Fujitsugu Hosokawa on his 60th birthday

(Received March10, 1989)

By a 3-manifold M, we mean a compact connected oriented 3-manifold throughout this paper. Let $\partial_0 M$ be the union of torus components of ∂M and $\partial_1 M = \partial M - \partial_0 M$. In the case that $\partial_1 M = \emptyset$, if Int M has a complete Riemannian structure with constant curvature -1 and with finite volume, then we say that M is hyperbolic and we denote its volume by Vol M. Next we consider the case that $\partial_1 M \neq \emptyset$. Then the double, $D_1 M$, of M pasting two copies of M along $\partial_1 M$ has $\partial_1 D_1 M = \emptyset$. If $D_1 M$ is hyperbolic in the sense stated above, then we say that M is hyperbolic and we define the volume, Vol M, of this M by Vol M=Vol $D_1M/2$. In this latter case, M is usually said to be hyperbolic with $\partial_1 M$ tatally geodesic (cf. [T-1]), but we use this simple terminology throughout this paper. When M is hyperbolic, ∂M has no 2-sphere components and by Mostow rigidity theorem (cf. [T-2], [T-3]), Vol M is a topological invariant of By a 1-manifold in M, we mean a compact smooth 1-submanifold L of Mwith $\partial L = L \cap \partial M$ and the pair (M, L) is simply called a (3,1)-manifold pair. A 1-manifold L in M is called a link if $\partial L = \emptyset$, a tangle if L has no loop components, and a good 1-manifold if $|L \cap S^2| \ge 3$ for any 2-sphere component S^2 of ∂M . A (3,1)-manifold pair (M, L) is also said to be good if L is a good 1manifold in M. In [Kw-1], we defined the notions of imitation, pure imitation and normal imitation for any general manifold pair. In Section 1 we shall define a notion which we call an almost identical imitation (M, L^*) of (M, L), for any good (3,1)-manifold pair (M, L). Roughly speaking, this imitation is a normal imitation with a special property that if $q:(M,L^*)\rightarrow (M,L)$ is the imitaiton map, then $q \mid (M, L^*-a^*) : (M, L^*-a^*) \rightarrow (M, L-a)$ is ∂ -relatively homotopic¹ to a diffeomorphism for any connected components a^* , a of L^* , L with $qa^*=a$. Let P be a polyhedron in a 3-manifold M. For a regular neighborhood N_P of P in M (meeting ∂M regularly), the diffeomorphism type of $E(P, M) = \operatorname{cl}_M(M - N_P)$ is uniquely determined by the topological type of the

¹ This homotopy can be taken as a one-parameter family of normal imitation maps.

744 A. Kawauchi

pair (M,P) and we call E(P,M) the exterior of P in M. Then our main result of this paper, stated in Theorem 1.1 precisely, asserts the existence of an infinite family of almost identical imitations (M,L^*) of every good (3,1)-manifold pair (M,L) such that the exterior $E(L^*,M)$ of L^* in M is hyperbolic.

The proof of Theorem 1.1 will be given in Section 5. Several applications to spatial graphs, links and 3-manifolds are given throughout Sections 2-4. In Section 2, we prove the existence of an almost trivial spatial Γ -graph, for every planar graph Γ without vertices of degrees ≤ 1 , affirming a conjecture of Simon and Wolcott. In Section 3, we show a construction of a non-trivial fusion band family from a trivial link to a trivial knot, and a construction of a tangle with hyperbolic exterior in any link. In Section 4, we show that if a closed 3-manifold M is obtained from a link L with two or more components by Dehn's surgery, then M is also obtained from a hyperbolic link L^* , which is a normal link-imitation of L, by Dehn's surgery with the same surgery coefficient data, and that every 3-manifold without 2-sphere boundary component has a hyperbolic 3-manifold as a normal imitation.

This paper is a revised version of a main part of [Kw-0] and a prelude to the principal theorem of [Kw-2] where further consequences are announced.

1. An almost identical imitation of a good (3,1)-manifold pair. Let I=[-1,1]. For a (3, 1)-manifold pair (M,L) we call an element $\alpha \in \text{Diff}$ $(M, L) \times I)$ a reflection in $(M, L) \times I$ if $\alpha^2 = 1$, $\alpha(M \times 1) = M \times (-1)$ and Fix $(\alpha, M \times I)$ is a 3-manifold. In this case, Fix $(\alpha, (M, L) \times I)$ is a (3, 1)-manifold pair in our sense (See [Kw-1]). We say that a reflection α in $(M, L) \times I$ is standard if $\alpha(x,t)=(x,-t)$ for all $(x,t)\in M\times I$, and normal if $\alpha(x,t)=(x,-t)$ for all $\alpha(x,t) \in \partial(M \times I) \cup U_L \times I$, with U_L a neighborhood of L in M. A reflection α in $(M, L) \times I$ is said to be isotopically standard if $h\alpha h^{-1}$ is the standard reflection in $(M, L) \times I$ for an $h \in \text{Diff}_0((M, L) \times I)$, rel $\partial ((M, L) \times I))^2$. For a good (3, 1)-manifold pair (M, L) a reflection α in $(M, L) \times I$ is isotopically almost standard if ϕ is isotopically standard in $(M, L-a) \times I$ for each connected component a of L. A smooth embedding ϕ from a (3,1)-manifold pair (M^*, L^*) to $(M, L) \times I$ with $\phi(M^*, L^*) = \text{Fix}(\alpha, (M, L) \times I)$ is called a reflector of a reflection in $(M, L) \times I$. Let $p_1: (M, L) \times I \rightarrow (M, L)$ be the projection to the first factor. In [Kw-1], we defined that (M^*, L^*) is an imitation (or a normal imitation, respectively) of (M, L), if there is a reflector $\phi: (M^*, L^*) \rightarrow (M, L)$ $\times I$ of a reflection (or normal reflection, respectively) α in $(M, L) \times I$, and the composite $q=p_1\phi:(M^*,L^*)\to(M,L)$ is the *imitation map*.

DEFINITION. A (3,1)-manifold pair (M^*, L^*) is an almost identical imitation

² Diff₀ denotes the path connected component of the topological diffeomorphism group Diff containing 1(cf. [Kw-1]).

of a good (3, 1)-manifold pair (M, L) if there is a reflector $\phi: (M^*, L^*) \to (M, L) \times I$ of an isotopically almost standard normal reflection α in $(M, L) \times I$, and the composite $q = p_1 \phi: (M^*, L^*) \to (M, L)$ is the *imitation map*.

In this definition, (M^*, L^*) is also a good (3, 1)-manifold pair and $q \mid L^*$: $L^* \rightarrow L$ is a diffeomorphism and $q \mid (M^*, L^* - a^*) : (M^*, L^* - a^*) \rightarrow (M, L - a)$ is ∂ -relatively homotopic to a diffeomorphism. We identify M^* with M so that $q \mid \partial M$ is the identity on ∂M . We may write any almost identical imitation of (M, L) as (M, L^*) . We state here our main theorem.

Theorem 1.1. For any number K>0 and any good (3,1)-manifold pair (M,L) there are a number $K^+>K$ and an infinite family of almost identical imitations (M,L^*) of (M,L) such that the exterior $E(L^*,M)$ of L^* in M is hyperbolic with $Vol\ E(L^*,M)< K^+$ and $Sup_{L^*}\ Vol\ E(L^*,M)=K^+$.

2. An almost identical spatial graph imitation. Let (M^0, L) be a good (3,1)-manifold pair such that ∂M^0 has at least one 2-sphere component. For some 2-sphere components S_1, S_2, \dots, S_r of ∂M^0 , let (M_+^0, L_+) be a pair obtained from (M^0, L) by taking a cone over $(S_i, S_i \cap L)$ for each i. Then note that M_+^0 is a 3-manifold and L_+ is a finite graph which we may consider to be smoothly embedded in M_+^0 except the vertices of degrees ≥ 3 . We call this pair (M_+^0, L_+) the spherical completion of (M^0, L) associated with the 2-spheres S_1, S_2, \dots, S_r . A graph Γ embedded in a 3-manifold M is said to be good if (M, Γ) is diffeomorphic to the spherical completion (M_+^0, L_+) of a good (3,1)-manifold pair (M^0, L) associated with some 2-sphere components of ∂M^0 .

DEFINITION. For good graphs Γ^* , Γ in a 3-manifold M the pair (M, Γ^*) is an almost identical imitation of the pair (M, Γ) if there are a good (3,1)-manifold pair (M^0, L) and some 2-sphere components S_1, S_2, \dots, S_r of ∂M^0 and an almost identical imitation (M^0, L^*) of (M^0, L) such that the spherical completions (M^0_+, L^*_+) and (M^0_+, L_+) of (M^0_-, L^*) and (M^0_-, L) associated with the 2-spheres S_1, S_2, \dots, S_r are diffeomorphic to (M, Γ^*) and (M, Γ) , respectively.

Note that there is a map $q:(M,\Gamma^*)\to (M,\Gamma)$ uniquely determined by the imitation map $q^0:(M^0,L^*)\to (M^0,L)$. We also call this map q the *imitation map* of the almost identical imitation (M,Γ^*) of (M,Γ) . Since, in this definition, the exterior $E(\Gamma^*,M)$ of Γ^* in M is diffeomorphic to $E(L^*,M^0)$, the following theorem follows directly from Theorem 1.1:

Theorem 2.1. For each good graph Γ in a 3-manifold M and a positive number K, there are a number $K^+ > K$ and an infinite family of almost identical imitations (M, Γ^*) of (M, Γ) such that $E(\Gamma^*, M)$ is hyperbolic with $\operatorname{Vol} E(\Gamma^*, M) < K^+$ and $\operatorname{Sup}_{\Gamma^*} \operatorname{Vol} E(\Gamma^*, M) = K^+$.

746 A. Kawauchi

Let $\tilde{\Gamma}$ be a finite graph without vertices of degrees ≤ 1 . If a good graph Γ in the 3-sphere S^3 is obtained by an embedding of $\tilde{\Gamma}$, then we call this Γ a spatial $\tilde{\Gamma}$ -graph. Two spatial $\tilde{\Gamma}$ -graphs Γ' , Γ'' are equivalent if there is an orientation-preserving diffeomorphism $h: S^3 \to S^3$ with $h(\Gamma') = \Gamma''$. The occurring equivalence classes of spatial T-graphs are called the knot types of spatial $\tilde{\Gamma}$ -graphs. These knot types were studied by Kinoshita, Suzuki (cf. [Su-1]) as a generalization of the usual knot theory and are now studied in a connection with the synthetic study in molecular chemistry by, for example, Walba [Wa], Simon [Si], Sumners [Sum]. We say that a finite graph in S^3 is trivial if it is on a 2-sphere smoothly embedded in S^3 . A spatial Γ -graph Γ is said to belong to an almost trivial knot type, if Γ is not trivial but the graph in S^3 resulting from Γ by removing any open arc is necessarily trivial. Simon and Wolcott (cf. [Si]) conjectured that for every planar graph $\tilde{\Gamma}$ without vertices of degrees ≤ 1 , there exists a spatial Γ -graph belonging to an almost trivial knot type. Several examples supporting this conjecture were given by Kinoshita [Ki], Suzuki [Su-2], M. Hara(unpublished) and Wolcott [Wo]. Theorem 2.1 solves this conjecture affirmatively. In fact, we have the following stronger result:

Corollary 2.2. For every planar graph Γ without vertices of degrees ≤ 1 and any number K>0, there are a number $K^+>K$ and an infinite family of spatial Γ -graphs Γ^* belonging to infinitely many almost trivial knot types such that $E(\Gamma^*, S^3)$ is hyperbolic with $Vol\ E(\Gamma^*, S^3) < K^+$ and $Sup_{\Gamma^*}\ Vol\ E(\Gamma^*, S^3) = K^+$ and the quotient group $\pi_1(E(\Gamma^*, S^3))$ of $\pi_1(E(\Gamma^*, S^3))$ by the intersection of the derived series of $\pi_1(E(\Gamma^*, S^3))$ is a free group of rank $\beta_1(\Gamma^*)$ with a basis represented by meridians of Γ^* in S^3 , where $\beta_1(\Gamma^*)$ denotes the first Betti number of Γ^* .

Proof. Let Γ be a trivial spatial Γ -graph. By Theorem 2.1, there are a number $K^+ > K$ and an infinite family of almost identical imitations (S^3, Γ^*) of (S^3, Γ) such that $E(\Gamma^*, S^3)$ is hyperbolic with $\operatorname{Vol} E(\Gamma^*, S^3) < K^+$ and $\sup_{\Gamma^*} \operatorname{Vol} E(\Gamma^*, S^3) = K^+$. Clearly, this Γ^* belongs to an almost trivial knot type. If $q: (S^3, \Gamma^*) \to (S^3, \Gamma)$ is the imitation map, then q induces a meridian-preserving isomorphism $\overline{\pi}_1(S^3 - \Gamma^*) \cong \overline{\pi}_1(S^3 - \Gamma)$ (See $[\mathbf{Kw-1}]$). Since $\pi_1(S^3 - \Gamma)$ is a free group of rank $\beta_1(\Gamma)$ with a basis represented by meridians of Γ in S^3 , we see from $[\mathbf{L-S}, p. 14]$ that $\overline{\pi}(S^3 - \Gamma) = \pi_1(S^3 - \Gamma)$, so that $\overline{\pi}_1(E(\Gamma^*, S^3)) \cong \overline{\pi}_1(S^3 - \Gamma^*)$ is a free group with a desired property. This completes the proof.

3. Applications to links. We discuss here two applications to links. One concerns a construction of a non-trivial fusion band family from a trivial link to a trivial knot and the other, a construction of a tangle with the exterior hyperbolic in any link. We say that a mutually disjoint band family $\{B_1^0, B_2^0, \dots, B_i^0\}$ in S^3 spanning a trivial link L_0 (as 1-handles) is *trivial* if the union $L_0 \cup B_1^0 \cup B_2^0 \cup \dots \cup B_i^0$ is on a 2-sphere smoothly embedded in S^3 . Let a trivial link L_0

have r+1 components. We consider mutually disjoint r bands B_1, B_2, \dots, B_r in S^3 which give a fusion from L_0 to a trivial knot (that is to say, which span L_0 and along which the surgery of L_0 produces a trivial knot). We say that this family $\{B_1, B_2, \dots, B_r\}$ is a fusion band family from L_0 to a trivial knot. For r=1, Scharlemann [Sc] proved that any fusion band family $\{B_1\}$ is necessarily trivial. For r=2, Howie and Short [H-S] gave an example of a non-trivial fusion band family $\{B_1, B_2\}$ (cf. [Kw-2, Figure 4]). In their example, the exteroir E=E $(L_0 \cup B_1 \cup B_2, S^3)$ is easily seen to have a solid torus as a disk summand and hence it is not hyperbolic. As a corollary to Theorem 2.1, we have an infinite family of non-trivial fusion band families with such exteriors hyperbolic.

Corollary 3.1. For any number K>0 and any integer $r \ge 2$, there are a number $K^+>K$ and an infinite family of non-trivial fusion band families $\beta^*=\{B_1^*, B_2^*, \dots, B_r^*\}$ from an (r+1)-component trivial link L_0 to a trivial knot such that the exterior $E_{\beta^*}=E(L_0 \cup B_1^* \cup B_2^* \cup \dots \cup B_r^*, S^3)$ is hyperbolic with $\operatorname{Vol} E_{\beta^*}< K^+$ and $\operatorname{Sup}_{\beta^*}\operatorname{Vol} E_{\beta^*}= K^+$ and $\overline{\pi}_1(E_{\beta^*})$ is a free group of rank r+1 with a basis represented by meridians of L_0 .

Proof. Consider a trivial fusion band family $\{B_1, B_2, \cdots, B_r\}$ from L_0 to a trivial knot. Let L'_0 be an r-component trivial link obtained from L_0 by surgery along B_r . When we regard the band B_r as a band spanning L'_0 , we denote it by B'_r . Note that a spine $\Gamma = L'_0 \cup b_1 \cup b_2 \cup \cdots \cup b'_r$ of $L'_0 \cup B_1 \cup B_2 \cup \cdots \cup B'_r$ is a good planar graph in S^3 . By Theorem 2.1, we have a number $K^+ > K$ and an infinite family of almost identical imitations $q: (S^3, \Gamma^*) \to (S^3, \Gamma)$ such that $\operatorname{Vol} E(\Gamma^*, S^3) < K^+$ and $\sup_{r^*} \operatorname{Vol} E(\Gamma^*, S^3) = K^+$. Regard the bands B_1, B_2, \cdots, B'_r as very narrow bands. Then since $r \ge 2$ and q is an almost identical imitation map, we may consider that q defines a map $(S^3, L'_0 \cup B_1^* \cup \cdots \cup B_{r-1}^* \cup B'_r) \to ((S^3, L'_0 \cup B_1^* \cup \cdots \cup B_{r-1}^* \cup B'_r)) \to ((S^3, L'_0 \cup B_1^* \cup \cdots \cup B_{r-1}^* \cup B'_r))$, where B_i^* denotes a band given by $B_i^* = q^{-1}B_i$ for each $i \le r-1$. Then we see that the bands $B_1^*, B_2^*, \cdots, B_r^*$ with $B_r^* = B_r$ form a fusion band family from L_0 to a trivial knot. Clearly, the exterior E of $L_0 \cup B_1^* \cup B_2^* \cup \cdots \cup B_r^*$ in S^3 is diffeomorphic to $E(\Gamma^*)$. By the proof of Corollary 2.2, $\overline{\pi}(E)$ is seen to be a desired free group. This completes the proof of Corollary 3.1.

REMARK 3.2. In the above proof, we can see that the band family $\{B_1^*, \dots, B_{i-1}^*, B_{i+1}^*, \dots, B_r^*\}$ spanning L_0 is trivial for each i with $1 \le i \le r-1$. In particular, if $r \ge 3$, then each band $B_i^*(1 \le i \le r)$ spans L_0 trivially.

As another application, we shall show the following:

Corollary 3.3. For any link L in S^3 we take 3-balls B, B' in S^3 so that $B'=S^3-\operatorname{Int} B$ and $T=B\cap L$ is a trivial tangle with 2 or more strings in B and $T'=B'\cap L$ is a good 1-manifold in B'. Then for any number K>0, there are a number $K^+>K$ and an infinite family of almost identical imitations (B', T'^*)

of (B', T') such that the exterior $E(T'^*, B')$ is hyperbolic with $Vol E(T'^*, B') < K^+$ and $Sup_{T'^*} Vol E(T'^*, B') = K^+$, and the extension $q'^+: (S^3, L^*) \rightarrow (S^3, L)$ of the imitation map $q': (B', T'^*) \rightarrow (B', T')$ by the identity on (B, T) is homotopic to a diffeomorphism.

Proof. Let T be a good tree graph in B obtained by joining the components of \hat{T} by arcs so that B collapses to \hat{T} , and Γ the union of \hat{T} and T' which is a good graph in S^3 . By Theorem 2.1 we have a number $K^+ > K$ and an infinite family of almost identical imitations (S^3, Γ^*) of (S^3, Γ) such that the exterior $E(\Gamma^*, S^3)$ is hyperbolic with $\operatorname{Vol} E(\Gamma^*, S^3) < K^+$ and $\operatorname{Sup}_{\Gamma^*} \operatorname{Vol} E(\Gamma^*, S^3) = K^+$. By replacing B by a slender regular neighborhood of \hat{T} in B, we can consider that the almost identical imitation map $q: (S^3, \Gamma^*) \to (S^3, \Gamma)$ induces the identity on B and the restriction $q' = q \mid B'$ induces an almost identical imitation map $(B', T'^*) \to (B', T')$ with $T'^* = q'^{-1}T'$. Moreover, we see that the extension $q'^+: (S^3, L^*) \to (S^3, L)$ of q' by the identity on (B, T) is homotopic to a diffeomorphism. Noting that $E(T'^*, B')$ is diffeomorphic to $E(\Gamma^*, S^3)$, we complete the proof of Corollary 3.3.

This corollary includes a hyperbolic version of Nakanishi's result [N], telling that every link is splittable by a 2-sphere into a prime 1-manifold and a trivial two-string tangle.

- **4. Applications to 3-manifolds.** Let T_i , $i=1, 2, \dots, r$, be mutually disjoint tubular neighborhoods of the components k_i , $i=1, 2, \dots, r$ of a link L in S^3 . Remove Int T_i from S^3 for each i and then attach T_i again by using an $h_i \in \text{Diff} \partial T_i$ for each i. By this operation, we obtain from S^3 a closed 3-manifold M. Let m_i be a meridian of T_i , and l_i a longitude of T_i determined by $T_i \subset S^3$. Write $h_{i*}[m_i] = a_i[m_i] + b_i[l_i]$ in $H_i(\partial T_i; Z)$ with integers a_i, b_i . Then we see that the diffeomorphism type of M depends only on the pairs (k_i, c_i) with $c_i = a_i | b_i \in Q \cup \{\infty\}$, $i=1, 2, \dots, r$, and we say that M is obtained from S^3 by Dehn's surgery along the knots k_i with coefficients $c_i(i=1, 2, \dots, r)$ or that M has a surgery description $(S^3; (k_1, c_1), (k_2, c_2), \dots, (k_r, c_r))$. It is well known that every closed connected orientable 3-manifold M has a surgery description $(S^3; (k_1, c_1), (k_2, c_2), \dots, (k_r, c_r))$ (cf. [We], [L]). We obtain from Theorem 1.1 the following:
- Corollary 4.1. For any number K>0 and any surgery description $(S^3; (k_1, c_1), (k_2, c_2), \dots, (k_r, c_r))$ of any closed 3-manifold M with $r \geq 2$, there are a number $K^+>K$ and an infinite family of normal imitations (S^3, L^*) of (S^3, L) such that the exterior $E(L^*, S^3)$ is hyperbolic with $Vol\ E(L^*, S^3) < K^+$ and $Sup_{L^*}\ Vol\ E(L^*, S^3) = K^+$ and $(S^3; (k_1^*, c_1), (k_2^*, c_2), \dots, (k_r^*, c_r))$ is a surgery description of M with $k_1^*=q^{-1}k_i, i=1, 2, \dots, r$ for the imitation map $q:(S^3, L^*)\to (S^3, L)$.

Proof. Let M' be the manifold with surgery description $(S^3; (k_r, c_r))$. Let

 k'_r be a core of the solid torus in M' resulting from the Dehn surgery. Regard that k_1, k_2, \dots, k_{r-1} are in M'. Let $L' = k_1 \cup \dots \cup k_{r-1} \cup k'_r$. By Theorem 1.1, we have a number $K^+ > K$ and an infinite family of almost identical imitations (M', L') of (M', L') such that $E(L'^*, M')$ is hyperbolic with $\operatorname{Vol} E(L'^*, M') < K^+$ and $\sup_{L'^*} \operatorname{Vol} E(L'^*, M') = K^+$. Let $k_i^* = q'^{-1}k_i$, $i = 1, \dots, r-1$, and $k_r'^* = q'^{-1}k'_r$ for the imitation map $q' : (M', L'^*) \to (M', L')$. Since q' is an almost identical imitation map, we may consider that $k_r'^* = k'_r$, so that q' induces a normal imitation map $q: (S^3, L^*) \to (S^3, L)$ with $L^* = k_1^* \cup \dots \cup k_{r-1}^* \cup k_r^* \subset S^3$ and $k_r^* = k_r$ such that $(S^3; (k_1^*, c_1), \dots, (k_{r-1}^*, c_{r-1}), (k_r, r_r))$ is a surgery description of M. Since $E(L^*, S^3)$ is diffeomorphic to $E(L'^*, M')$, we complete the proof of Corollary 4.1.

REMARK 4.2. In the above proof, the restriction $q|(S^3, L^*-k_i^*):(S^3, L^*-k_i^*)\to (S^3, L-k_i)$ is homotopic to a diffeomorphism for each $i, 1\leq i\leq r-1$. In particular, if $r\geq 3$, then k_i^* and k_i belong to the same knot type for all $i, 1\leq i\leq r$.

As a final application, we have the following:

Corollary 4.3. For any number K>0 and any 3-manifold M such that ∂M has no 2-sphere components, there are a number $K^+>K$ and an infinite family of normal imitations M^* of M such that M^* is hyperbolic with $\operatorname{Vol} M^* < K^+$ and $\operatorname{Sup}_{M^*} \operatorname{Vol} M^* = K^+$.

Proof. For a trivial knot O in Int M, we obtain from Theorem 1.1 an almost identical imitation (M, O^*) of the good pair (M, O) such that $E(O^*, M)$ is hyperbolic with $\operatorname{Vol} E(O^*, M) > K$. For an integer $n \neq 0$, let M_n^* be a 3-manifold obtained from M by Dehn surgery along O^* with coefficient 1/n. Since the diffeomorphism type of M is unaffected by Dehn surgery along O with coefficient 1/n, the imitation map $q: (M, O^*) \to (M, O)$ induces a normal imitation map $q_n^*: M_n^* \to M$. Let $K^+ = \operatorname{Vol} E(O^*, M)$. By Thurston's theorem on hyperbolic Dehn surgery [T-2], [T-3], there is an integer N > 0 such that M_n^* is hyperbolic for all n with $|n| \geq N$, and for all such n, $\operatorname{Vol} M_n^* < K^+$ and $\operatorname{Sup}_n \operatorname{Vol} M_n^* = K^+$. This completes the proof.

- 5. **Proof of Theorem 1.1.** We first show that Theorem 1.1 is obtained from the following:
- **Lemma 5.1.** For any good (3,1)-manifold pair (M, L), there is an almost identical imitation (M, L^*) of (M, L) such that $E(L^*, M)$ is hyperbolic.

Proof of Theorem 1.1 assuming Lemma 5.1. We can see from J ϕ rgensen's theorem (cf. [T-2],[T-3]) that for any number K>0 there is an integer N'>0 such that every hyperbolic 3-manifold M' with Vol $M' \leq K$ has the homology

group $H_1(M'; Z)$ generated by at most N' elements. Let $L^+=L \cup L_0$ with L_0 an N'-component trivial link in Int(M-L). By Lemma 5.1, there is an almost identical imitation map $q: (M, L^{+*}) \rightarrow (M, L^{+})$ such that $E(L^{+*}, M)$ is hyperbolic. Let $K^+=Vol\ E(L^{+*}, M)$. Since

$$H_1(E(L^{+*}, M); Z) \cong H_1(E(L^{+}, M); Z) \cong H_1(E(L, M); Z) \oplus_{N'} Z$$

(cf. [Kw-1]), we see that $H_1(E(L^{+*}, M); Z)$ can not be generated by N' elements, so that $K^+ > K$. Let $L^* = q^{-1}L$ and $L_0^* = q^{-1}L_0$. Note that L_0^* is a trivial link in Int M. For an integer $n \neq 0$, let (M, L_n^*) be a good (3,1)-manifold pair obtained from (M, L^*) by Dehn surgery of M along each component of L_0^* with coefficient 1/n. Then q induces an almost identical imitation map $q_n: (M, L_n^*) \to (M, L)$. By Thurston's theorem on hyperbolic Dehn surgery [T-2], [T-3], there is an integer N > 0 such that $E(L_n^*, M)$ is hyperbolic for all n with $|n| \geq N$ and, for all such n, $\text{Vol } E(L_n^*, M) < K^+$ and $\text{Sup}_n \text{Vol } E(L_n^*, M) = K^+$. This completes the proof of Theorem 1.1 assuming Lemma 5.1.

We say that a tangle T in a 3-ball B is *trivial* if T is on a disk smoothly and properly embedded in B.

Proof of Lemma 5.1. We can see from arguments on Heegaard splitting of M and on isotopic deformation of L that M is splitted by a compact connected surface F with $\partial F \cap L = \emptyset$ into two handlebodies H_i , i = 1, 2, of the same genus, say g, such that

- (1) $F_i^c = \partial H_i$ —Int F is a planar surface with the same component number as ∂M ,
- (2) Each component of L meets F transversely,
- (3) Each disk component of F_i^c meets L,
- (4) There is a 3-ball $B_i \subset H_i$ separated by a proper disk D_i such that $T_i = L \cap H_i$ is a trivial tangle of s_i strings in B_i where $s_i \ge 1$ and $g + s_i \ge 3$.

Our desired situation is illustrated in Figure 1. This situation is made up by the following procedure: When $\partial M = \emptyset$, we take any Heegaard splitting $(H_1, H_2; F)$ of M. When $\partial M \neq \emptyset$, we split M by a connected surface F_M into two 3-submanifolds M_i , i=1,2, such that ∂M_i is connected and ∂M_i -Int F_M is a planar surface with the same component number as ∂M . Then note that ∂M_i , i=1,2 have the same genus. We obtain a Heegaard splitting $(H_1, H_2; F)$ of M with condition (1) from $(M_1, M_2; F_M)$ by boring along 1-handles in M_i attaching to F_M . Next, we deform L so that L is disjoint from ∂F and has (2), (3) by an isotopic deformation of L in M. Finally, we deform L so that L has (4) by an isotopic deformation of L in M keeping ∂M fixed and increasing the geometric intersection number with F. We proceed to the proof of Lemma 5.1 by assuming the following lemma:

Lemma 5.2. For any integer $r \ge 3$ let T be a trivial tangle of r strings in a 3-ball B. Then there is an almost identical imitation (B, T^*) of (B, T) such that $E(T^*, B)$ is hyperbolic.

Since H_i is the exterior of a trivial g-tangle in a 3-ball and $g+s_i\geq 3$, we obtain from Lemma 5.2 an almost identical imitation map $q_i\colon (H_i,\,T_i^*)\to (H_i,\,T_i)$ such that $E(T_i^*,\,H_i)$ is hyperbolic. Let U_L be a tubular neighborhood of L in $M-\partial F$ meeting ∂H_i regularly. We can assume that $U_i=U_L\cap H_i$ is a tubular neighborhood of T_i in B_i-D_i and $E(L,M)=\operatorname{cl}_M(M-U_L)$ and $E(T_i,H_i)=\operatorname{cl}_{H_i}(H_i-U_i)$ and $E(T_i^*,H_i)=q_i^{-1}E(T_i,H_i)$. Clearly, q_1 and q_2 define an almost identical imitation map $q\colon (M,L^*)\to (M,L)$ with $L^*=T_1^*\cup T_2^*$. Note that $E(L^*,M)=q^{-1}E(L,M)$ is a union of $E(T_1^*,H_1)$ and $E(T_2^*,H_2)$ pasting along a surface $F^E=\operatorname{cl}_F(F-F\cap U_L)$. Then we see from the following lemma that $E(L^*,M)$ is hyperbolic:

Lemma 5.3. Let a 3-manifold M be splitted into two 3-submanifolds M_i , i=1,2, by a proper surface F. If the following conditions are all satisfied, then M is hyperbolic:

- (1) M_1 and M_2 are hyperbolic,
- (2) F has no disk, annulus, torus components,
- (3) $F_i^c = \partial M_i$ —Int F has no disk components.

This lemma is a direct consequence of Myers' lemmas (Lemmas 2.4, 2.5) in [My] and Thurston's hyperbolization theorem in [T-3], [Mo]. We complete the proof of Lemma 5.1, assuming Lemma 5.2.

Proof of Lemma 5.2. We construct a pure r-braid σ with strings b_1, b_2, \dots, b_r in the 3-cube I^3 as follows (cf. Kanenobu [Kn]): Take $b_1 \cup b_2 \cup \dots \cup b_{r-1}$ to be a trivial (r-1)-braid. Then take b_r so that b_r represents the (r-2)th commutator $[x_1, x_2, \dots, x_{r-1}]$ in the free group $\pi = \pi_1(S^3 - \hat{b}_1 \cup \hat{b}_2 \cup \dots \cup \hat{b}_{r-1}, *)$ with a basis x_1, x_2, \dots, x_{r-1} represented by meridians of $\hat{b}_1, \hat{b}_2, \dots, \hat{b}_{r-1}$, for the closure link

752 A. Kawauchi

Figure 2

 $\phi = \hat{b}_1 \cup \hat{b}_2 \cup \cdots \cup \hat{b}_r$ in S^3 . For r = 3, 4, we illustrate σ in Figure 2. Note that this r-braid σ has the following important property: That is, if we drop any one string b_i from σ , then the resulting (r-1)-braid is a trivial braid. The link θ is a typical example of a *link with Brunnian property* (cf. Rolfsen [R]), or in other words, an almost trivial link (cf. Milnor [Mi]). From this r-braid $\sigma \subset I^3$ and any two-string tangle $T \subset B$, we construct a new r-string tangle $T \subset B^{\oplus}$ as it is illustrated in Figure 3.

Figure 3

This construction has been suggested by Kanenobu [Kn, Figure 7]. A two-string tangle $T \subset B$ is said to be *simple*, if it is a prime tangle and the exterior E(T, B) has no incompressible torus (cf. [So]) [Note: E(T, B) may have an essential annulus as we observe in Remark 5.6]. The following lemma is obtained from Kanenobu's results in [Kn, Theorem 3 and Proposition 4] and Thurston's hyperbolization theorem [T-3], [Mo]:

Lemma 5.4. If a two-string tangle $T \subset B$ is simple, then the exterior $E(T^{\oplus}, B^{\oplus})$ of the resulting new tangle $T^{\oplus} \subset B^{\oplus}$ is hyperbolic.

Let $T \cap B$ be a one-string tangle obtained from a two-string tangle $T \subset B$ by adding a trivial one-string tangle $a_0 \subset B_0$ as it is illustrated in Figure 4(1).

Figure 5

Let $T_0 \subset B$ be a trivial two-string tangle illustrated in Figure 4(2). Assume that there is a normal reflection α in $(B, T_0) \times I$ such that $\operatorname{Fix}(\alpha, (B, T_0) \times I) \simeq (B, T)$. Let α^{\wedge} be the normal reflector in $(B^{\wedge}, T_0^{\wedge}) \times I$, extending α naturally, so that $\operatorname{Fix}(\alpha^{\wedge}, (B^{\wedge}, T_0^{\wedge}) \times I) \simeq (B^{\wedge}, T^{\wedge})$. If α^{\wedge} is isotopically standard, then we would have an almost identical imitation map $q: (B^{\oplus}, T^{\oplus}) \to (B^{\oplus}, T_0^{\oplus})$. Since $(B^{\oplus}, T_0^{\oplus})$ is a trivial tangle, we complete the proof of Lemma 5.2 when we assume the following lemma:

Lemma 5.5. There are a simple two-string tangle $T \subset B$ and a normal reflection α in $(B, T_0) \times I$ with $T_0 \subset B$ a trivial two-string tangle such that $(B, T) \cong \text{Fix}(\alpha, (B, T_0) \times I)$ and the extending normal reflection α^{\wedge} in $(B^{\wedge}, T_0^{\wedge}) \times I$ is isotopically standard.

Proof of Lemma 5.5. Consider a two-string tangle $T=a_1 \cup a_2 \subset B$ illustrated in Figure 5. Since a_1 is a non-trivial arc in $B[\text{In fact}, E(a_1, B) \text{ is diffeomorphic}$ to the exterior of the 11-crossing Kinoshita-Terasaka knot (cf. [**K-T**], [**Kw-1**])] and the one-string tangle $T^{\wedge} \subset B^{\wedge}$ is trivial, it follows from a result of Nakanishi

[N, Lemma 5.4] that (B, T) is a prime tangle. This tangle $T \subset B$ can be obtained from the Kinoshita-Terasaka tangle $T' = a'_1 \cup a'_2 \subset B$, illustrated in Figure 6, by sliding a boundary point of a'_1 along ∂B and a'_2 .

Figure 6

This means that $E(T,B)\cong E(T',B)$, so that $T\subset B$ is a simple tangle, because $T'\subset B$ is known to be simple (cf. Soma [So]). Let F be a union of two proper disks in $B\times I$ illustrated in Figure 7 by the motion picture method (cf. [K-S-S]). We denote by α_0 the standard reflection in $B\times I$ and by α_0 the extension to $B^{\wedge}\times I$. Let G be a 1-manifold with a band in B given by $(B,G)\times (1/4)=(B\times I,F)\cap B\times (1/4)$. We take annuli A,A' in the figure of $G\subset B$ as we illustrate in Figure 8. In Figure 8, $\{C_1,C_2\}$, $\{C_1',C_2'\}$ denote the boundary components of A,A' and the intersections $A\cap G,A'\cap G$ denote disks attaching to the circles C_1,C_1' , respectively. Let $(B^{\wedge}\times I,F^{\wedge})$ be a (4,2)-disk pair obtained from $(B\times I,F)$ by adding $(B_0,a_0)\times I$ with (B_0,a_0) in Figure 4(1). Note that C_2,C_2' bound disjoint disks D,D' in $B^{\wedge}-G^{\wedge}$ (where $G^{\wedge}=G\cup a_0$) so that $\overline{A}=A\cup D,\overline{A'}=A'\cup D'$ are disjoint disks in B^{\wedge} with $\partial \overline{A}=C_1,\partial \overline{A'}=C_1'$. Let F' be a union of two proper disks in $B\times I$ illustrated in Figure 9, and $(B^{\wedge}\times I,F'^{\wedge})$

Figure 7

Figure 8

a (4, 2)-disk pair obtained from $(B \times I, F')$ by adding $(B_0, a_0) \times I$. Let G' be a 1-manifold with a band in B given by $(B, G') \times (1/4) = (B \times I, F') \cap B \times (1/4)$. Note that there is an $f \in \text{Diff}_0(B^{\wedge}, \text{rel}(B^{\wedge} - R))$ with $f(G^{\wedge}) = G'^{\wedge}$ for a regular neighborhood R of $\overline{A} \cup \overline{A'}$ in Int B^{\wedge} by sliding the disks $\overline{A} \cap G^{\wedge}$, $\overline{A'} \cap G^{\wedge}$ along the disks \overline{A} , $\overline{A'}$. This means that there is an $\overline{f} \in \text{Diff}(B^{\wedge} \times I, \text{rel}(B^{\wedge} \times I - R \times I'))$ with I' = [-1/2, 1/2] such that \overline{f} is α_0^{\wedge} -invariant and $\overline{f}(F^{\wedge}) = F'^{\wedge}$. Next, note that there is a $g \in \text{Diff}_0(B^{\wedge} \times I, \text{rel}\partial(B^{\wedge} \times I) \cup F^{\wedge} \cup F'^{\wedge})$ such that $g((\overline{A} \cup \overline{A'}) \times I') \subset B \times I$ by pushing $D \times I'$, $D' \times I'$ into $B \times (1/2, 3/4)$.

Figure 9

Then we may consider that $g(R \times I') \subset B \times I$. Let $h = gfg^{-1} \in \text{Diff}(B^{\wedge} \times I)$, rel $\partial(B^{\wedge} \times I)$). Then since $h(B \times I) = B \times I$, we can define an $h' \in \text{Diff}(B \times I)$, rel $\partial(B \times I)$ by $h' = h \mid B \times I$. Note that h'(F) = F'. Since the bands appearing in Figure 7 are untied, we see that there is a $d \in \text{Diff}(B \times I)$, rel $\partial(B \times I)$ such that d is α_0 -invariant and $\partial(F) = T_0 \times I$, where T_0 is a trivial two-string tangle in B determined by $T_0 \times 1 = F \cap B \times 1$. Let $\alpha_1 = dh'^{-1}\alpha_0h'd^{-1}$. Then α_1 defines a

reflection in $(B, T_0) \times I$ with Fix $(\alpha_1, (B, T_0) \times I) \cong (B, T)$. Further, we can find an $e \in \text{Diff}_0((B, T_0) \times I, \text{rel } \partial(B \times I))$ such that $\alpha = e\alpha_1 e^{-1}$ is a normal reflection in $(B, T_0) \times I$ by the fact that $\text{Diff}(D, \text{rel } \partial D) = \text{Diff}_0(D, \text{rel } \partial D)$ for a 2-disk D and the isotopy extension theorem and the uniqueness of tubular neighborhoods. Then

Fix
$$(\alpha, (B, T_0) \times I) \simeq (B, T)$$

and

$$\alpha^{\wedge} = e^{\wedge} d^{\wedge} h^{-1} \alpha_0^{\wedge} h(d^{\wedge})^{-1} (e^{\wedge})^{-1}$$

where d^{\wedge} and e^{\wedge} denote the extension of d and e to $B^{\wedge} \times I$ by the identity, respectively. Let

$$h^* = e^{\wedge} d^{\wedge} h^{-1} \bar{f}(d^{\wedge})^{-1}$$
.

Then

$$h^* = e^{\wedge} d^{\wedge} g f^{-1} g^{-1} f(d^{\wedge})^{-1} \in \text{Diff}_0((B^{\wedge}, T_0^{\wedge}) \times I, \text{ rel } \partial(B^{\wedge} \times I)),$$

because $g \in \text{Diff}_0(B^{\wedge} \times I, \text{ rel } \partial(B^{\wedge} \times I) \cup F^{\wedge} \cup F'^{\wedge})$, and

$$h^{*-1}lpha^{\wedge}h^{*}=d^{\wedge}ar{f}^{-1}lpha_{0}^{\wedge}ar{f}(d^{\wedge})^{-1}=lpha_{0}^{\wedge}$$

because f and d° are α_0° -invariant. Hence α° is isotopically standard. This completes the proof of Lemma 5.5.

Therefore, we complete the proof of Theorem 1.1.

REMARK 5.6. The exterior of the tangle $T \subset B$ in Figure 5, that is, the exterior of the Kinoshita-Terasaka tangle $T' \subset B$ in Figure 6 has an essential annulus, as it is illustrated in Figure 10. Hence it is not hyperbolic in our sense.

Figure 10

References

- [H-S] J. Howie and H. Short: The band sum problem, J. London Math. Soc. 31 (1985), 572-576.
- [Kn] T.Kanenobu: Hyperbolic links with Brunnian properties, J. Math. Soc. Japan 38 (1986), 295-308.
- [Kw-0] A. Kawauchi: Hyperbolic imitations of 3-manifolds, Preliminary unpublished version (1987).
- [Kw-1] A. Kawauchi: An imitation theory of manifolds, Osaka J. Math. 26 (1989), 447-464.
- [Kw-2] A. Kawauchi: *Imitations of (3,1)-dimensional manifold pairs*, Survey article in Japanese, Sugaku 40 (1988), 193–206; English translation, Sugaku Expositions 2 (1989), 141–156.
- [K-S-S] A. Kawauchi, T. Shibuya and S. Suzuki: Descriptions on surfaces in four-space, I, Math. Sem. Notes, Kobe Univ. 10 (1982), 75-125; II, 11 (1983), 31-69.
- [Ki] S. Kinoshita: On elementary ideals of polyhedra in the 3-sphere, Pacific J. Math. 42 (1972), 89-98.
- [K-T] S. Kinoshita and H. Terasaka: On unions of knots, Osaka Math. J. 9 (1957), 131-151.
- [L] W.B.R. Lickorish: A representation of orientable combinatorial 3-manifolds, Ann. of Math .76 (1962), 531-540.
- [L-S] R. C. Lyndon and P.E. Schupp: Combinatirial Group Theory, Erg. d. Math., Springer-Verlag, 1977.
- [Mi] J.W. Milnor: Link groups, Ann. of Math. 59 (1954), 177-395.
- [Mo] J.W. Morgan: On Thurston's uniformization theorem for three dimensional manifolds, in The Smith Conjecture, (H. Bass and J.W. Morgan, eds.), Academic Press, 1984, 37-125.
- [My] R. Myers: Homology cobordisms, link concordances, and hyperbolic 3-manifolds, Trans. Amer. Math. Soc. 273 (1983), 75-92.
- [N] Y. Nakanishi: Primeness of links, Math. Sem. Notes, Kobe Univ. 9 (1981), 415-440.
- [R] D. Rolfsen: Knots and Links, Publish or Perish, Berkeley, California, 1976.
- [Sc] M. Scharlemann: Smooth spheres in R⁴ with four critical points are standard, Invent. Math. 79 (1985), 125-141.
- [Si] J. Simon: Molecular graphs as topological objects in space, J. Computational Chemistry 8 (1987), 718-726.
- [So] T. Soma: Simple links and tangles, Tokyo J. Math. 6 (1983), 65-73.
- [Su-1] S. Suzuki: On linear graphs in 3-sphere, Osaka J. Math. 7 (1970), 370-396.
- [Su-2] S. Suzuki: Almost unknotted θ_n -curves in the 3-sphere, Kobe J. Math. 1 (1984), 19-22.
- [Sum] D. W. Sumners: The role of knot theory in DNA research, in Geometry and Topology, Marcel Dekker, 1987, 297-318.
- [T-1] W.P. Thurston: Hyperbolic geometry and 3-manifolds, in Low-Dimensional To-pology, London Math. Soc., Lecture Note Series 48, Cambridge Univ. Press, 1982, 9-25.
- [T-2] W.P. Thurston: There dimensional manifolds, Kleinian groups and hyperbolic

- geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381.
- [T-3] W.P. Thurston: The Geometry and Topology of 3-Manifolds, preprint from Princeton Univ. (1978–1980).
- [Wa] D.M.Walba: Topological stereochemistry, Tetrahedron 41 (1985), 3161-3212.
- [We] A.H. Wallace: Modifications and cobounding manifolds, Can. J. Math. 12 (1960), 503-528.
- [Wo] K. Wolcott: The knotting of theta-curves and other graphs in S³, in Geometry and Topology, Marcel Dekker, 1987, 325-346.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan