Kanemitsu, M. and Yoshida, K. Osaka J. Math. 26 (1989), 665-670

ON EMBEDDED PRIMARY COMPONENTS

MITSUO KANEMITSU AND KEN-ICHI YOSHIDA

(Received October 25, 1988)

Introduction

Throughout this paper all rings will be commutative with identities and R will always denote a Noetherian local domain with maximal ideal M.

In section one, we assume that depth R=1, (Krull) dim R>1 and the integral closure of R is a finite R-module. It is well known that a non-zero principal ideal $aR \ (=R)$ has an embedded prime divisor M. Also, see [2, §5]. More generally, we consider the reason of the occurrence of an embedded primary component.

In section two, we assume that depth $R = d < \dim R$ and R is a Nagata local domain satisfying the demension formula. In treating this case, we can reduce to the case that depth R=1, using the theory of Rees rings. Hence we will study an embedded primary component in this manner.

Our general reference for undefined terminology is [4].

1. The case of Rings of depth one

Throughout this section, (R, M) denotes a Noetherian local domian such that depth R=1, dim R<1 and the integral closure \overline{R} is a finite R-module. For an element α of the quotient field of R, we put $I_x = \{x \in R | \alpha x \in R\}$. Moreover, we put

 $A = \{ \alpha \in \overline{R} | I_{\alpha} \supset M^{l} \text{ for some positive integer } l \}$.

From [1, 3. 24], it follows immediately that depth R=1 if and only if $I_{\alpha}=M$ for some element α of the quotient field of R. From [3, Exercise 3, p. 12] and dim R>1, we have $\alpha \in \overline{R}$. Hence $\alpha \in A$ and $\alpha \notin R$. Thus $A \neq R$. Also it follows that A is an intermediate ring between R and \overline{R} . In fact, for any α , $\beta \in A$, there exist positive integers l and k such that $I_{\alpha} \supset M^{l}$ and $I_{\beta} \supset M^{k}$. Since $I_{\alpha+\beta} \supset I_{\alpha} \cdot I_{\beta}$ and $I_{\alpha\beta} \supset I_{\alpha} \cdot I_{\beta}$, we have $I_{\alpha+\beta} \supset M^{l+k}$ and $I_{\alpha\beta} \supset M^{l+k}$. Hence $\alpha+\beta \in A$ and $\alpha\beta \in A$. Moreover, the conductor ideal c(A/R)=R: A is an Mprimary ideal and A is the largest ring among the set $\{B/B$ is an intermediate ring between R and \overline{R} such that c(B/R) is M-primary}. For, since $A=R\alpha_1+$ $\cdots+R\alpha_n$ for some elements $\alpha_1, \cdots, \alpha_n$, there exist natural numbers I_i $(1 \le i \le n)$ such that $I_{\sigma_i} \supset M^{i_i}$. Put $l = l_1 + \dots + l_n$. We have $M^i A \subset R$, that is, $M^i \subset c(A/R)$. Hence c(A/R) is *M*-primary. Let *B* be an intermediate ring between *R* and \overline{R} and c(B/R) be *M*-primary. Since $M^i B \subset R$ for some integer *l*, we have $I_b \supset M^i$ for any element *b* of *B*. From the definition of *A*, it follows that $b \in A$, that is, $B \subset A$.

First we recall the following definitions.

DEFINITION. (1) Let I be an ideal of R. I is called *contractible* if $J \cap R = I$ for some intermediate ring $B(\neq R)$ between R and A and some ideal J of B.

(2) Let I be an ideal of R. Put $R(I) = \{\alpha \in A | \alpha I \subset I\}$. This ring R(I) is called the *coefficient ring of I*.

(3) Put $I_R^{-1} = \{ \alpha \in A | \alpha I \subset R \}$.

REMARK. Let $I(\neq R)$ be an ideal of R. Then $I_R^{-1} \supseteq R$. In fact, since $A \neq R$, there exists an element $\alpha \in A$ such that $I_{\alpha} = M$. Hence $\alpha I \subset R$.

Lemma 1. Let I be an ideal of R. Then $I=J \cap R$ for some ideal J of A if and only if $IA \cap R=I$. Moreover, if these conditions are satisfied, $I_R^{-1}=R(I)$. (Consequently, I_R^{-1} is an intermediate ring between R and A.)

Proof. The first statement is easy and so the second remains to be proved. We assume that $IA \cap R = I$. Take any element α of I_R^{-1} . Then $\alpha I \subset IA \cap R = I$. Hence $\alpha \in R(I)$. Thus $I_R^{-1} \subset R(I)$. Clearly $R(I) \subset I_R^{-1}$, which implies $I_R^{-1} = R(I)$.

Proposition 2. Let $I(\pm R)$ be an ideal of R. Then I is not contractible if and only if R(I)=R.

Proof. First, we prove the "only if" part. Put B=R(I). Suppose that $B \supseteq R$. Since I is also an ideal of B, we have $IB \cap R=I$. Thus I is contractible. This contradicts the assumption.

Conversely, suppose that I is contractible. So there exists an intermediate ring $B(\ddagger R)$ between R and A such that $J \cap R = I$ for some ideal J in B. Clearly $IB \cap R = I$. Put $C = \{\beta \in B | \beta I \subset R\}$. Then $R \subseteq C \subset R(I)$. In fact, there exists an element $\alpha \in B - R$. Since I_{α} is an M-primary ideal, there exists some element a of R such that $M = I_{\alpha}$: $aR = I_{\alpha\alpha}$ and so we can take $a\alpha$ instead of α . Since $I \subset M, \alpha \in C$ and $\alpha \notin R$. Since $CI \subset IB \cap R = I$, $C \subset R(I)$. Thus $R \subseteq C \subset R(I)$. The proof is complete.

Proposition 3. Let I be an ideal of R and let $I=Q_1 \cap \cdots \cap Q_t$ be an irredundant primary decomposition of I where Q_i is a P_i -primary ideal for $i=1, \dots, t$. If $P_i \subseteq M$ for every $i \ (1 \le i \le t)$, then $IA \cap R = I$.

Proof. It is clear that $I \subset IA \cap R$. We shall prove that $IA \cap R \subset I$. Since $P_i \subseteq M$, we see that $P_i \supset c(A/R)$. Hence $R_{P_i} = A_{P_i}$ for $1 \leq i \leq t$. Thus

666

 $(IA \cap R)_{P_i} = IR_{P_i} \subset Q_i R_{P_i}$ and so $IA \cap R \subset Q_i$ for $1 \le i \le t$. Consequently $IA \cap R \subset I$.

Theorem 4. Let I be an ideal of R with height $I < \dim R$. If R(I) = R, then I has an embedded M-primary component.

Proof. Suppose that I has no embedded *M*-primary components. From Proposition 3, we have $IA \cap R=I$. By Lemma 1, we have $I_{\mathbb{R}}^{-1}=R(I)$. Since $I_{\mathbb{R}}^{-1} \cong R$ by Remark, it contradicts the assumption. The proof is complete.

More precisely, Theorem 4 can be stated as follows:

Theorem 5. Let I be an ideal of R with height $I < \dim R$. Also, let $I = Q_1 \cap Q_2 \cap \cdots \cap Q_t \cap Q$ be an irredundant primary decomposition, where Q_i is P_i -primary $(i=1, \dots, t)$ and $P_i \neq M(i=1, \dots, t)$. If R(I) = R, then Q is an M-primary ideal such that R(Q) = R.

Proof. By Theorem 4, an *M*-primary component Q must occur in the primary decomposition. Put $J = Q_1 \cap \cdots \cap Q_t$. By Proposition 3, we have $JA \cap R = J$. So $J_R^{-1} = R(J)$ by Lemma 1. Suppose that $R(Q) \supseteq R$. Then we claim that there exists an element $\alpha \in R(Q) - R$ such that $I_{\alpha} = M$. Since I_{α} is *M*-primary, there exists some element a of R such that $M = I_{\alpha}$: aR. On the other hand, $I_{\alpha}: aR = I_{\alpha\alpha}$ and so we can take $a\alpha$ instead of α . By this claim, we see that $I_{\alpha} \supset J$ and so $\alpha J \subset R$. Thus $\alpha \in J_R^{-1} = R(J)$. Since $\alpha \in R(J) \cap R(Q) \subset R(I)$, it follows that $R(I) \supseteq R$. This contradicts the assumption. Hence R(Q) = R.

REMARK. We can give another proof of the following well-known result:

Let $a \neq 0$ be a non-unit element of R. Then aR has M as an embedded prime divisor. In fact, since R(aR) = R and height $(aR) \leq 1$, it follows from Theorem 4.

3. The Rees Rings and embedded primary components

Throughout this section, (R, M) denotes a Nagata local domain satisfying the dimension formula and depth $R=d < \dim R=n$.

We recall the following two definitions:

DEFINITION. A Noetherian domain R satisfies the dimension formula if for any finitely generated extension domain T of R, and for any $Q \in \text{Spec } T$ with $P = Q \cap R$, we have height $P + \text{tr.deg}_R T = \text{height } Q + \text{tr.deg}_{R/P}(T/Q)$. Here tr.deg_AB is the transcendence degree of the quotient field of a domain B over that of a subdomain A of B.

DEFINITION (cf. [4, (31.A)]). A ring B is a Nagata ring if it is Noetherian

and if, for any finite extension L of the quotient field of B/P, the integral closure of B/P in L is a finite B/P-module for every $P \in \text{Spec } B$.

Let a_1, \dots, a_d be a maximal regular sequence of elements in R and write $I=(a_1, \dots, a_d)$. Then $\operatorname{Ass}_R(R/I)=\operatorname{Ass}_T(R/I^l)$ for all l>0 (cf. [3, p. 103, Exercise 13]). Since $M \in \operatorname{Ass}_R(R/I)$, we put $\operatorname{Ass}_R(R/I)=\{p_1, \dots, p_u, M\}$. Let $I^l=q_{1,l} \cap q_{2,l} \cap \dots \cap q_{u,l} \cap Q_l$ be an irredundant primary decomposition where the $q_{1,l}$ is p_i -primary and Q_l is M-primary. Put $J_l=q_{1,l} \cap q_{2,l} \cap \dots \cap q_{u,l}$. J_l is independent of the irredundant primary decomposition of I^l . In fact, $J_l=I^l \cap R[1/a] \cup R$ for some $a \in M - \bigcup_{i=1}^u p_i$. Thus $J_l J_m \subset J_{l+m}$. Let A be the Rees ring of R with respect to I, that is, the ring $A=R[t^{-1}, It]$ with an indeterminate t. Put $\tilde{A}=R[t^{-1}]\oplus (\oplus_{l>0} J_l t^l)$. \tilde{A} is a Z-graded ring containing A. Since R is a Nagata ring, A and \tilde{A} are also Nagata rings by [4, (31, H)]. In the following let A, \tilde{A}, I, I^l and J_l be as above.

Proposition 6. \tilde{A} is integral over A.

Proof. Let \overline{A} be the integral closure of A. Since \overline{A} is a Krull domain, we have $\bar{A} = \cap \bar{A}_{\bar{P}}$, the intersection being taken over all $\bar{P} \in Ht_1(\bar{A})$ where $Ht_1(\bar{A})$ denotes the set of all prime ideals of height one in \overline{A} . Put $P = \overline{P} \cap A$ for $\overline{P} \in$ $Ht_1(A)$. Since R satisfies the dimension formula and A is a finitely generated Ralgebra, it follows that A satisfies the dimension formula. Hence $P \in Ht_1(A)$. Put $P \cap R = p$. We shall prove that $\hat{A} \subset \bar{A}_{\bar{P}}$ for any $\bar{P} \in Ht_1(\bar{A})$. First, we consider the case that $t^{-1} \in P$. Using the dimension formula, we have height p =tr.deg_{R/p} (A/P). Since $t^{-1} \in P$, it follows that $P \supset I = (a_1, \dots, a_d)$. Hence $p \supset I$. Thus height $p \ge$ height I = d. Since $I = (a_1, \dots, a_d)$ and a_1, \dots, a_d is a regular sequence, it follows that $\bigoplus_{i\geq 0} I^i/I^{i+1} \simeq (R/I) [X_1, \cdots, X_d]$, where X_1, \cdots, X_d are indeterminates over R/I. We see that the canonical homomorphism $A/t^{-1}A =$ $\bigoplus_{i\geq 0} I^i/I^{i+1} \rightarrow A/P$ is surjective, and so height $p=\text{tr.deg}_{R/p}A/P \leq \text{tr.deg}_{R/p}(R/p)$ $[X_1, \dots, X_d] = d$. Hence height p = d. Since height M = n > d, we see that $M \supseteq p$. Therefore $(I')_{p} = (J_{l})_{p}$. Since $A_{p} = R[t^{-1}]_{p} \oplus (\bigoplus_{l>0} (I')_{p} t') = R[t^{-1}]_{p} \oplus (\bigoplus_{l>0} (J_{l})_{p} t')$ $=\tilde{A}_{b}$, we have $\bar{A}_{\bar{P}} \supset \tilde{A}_{b}$. Next, we consider the case that $t^{-1} \oplus P$. Since $\tilde{A} =$ $R[t^{-1}] \oplus (\bigoplus_{l>0} J_l t^l)$ by definition, $R_p[t, t^{-1}] \supset \tilde{A}$. Since $t^{-1} \notin P$, we have $A_P \supset R_p$ [t, t⁻¹]. Thus $A \subset A_P \subset \overline{A_P}$. Hence $A \subset \bigcap_{\overline{P} \in \operatorname{Ht}_1(\overline{A})} \overline{A_P} = \overline{A}$. Therefore A is integral over A. The proof is complete.

Put $\overline{A}_R = \overline{A} \cap R[t, t^{-1}]$.

Lemma 7. $\tilde{A} = \{ \alpha \in \bar{A}_R | M^l \alpha \subset A \text{ for some } l > 0 \}.$

Proof. Put $A' = \{ \alpha \in \overline{A}_R / M^l \alpha \subset A \text{ for some } l > 0 \}$. First we shall prove that $\widetilde{A} \subset A'$. Take a homogeneouse element $at^n \ (a \in J_n)$. Then there exists a positive integer l such that $J_n M^l \subset I^n$. Hence $M^l(at^n) \subset A$. Thus $\widetilde{A} \cap A'$. Next,

we shall prove that $A' \subset \tilde{A}$. Take an element α of A'. Since A is a graded ring over R, we can assume that α is a homogeneous element. Let $\alpha = at^n$ where $a \in R$. It is obvious that $\alpha \in \tilde{A}$ in the case that $n \leq 0$. We suppose that n > 0. Since $M'\alpha \subset A$, we have $M'a \subset I^n$. Hence $a \in (I^n)_{p_i} \cap R \subset q_{i,n}$. Thus $a \in \bigcap_{i=1}^n q_{i,n} = J_n$. Therefore $\alpha \in \tilde{A}$. Thus we prove that $A' \subset \tilde{A}$. The proof is complete.

Lemma 8. $\operatorname{Ass}_{R}(\tilde{A}|A) = \{M\}.$

Proof. It is enough to prove that "if $P \in Ass_A(\tilde{A}|A)$, then $P \cap R = M$ " (cf. [4, p. 57,9. A]). Since \tilde{A} and A are graded rings, there exists $\alpha = at^n (a \in J_n)$ such that $P = A : \alpha$. Hence $P \cap R = I^n : a$. Since $a \in J_n$, it follows that $I^n : a \supset Q_n$. Therefore $I^n : a$ is an *M*-primary ideal. Thus $P \cap R = M$. The proof is complete.

Now, we consider the problem when M is a prime divisor of an ideal N containing I. We recall the definition:

$$R_{\widetilde{A}}(IA) = \{ \alpha \in \widetilde{A} | \alpha IA \subset IA \}$$
.

Theorem 9. Let (R, M) be a Nagara local domain satisfying the dimension formula and depth $R=d < \dim R=n$. Let N be an ideal of R containing I. If height N < n and $R_{\overline{A}}(NA) = A$, then M is an embedded prime divisor of N.

Proof. First, we shall prove that "if M is not a prime divisor of N then $N\tilde{A} \cap A = NA$ ". For this, it is enough to prove that $N\tilde{A} \cap A \subset NA$, that is, $NJ_n \cap I^n \subset NI^n$ for any n > 0. Take an element α of $NJ_n \cap I^n$,

$$\alpha = \sum x_{i_1, \cdots, i_d} a_1^{i_1} \cdots a_d^{i_d},$$

the sum being taken over the integers i_1, \dots, i_d such that $i_1+i_2+\dots+i_d=n$. We claim that $x_{i_1,\dots,i_d} \in N$. Let $N=q_1 \cap \dots \cap q_s$ be an irredundant primary decomposition of N. Let $p'_i = \operatorname{rad}(q_i)$ where $\operatorname{rad}(q_i)$ denotes the radical of q_i . It follows that $p'_1 \subseteq M$ by the assumption. Put $p=p'_i$. Then $(J_n)_p = (I^n)_p$ (cf. The proof in Proposition 6). Since $\alpha \in (NJ_n)_p = (NI^n)_p$, it follows that

$$\alpha = \sum y_{i_1, \cdots, i_d} a_1^{i_1} \cdots a_d^{i_d}$$

where $y_{i_1,\dots,i_d} \in N_p$. Since $\alpha \in (I^n)_p$, we have

$$\overline{\alpha} \in I_p^n/I_p^{n+1} \subset \bigoplus_{i \ge 0} I_p^i/I_p^{i+1} \simeq (R_p/I_p) [X_1, \cdots, X_d].$$

Therefore

$$\bar{\alpha} = \sum \bar{y}_{i_1, \cdots, i_d} \bar{a}_1^{i_1} \cdots \bar{a}_d^{i_d} = \sum \bar{x}_{i_1, \cdots, i_d} \bar{a}_1^{i_1} \cdots \bar{a}_d^{i_d}.$$

Thus $y_{i_1,\dots,i_d} \equiv x_{i_1,\dots,i_d} \pmod{I_p}$, that is,

M. KANEMITSU AND K. YOSHIDA

$$x_{i_1, \dots, i_d} = y_{i_1, \dots, i_d} + z_{i_1, \dots, i_d}$$
 for some $z_{i_1, \dots, i_d} \in I_p$.

Since $y_{i_1,\dots,i_d} \in N_p$ and $z_{i_1,\dots,i_d} \in I_p \subset N_p$, we see that $x_{i_1,\dots,i_d} \in N_p \cap R \subset q_i$. Therefore $NA \cap A = NA$.

Next, we shall prove that $R_{\widetilde{A}}(NA) = (NA)_{\widetilde{A}}^{-1} \supseteq A$. We recall the definition:

$$(NA)_{\widetilde{A}}^{-1} = \{ \alpha \in \widetilde{A} | \alpha NA \subset A \}$$
.

It is clear that $R_{\tilde{A}}(NA) \subset (NA)_{\tilde{A}}^{-1}$ and so we prove that $(NA)_{\tilde{A}}^{-1} \subset R_{\tilde{A}}(NA)$. Take any element θ of $(NA)_{\tilde{A}}^{-1}$. Then $\theta \in \tilde{A}$ and $\theta NA \subset A$. Since $N\tilde{A} \cap A = NA$, we have $\theta(NA) \subset N\tilde{A} \cap A = NA$. Thus $\theta \in R_{\tilde{A}}(NA)$. Hence $R_{\tilde{A}}(NA) = (NA)_{\tilde{A}}^{-1}$. Now, we shall prove that $(NA)_{\tilde{A}}^{-1} \supseteq A$. From Lemma 8, there exists some $\alpha \in \tilde{A} - A$ such that $M = A_{:R} \alpha$. Since $N \subset M$, it follows that $\alpha N \subset A$, that is, $\alpha \in (NA)_{\tilde{A}}^{-1}$. Hence $R_{\tilde{A}}(NA) \supseteq A$. This is a contradiction.

References

- [1] S. Greco: Normal Varieties, Academic Press, New York and London, 1978.
- [2] M. Kanemitsu and K. Yoshida: Conductor Ideals and Embedded Primary Components of Principal Ideals, to appear in Kobe J. Math.
- [3] I. Kaplansky: Commutative Rings, Allyn and Bacon, Boston, 1970.
- [4] H. Matsumura: Commutative Algebra, Second Edition. Benjamin, New York, 1980.

Mitsuo Kanemitsu Department of Mathematics Aichi University of Education Igaya-cho, Kariya-shi, 448 Japan

Ken-ichi Yoshida Department of Applied Mathematics Okayama University of Science Ridai-cho, Okayama-shi, 700 Japan