ON EMBEDDED PRIMARY COMPONENTS

Mitsuo KANEMITSU and Ken-ichi YOSHIDA

(Received October 25, 1988)

Introduction

Throughout this paper all rings will be commutative with identities and R will always denote a Noetherian local domain with maximal ideal M.

In section one, we assume that depth $R=1$, (Krull) $\operatorname{dim} R>1$ and the integral closure of R is a finite R-module. It is well known that a non-zero principal ideal $a R(\neq R)$ has an embedded prime divisor M. Also, see [2, §5]. More generally, we consider the reason of the occurrence of an embedded primary component.

In section two, we assume that $\operatorname{depth} R=d<\operatorname{dim} R$ and R is a Nagata local domain satisfying the demension formula. In treating this case, we can reduce to the case that depth $R=1$, using the theory of Rees rings. Hence we will study an embedded primary component in this manner.

Our general reference for undefined terminology is [4].

1. The case of Rings of depth one

Throughout this section, (R, M) denotes a Noetherian local domian such that depth $R=1, \operatorname{dim} R<1$ and the integral closure \bar{R} is a finite R-module. For an element α of the quotient field of R, we put $I_{\alpha}=\{x \in R / \alpha x \in R\}$. Moreover, we put

$$
A=\left\{\alpha \in \bar{R} / I_{\alpha} \supset M^{l} \text { for some positive integer } l\right\}
$$

From [1, 3.24], it follows immediately that depth $R=1$ if and only if $I_{\infty}=M$ for some element α of the quotient field of R. From [3, Exercise 3, p. 12] and $\operatorname{dim} R>1$, we have $\alpha \in \bar{R}$. Hence $\alpha \in A$ and $\alpha \notin R$. Thus $A \neq R$. Also it follows that A is an intermediate ring between R and \bar{R}. In fact, for any α, $\beta \in A$, there exist positive integers l and k such that $I_{\alpha} \supset M^{l}$ and $I_{\beta} \supset M^{k}$. Since $I_{\alpha+\beta} \supset I_{\alpha} \cdot I_{\beta}$ and $I_{\alpha \beta} \supset I_{\alpha} \cdot I_{\beta}$, we have $I_{\alpha+\beta} \supset M^{l+k}$ and $I_{\alpha \beta} \supset M^{l+k}$. Hence $\alpha+\beta \in A$ and $\alpha \beta \in A$. Moreover, the conductor ideal $\mathrm{c}(A / R)=R: A$ is an M primary ideal and A is the largest ring among the set $\{B / B$ is an intermediate ring between R and \bar{R} such that $\mathrm{c}(B / R)$ is M-primary\}. For, since $A=R \alpha_{1}+$ $\cdots+R \alpha_{n}$ for some elements $\alpha_{1}, \cdots, \alpha_{n}$, there exist natural numbers $l_{i}(1 \leq i \leq n)$
such that $I_{\alpha_{i}} \supset M^{l i}$. Put $l=l_{1}+\cdots+l_{n}$. We have $M^{l} A \subset R$, that is, $M^{l} \subset \mathfrak{c}(A / R)$. Hence $\mathrm{c}(A / R)$ is M-primary. Let B be an intermediate ring between R and \bar{R} and $\mathrm{c}(B / R)$ be M-primary. Since $M^{l} B \subset R$ for some integer l, we have $I_{b} \supset M^{l}$ for any element b of B. From the definition of A, it follows that $b \in A$, that is, $B \subset A$.

First we recall the following definitions.
Definition. (1) Let I be an ideal of $R . \quad I$ is called contractible if $J \cap R=I$ for some intermediate ring $B(\neq R)$ between R and A and some ideal J of B.
(2) Let I be an ideal of R. Put $R(I)=\{\alpha \in A / \alpha I \subset I\}$. This ring $R(I)$ is called the coefficient ring of I.
(3) Put $I_{R}^{-1}=\{\alpha \in A / \alpha I \subset R\}$.

Remark. Let $I(\neq R)$ be an ideal of R. Then $I_{R}^{-1} \supsetneq R$. In fact, since $A \neq R$, there exists an element $\alpha \in A$ such that $I_{\alpha}=M$. Hence $\alpha I \subset R$.

Lemma 1. Let I be an ideal of R. Then $I=J \cap R$ for some ideal J of A if and only if $I A \cap R=I$. Moreover, if these conditions are satisfied, $I_{R}^{-1}=R(I)$. (Consequently, I_{R}^{-1} is an intermediate ring between R and A.)

Proof. The first statement is easy and so the second remains to be proved. We assume that $I A \cap R=I$. Take any element α of I_{R}^{-1}. Then $\alpha I \subset I A \cap R=I$. Hence $\alpha \in R(I)$. Thus $I_{R}^{-1} \subset R(I)$. Clearly $R(I) \subset I_{R}^{-1}$, which implies $I_{R}^{-1}=R(I)$.

Proposition 2. Let $I(\neq R)$ be an ideal of R. Then I is not contractible if and only if $R(I)=R$.

Proof. First, we prove the "only if" part. Put $B=R(I)$. Suppose that $B \supsetneq R$. Since I is also an ideal of B, we have $I B \cap R=I$. Thus I is contractible. This contradicts the assumption.

Conversely, suppose that I is contractible. So there exists an intermediate ring $B(\neq R)$ between R and A such that $J \cap R=I$ for some ideal J in B. Clearly $I B \cap R=I$. Put $C=\{\beta \in B / \beta I \subset R\}$. Then $R \subsetneq C \subset R(I)$. In fact, there exists an element $\alpha \in B-R$. Since I_{α} is an M-primary ideal, there exists some element a of R such that $M=I_{\alpha}: a R=I_{a \alpha}$ and so we can take $a \alpha$ instead of α. Since $I \subset M, \alpha \in C$ and $\alpha \notin R$. Since $C I \subset I B \cap R=I, C \subset R(I)$. Thus $R \subsetneq C \subset R(I)$. The proof is complete.

Proposition 3. Let I be an ideal of R and let $I=Q_{1} \cap \cdots \cap Q_{t}$ be an irredundant primary decomposition of I where Q_{i} is a P_{i}-primary ideal for $i=1, \cdots, t$. If $P_{i} \subsetneq M$ for every $i(1 \leq i \leq t)$, then $I A \cap R=I$.

Proof. It is clear that $I \subset I A \cap R$. We shall prove that $I A \cap R \subset I$. Since $P_{i} \subsetneq M$, we see that $P_{i} \nsubseteq \mathrm{c}(A / R)$. Hence $R_{P_{i}}=A_{P_{i}}$ for $1 \leq i \leq t$. Thus
$(I A \cap R)_{P_{i}}=I R_{P_{i}} \subset Q_{i} R_{P_{i}}$ and so $I A \cap R \subset Q_{i}$ for $1 \leq i \leq t$. Consequently $I A \cap$ $R \subset I$.

Theorem 4. Let I be an ideal of R with height $I<\operatorname{dim} R . \quad$ If $R(I)=R$, then I has an embedded M-primary component.

Proof. Suppose that I has no embedded M-primary components. From Proposition 3, we have $I A \cap R=I$. By Lemma 1, we have $I_{R}^{-1}=R(I)$. Since $I_{R}^{-1} \supsetneq R$ by Remark, it contradicts the assumption. The proof is complete.

More precisely, Theorem 4 can be stated as follows:
Theorem 5. Let I be an ideal of R with height $I<\operatorname{dim} R$. Also, let $I=$ $Q_{1} \cap Q_{2} \cap \cdots \cap Q_{t} \cap Q$ be an irredundant primary decomposition, where Q_{i} is $P_{i}-$ primary $(i=1, \cdots, t)$ and $P_{i} \neq M(i=1, \cdots, t)$. If $R(I)=R$, then Q is an M primary ideal such that $R(Q)=R$.

Proof. By Theorem 4, an M-primary component Q must occur in the primary decomposition. Put $J=Q_{1} \cap \cdots \cap Q_{t}$. By Proposition 3, we have $J A \cap R=J$. So $J_{R}^{-1}=R(J)$ by Lemma 1. Suppose that $R(Q) \supsetneq R$. Then we claim that there exists an element $\alpha \in R(Q)-R$ such that $I_{\alpha}=M$. Since I_{∞} is M-primary, there exists some element a of R such that $M=I_{\alpha}: a R$. On the other hand, $I_{\alpha}: a R=I_{a \alpha}$ and so we can take $a \alpha$ instead of α. By this claim, we see that $I_{\alpha} \supset J$ and so $\alpha J \subset R$. Thus $\alpha \in J_{R}^{-1}=R(J)$. Since $\alpha \in R(J) \cap$ $R(Q) \subset R(I)$, it follows that $R(I) \supsetneq R$. This contradicts the assumption. Hence $R(Q)=R$.

Remark. We can give another proof of the following well-known result:
Let $a \neq 0$ be a non-unit element of R. Then $a R$ has M as an embedded prime divisor. In fact, since $R(a R)=R$ and height $(a R) \leqq 1$, it follows from Theorem 4.

3. The Rees Rings and embedded primary components

Throughout this section, (R, M) denotes a Nagata local domain satisfying the dimension formula and depth $R=d<\operatorname{dim} R=n$.

We recall the following two definitions:
Definition. A Noetherian domain R satisfies the dimension formula if for any finitely generated extension domain T of R, and for any $Q \in \operatorname{Spec} T$ with $P=Q \cap R$, we have height $P+\operatorname{tr} \cdot \operatorname{deg}_{R} T=$ height $Q+\operatorname{tr} \cdot \operatorname{deg}_{R / P}(T / Q)$. Here $\operatorname{tr} . \operatorname{deg}_{A} B$ is the transcendence degree of the quotient field of a domain B over that of a subdomain A of B.

Definition (cf. [4, (31.A)]. A ring B is a Nagata ring if it is Noetherian
and if, for any finite extension L of the quotient field of B / P, the integral closure of B / P in L is a finite B / P-module for every $P \in \operatorname{Spec} B$.

Let a_{1}, \cdots, a_{d} be a maximal regular sequence of elements in R and write $I=\left(a_{1}, \cdots, a_{d}\right)$. Then $\operatorname{Ass}_{R}(R / I)=\operatorname{Ass}_{T}\left(R / I^{l}\right)$ for all $l>0$ (cf. [3, p. 103, Exercise 13]). Since $M \in \operatorname{Ass}_{R}(R / I)$, we put $\operatorname{Ass}_{R}(R / I)=\left\{p_{1}, \cdots, p_{u}, M\right\}$. Let $I^{l}=q_{1, l}$ $\cap q_{2, l} \cap \cdots \cap q_{u, l} \cap Q_{l}$ be an irredundant primary decomposition where the $q_{1, l}$ is p_{i}-primary and Q_{l} is M-primary. Put $J_{l}=q_{1, l} \cap q_{2, l} \cap \cdots \cap q_{u, l} . \quad J_{l}$ is independent of the irredundant primary decomposition of I^{l}. In fact, $J_{l}=I^{l} \cap R[1 / a] \cup R$ for some $a \in M-\cup_{i=1}^{u} p_{i}$. Thus $J_{l} J_{m} \subset J_{l+m}$. Let A be the Rees ring of R with respect to I, that is, the ring $A=R\left[t^{-1}, I t\right]$ with an indeterminate t. Put $\boldsymbol{A}=$ $R\left[t^{-1}\right] \oplus\left(\oplus_{l>0} J_{l} t^{l}\right) . \quad A$ is a Z-graded ring containing A. Since R is a Nagata ring, A and A are also Nagata rings by [4, (31.H)]. In the following let A, A, I, I^{l} and J_{l} be as above.

Proposition 6. A is integral over A.

Proof. Let \bar{A} be the integral closure of $A . \quad$ Since \bar{A} is a Krull domain, we have $\bar{A}=\cap \bar{A}_{\bar{P}}$, the intersection being taken over all $\bar{P} \in \mathrm{Ht}_{1}(\bar{A})$ where $\mathrm{Ht}_{1}(\bar{A})$ denotes the set of all prime ideals of height one in \bar{A}. Put $P=\bar{P} \cap A$ for $\bar{P} \in$ $\mathrm{Ht}_{1}(\bar{A})$. Since R satisfies the dimension formula and A is a finitely generated R algebra, it follows that A satisfies the dimension formula. Hence $P \in \mathrm{Ht}_{1}(A)$. Put $P \cap R=p$. We shall prove that $A \subset \bar{A}_{\bar{P}}$ for any $\bar{P} \in \mathrm{Ht}_{1}(\bar{A})$. First, we consider the case that $t^{-1} \in P$. Using the dimension formula, we have height $p=$ tr. $\operatorname{deg}_{R / p}(A / P)$. Since $t^{-1} \in P$, it follows that $P \supset I=\left(a_{1}, \cdots, a_{d}\right)$. Hence $p \supset I$. Thus height $p \geqq$ height $I=d$. Since $I=\left(a_{1}, \cdots, a_{d}\right)$ and a_{1}, \cdots, a_{d} is a regular sequence, it follows that $\bigoplus_{i \geq 0} I^{i} / I^{i+1} \cong(R / I)\left[X_{1}, \cdots, X_{d}\right]$, where X_{1}, \cdots, X_{d} are indeterminates over R / I. We see that the canonical homomorphism $A / t^{-1} A=$ $\oplus_{i \geq 0} I^{i} / I^{i+1} \rightarrow A / P$ is surjective, and so height $p=\operatorname{tr} . \operatorname{deg}_{R / p} A / P \leq \operatorname{tr} \cdot \operatorname{deg}_{R / p}(R / p)$ $\left[X_{1}, \cdots, X_{d}\right]=d . \quad$ Hence height $p=d$. Since height $M=n>d$, we see that M ₹ p. Therefore $\left(I^{l}\right)_{p}=\left(J_{l}\right)_{p} . \quad$ Since $A_{p}=R\left[t^{-1}\right]_{p} \oplus\left(\oplus_{l>0}\left(I^{l}\right)_{p} t^{l}\right)=R\left[t^{-1}\right]_{p} \oplus\left(\oplus_{l>0}\left(J_{l}\right)_{p} t^{l}\right)$ $=A_{p}$, we have $\bar{A}_{\bar{P}} \supset A_{p}$. Next, we consider the case that $t^{-1} \oplus P$. Since $\tilde{A}=$ $R\left[t^{-1}\right] \oplus\left(\oplus_{l>0} J_{l} t^{l}\right)$ by definition, $R_{p}\left[t, t^{-1}\right] \supset A . \quad$ Since $t^{-1} \notin P$, we have $A_{P} \supset R_{p}$ $\left[t, t^{-1}\right]$. Thus $A \subset A_{P} \subset \bar{A}_{\bar{P}}$. Hence $A \subset \cap_{\bar{P} \in \mathrm{Ht}_{1}(\bar{A})} \bar{A}_{\bar{P}}=\bar{A}$. Therefore A is integral over A. The proof is complete.

Put $\bar{A}_{R}=\bar{A} \cap R\left[t, t^{-1}\right]$.
Lemma 7. $A=\left\{\alpha \in \bar{A}_{R} / M^{l} \alpha \subset A\right.$ for some $\left.l>0\right\}$.
Proof. Put $A^{\prime}=\left\{\alpha \in \bar{A}_{R} / M^{l} \alpha \subset A\right.$ for some $\left.l>0\right\}$. First we shall prove that $\tilde{A} \subset A^{\prime}$. Take a homogeneouse elment $a t^{n}\left(a \in J_{n}\right)$. Then there exists a positive integer l such that $J_{n} M^{l} \subset I^{n}$. Hence $M^{l}\left(a t^{n}\right) \subset A$. Thus $A \cap A^{\prime}$. Next,
we shall prove that $A^{\prime} \subset A$. Take an element α of A^{\prime}. Since A is a graded ring over R, we can assume that α is a homogeneous element. Let $\alpha=a t^{n}$ where $a \in R$. It is obvious that $\alpha \in A$ in the case that $n \leq 0$. We suppose that $n>0$. Since $M^{l} \alpha \subset A$, we have $M^{l} a \subset I^{n}$. Hence $a \in\left(I^{n}\right)_{p_{i}} \cap R \subset q_{i, n}$. Thus $a \in$ $\cap_{i=1}^{u} q_{i, n}=J_{n}$. Therefore $\alpha \in A$. Thus we prove that $A^{\prime} \subset A$. The proof is complete.

Lemma 8. $\operatorname{Ass}_{\boldsymbol{R}}(\tilde{A} / A)=\{M\}$.
Proof. It is enough to prove that "if $P \in \operatorname{Ass}_{A}(A / A)$, then $P \cap R=M$ " (cf. [4, p. 57,9. A]). Since A and A are graded rings, there exists $\alpha=a t^{n}\left(a \in J_{n}\right)$ such that $P=A: \alpha$. Hence $P \cap R=I^{n}: a$. Since $a \in J_{n}$, it follows that I^{n} : $a \supset Q_{n}$. Therefore $I^{n}: a$ is an M-primary ideal. Thus $P \cap R=M$. The proof is complete.

Now, we consider the problem when M is a prime divisor of an ideal N containing I. We recall the definition:

$$
R_{\tilde{A}}(I A)=\{\alpha \in \tilde{A} / \alpha I A \subset I A\}
$$

Theorem 9. Let (R, M) be a Nagara local domain satisfying the dimension formula and depth $R=d<\operatorname{dim} R=n$. Let N be an ideal of R containing I. If height $N<n$ and $R_{\widetilde{A}}(N A)=A$, then M is an embedded prime divisor of N.

Proof. First, we shall prove that "if M is not a prime divisor of N then $N A \cap A=N A "$. For this, it is enough to prove that $N A \cap A \subset N A$, that is, $N J_{n} \cap I^{n} \subset N I^{n}$ for any $n>0$. Take an element α of $N J_{n} \cap I^{n}$,

$$
\alpha=\sum x_{i_{1}, \cdots, i_{d}} a_{1}^{i_{1} \cdots a_{d} i_{d}},
$$

the sum being taken over the integers i_{1}, \cdots, i_{d} such that $i_{1}+i_{2}+\cdots+i_{d}=n$. We claim that $x_{i_{1}, \cdots, i_{d}} \in N$. Let $N=q_{1} \cap \cdots \cap q_{s}$ be an irredundant primary decomposition of N. Let $p_{i}^{\prime}=\operatorname{rad}\left(q_{i}\right)$ where $\operatorname{rad}\left(q_{i}\right)$ denotes the radical of q_{i}. It follows that $p_{1}^{\prime} \subsetneq M$ by the assumption. Put $p=p_{i}^{\prime}$. Then $\left(J_{n}\right)_{p}=\left(I^{n}\right)_{p}$ (cf. The proof in Proposition 6). Since $\alpha \in\left(N J_{n}\right)_{p}=\left(N I^{n}\right)_{p}$, it follows that

$$
\alpha=\sum y_{i_{1}, \cdots, i_{d}} a_{1}^{i_{1} \cdots a_{d}^{i_{d}}}
$$

where $y_{i_{1}, \cdots, i_{d}} \in N_{p}$. Since $\alpha \in\left(I^{n}\right)_{p}$, we have

$$
\bar{\alpha} \in I_{p}^{n} / I_{p}^{n+1} \subset \bigoplus_{i \geqq 0} I_{p}^{i} / I_{p}^{i+1} \cong\left(R_{p} / I_{p}\right)\left[X_{1}, \cdots, X_{d}\right] .
$$

Therefore

Thus $y_{i_{1}, \cdots, i_{d}} \equiv x_{i_{1}, \cdots, i_{d}}\left(\bmod I_{p}\right)$, that is,

$$
x_{i_{1}}, \cdots, i_{d}=y_{i_{1}}, \ldots, i_{d}+z_{i_{1}}, \ldots, i_{d} \text { for some } z_{i_{1}, \ldots, i_{d}} \in I_{p}
$$

Since $y_{i_{1}, \cdots, i_{d}} \in N_{p}$ and $z_{i_{1}, \cdots, i_{d}} \in I_{p} \subset N_{p}$, we see that $x_{i_{1}, \cdots, i_{d}} \in N_{p} \cap R \subset q_{i}$. Therefore $N A \cap A=N A$.

Next, we shall prove that $R_{\tilde{A}}(N A)=(N A) \tilde{\tilde{A}}^{1} \supseteqq A$. We recall the definition:

$$
(N A) \overline{\tilde{A}}^{1}=\{\alpha \in \tilde{A} / \alpha N A \subset A\}
$$

It is clear that $R_{\tilde{A}}(N A) \subset(N A)_{\bar{A}^{1}}^{1}$ and so we prove that $(N A)_{\overline{\tilde{A}}^{1} \subset R_{\tilde{A}}(N A) \text {. Take }}$ any element θ of $(N A) \overline{\tilde{A}}^{1}$. Then $\theta \in \tilde{A}$ and $\theta N A \subset A$. Since $N A \cap A=N A$, we have $\theta(N A) \subset N \tilde{A} \cap A=N A$. Thus $\theta \in R_{\tilde{A}}(N A)$. Hence $R_{\tilde{A}}(N A)=(N A)_{\tilde{A}}{ }^{1}$. Now, we shall prove that $(N A) \tilde{\tilde{A}}^{1}$ 手 A. From Lemma 8, there exists some $\alpha \in A-A$ such that $M=A:_{R} \alpha$. Since $N \subset M$, it follws that $\alpha N \subset A$, that is, $\alpha \in(N A) \overline{\bar{A}}^{1}$. Hence $R_{\tilde{A}}(N A) \supsetneq A$. This is a contradiction.

References

[1] S. Greco: Normal Varieties, Academic Press, New York and London, 1978.
[2] M. Kanemitsu and K. Yoshida: Conductor Ideals and Embedded Primary Components of Principal Ideals, to appear in Kobe J. Math.
[3] I. Kaplansky: Commutative Rings, Allyn and Bacon, Boston, 1970.
[4] H. Matsumura: Commutative Algebra, Second Edition. Benjamin, New York, 1980.

Mitsuo Kanemitsu
Department of Mathematics Aichi University of Education Igaya-cho, Kariya-shi, 448 Japan

Ken-ichi Yoshida
Department of Applied Mathematics Okayama University of Science Ridai-cho, Okayama-shi, 700 Japan

