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Introduction

Throughout this paper all rings will be commutative with identities and
R will always denote a Noetherian local domain with maximal ideal M.

In section one, we assume that depth R=l, (Krull) dimi?>l and the
integral closure of R is a finite i?-module. It is well known that a non-zero
principal ideal aR (φR) has an embedded prime divisor M. Also, see [2, §5],
More generally, we consider the reason of the occurrence of an embedded pri-
mary component.

In section two, we assume that depth R = d<dim R and R is a Nagata
local domain satisfying the demension formula. In treating this case, we can
reduce to the case that depth /?=1, using the theory of Rees rings. Hence we
will study an embedded primary component in this manner.

Our general reference for undefined terminology is [4].

1. The case of Rings of depth one

Throughout this section, {R} M) denotes a Noetherian local domian such
that depth R— 1, dim R< 1 and the integral closure R is a finite i?-module. For
an element a of the quotient field of R, we put IΛ= {x^Rjax^R}. Moreover,
we put

A = {a^RjIΛZ^Mι for some positive integer /} .

From [1, 3. 24], it follows immediately that depthR=ί if and only if IΛ=M for
some element a of the quotient field of i?. From [3, Exercise 3, p. 12] and
dimi?>l, we have a^R. Hence a^A and a$R. Thus AΦR. Also it
follows that A is an intermediate ring between R and R. In fact, for any or,

, there exist positive integers / and k such that IΛZDMι and IβZ)Mk. Since
Λ> and IΛβZDlΛΊβi we have /Λ + | 3Z)M / +* and IΛβ^>Mί+k. Hence
and aβ&A. Moreover, the conductor ideal c(A/R)=R: A is an M-

primary ideal and A is the largest ring among the set {B\B is an intermediate
ring between R and R such that c(B/R) is M-primary}. For, since A=Raλ+
—\-Ra n for some elements aly •••, an} there exist natural numbers /,- (ί<i<ή)
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such that IΛpMli. Put / = / 1 + . . . + / n . We have MιAdRy that is, M ' c φ4/jR).
Hence c(A/R) is M-primary. Let B be an intermediate ring between R and R
and c(BJR) be M-primary. Since MιBdR for some integer /, we have Ih~DMι

for any element 6 of 5. From the definition of A, it follows that b&A, that is,
S c A

First we recall the following definitions.

DEFINITION. (1) Let / be an ideal of R. I is called contractible if
J f)R=I for some intermediate ring B (φi?) between R and A and some ideal
/ o f A

(2) Let / be an ideal of R. Put R(I)= {a^Ajald 7}.
This ring R(I) is called the coefficient ring of 7.

(3) VutlRl={a(=AlaIc:R}.

REMARK. Let /(Φi?) be an ideal of 7?. Then IΫ^R. In fact, since
?, there exists an element a^A such that IΛ=M. Hence aldR.

Lemma l Let I be an ideal of R. Then I=J Γl R for some ideal J of A
if and only if IAf)R=I. Moreover, if these conditions are satisfied, IR1=R(I).

(Consequently, IR1 is an intermediate ring between R and A,)

Proof. The first statement is easy and so the second remains to be proved.
We assume that I A Π R=I. Take any element a of /51. Then aid I A Π R=I.
Hence a<=R{I). Thus/^ci?(/). Clearly Λ φ c l ϊ 1 , which implies 7 ^ -

Proposition 2. Let 7(Φi?) be an ideal of R. Then I is not contractible if
and only if R(I)=R.

Proof. First, we prove the "only if" part. Put 5=72(7). Suppose that
B^R. Since 7 is also an ideal of B> we have IBΓ\R=L Thus 7 is contrac-
tible. This contradicts the assumption.

Conversely, suppose that 7 is contractible. So there exists an intermediate
ring B (Φ R) between 7? and A such that / Π R=I for some ideal / in B. Clearly
IB Π R=L Put C= {β<ZΞB/βI(zR}. Then R S Cci?(7). In fact, there exists
an element a^B—R. Since IΛ is an M-primary ideal, there exists some element
a of R such that M=IΛ: aR=Iaeύ and so we can take aa instead of a. Since
7cM, αeCand a<£R. Since CIdIBnR=I, CdR(I). Thus R^CdR(I).
The proof is complete.

Proposition 3. Let I be an ideal of R and let I=Qιf] ---ΓiQt be an irre-
dundant primary decomposition of I where Q{ is a Prprimary ideal for i=l, •• ί ί .
f every i(l<i<t), then IAf]R=L

Proof. It is clear that IdlAΓlR. We shall prove that IA[)RdI. Since
M, we see that P,.φφ4/72). Hence RPi = AP. for \<i<t. Thus
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(IAf]R)pi=IRPic:QiRpi and so IAnR(^Qi for l<i<t. Consequently IAΠ
Rczl.

Theorem 4. Let I be an ideal of R with height /<dim R. If R(I)=R,
then I has an embedded M-primary component.

Proof. Suppose that / has no embedded M-primary components. From
Proposition 3, we have IAf}R=I. By Lemma 1, we have IΫ^R^). Since

by Remark, it contradicts the assumption. The proof is complete.

More precisely, Theorem 4 can be stated as follows:

Theorem 5. Let I be an ideal of R with height /<dim JR. Also, let 1=
£?inj22n ••• Γ\QtΓ\Q be an irredundant primary decomposition, where Q{ is Pi-
primary ( / = 1 , —, ί) and p . φ Λ ί ( i = l , ••-,*)• U R{I) = R> then Q ίs a n M~
prίmary ideal such that R(Q)=R.

Proof. By Theorem 4, an M-primary component Q must occur in the
primary decomposition. Put J=Qιf) ••• Π Qt By Proposition 3, we have
JAf]R=J. So Jg1=R(J) by Lemma 1. Suppose that R(Q)^R. Then we
claim that there exists an element a^R(Q)—R such that Ieύ=M. Since I
is M-primary, there exists some element a of R such that M=IΛ: aR. On the
other hand, IΛ\ aR=laΛ and so we can take aa instead of a. By this claim,
we see that IΛ"Dj and so aJdR. Thus a^Jjι=R(J). Since a e u ( J ) n
R(Q)czR(I), it follows that i?(/)3i? This contradicts the assumption. Hence

Λ

REMARK. We can give another proof of the following well-known result:
Let αφO be a non-unit element of R. Then aR has M as an embedded

prime divisor. In fact, since R(aR)—R and height (aR) fj 1, it follows from
Theorem 4.

3* The Rees Rings and embedded primary components

Throughout this section, (R, M) denotes a Nagata local domain satisfying
the dimension formula and depth R=d< dim R=n.

We recall the following two definitions:

DEFINITION. A Noetherian domain R satisfies the dimension formula if
for any finitely generated extension domain T of Ry and for any QeSpec T
with P=QΠR, we have height P + tr.deg RT= height Q + tr.deg R/P(T/Q).
Here tr.deg AB is the transcendence degree of the quotient field of a domain B
over that of a subdomain A of B.

DEFINITION (cf. [4, (31.A)]. A ring B is a Nagata ring if it is Noetherian
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and if, for any finite extension L of the quotient field of J3/P, the integral closure
of B\P in L is a finite 5/P-module for every PeSpec B.

Let aly * yad be a maximal regular sequence of elements in R and write
I=(av —, ad). Then Ass* (i?//)=AssΓ (R/Γ) for all />0 (cf. [3, p. 103, Exercise
13])* Since M e Ass* (#//), we put AssR (RII)=(ρly ••-,/>„, M}. Let / ' = 4 U

Πft./ΓΊ ••• Πί«(/Π5/ D e a n irredundant primary decomposition where the qu is
^-primary and Qj is M-primary. Put / / = ? u Π ft./ Π Π ?«,/• // is independent
of the irredundant primary decomposition of I1. In fact, Jι=Iι Π Λ[l/tf] U i? for
some α e A f - U J - i A . Thus/ / / W l c/ / + W . Let 4̂ be the Rees ring of i? with
respect to /, that is, the ring A=R[t~1

y It] with an indeterminate t. Put A=
^[ r l ]®(θ/>o//^) ^ is a Z-graded ring containing A Since i? is a Nagata
ring, A and ^ί are also Nagata rings by [4, (31. H)]. In the following let A, A,
/, I1 and// be as above.

Proposition 6. A is integral over A.

Proof. Let A be the integral closure of A. Since A is a Krull domain, we
have A= Γ\Ap, the intersection being taken over all PeHt^^ϊ) where ϊ
denotes the set of all prime ideals of height one in A. Put P=PΠ^4 for
Ht^^ϊ). Since R satisfies the dimension formula and A is a finitely generated R-
algebra, it follows that A satisfies the dimension formula. Hence P G H t ^ i ) .
Put PΓ\R=p. We shall prove that Ad A? for any P^Ht^A). First, we con-
sider the case that ί - 1 e P . Using the dimension formula, we have height p=
tτ.άegR/p (A/P). Since f ^ e P , it follows that PIDI= (av •••, ad). Hence pZ)I.
Thus height p^ height I=d. Since I=(av -~,ad) and al9 -"yad is a regular
sequence, it follows that 0 ^ o PIIi+1^(RII) [Xly — ,-ΪJ , where Xl9 ---yXd are
indeterminates over R/I. We see that the canonical homomorphism A\t~xA=
@i^P\IiJ"l->A\P is surjective, and so height p=tr.degR/pAjP<tr.degR/p(Rlp)
[Xly •••, Xd]=d. Hence height^=rf. Since height M=n>dy we see that M S/>.
Therefore (I1)P=(JI)P- Since ^ = Λ [ r 1 ] ί 0 ( e / > o ( / l ) / ) = l ? [ r 1 ] ί e ( e / > o (/ι)/)
=iί^, we have A?IDAP. Next, we consider the case that Γ1$LP. Since A=
R[t"ι]®{®ι>Jιtι) by definition, ^ [ ί , Γι]ZDA. Since Γ 1 ^ ? , we have APZ)RP

[t, r 1 ] . Thus AcAPCZ Λp. Hence ^ ί c Π pemi(A) Ap=A. Therefore A is
integral over A. The proof is complete.

Put AΛ = AnR[t, r 1 ] .

Lemma 7. J = {ore ARjMιaC-4/or ôrn̂  />0}.

Proof. Put A'={a^AR/MιaClA for some />0}. First we shall prove
that A(ZAf. Take a homogeneouse elment af (a^Jn). Then there exists a
positive integer / such that JnM

ι C Γ. Hence M\af) dA. Thus Af]A'. Next,
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we shall prove that A'a A. Take an element a of A'. Since A is a graded ring
over R, we can assume that a is a homogeneous element. Let a=af where
a^R. It is obvious that α e i in the case that n<0. We suppose that n>0.
Since MιaaAy we have MιadΓ. Hence α e (/% Π R C &,„. Thus αG
n?-i? t , n = / n . Therefore α e ^ϊ. Thus we prove that A'cA. The proof is
complete.

Lemma 8. AssΛ(iϊ/i4)={Af}.

Proof. It is enough to prove that "if P^AssA(AjA)y then PΠR=M"
(cf. [4, p. 57,9. ^4]). Since A and A are graded rings, there exists cc=atn(aGjn)
such that P=A:a. Hence Pf]R = In:a. Since flG/Λ) it follows that Γ:
aZDQn. Therefore Γ: a is an M-primary ideal. Thus P Γ\R=M. The proof
is complete.

Now, we consider the problem when M is a prime divisor of an ideal N
containing /. We recall the definition:

RA(IA) ={a^AjaIA(zIA} .

Theorem 9 Let (R, M) be a Nagara local domain satisfying the dimension
formula and depth R=d< dim R=n. Let N be an ideal of R containing L If
height N<n and RA(NA)^=A, then M is an embedded prime divisor of N.

Proof. First, we shall prove that "if M is not a prime divisor of N then
NAf)A = NA". For this, it is enough to prove that NAπAczNA, that is,
NJHnΓaNΓ for any n>0. Take an element a of NJnΓ\In,

the sum being taken over the integers il9 •••, id such that i1-\-i2-\ [-id = n.

We claim that xilt...tid^N. Let N=qιf) ••• Γ\qs be an irredundant primary de-
composition of jV. Let p\ — rad (q{) where rad (g, ) denotes the radical of q{.
It follows that p[^M by the assumption. Putp=pl Then (Jn)p = (Γ)p (cf.
The proof in Proposition 6). Since a^(NJn)p=(NIn)p, it follows that

where yiϊt...tid^Λ^. Since a G(7*)^, we have

a<=i;iirlc: θ ΓPIΓP^^(RPIIP) [Xl9 - , X, ] .

Therefore

c? = Σ &,..-.idΦ~Φ = Σ Xilt.. ,idΦ-Φ

T h u s 3'i1. ".» rfΞΛ?ίi." .ύ ( m o d 7 ^ ) > t h a t i s»
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Sincey i l t... t id^Np and zilt...tid^Ip(zNPi we see that ^ . . .^e^ΓI-Rcg, . . There-

fore NAΓ\A=NA.

Next, we shall prove that i?2(Λ^4)=(iV>l)21S^4. We recall the definition:

It is clear that RA(NA)(Z(NA)21 and so we prove that (NA)ΫCZRA(NA). Take

any element θ of (ΛΓ^)J1. Then ΘΪΞA and ΘNAdA. Since NAf)A=NA, we

have 0(ΛΓ,4)cΛΓ^fl ^ - ΛΓ-4. Thus 5 e Rχ(NA). Hence Λ3(iVi4) = (Λ^)^1.

Now, we shall prove that (NA)^13 A. From Lemma 8, there exists some

—A such that M=A\R a. Since NczMy it follws that aNczA, that is,

. Hence Rz(NA) 3 A This is'a contradiction.
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