# RING CLASS FIELDS MODULO 8 OF $Q(\sqrt{-m})$ AND THE QUARTIC CHARACTER OF UNITS OF $Q(\sqrt{m})$ FOR $m \equiv I$ MOD 8 

Franz HaLTER-KOCH and Noburo ISHII

(Received March 8, 1988)

## 1. Introduction

For a positive squarefree rational integer $m$ let $\varepsilon_{m}$ be the fundamental unit of $\boldsymbol{Q}(\sqrt{m})$ and suppose $N_{\boldsymbol{Q}(\sqrt{m}) / \boldsymbol{Q}}\left(\varepsilon_{m}\right)=-1$. Then, for $s \geq 1$ and any prime ideal $\boldsymbol{P}$ of $\boldsymbol{Q}(\sqrt{m})$ with $N(\boldsymbol{P}) \equiv 1 \bmod 2^{s}$, the $2^{s}$-th power residue symbol $\left(\frac{\varepsilon_{m}}{\boldsymbol{P}}\right)_{2^{s}}$ is defined and has value $\pm 1$ provided that $\varepsilon_{m}$ is a $2^{s-1}$-th power residue modulo $\boldsymbol{P}$, i.e. $\left(\frac{\varepsilon_{m}}{\boldsymbol{P}}\right)_{2^{s-1}}=1$. Especially, if $p$ is a rational prime with $p \equiv 1 \bmod 2^{s+1}$ and $\left(\frac{m}{p}\right)=1$, the symbol $\left(\frac{\varepsilon_{m}}{\boldsymbol{P}}\right)_{2^{s}}$ for $\boldsymbol{P} \mid p$ depends only on $p$ and is denoted by $\left(\frac{\varepsilon_{m}}{p}\right)_{2^{s}}$. Concerning this latter case, explicit criteria for $\left(\frac{\varepsilon_{m}}{p}\right)_{2^{s}}=1$ in terms of representations of powers of $p$ by binary quadratic forms have been given in the following cases ([13], [6], [2]):
A. $m \equiv 5 \bmod 8$ or $m \equiv 2 \bmod 4$, and the ideal class group of $\boldsymbol{Q}(\sqrt{-m})$ has no invariant divisible by $4 ; s=1$ and $s=2$.
B. $m \equiv 1 \bmod 8$, and the ideal class group of $\boldsymbol{Q}(\sqrt{-m})$ has only one invariant divisible by $4 ; s=1$.
In this paper we treat the case $s=2$ for $\boldsymbol{B}$. which could not be settled up to now (§5); in this case we also determine the quartic residue symbol $\left(\frac{\varepsilon_{m}}{\boldsymbol{P}}\right)_{4}$, where $\boldsymbol{P}$ is a prime divisor in $\boldsymbol{Q}(\sqrt{m})$ of a prime $p$ with $\left(\frac{-1}{p}\right)=\left(\frac{m}{p}\right)=1($ if $p \equiv 5 \mathrm{mod}$ 8, this symbol depends on $\boldsymbol{P}$ and not only on $p$ ). Further we derive criteria for $\left(\frac{\varepsilon_{m}}{\boldsymbol{P}}\right)_{2^{s}}=1(s=1,2)$ for inert prime ideals $\boldsymbol{P}$ of $\boldsymbol{Q}(\sqrt{m})$ under quite general assumptions (§3) and criteria for $\left(\frac{\varepsilon_{m}}{\boldsymbol{q}}\right)_{2^{s}}=1(s=1,2)$ in the case where $m=q$ is a prime and $\boldsymbol{q}=(\sqrt{q})(\S 6)$. The proofs depend on the generation of suitable subfields of the ring class field modulo 8 of $\boldsymbol{Q}(\sqrt{-m})$ by radicals (§4).

There is a similar and even more complete series of results including octic residuacity in the case $N_{\boldsymbol{Q}(\sqrt{m}) / \boldsymbol{Q}}\left(\varepsilon_{m}\right)=1$ (see [13], [6], [7] and [11]).

## 2. Notation

Throughout this paper we keep the following notation: $m>1$ is a squarefree rational integer;

$$
\begin{aligned}
& F=\boldsymbol{Q}(\sqrt{m}), k=\boldsymbol{Q}(\sqrt{-m}) \\
& K=F \cdot k=\boldsymbol{Q}(\sqrt{m}, \sqrt{-m})=F(i)=k(i), \text { where } \\
& i=\sqrt{-1}
\end{aligned}
$$

$h$ is the odd part of the class number of $k$;
$\varepsilon=U+V \sqrt{m}$ is the fundamental unit of $Z[\sqrt{m}]$ with

$$
\begin{aligned}
& U, V \in N, \text { so } \varepsilon>1, \\
& N_{Q(\sqrt{m}) / Q}(\varepsilon)=U^{2}-m V^{2}=-1
\end{aligned}
$$

If $\varepsilon_{m}$ is the fundamental unit of $\boldsymbol{Q}(\sqrt{m})$ then either $\varepsilon=\varepsilon_{m}$ or $\varepsilon=\varepsilon_{m}^{3}$ where the latter case can only occur if $m \equiv 5 \bmod 8$. In any case, $\varepsilon$ and $\varepsilon_{m}$ have the same $2^{s}$-th power residue properties and we shall prefer to work with $\varepsilon$ instead of $\varepsilon_{m}$.

## 3. Residuacity criteria for inert primes

We start with two simple lemmas; the first concerns Galois theory, the second quadratic reciprocity.

Lemma 1. $K(\sqrt[4]{2 \varepsilon}) / k$ is a cyclic extension of degree 8 , and $K(\sqrt[4]{2 \varepsilon}) / \boldsymbol{Q}$ is normal with a dihedral group of order 16 as Galois group.

Proof. As $N_{K / k}(2 \varepsilon)=-4$ we deduce from [6; Satz 1] that $K(\sqrt[4]{2 \varepsilon}) / k$ is cyclic of degree 8. If $\sigma_{0}$ generates the Galois group of $K / k$, then $\sigma_{0}(2 \varepsilon)=\frac{(1-i)^{4}}{2 \varepsilon}$, and thus a generator $\sigma$ of the Galois group of $K(\sqrt[4]{2 \varepsilon}) / k$ is given by

$$
\sigma(\sqrt[4]{2 \varepsilon})=\frac{1-i}{\sqrt[4]{2 \varepsilon}}
$$

Let $\tau_{0}$ be the generator of the Galois group of $K / F$; then $\tau_{0}(2 \varepsilon)=2 \varepsilon$ and thus $\tau_{0}$ has an extension $\tau$ to $K(\sqrt[4]{2 \varepsilon})$ defined by

$$
\tau(\sqrt[4]{2 \varepsilon})=\sqrt[4]{2 \varepsilon}
$$

But $\tau_{0} \mid k$ generates the Galois group of $k / \boldsymbol{Q}$, and therefore $K(\sqrt[4]{2 \varepsilon}) / \boldsymbol{Q}$ is normal with Galois group generated by $\sigma$ and $\tau$. Now we can check the relations

$$
\sigma^{8}=\tau^{2}=i d, \quad \sigma \tau=\tau \sigma^{-1}
$$

by applying the automorphisms to $\sqrt[4]{2 \varepsilon}$ and $i$; this proves the assertion.
Lemma 2. Let $E$ be a quadratic number field, $p$ an odd rational prime which is inert in $E$ and $\boldsymbol{P}=(p)$ the prime divisor of $p$ in $E$. Then, for any rational integer $r$, prime to $p$, we have $\left(\frac{r}{P}\right)=1$ and

$$
\left(\frac{r}{\boldsymbol{P}}\right)_{4}=\left\{\begin{array}{l}
1, \text { if } p \equiv-1 \bmod 4 \\
\left(\frac{r}{p}\right), \text { if } p \equiv 1 \bmod 4
\end{array}\right.
$$

Proof. By Euler's criterion, we have

$$
\left(\frac{r}{\boldsymbol{P}}\right) \equiv r^{\left(p^{2}-1\right) / 2} \bmod \boldsymbol{P}
$$

as $N(\boldsymbol{P})=p^{2}$, thus $\left(\frac{r}{\boldsymbol{P}}\right)=1$ since $r^{\left(p^{2}-1\right) / 2}=\left(r^{p-1}\right)^{(p+1) / 2} \equiv 1 \bmod p . \quad$ In the same way,

$$
\left(\frac{r}{\boldsymbol{P}}\right)_{4} \equiv r^{\left(p^{2}-1\right) / 4} \bmod \boldsymbol{P}
$$

and if $p \equiv-1 \bmod 4, r^{\left(p^{2}-1\right) / 4}=\left(r^{p-1}\right)^{(p+1) / 4} \equiv 1 \bmod p \operatorname{implies}\left(\frac{r}{P}\right)_{4}=1 . \quad$ If $p \equiv 1$ $\bmod 4, \frac{p+1}{2}$ is odd and the decomposition $\frac{p^{2}-1}{4}=\frac{p-1}{2} \cdot \frac{p+1}{2}$ shows that $r^{\left(p^{2}-1\right) / 4}$ $\equiv 1 \bmod \boldsymbol{P}$ if and only if $r^{(p-1) / 2} \equiv 1 \bmod p$, i.e., $\left(\frac{r}{p}\right)=1$.

Remark. Lemma 2 is a very special case of a general formula for the power residue symbol, see [5; $\S 14$, IV.].

Now we are well prepared to prove the reciprocity criteria for inert primes:
Theorem 1. Let $p$ be an odd rational prime inert in $F$, i.e. $\left(\frac{m}{p}\right)=-1$,
let $\boldsymbol{P}=(p)$ be the prime divisor of $p$ in $F$. Then. and let $\boldsymbol{P}=(p)$ be the prime divisor of $p$ in $F$. Then:
a) $\left(\frac{\varepsilon}{\boldsymbol{P}}\right)=\left(\frac{-1}{p}\right)$.
b) If $p \equiv 1 \bmod 4,\left(\frac{\varepsilon}{\boldsymbol{P}}\right)_{4}=\left(\frac{2}{p}\right)$.

Proof. Let $\boldsymbol{p}_{k}$ resp. $\boldsymbol{p}_{K}$ be a prime divisor of $p$ in $k$ resp. $K$; then $\boldsymbol{p}_{\boldsymbol{K}}$ is a prime divisor of $\boldsymbol{P}$ of relative degree 1 and the prime residue class groups modulo $\boldsymbol{P}$ and $\boldsymbol{p}_{K}$ coincide.

If $p \equiv-1 \bmod 4, \boldsymbol{p}_{k}$ is inert in $K$, and as $K(\sqrt{2 \varepsilon}) / k$ is cyclic, $\boldsymbol{p}_{k}$ remains
inert in $K(\sqrt{2 \varepsilon})$. Thus $p_{K}$ is inert in $K(\sqrt{2 \varepsilon})$ too, and we obtain

$$
-1=\left(\frac{2 \varepsilon}{\boldsymbol{p}_{\boldsymbol{K}}}\right)=\left(\frac{2 \varepsilon}{\boldsymbol{P}}\right)=\left(\frac{2}{\boldsymbol{P}}\right) \cdot\left(\frac{\varepsilon}{\boldsymbol{P}}\right)=\left(\frac{\varepsilon}{\boldsymbol{P}}\right)
$$

using lemma 2.
If $p \equiv 1 \bmod 4, p$ is inert in $k$ and therefore $\boldsymbol{p}_{k}$ splits completely in $K(\sqrt[4]{2 \varepsilon})$ by [9; Satz 25] and lemma 1. Thus $\boldsymbol{p}_{\boldsymbol{K}}$ splits completely in $K(\sqrt[4]{2 \varepsilon})$ too, and we obtain

$$
1=\left(\frac{2 \varepsilon}{\boldsymbol{p}_{K}}\right)_{4}=\left(\frac{2 \varepsilon}{\boldsymbol{P}}\right)_{4}=\left(\frac{2}{\boldsymbol{P}}\right)_{4} \cdot\left(\frac{\varepsilon}{\boldsymbol{P}}\right)_{4}=\left(\frac{2}{p}\right) \cdot\left(\frac{\varepsilon}{\boldsymbol{P}}\right)_{4}
$$

by lemma 2 , which is the assertion.

## 4. The ring class groups and ring class fields involved

In this section we study the subfields of the ring class field modulo 8 of $\boldsymbol{Q}(\sqrt{-m})$ which can be generated by radicals; the arithmetic of these fields is used in the next section to derive the announced power residue criteria.

From now on, we will assume that

$$
m=q_{1} \cdots \cdots q_{d}
$$

is the product of $d \geq 1$ different primes $q_{1}, \cdots, q_{d}$ with

$$
q_{1} \equiv q_{2} \equiv \cdots \equiv q_{d} \equiv 1 \bmod 8 .
$$

For $s \geq 0$ let $R(s)$ be the ring class group modulo $2^{s}$ of $k$ and $R(s)^{\prime}$ the 2-component of $R(s)$; especially, $R(0)$ is the ideal class group and $R(0)^{\prime}$ is the 2-class group of $k$. For an integral ideal $\boldsymbol{a}$ of $k$ (prime to 2 if $s \geq 1$ ) let $[\boldsymbol{a}]_{s} \in$ $R(s)$ be the ring class which contains $a$.

Let $C_{1}, \cdots, C_{d}$ be a basis of $R(0)^{\prime}, 2^{t_{j}}>1$ the order of $C_{j}$, and $\boldsymbol{m}_{j}$ a primitive ambiguous ideal of $k$ in $C_{j}^{2^{t} \boldsymbol{j}^{-1}}$ (see [4; §29]). If $m_{j}=N\left(\boldsymbol{m}_{j}\right)$, then $m_{j} \mid 2 m$ for $j=1, \cdots, d$, and we may assume that $m_{1}=2 m_{1}^{\prime}$ and that $m_{1}^{\prime}, m_{2}, \cdots, m_{d}$ divide $m$ (especially $m_{1}^{\prime} \equiv m_{2} \equiv \cdots \equiv m_{d} \equiv 1 \bmod 8$ ). As $m$ has only prime factors $q_{j} \equiv 1$ $\bmod 8$, the prime divisor of 2 lies in the principal genus of $k[4, \S 26]$ and thus we have $\boldsymbol{t}_{\boldsymbol{j}} \geq 2$. Let $\boldsymbol{t}_{\boldsymbol{j}} \in C_{j}$ be integral ideals prime to $2, \boldsymbol{t}_{\boldsymbol{j}}=\boldsymbol{m}_{\boldsymbol{j}}$ in case $\boldsymbol{t}_{\boldsymbol{j}}=1$. Set

$$
t_{j}^{2 t_{j}}=\left(\mu_{j}\right)
$$

with integral $\mu_{j} \in k(j=1, \cdots, d)$. Then we obtain:
Lemma 3. There exist rational integers $r_{1}, \cdots, r_{d}$ such that $\mu_{1} \equiv r_{1} \sqrt{-m}$ $\bmod 8$ and $\mu_{j} \equiv r_{j} \bmod 8$ for $j=2, \cdots, d$.

Proof. As $\boldsymbol{t}_{j}^{t^{t} \boldsymbol{j}^{-1}}$ and $\boldsymbol{m}_{j}$ are both contained in $C_{j}^{2 \boldsymbol{t}^{-1}}$ we have

$$
t_{j}^{2 t_{j}^{-1}}=m_{j} \cdot\left(\gamma_{j}\right)
$$

with

$$
\gamma_{j}=\frac{x_{j}+y_{j} \sqrt{-m}}{z_{j}} \in k, x_{j}, y_{j}, z_{j} \in Z,\left(x_{j}, y_{j}, z_{j}\right)=1
$$

and

$$
N\left(t_{j}^{2 t j^{-1}}\right)=m_{j} \cdot \frac{x_{j}^{2}+m y_{j}^{2}}{z_{j}^{2}}
$$

$N\left(\boldsymbol{t}_{j}^{2^{t} j^{-1}}\right)$ is integral and congruent to 1 modulo 8 , if $t_{j} \geq 2$.
As $t_{1} \geq 2$, we have $z_{1}=2 z_{1}^{\prime}$ and $x_{1} \equiv y_{1} \equiv z_{1}^{\prime} \equiv 1 \bmod 2$; therefore

$$
\begin{aligned}
& \pm \mu=m_{1} \gamma_{1}^{2}=m_{1} \cdot \frac{x_{1}^{2}+m y_{1}^{2}}{z_{1}^{2}}-\frac{m_{1}^{\prime} m y_{1}^{2}}{z_{1}^{\prime 2}}+\frac{m_{1}^{\prime} x_{1} y_{1}}{z_{1}^{\prime 2}} \cdot \sqrt{-m} \\
& \quad \equiv x_{1} y_{1} \sqrt{-m} \bmod 8 .
\end{aligned}
$$

If in the case $j \geq 2$ we have $t_{j}=1$ then $\boldsymbol{t}_{\boldsymbol{j}}=\boldsymbol{m}_{\boldsymbol{j}}, \mu_{j}= \pm \boldsymbol{m}_{\boldsymbol{j}}$ and we are done.
If $j \geq 2$ and $t_{j} \geq 2$ then $z_{j}$ is odd and either $x_{j}$ or $y_{j}$ is divisible by 4 ; therefore

$$
\pm \mu_{j}=m_{j} \gamma_{j}^{2}=m_{j} \cdot \frac{x_{j}^{2}+m y_{j}^{2}}{z_{j}^{2}}-\frac{2 m_{j} m y_{j}^{2}}{z_{j}^{2}}+\frac{2 x_{j} y_{j}}{z_{j}^{2}} \cdot \sqrt{-m}
$$

and the assertion follows from $2 x_{j} y_{j} \equiv 0 \bmod 8$.
Now we are in position to determine the structure of the group $R(s)^{\prime}$ in our special situation, at least for $s \leq 3$ (compare [6; §7] where this was done under somewhat different assumptions).

Proposition 1. Let $m$ be a product of $d \geq 1$ different primes $q_{j} \equiv 1 \bmod 8$ and keep all the notation introduced above. Then:
a) For $s \in\{0,1\}, R(s)^{\prime}$ is of type

$$
\left(2^{t_{1}+s}, 2^{t_{2}}, \cdots, 2^{t_{d}}\right)
$$

with basis

$$
\left(\left[t_{1}\right]_{s},\left[t_{2}\right]_{s}, \cdots,\left[t_{d}\right]_{s}\right) .
$$

b) For $s \in\{2,3\}, R(s)^{\prime}$ of is type

$$
\left(2^{s-1}, 2^{t_{1}+1}, 2^{t_{2}}, \cdots, 2^{t_{d}}\right)
$$

with basis

$$
\left([(-1+2 \sqrt{-m})]_{s},\left[t_{1}\right]_{s},\left[t_{2}\right]_{s}, \cdots,\left[t_{d}\right]_{s}\right)
$$

c) For $s \geq 4, R(s)^{\prime}$ is generated by $[(-1+2 \sqrt{-m})]_{s},\left[t_{1}\right]_{s}, \cdots,\left[t_{d}\right]_{s}$ (but these elements do not necessarily form a basis).

Proof. Let $P(s)$ be the prime residue class group modulo $2^{s}$ in $k$ and $P_{0}(s)$ $\subset P(s)$ the subgroup generated by those prime residue classes modulo $2^{s}$ which contain rational numbers. For an integral $\alpha \in k$, prime to 2 , let $\{\alpha\}_{s} \in P(s) / P_{0}(s)$ be the class determined by $\alpha$. Then we see from [8]:

$$
\begin{aligned}
& P(0)=P_{0}(1)=1, \\
& P(1)=P(1) / P_{0}(1) \text { is of order } 2 \text {, generated by }\{\sqrt{-m}\}_{1},
\end{aligned}
$$

and for $s \geq 2$
$P(s) / P_{0}(s)$ is of type $\left(2^{s-1}, 2\right)$ with basis $\left(\{-1+2 \sqrt{-m}\}_{s},\{\sqrt{-m}\}_{s}\right)$.
Now $R(s)$ is determined by the exact sequence

$$
1 \rightarrow P(s) / P_{0}(s) \xrightarrow{\varphi} R(s) \xrightarrow{\psi} R(0) \rightarrow 1
$$

with $\boldsymbol{\varphi}\left(\{\alpha\}_{s}\right)=[(\alpha)]_{s}$ and $\psi\left([\boldsymbol{a}]_{s}\right)=[\boldsymbol{a}]_{0}$. Obviously, $\operatorname{im}(\boldsymbol{\phi}) \subset R(s)^{\prime}$, and we get the exact sequence

$$
1 \rightarrow P(s) / P_{0}(s) \rightarrow R(s)^{\prime} \rightarrow R(0)^{\prime} \rightarrow 1
$$

which determines $R(s)^{\prime}$ as follows:
$R(s)^{\prime}$ is generated by $\operatorname{im}(\phi),\left[\boldsymbol{t}_{1}\right]_{s}, \cdots,\left[\boldsymbol{t}_{d}\right]_{s}$. This, together with lemma 3, proves the proposition.

Now let, for $s \geq 0, k(s)$ be the ring class field modulo $2^{s}$ over $k$ and $k(s)^{\prime}$ the maximal 2-extension contained in $k(s)$. Then $k(s) / k$ is abelian, and the Artin map gives isomorphisms

$$
\phi(s): R(s) \rightarrow \operatorname{Gal}(k(s) / k)
$$

with $\phi(s)\left(R(s)^{\prime}\right)=\operatorname{Gal}\left(k(s)^{\prime} / k\right)$. The decomposition law for rational primes in $k(s)$ can be described using binary quadratic forms as follows:

Let $C(s)$ be the composition class group of integral primitive binary quadratic forms $f=a X^{2}+b X Y+c Y^{2} \in Z[X, Y]$ with discriminant $D(f)=b^{2}-4 a c=$ $-4^{s} \cdot 4 m$; then there is an isomorphism

$$
\lambda_{s}: R(s) \leadsto C(s)
$$

(called canonical) such that for each positive rational integer $a$ with $(a, 2 m)=1$ and each class $Q \in C(s)$ the following holds:
$Q$ represents properly $a$ if and only if $a=N(a)$ for some integral primitive ideal $\boldsymbol{a}$ with $Q=\lambda_{s}\left([\boldsymbol{a}]_{s}\right)$.

Concerning the structure of the fields $k(s)$ we will have to use the following corollary to proposition 1 :

Corollary 1. Let $L / k$ be a cyclic extension of degree 4 and suppose $L \subset k(s)$ for some $s \geq 0$; then $L \subset k(3)$.

Proof. Actually we have $L \subset k(s)^{\prime}$ for some $s \geq 3$. Let $\chi: R(s)^{\prime} \rightarrow C^{\times}$be the character of degree 4 defining $L$, and let $\vartheta: R(s)^{\prime} \rightarrow R(3)^{\prime}$ be the natural epimorphism defined by $\vartheta\left([\boldsymbol{a}]_{s}\right)=[\boldsymbol{a}]_{3}$. Then we have to show that there is a factorization $\chi=\chi_{0} \circ \vartheta$ for some character $\chi_{0}: R(3)^{\prime} \rightarrow C^{\times}$, but this is equivalent to

$$
k e r(\vartheta) \subset k e r(\chi)
$$

Suppose $C \in k e r(\vartheta)$; then by proposition 1, c)

$$
C=[(-1+\sqrt{-m})]_{s}^{a_{0}} \cdot \Pi_{j=1}^{d}\left[t_{j}\right]_{s_{j}^{j}}^{a_{j}}
$$

with $a_{0}, a_{1}, \cdots, a_{d} \in N_{0}$, and as $\vartheta(C)=1$ we deduce from proposition $1, \mathbf{b}$ )

$$
\begin{aligned}
& a_{0} \equiv a_{1} \equiv 0 \bmod 4 \\
& a_{j} \equiv 0 \bmod 4 \text { if } j \geq 2 \text { and } t_{j} \geq 2 \\
& a_{j} \equiv 0 \bmod 2 \text { if } j \geq 2 \quad \text { and } \quad t_{j}=1
\end{aligned}
$$

Then

$$
\chi(C)=\prod_{\substack{j=1 \\ t_{j}=1}}^{d} \chi\left(\left[t_{j}\right]_{s}\right)^{a}
$$

but if $t_{j}=1,\left[\boldsymbol{t}_{j}\right]_{s}^{2}=\left[\left(m_{j}\right)\right]_{s}=1$ and thus $\chi\left(\left[\boldsymbol{t}_{j}\right]_{s}\right)^{2}=1$, which implies $\chi(C)=1$.
Now we are well prepared to study the Galois theory and the ramification of those fields, which control the quartic character of $\varepsilon$.

If $m$ is a product of different primes congruent to 1 modulo 8 , then the prime divisor of 2 in $k$ lies in the principal genus and therefore there are rational integers $a, b, u \in \boldsymbol{Z}$ such that

$$
u>0, a+b \sqrt{m}>0,2 \chi u, a b \equiv 3 \bmod 4
$$

and

$$
a^{2}+m b^{2}=2 u^{2}
$$

we fix such a triple $(a, b, u)$ in the sequel and consider the algebraic integer

$$
\delta=a+b \sqrt{-m} \in k ;
$$

it has the ideal decomposition

$$
(\delta)=\boldsymbol{w} \cdot \boldsymbol{u}^{2}
$$

where $\boldsymbol{w}$ is the prime divisor of 2 in $k$ and $\boldsymbol{u}$ is a primitive integral ideal of $k$ with $N(\boldsymbol{u})=u$.

## Proposition 2.

a) $K\left(\sqrt[4]{\varepsilon \delta^{2}(1-i)^{2}}\right) / k$ is a cyclic extension of degree $8, K\left(\sqrt[4]{\varepsilon \delta^{2}(1-i)^{2}}\right) / Q$ is normal with a dihedral group of order 16 as Galois group, and $K\left(\sqrt[4]{\varepsilon \delta^{2}(1-i)^{2}}\right) \subset$ $k(1)$.
b) $k(\sqrt{(2+\sqrt{2}) \delta}) / k$ is a cyclic extension of degree $4, k(\sqrt{(2+\sqrt{2}) \delta}) / \boldsymbol{Q}$ is normal with a dihedral group of order 8 as Galois group, and $k(\sqrt{(2+\sqrt{2}) \delta})$ $\subset k(3)$.
c) $K(\sqrt[4]{2 \varepsilon}) / k$ is a cyclic extension of degree $8, K(\sqrt[4]{2 \varepsilon}) / \boldsymbol{Q}$ is normal with a dihedral group of order 16 as Galois group, and $K(\sqrt[4]{2 \varepsilon}) \subset K\left(\sqrt[4]{\varepsilon \delta^{2}(1-i)^{2}}\right)$. $k(\sqrt{(2+\sqrt{2}) \delta}) \subset k(3)$, but $K(\sqrt[4]{2 \varepsilon}) \nsubseteq k(2)$.

Proof.
a) We set

$$
\eta=\sqrt[4]{\varepsilon \delta^{2}(1-i)^{2}} ;
$$

then $N_{K / k}\left(\eta^{4}\right)=-4 \delta^{4}$, and from [6; Satz 1] we deduce that $K(\eta) / k$ is cyclic of degree 8. Let $\sigma_{0}$ be the generator of the Galois group of $K / k$; then $\sigma_{0}\left(\eta^{4}\right)=$ $\varepsilon^{-2} \eta^{4}$, and thus we may fix an extension $\sigma$ of $\sigma_{0}$ to $K(\eta)$ by setting

$$
\sigma(\eta)=\frac{1}{\sqrt{\varepsilon}} \cdot \eta
$$

and $\sigma$ generates the Galois group of $K(\eta) / k$. Let $\tau_{0}$ be the generator of the Galois group of $K / F$; then $\tau_{0}\left(\eta^{4}\right)=\left[(1-i) u \delta^{-1}\right]^{4} \cdot \eta^{4}$ and thus $\tau_{0}$ has an extension to an automorphism $\tau$ of $K(\eta)$ satisfying

$$
\tau(\eta)=(1-i) u \delta^{-1} \cdot \eta
$$

As $\tau_{0} \mid k$ generates the Galois group of $k / \boldsymbol{Q}$ we deduce that $K(\eta) / \boldsymbol{Q}$ is normal with Galois group generated by $\sigma$ and $\tau$. Now we can check the relation

$$
\sigma^{8}=\tau^{2}=i d, \quad \sigma \tau=\tau \sigma^{-1}
$$

by applying the automorphisms to $\varepsilon, i$ and $\eta$. Thus the Galois group of $K(\eta) / \boldsymbol{Q}$ is a dihedral group of order 16, and $K(\eta)$ is contained in a ring class field over $k$ by [9; Satz 11].

It remains to show that the conductor $\boldsymbol{f}$ of $K(\eta) / k$ devides 2. By [6; Satz 13] the extension $K(\sqrt{\varepsilon}) / k$ is urnamified; thus, if $\boldsymbol{d}$ and $\boldsymbol{d}^{*}$ denote the relative discriminants of $K(\eta) / K(\sqrt{\varepsilon})$ and $K(\eta) / k$, we have

$$
\boldsymbol{d}^{*}=N_{\left.\boldsymbol{K}^{(\sqrt{2}} \bar{\varepsilon}\right)_{k}}(\boldsymbol{d})
$$

Let $\boldsymbol{\chi}$ be a generating character of $K(\eta) / k$ and $\boldsymbol{f}\left(\chi^{j}\right)$ be the conductor of $\chi^{j}$ $(j=0,1, \cdots, 7)$. Then, by $[14 ; \S 4]$, we have the following relations:

$$
\begin{array}{ll}
f=\boldsymbol{f}\left(\chi^{j}\right) & \text { for } j \equiv 1 \bmod 2, \\
\boldsymbol{f}\left(\chi^{j}\right)=1 & \text { for } j \equiv 0 \bmod 2
\end{array}
$$

and

$$
d^{*}=\prod_{j=0}^{7} f\left(\chi^{j}\right)=f^{4}
$$

From these we see that in order to prove $\boldsymbol{f} \mid 2$ it is sufficient to show $\boldsymbol{d} \mid 2$; but this demands a careful analysis of the relative quadratic extension $K(\eta) / K(\sqrt{\varepsilon})$. Setting

$$
\alpha=\frac{\sqrt{\varepsilon} \cdot \delta}{1-i}
$$

we have $K(\eta)=K(\sqrt{\varepsilon})(\sqrt{\alpha})$ and the ideal decomposition of $\delta$ shows that $K(\eta) / K(\sqrt{\varepsilon})$ is unramified outside 2. Let $\boldsymbol{w}$ be a prime divisor of 2 in $K(\sqrt{\varepsilon})$; then $\operatorname{ord}_{w o}(2)=2$, and thus it is sufficient to show $\operatorname{ord}_{w o}(d) \leq 2$, which, by [3; §11] is equivalent to:

$$
\alpha \text { is a quadratic residue } \bmod ^{\times} \boldsymbol{w}^{3} .
$$

We have

$$
\alpha^{2}(1-i)^{2}=\varepsilon \delta^{2}=(U+V \sqrt{m})\left(a^{2}-m b^{2}+2 a b \sqrt{-m}\right) ;
$$

by [6; Satz 13]

$$
U \equiv 0 \bmod 4, \quad V \equiv 1 \bmod 4
$$

which, together with $a b \equiv 3 \bmod 4$ and $a^{2}-m b^{2} \equiv 0 \bmod 8 \operatorname{implies} \alpha^{2}(1-i)^{2} \equiv$ $(1-i)^{2} \bmod 8$ and thus

$$
\alpha^{2} \equiv 1 \bmod 4
$$

Therefore $\frac{1+\alpha}{2}$ is an algebraic integer, i.e.

$$
\alpha \equiv 1 \bmod 2
$$

Let $\pi \in K(\sqrt{\varepsilon})$ be an element with $\operatorname{ord}_{w}(\pi)=1$; then

$$
\alpha \equiv 1+\omega \pi^{2} \bmod \boldsymbol{w}^{3}
$$

for some $\omega \in K(\sqrt{\varepsilon})$. As the prime residue class group modulo $\boldsymbol{w}$ is of odd order, $\omega \equiv \omega_{0}^{2} \bmod \boldsymbol{w}$ for some $\omega_{0} \in K(\sqrt{\varepsilon})$, and then

$$
\alpha \equiv\left(1+\omega_{0} \pi\right)^{2} \bmod \boldsymbol{w}^{3}
$$

as asserted.
b) We consider the field

$$
M=\boldsymbol{Q}(\sqrt{2})(\sqrt{\gamma})
$$

with

$$
\boldsymbol{\gamma}=(a+u \sqrt{2})(2+\sqrt{2}) \in \boldsymbol{Q}(\sqrt{2})
$$

As $N_{Q(\sqrt{2}) / Q}(\gamma)=2\left(a^{2}-2 u^{2}\right)=-2 m b^{2}, M / \boldsymbol{Q}$ is not normal, its normal closure

$$
L=\boldsymbol{Q}(\sqrt{2}, \sqrt{-2 m}, \sqrt{\gamma})
$$

is cyclic of degree 4 over $k$, and the Galois group of $L / \boldsymbol{Q}$ is a dihedral group of order 8 [ 9 ; Satz 1, 2]. Finally, the identity

$$
a+u \sqrt{2}=\delta \cdot\left(\frac{1}{\sqrt{2}}+\frac{u}{\delta}\right)^{2}
$$

shows that

$$
L=k(\sqrt{(2+\sqrt{2}) \delta})
$$

The prime ideal decomposition of $\delta$ shows that $L / k$ is unramified outside 2, and by [9; Satz 11] $L \subset k(s)$ for some $s \geq 0$, so $L \subset k(3)$ by corollary 1 .
c) The Galois theoretic assertion comes from lemma 1. The asserted inclusion of fields follows from the identities

$$
(2+\sqrt{2}) \cdot \delta \cdot(\zeta-i)^{2}=\sqrt{2} \delta(1-i)
$$

and

$$
\sqrt[4]{2 \varepsilon}=\sqrt{\sqrt{2} \delta(1-i)} \cdot \sqrt{\sqrt{\varepsilon \delta(1-i)}} \cdot[\delta(1-i)]^{-1}
$$

with

$$
\zeta=\frac{1+i}{\sqrt{2}} \in K\left(\sqrt[4]{\varepsilon \delta^{2}(1-i)^{2}}\right) \cdot k(\sqrt{(2+\sqrt{2}) \delta})
$$

Now suppose we have $K(\sqrt[4]{2 \varepsilon}) \subset k(2)$. By lemma $1, K(\sqrt[4]{2 \varepsilon}) / k$ is cyclic of degree 8 ; let $\chi: R(2) \rightarrow \boldsymbol{C}^{\times}$be a generating character of $K(\sqrt[4]{2 \varepsilon})$. Then, by proposition 1 , $\chi^{2}=\psi 0 \theta$ where $\theta: R(2) \rightarrow R(0)$ is the natural epimorphism defined by $\theta\left([a]_{2}\right)=[a]_{0}$ and $\psi$ is a character on $R(0)$ of degree 4. Thus, $K(\sqrt{2 \varepsilon}) / k$ is defined by $\chi^{2}$ and also by $\psi$ and therefore unramified, a contradiction.

Remark. Proposition 2 a) generalizes [6; Satz 14, a]; the Galois theoretic assertion in c) could equally be deduced from [2; Proposition 1].

Proposition 3. Suppose $M=K(\sqrt{\delta(1-i)})$; let $p$ be a rational prime with $p \equiv 1 \bmod 4,\left(\frac{q_{j}}{p}\right)=1$ for $j=1, \cdots, d$, and let $\boldsymbol{P}$ be a prime divisor of $p$ in $F$.

Then there exist $w, r, s \in Z$ with

$$
\begin{aligned}
& (r, s)=1, r-s \equiv 1 \bmod 4,2 \nmid w \\
& w^{2} p=r^{2}-m s^{2}
\end{aligned}
$$

and

$$
r+s \sqrt{m} \in \boldsymbol{P}
$$

If $w, r, s$ are as above then $\boldsymbol{P}$ splits in $M$ if and only if

$$
r-s \equiv 1 \bmod 8
$$

If $p \equiv 1 \bmod 8$ then $s \equiv 0 \bmod 4$, and the two prime divisors of $p$ in $F$ either both split in $M$ or both do not; if $p \equiv 5 \bmod 8$ then $s \equiv 2 \bmod 4$ and exactly one of the prime divisors of $p$ in $F$ splits in $M$.

When showing proposition 3 we shall also prove the following congruence which has not been noticed hitherto:

Proposition 4. We have

$$
\frac{U}{4} \equiv \frac{u-1}{2} \bmod 2 .
$$

Remark. If $m$ is a prime a short proof of proposition 4 can be given as follows: The prime divisor $\boldsymbol{u}$ of $u$ in $k$ lies in an ideal class of order 4 and thus the class number of $k$ is divisible by 8 if and only if $\boldsymbol{u}$ lies in the principal genus, i.e., $u \equiv 1 \bmod 4$. On the other hand, $U \equiv 0 \bmod 8$, if and only if 8 divides the class number of $k$ [1].
P. Kaplan remarked that proposition 4 can also be deduced from [12] by appealing to theorem 1 and formula (2.6) of that paper (with $A=\left[2,2, \frac{1+m}{2}\right]$ and a square root $B_{1}$ of $A$ representing $u$ ).

Proof of propositions 3 and 4. The identity

$$
\delta \cdot(1-i) \cdot\left\{\frac{1}{2}+\frac{u}{\delta(1-i)}\right\}^{2}=\frac{a+b \sqrt{m}}{2}+u
$$

shows that

$$
M=K \cdot F\left(\sqrt{\frac{a+b \sqrt{m}}{2}+u}\right)
$$

and as $p \equiv 1 \bmod 4, p$ splits completely in $K$. Thus $\boldsymbol{P}$ splits in $M$ if and only if it splits in $F\left(\sqrt{\frac{a+b \sqrt{m}}{2}+u}\right)$.

$$
\text { As } a+b \sqrt{m}>0, u>0 \quad \text { and }
$$

$$
N_{F / Q}\left(\frac{a+b \sqrt{m}}{2}+u\right)=\frac{1}{2}(u+a)^{2}>0
$$

$\frac{a+b \sqrt{m}}{2}+u$ is totally positive in $F$, and $F\left(\sqrt{\frac{a+b \sqrt{m}}{2}+u}\right) / F$ is unramified at infinity. As the ideal $(\delta(1-i))$ is a square in $K, M / F$ and thus also $F\left(\sqrt{\frac{a+b \sqrt{\bar{m}}}{2}+u}\right) / F$ are unramified outside 2. Let $\boldsymbol{z}, \boldsymbol{z}^{\prime}$ be the prime divisors of 2 in $F$, normed such that

$$
\sqrt{ } \bar{m} \equiv-1 \bmod z^{2}, \quad \sqrt{m} \equiv 1 \bmod z^{\prime 2}
$$

Then we have $(1+\sqrt{m})^{2}=1+m+2 \sqrt{m} \equiv 0 \bmod z^{4}$ and thus

$$
\sqrt{m} \equiv-\frac{m+1}{2} \bmod z^{3}
$$

From

$$
a^{2}+m b^{2}=(a+b \sqrt{m})(a-b \sqrt{m})+2 m b^{2}=2 u^{2}
$$

and

$$
2 m b^{2} \equiv 2 u^{2} \equiv 2 \bmod 16
$$

we deduce

$$
(a+b \sqrt{m})(a-b \sqrt{m}) \equiv 0 \bmod 16
$$

and $a b \equiv 3 \bmod 4$ implies

$$
a-b \sqrt{m} \equiv a-b \equiv 2 \bmod z^{\prime 2}
$$

consequently

$$
a+b \sqrt{m} \equiv 0 \bmod z^{\prime 3}
$$

This implies

$$
\frac{a+b \sqrt{m}}{2}+u \equiv u \bmod z^{\prime 2}
$$

as $N_{F / Q}\left(\frac{a+b \sqrt{m}}{2}+u\right)=\frac{1}{2}(a+u)^{2}, \operatorname{ord}_{z}\left(\frac{a+b \sqrt{m}}{2}+u\right) \equiv 1 \bmod 2$.
Now let $\boldsymbol{f}$ be the conductor and $\varphi$ the generating ideal character of $F\left(\sqrt{\frac{a+b \sqrt{\bar{m}}}{2}+u}\right) / F$. It follows from [3; §11] that

$$
f=z^{3} z^{\prime v}
$$

with

$$
v=\left\{\begin{array}{lll}
0, & \text { if } u \equiv 1 \bmod 4 \\
2, & \text { if } u \equiv 3 \bmod 4
\end{array}\right.
$$

For an integral $\alpha \in F$ with $\alpha \equiv 1 \bmod 4$ we have in any case

$$
\varphi((\alpha))=\left\{\begin{array}{lll}
1, & \text { if } & \alpha \equiv 1 \bmod z^{3} \\
-1, & \text { if } & \alpha \equiv 5 \bmod z^{3}
\end{array}\right.
$$

Now suppose $p \equiv 1 \bmod 4,\left(\frac{q_{j}}{p}\right)=1$ for $j=1, \cdots, d$, and let $\boldsymbol{P}$ be a prime divisor of $p$ in $F$. Then $\boldsymbol{P}$ lies in the principal genus (in the narrow sense), so there is a primitive integral ideal $\boldsymbol{w}$ prime to $2 p$ such that $\boldsymbol{w}^{2} \boldsymbol{P}$ is principal,

$$
\boldsymbol{w}^{2} \boldsymbol{P}=\left(\frac{r^{\prime}+s^{\prime} \sqrt{m}}{2}\right)
$$

with $r^{\prime}, s^{\prime} \in \boldsymbol{Z},\left(r^{\prime}, s^{\prime}\right) \mid 2, r^{\prime} \equiv s^{\prime} \bmod 2$ and

$$
N\left(\boldsymbol{w}^{2} \boldsymbol{P}\right)=w^{2} p=\frac{r^{\prime 2}-m s^{\prime 2}}{4}
$$

As $w^{2} p \equiv 1 \bmod 4$, we have $r^{\prime} \equiv s^{\prime} \equiv 0 \bmod 2, r^{\prime}=2 r, s^{\prime}=2 s$,

$$
\begin{aligned}
& \boldsymbol{w}^{2} \boldsymbol{P}=(r+s \sqrt{m}) \subset \boldsymbol{P}, \\
& w^{2} p=r^{2}-m s^{2}
\end{aligned}
$$

and from $w^{2} p \equiv 1 \bmod 4$ we deduce $r \equiv 1 \bmod 2, s \equiv 0 \bmod 2 . \quad$ By changing signs if necessary we may assume

$$
r-s \equiv 1 \bmod 4
$$

Then we obtain

$$
r+s \sqrt{m} \equiv r+s \equiv r-s \equiv 1 \bmod 4
$$

and as

$$
r+s \sqrt{m} \equiv r-s \bmod z^{3},
$$

we deduce:

$$
\varphi((r+s \sqrt{m}))=1 \quad \text { if and only if } \quad r-s \equiv 1 \bmod 8 .
$$

Now $\boldsymbol{P}$ splits in $F\left(\sqrt{\frac{a+b \sqrt{m}}{2}+u}\right)$ if and only if $\boldsymbol{\varphi}(\boldsymbol{P})=1$, but

$$
\varphi(\boldsymbol{P})=\varphi((r+s \sqrt{m})),
$$

and this proves the first part of proposition 3; the second part is obvious.
To prove proposition 4, consider $\varepsilon=U+V \sqrt{m}$ and observe that

$$
U \equiv 0 \bmod 4, V \equiv \frac{m+1}{2} \bmod 8
$$

by [6; Satz 13], which implies

$$
\varepsilon \equiv U-\left(\frac{1+m}{2}\right)^{2} \equiv U-1 \bmod z^{3},
$$

whilst

$$
\varepsilon \equiv \sqrt{m} \equiv 1 \bmod z^{\prime 2}
$$

If now $v=0, F\left(\sqrt{\frac{a+b \sqrt{\bar{m}}}{2}+u}\right) / F$ has conductor $z^{3}$ and thus there is no unit $\eta$ in $F$ with $\eta \equiv 1 \bmod \boldsymbol{z}^{2}, \eta \equiv 1 \bmod \boldsymbol{z}^{3}$. As $-\varepsilon \equiv 1 \bmod \boldsymbol{z}^{2}$ we have $-\varepsilon \equiv 1-U \equiv$ $1 \bmod z^{3}$ which implies $U \equiv 0 \bmod 8$.
If $v=2, F\left(\sqrt{\frac{a+b \sqrt{m}}{2}+u}\right) / F$ has conductor $\boldsymbol{z}^{3} \boldsymbol{z}^{\prime 2}$ and thus there is no unit $\eta$ in $F$ with $\eta \equiv 1 \bmod \boldsymbol{z}^{3}, \eta \equiv 1 \bmod \boldsymbol{z}^{3} \boldsymbol{z}^{2 \prime} . ~ A s-\varepsilon \equiv 1 \bmod \boldsymbol{z}^{\prime 2}$ we have $-\varepsilon \equiv 1-$ $U \equiv 1 \bmod \boldsymbol{z}^{3}$ which implies $U \equiv 4 \bmod 8$.

## 5. Residuacity criteria for splitting primes

Theorem 2. Suppose $m=q_{1} \cdots \cdots q_{d}$ is a product of $d \geq 1$ different primes $q_{j} \equiv 1 \bmod 8$ and suppose that the ideal class group of $k$ has only one invariant $2^{t}$ $(t \geq 2)$ divisible by 4 ; then the fundamental unit $\varepsilon=\varepsilon_{m}$ of $F$ satisfies $N_{F / Q}(\varepsilon)=-1$.

Let $l$ be a prime satisfying $l \equiv 3 \bmod 4$ and $l^{2 t}=\xi^{2}+m \eta^{2}$ with $\xi, \eta \in Z,(\xi, \eta)$ $=1$.

Let $p$ be a prime such that $p \equiv 1 \bmod 4$ and $\left(\frac{q_{j}}{p}\right)=1$ for $j=1, \cdots, d$, and let $\boldsymbol{P}$ be a prime divisor of $p$ in $F$; suppose

$$
w^{2} p=r^{2}-m s^{2}
$$

with $w, r, s \in \boldsymbol{Z}$ such that

$$
(r, s)=1, r-s \equiv 1 \bmod 4,2 \nmid w
$$

and

$$
r+s \sqrt{m} \in P .
$$

A. There is a unique exponent $n \in N_{0}$ satisfying $n \leq 2^{t-1}$ such that

$$
\begin{equation*}
l^{2 n} p^{h}=X^{2}+4 m Y^{2} \tag{*}
\end{equation*}
$$

with $X, Y \in Z,(X, Y)=1$.
B. The following assertions are equivalent:
a) $\left(\frac{\varepsilon}{p}\right)=1$;
b) $\operatorname{In}(*)$, we have $n \equiv 0 \bmod 2$;
c) $p$ is represented by a class $Q \in C(0)$ which is a 4-th power.
d) $p^{2^{t-2} h}=x^{2}+m y^{2}$ with $x, y \in Z,(x, y)=1$.
e) $p$ is represented by a class $Q \in C(1)$ which is a 4-th power.
f) $p^{2 t-1}=x^{2}+4 m y^{2}$ with $x, y \in Z,(x, y)=1$.
C. Suppose $\left(\frac{\varepsilon}{p}\right)=1$, i.e. $n \equiv 0 \bmod 2$ in $(*)$. Then

$$
\left(\frac{\varepsilon}{\boldsymbol{P}}\right)_{4}=(-1)^{(n / 2)+(r-s-1 / 4)}
$$

D. Suppose $\left(\frac{\varepsilon}{p}\right)=1$ and $p \equiv 1 \bmod 8$. Then, in $(*)$ we have $n \equiv Y \equiv 0$ $\bmod 2$, and

$$
\left(\frac{2 \varepsilon}{p}\right)_{4}=(-1)^{(n / 2)+(Y / 2)}
$$

E. Suppose $\left(\frac{\varepsilon}{p}\right)=1$ and $p \equiv 1 \bmod 8$; let $Q \in C(3)$ represent $p$. Then either

$$
\begin{equation*}
p^{2 t-2_{h}}=X^{2}+16 m Y^{2} \tag{I}
\end{equation*}
$$

or

$$
\begin{equation*}
p^{2^{t-2_{h}}}=16 X^{2}+m Y^{2} \tag{II}
\end{equation*}
$$

with $X, Y \in Z,(X, Y)=1$, and we obtain:

$$
\left(\frac{2 \varepsilon}{p}\right)_{4}=1
$$

if and only if
in case (I): Q is an 8-th power;
in case (II): $Q$ is no 4-th power.
F. Suppose $p \equiv 1 \bmod 8$ and $p^{h}=16 X^{2}+m Y^{2}$ with $X, Y \in Z,(X, Y)=1$. Then $\left(\frac{\varepsilon}{p}\right)=1$, and we have

$$
\left(\frac{2 \varepsilon}{p}\right)_{4}=(-1)^{2 t-2+x}
$$

Remark. 1. In theorem $2, l$ plays the role of an auxiliary parameter. If $C$ is an absolute ideal class of $k$ of order $2^{t}$ and $\boldsymbol{l} \in C$ is a prime ideal of degree 1 then the underlying prime $l$ satisfies all requirements.
2. Criteria for the quadratic character of $\varepsilon$ under more general conditions were proved in [6]; for a different approach see [2].

Proof. $\quad N_{F / Q}(\varepsilon)=-1$ follows from [6; Satz 14]. The assumption concerning the ideal class group implies $t_{1}=t \geq 2$ and $t_{j}=1$ for $j=2, \cdots, d$ in the termi-
nology of $\S 4$. Let $\boldsymbol{p}$ be a prime divisor of $p$ in $k$.
For $s \geq 0$, let $k(s)^{*}$ be the genus field of $k(s)$, i.e. the greatest absolutely abelian subfield of $k(s)$. Then, by [10],

$$
k(s)^{*}=\left\{\begin{array}{l}
k\left(\sqrt{q_{1}}, \cdots, \sqrt{q_{d-1}}, \sqrt{-1}\right), \quad \text { if } s \leq 1, \\
k\left(\sqrt{q_{1}}, \cdots, \sqrt{q_{d-1}}, \sqrt{-1}, \sqrt{2}\right), \quad \text { if } s \geq 2
\end{array}\right.
$$

and $k(s)^{*}$ is the greatest multiquadratic extension of $k$ inside $k(s)$.
As $p \equiv 1 \bmod 4$ and $\left(\frac{q_{j}}{p}\right)=1$ for $j=1, \cdots d, p$ splits completely in $k(s)^{*}$ for $s \leq 1$; but this implies $\varphi\left([\boldsymbol{p}]_{s}\right)=1$ for all quadratic characters $\varphi$ of $R(s)$, i.e. $[\boldsymbol{p}]_{s}$ is a square in $R(s)$ for $s \leq 1$. If, in addition, $p \equiv 1 \bmod 8$, then $[\boldsymbol{p}]_{s}$ is a square in $R(s)$ also for $s \geq 2$.

By proposition 1, $R(3)^{\prime}$ is of type $\left(4,2^{t+1}, 2, \cdots, 2\right)$ with basis ([ $-1+$ $\left.2 \sqrt{-m})]_{3},\left[t_{1}\right]_{3}, \cdots,\left[t_{s}\right]_{3}\right)$, and we set

$$
C_{0}=[(-1+2 \sqrt{-m})]_{3}, C_{1}=\left[t_{1}\right]_{3}
$$

For $s \leq 3$, let $\omega_{s}: R(3) \rightarrow R(s)$ be the canonical epimorphism defined by $\omega_{s}\left([a]_{3}\right)=$ $[\boldsymbol{a}]_{s} ;$ then $\operatorname{ker}\left(\omega_{2}\right)=\left\langle C_{0}^{2}\right\rangle, \operatorname{ker}\left(\omega_{1}\right)=\left\langle C_{0}\right\rangle$ and $\operatorname{ker}\left(\omega_{0}\right)=\left\langle C_{0}, C_{1}^{2 t}\right\rangle$. From $C_{1}^{2 t}=$ $[(\sqrt{-m})]_{3}$ we see that, for $s \leq 3, \lambda_{s} \omega_{s}\left(C_{1}^{2 t}\right)$ contains the form $4^{s} X^{2}+m Y^{2}$.

By proposition $2, K\left(\sqrt[4]{\varepsilon \delta^{2}(1-i)^{2}}\right)$ is a cyclic extension of $k$ of degree 8 contained in $k(1)$. Let $\chi_{1}: R(1) \rightarrow C^{\times}$be a generating character for $K\left(\sqrt[4]{\varepsilon \delta^{2}(1-i)^{2}}\right) /$ $k$; then (by raising $\chi_{1}$ to an odd power if necessary) we may assume $\chi_{1}\left(\left[t_{1}\right]_{1}\right)=\zeta$, where $\zeta=\frac{1+i}{\sqrt{2}} \in C^{\times}$is a primitive 8 -th root of unity. Then $\chi=\chi_{1} \circ \omega_{1}: R(3) \rightarrow C^{\times}$ also defines $K\left(\sqrt[4]{\varepsilon \delta^{2}(1-i)^{2}}\right)$, $\chi^{2}$ defines $K(\sqrt{\varepsilon}), \chi^{4}$ defines $K$, and we have

$$
\chi\left(C_{0}\right)=1, \quad \chi\left(C_{1}\right)=\zeta
$$

As $[p]_{1}$ is a square in $R(1)$, we may set

$$
[\mathrm{p}]_{3}=C_{0}^{a^{\prime}} \cdot C_{1}^{2 b} \cdot U
$$

with $a^{\prime}, b \in N_{0}, a^{\prime}<4, b<2^{t}$ and a class $U \in R(3)$ of odd order.
Proof of A. As $l^{2 t}=r^{2}+m s^{2},\left(\frac{-m}{l}\right)=1$, and $(l)=l_{1} l_{2}$ with different prime ideals $\boldsymbol{l}_{1}, \boldsymbol{l}_{2}$ of $k$ which lie in ideal classes of even order. $\omega_{0}$ induces an isomorphism of the odd parts of $R(3)$ and $R(0)$, and thus we have

$$
\left[\boldsymbol{l}_{1}\right]_{3}=C_{0}^{\nu} C_{1}^{\mu} T,\left[\boldsymbol{l}_{2}\right]_{3}=C_{0}^{2-\nu} C_{1}^{2 t-\mu} T
$$

with exponents $\nu, \mu \in N_{0}, \nu<2, \mu<2^{t}$ and a class $T \in R(3)$ with $T^{2}=1$. As $l \equiv 3$ $\bmod 4, l_{1}$ is inert in $K$, and thus $-1=\chi^{4}\left(\left[l_{1}\right]_{3}\right)=(-1)^{\mu}$, i.e.

$$
\mu \equiv 1 \bmod 2
$$

Now, for $n \in \boldsymbol{N}_{0}$ the integer $l^{2 n} p^{k}$ is properly represented by the classes $\lambda_{1}\left(\left[\boldsymbol{l}_{1}^{2 n} \boldsymbol{p}^{h}\right]_{1}\right), \lambda_{1}\left(\left[\boldsymbol{l}_{2}^{2 n} \boldsymbol{p}^{h}\right]_{1}\right)$ and their inverses in $C(1)$. So the existence of $X, Y \in Z$ with $(X, Y)=1$ and $l^{2 n} p^{h}=X^{2}+4 m Y^{2}$ is equivalent to $\left[l_{1}^{2 n} p^{h}\right]_{1}=1$ or $\left[l_{2}^{2 n} p^{h}\right]_{1}=$ 1, i.e. to $\left[l_{j}^{2 n} \boldsymbol{p}^{h}\right]_{3} \in\left\langle C_{0}\right\rangle$ for $j=1$ or $j=2$. From

$$
\begin{aligned}
& {\left[\boldsymbol{l}_{1}^{2 n} \boldsymbol{p}^{h}\right]_{3}=C_{0}^{a^{\prime} k+2 n \nu} \cdot C_{1}^{2 b h+2 n \mu},} \\
& {\left[\boldsymbol{l}_{2}^{2 n} \boldsymbol{p}^{h}\right]_{3}=C_{0}^{a^{\prime h-2 n v}} \cdot C_{1}^{2 b h-2 n \mu}}
\end{aligned}
$$

we see that it is sufficient to show that there is a unique $n \in N_{0}$ with $n \leq 2^{t-1}$ for which one of the congruences

$$
2 b h \pm 2 n \mu \equiv 0 \bmod 2^{t+1}
$$

holds; but this is obvious.
Proof of B. As $p \equiv 1 \bmod 4,\left(\frac{\varepsilon}{p}\right)$ is well defined, and as $\chi^{2}$ defines $K(\sqrt{\varepsilon})$,

$$
\left(\frac{\varepsilon}{p}\right)=1, \quad \text { if and only if } \quad \chi^{2}\left([\boldsymbol{p}]_{3}\right)=1 .
$$

From the above we deduce

$$
\left(\frac{\varepsilon}{p}\right)=\chi^{2}\left([p]_{3}\right)=(-1)^{b}
$$

and the congruence $2 b h \pm 2 n \mu \equiv 0 \bmod 2^{t+1}$ together with $t \geq 2$ and $h \equiv \mu \equiv 1 \bmod$ 2 implies

$$
b \equiv n \bmod 2,
$$

thus

$$
\left(\frac{\varepsilon}{p}\right)=(-1)^{n}
$$

which proves the equivalence of $\mathbf{a}$ ) and $\mathbf{b}$ ).
For $s \in\{0,1\}, p$ is represented by the class $\lambda_{s} \circ \omega_{s}\left([p]_{3}\right)=\lambda_{s}\left(\left[\boldsymbol{t}_{1}\right]_{s}\right)^{2 b} \cdot \lambda_{s}{ }^{\circ} \omega_{s}(U)$ and its inverse in $C(s)$, and as $\lambda_{s}{ }^{\circ} \omega_{s}(U)$ is of odd order, $p$ is represented by a 4-th power in $C(s)$ if and only if $b \equiv 0 \bmod 2$; this proves the equivalence of a) with $\mathbf{c )}$ and $\mathbf{e}$ ).

For $s \in\{0,1\}, p^{2 t+-2_{h}}$ is properly represented by the class $\lambda_{s}\left(\left[t_{1}\right]_{s}\right)^{2 t+s-2_{b h}}$, and this is the principal class if and only if $b \equiv 0 \bmod 2$; this proves the equivalence of $\mathbf{a}$ ) with $\mathbf{d}$ ) and $\mathbf{f}$ ).

Proof of $\mathbf{C}$ : If $\left(\frac{\varepsilon}{p}\right)=1$, then by $\mathbf{B}$. we have $n \equiv b \equiv 0 \bmod 2$, and from $2 b h \pm 2 n \nu \equiv 0 \bmod 2^{t+1}, t \geq 2$ and $h \equiv \mu \equiv 1 \bmod 2$ we infer

$$
\frac{b}{2} \equiv \frac{n}{2} \bmod 2
$$

Now let $\boldsymbol{P}_{\boldsymbol{K}}$ be a prime divisor of $\boldsymbol{P}$ in $K$; as $K\left(\sqrt[4]{\varepsilon \delta^{2}(1-i)^{2}}\right) / \boldsymbol{Q}$ is normal, $\boldsymbol{P}_{\boldsymbol{K}}$ splits in $K\left(\sqrt[4]{\varepsilon \delta^{2}(1-i)^{2}}\right)$ if and only if $p$ does; therefore, $\boldsymbol{P}_{\boldsymbol{K}}$ splits in $K\left(\sqrt[4]{\varepsilon \delta^{2}(1-i)^{2}}\right)$ if and only if $\boldsymbol{p}$ does, and as $\chi$ defines $K\left(\sqrt[4]{\varepsilon \delta^{2}(1-i)^{2}}\right)$, this is equivalent to $\boldsymbol{X}\left([\boldsymbol{p}]_{3}\right)=1$. As

$$
\chi\left([p]_{3}\right)=(-1)^{b / 2}=(-1)^{n / 2}
$$

we obtain

$$
(-1)^{n / 2}=\left(\frac{\varepsilon \delta^{2}(1-i)^{2}}{\boldsymbol{P}_{K}}\right)_{4}=\left(\frac{\varepsilon}{\boldsymbol{P}_{K}}\right)_{4} \cdot\left(\frac{\delta(1-i)}{\boldsymbol{P}_{K}}\right)
$$

The prime residue class groups of $\boldsymbol{P}$ and $\boldsymbol{P}_{\boldsymbol{K}}$ coincide, thus we conclude

$$
\left(\frac{\varepsilon}{\boldsymbol{P}_{\boldsymbol{K}}}\right)_{4}=\left(\frac{\varepsilon}{\boldsymbol{P}}\right)_{4} .
$$

As $\left(\frac{\delta(1-i)}{\boldsymbol{P}_{\boldsymbol{K}}}\right)=1$ if and only if $\boldsymbol{P}_{\boldsymbol{K}}$ splits in $K(\sqrt{\delta(1-i)})$, it follows from proposition 3 that

$$
\left(\frac{\delta(1-i)}{\boldsymbol{P}_{K}}\right)=(-1)^{(r-s-1) / 4} .
$$

Putting all together, we deduce

$$
\left(\frac{\varepsilon}{\boldsymbol{P}}\right)_{4}=(-1)^{(r-s-1) / 4+\frac{n}{2}}
$$

Proof of D: Let $\psi: R(3) \rightarrow \boldsymbol{C}^{\times}$be a generating character for $K(\sqrt[4]{2 \bar{\varepsilon}}) / k$. By raising $\psi$ to an odd power if necessary, we may assume that

$$
\psi\left(C_{1}\right)=\zeta
$$

By proposition 2, $K(\sqrt[4]{2 \varepsilon}) \nsubseteq k(2)$, thus $\operatorname{ker}\left(\omega_{2}\right)=\left\langle C_{0}^{2}\right\rangle \nsubseteq \operatorname{ker}(\psi)$ and consequently

$$
\psi\left(C_{0}\right)= \pm i .
$$

As $p \equiv 1 \bmod 8,[p]_{3} \in R(3)$ is a square, and thus $a^{\prime} \equiv 0 \bmod 2$,

$$
a^{\prime}=2 a, 0 \leq a<2
$$

From $\left(\frac{\varepsilon}{p}\right)=1$ we deduce as in the proof of $\boldsymbol{C} . b \equiv n \equiv 0 \bmod 2$ and

$$
\frac{b}{2} \equiv \frac{n}{2} \bmod 2
$$

This implies

$$
\left(\frac{2 \varepsilon}{p}\right)_{4}=\psi\left([p]_{3}\right)=(-1)^{(b / 2)+a}=(-1)^{(n / 2)+a}
$$

In $(*)$, we have $Y \equiv 0 \bmod 4$ if and olny if $l^{2 n} p^{h}$ is properly represented by the principal class of $C(3)$; but as $l^{2 n} p^{h}$ is properly represented by the classes $\lambda_{3}\left(\left[l_{j}^{2 n} p^{k}\right]_{3}\right)(j=1,2)$ and their inverses in $C(3), Y \equiv 0 \bmod 4$ is equivalent to

$$
1=\left[l_{j}^{2 n} p^{h}\right]_{3}=C_{0}^{2 a h} \cdot C_{1}^{2 b h \pm 2 n \mu}
$$

for $j=1$ or $j=2$, i.e. for one choice of the sign in the exponent of $C_{1}$. As $n$ was determined so that $2 b h \pm 2 n \mu \equiv 0 \bmod 2^{t+1}$ for one choice of the sign, $Y \equiv 0$ $\bmod 4$ is equivalent to $a \equiv 0 \bmod 2$, thus

$$
a \equiv \frac{Y}{2} \bmod 2
$$

and

$$
\left(\frac{2 \varepsilon}{p}\right)_{4}=(-1)^{(n / 2)+(Y / 2)}
$$

Proof of E: As $\left(\frac{\varepsilon}{p}\right)=1$ and $p \equiv 1 \bmod 8$ we have $a^{\prime}=2 a, b \equiv n \equiv 0 \bmod 2$ and $\frac{b}{2} \equiv \frac{n}{2} \bmod 2$ as in the proof of $\boldsymbol{C} \cdot p$ is represented by the class $\lambda_{3}\left(C_{0}^{2 a} C_{1}^{2 b} \cdot\right.$ $U$ ) and its inverse in $C(3)$. Thus, if $Q \in C(3)$ represents $p, Q$ is a 4-th power if and only if $a \equiv 0 \bmod 2$.

As $p^{2 t-2_{h}}$ is properly represented by the ambiguous class $\lambda_{2}{ }^{\circ} \omega_{2}\left(C_{1}^{2 t-1} b\right) \in$ $C(2)$, we deduce

$$
\begin{aligned}
& b \equiv 0 \bmod 4 \text { in case (I) } \\
& b \equiv 2 \bmod 4 \text { in case (II) }
\end{aligned}
$$

As in the proof of $\boldsymbol{D}$. we obtain

$$
\left(\frac{2 \varepsilon}{p}\right)_{4}=(-1)^{(n / 2)+a}=(-1)^{(b / 2)+a}
$$

In case $(\mathrm{I}), b \equiv 0 \bmod 4$ and thus $\left(\frac{2 \varepsilon}{p}\right)_{4}=1$ if and only if $a \equiv 0 \bmod 2$, i.e. $Q$ is an 8 -th power. In case (II), $b \equiv 2 \bmod 4$ and thus $\left(\frac{2 \varepsilon}{p}\right)_{4}=1$ if and only if
$a \equiv 1 \bmod 2$, i.e. $Q$ is not a 4 -th power.

Proof of F: As $p \equiv 1 \bmod 8$, we have $a^{\prime} \equiv 0 \bmod 2, a^{\prime}=2 a$, and $p$ is represented by the classes $\lambda_{3}\left(C_{0}^{2 a} C_{1}^{2 b} U\right)^{ \pm 1} \in C(3)$; thus $p^{h}$ is properly represented by $\lambda_{3}\left(C_{0}^{2 a} C_{1}^{2 b h}\right)^{ \pm 1} \in C(3)$ and by $\lambda_{2}{ }^{\circ} \omega_{2}\left(C_{0}^{2 a} C_{1}^{2 b h}\right)^{ \pm 1}=\lambda_{2}{ }^{\circ} \omega_{2}\left(C_{1}^{ \pm 2 b h}\right) \in C(2)$. As $p^{h}=16 X^{2}+m Y^{2}$ with $X, Y \in Z,(X, Y)=1, p^{h}$ is also properly represented by $\lambda_{2}{ }^{\circ} \omega_{2}\left(C_{1}^{2 t}\right)$ and this implies

$$
b=2^{t-1}
$$

As in B. we have $b \equiv n \bmod 2$ and thus

$$
\left(\frac{\varepsilon}{p}\right)=(-1)^{b}=1
$$

Further, we have $X \equiv 0 \bmod 2$ if and only if $p^{h}$ is properly represented by $\lambda_{3}\left(C_{1}^{2 t}\right)$, and as $p^{h}$ is properly represented by $\lambda_{3}\left(C_{0}^{2 a} C_{1}^{2 t}\right)$ this is equivalent to $a \equiv 0 \bmod 2$. This implies

$$
a \equiv X \bmod 2
$$

and

$$
\left(\frac{2 \varepsilon}{p}\right)_{4}=(-1)^{(b / 2)+a}=(-1)^{2 t-2+X}
$$

## 6. Residuacity criteria for ramified primes

In this final section we assume that $m$ is a prime and consider $\varepsilon_{m}$ modulo the prime dividing $m$.

Theorem 3. Let $m=q \equiv 1 \bmod 4$ be a prime and $q=(\sqrt{q})$ the prime divisor of $q$ in $F$. Then:
a) If $q \equiv 5 \bmod 8,\left(\frac{\varepsilon_{q}}{q}\right)=-1$.
b) If $q \equiv 1 \bmod 8,\left(\frac{\varepsilon_{q}}{q}\right)=1$,

$$
\left(\frac{\varepsilon_{q}}{\boldsymbol{q}}\right)_{4}=(-1)^{(q-1) / 8} \quad \text { and } \quad\left(\frac{2 \varepsilon_{q}}{q}\right)_{4}=(-1)^{2^{t-2}}
$$

Proof. $\varepsilon_{q}=U+V \sqrt{q}$, and $U^{2}-q V^{2}=-1$. Therefore we have $\varepsilon_{q} \equiv U$ $\bmod \boldsymbol{q}$,

$$
\left(\frac{\varepsilon_{q}}{q}\right)=\left(\frac{U}{q}\right)=\left(\frac{U^{2}}{q}\right)_{4}=\left(\frac{-1}{q}\right)_{4}=(-1)^{(q-1)) / 4}
$$

and, if $q \equiv 1 \bmod 8$,

$$
\left(\frac{\varepsilon_{q}}{q}\right)_{4}=\left(\frac{U}{q}\right)_{4}=\left(\frac{U^{2}}{q}\right)_{8}=\left(\frac{-1}{q}\right)_{8}=(-1)^{(q-1) / 8}
$$

To show $\left(\frac{2 \varepsilon_{q}}{q}\right)_{4}=(-1)^{2^{t-2}}$ we adopt the terminology of the proof of theorem 2. Then

$$
[q]_{3}=[(\sqrt{-q})]_{3}=C_{1}^{2 t}
$$

and

$$
\left(\frac{2 \varepsilon_{q}}{q}\right)_{4}=\psi\left([q]_{3}\right)=(-1)^{2^{t-2}}
$$

Corollary 3. $t \geq 3$ if and only if $\left(\frac{-4}{q}\right)_{8}=1$. orem.

Proof. $\quad(-1)^{2 t-2}=\left(\frac{2 \varepsilon_{q}}{\boldsymbol{q}}\right)_{4}=\left(\frac{2}{q}\right)_{4} \cdot\left(\frac{\varepsilon_{q}}{\boldsymbol{q}}\right)_{4}=\left(\frac{2}{q}\right)_{4}\left(\frac{-1}{q}\right)_{8}=\left(\frac{-4}{q}\right)_{8}$, by the the-
Remark. Corollary 3 was first proved in [1]; it is not surprising that an extensive study of the structure of the ring class fields as we have done in this paper delivers this basic fact too.

## References

[1] P. Barrucand and H. Cohn: Note on primes of type $x^{2}+32 y^{2}$, class number and residuacity, J. Reine Angew. Math. 238 (1969), 67-70.
[2] Y. Chuman and N. Ishii: On the quartic residue of quadratic units of negative norm, Math. Japonica 32 (1987), 389-420.
[3] H. Hasse: Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Teil I a. Physica-Verlag, Würzburg 1965.
[4] H. Hasse: Number Theory. Springer 1980.
[5] H. Hasse: Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Teil II. Physica-Verlag, Würzburg 1965.
[6] F. Halter-Koch: Konstruktion von Klassenkörpern und Potenzrestkriterien für quadratische Einheiten, Manuscripta Math. 54 (1986), 453-492.
[7] F. Halter-Koch: Quadratische Einheiten als 8. Potenzreste, Proc. Int. Conf. on Class Numbers and Fundamental Units, Katata, Japan, 1986.
[8] F. Halter-Koch: Einseinheitengruppen und prime Restklassengruppen in quadratischen Zahlkörpern, J. Number Theory 6 (1972), 70-77.
[9] F. Halter-Koch: Arithmetische Theorie der Normalkörper von 2-Potenzgrad mit Diedergruppe, J. Number Theory 3 (1971), 412-443.
[10] F. Halter-Koch: Geschlechtertheorie der Ringklassenkörper, J. Reine Angew. Math. 250, (1971), 107-108.
[11] N. Ishii: On the quartic residue symbol of totally positive quadratic units, Tokyo J. of Math. 9 (1986), 53-65.
[12] P. Kaplan and K.S. Williams: An Artin Character and Representations of Primes by Binary Quadratic Forms, Manuscpipta Math. 33 (1981), 339-356.
[13] P.A. Leonard and K.S. Williams: The quadratic and quartic character of certain quadratic units II, Rocky Mountain J. Math. 9 (1979), 683-692.
[14] J.-P. Serre: Local Class Field Theory, in "Algebraic Number Theory", ed. by J.W.S. Cassels and A. Fröhlich. Academic Press 1967.

Franz Halter-Koch<br>Institut für Mathematik

der Karl-Franzens-Universität
Halbärthgasse 1/I,A-8010 Graz Austria

Noburo Ishii
Department of Mathematics
University of Osaka Prefecture Sakai, Osaka 591
Japan

