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1. Introduction

For a positive squarefree rational integer m let Sm be the fundamental unit
of Q(\fm) and suppose NQ^^)/Q(εm)= — 1. Then, for s> 1 and any prime ideal

Pof Q(Vm) with N(P)ΞΞ1 mod 25, the 2s-th power residue symbol (^Λ is
V P / 2s

defined and has value ± 1 provided that Sm is a 25~1-th power residue modulo P,

i.e. (—^) _ = 1 . Especially, if p is a rational prime with p=l mod 25+1 and

ί — \=\y the symbol (—JL) for P\p depends only on p and is denoted by

ί—&-) . Concerning this latter case, explicit criteria for ί—*-) = 1 in terms of) g , p )

representations of powers of p by binary quadratic forms have been given in the
following cases ([13], [6], [2]):
A. m=5 mod 8 or m=2 mod 4, and the ideal class group of Q(\/—m) has no

invariant divisible by 4; s=l and s=2.
B. τw=l mod 8, and the ideal class group of Q(V—m) has only one invariant

divisible by 4; s=ί.

In this paper we treat the case s=2 for B. which could not be settled up to

now (§5); in this case we also determine the quartic residue symbol (- J ! L) , where

( 1 \ / \
j = ί — ) = 1 (if^>=5 mod

8, this symbol depends on P and not only on p). Further we derive criteria

for ί— -̂) = 1 ( f=l, 2) for inert prime ideals P of Q(\/m) under quite general

assumptions (§3) and criteria for (—^) = 1 ($=1> 2) in the case where m=q is

a prime and Q=(\/~q) (§6). The proofs depend on the generation of suitable
subfields of the ring class field modulo 8 of Q(y/—m) by radicals (§4).
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There is a similar and even more complete series of results including octic
residuacity in the case NQ{X,^)/Q{£n)=\ (see [13], [6], [7] and [11]).

2. Notation

Throughout this paper we keep the following notation:
m>\ is a squarefree rational integer;

K=F-k = Q(v^, yj-^n) = F(i) = k(ϊ), where

i= v^ϊ;

h is the odd part of the class number of k
£ = U+V\/m is the fundamental unit of Z[\/^n] with

[/, FeiV, so £ > 1 ,

= U2-mV2 = - 1 .

If £w is the fundamental unit of Q(\/^n) then either S=£m or £=£m where the
latter case can only occur if m=5 mod 8. In any case, £ and Sm have the same
24-th power residue properties and we shall prefer to work with £ instead of

3. Residuacity criteria for inert primes

We start with two simple lemmas; the first concerns Galois theory, the
second quadratic reciprocity.

Lemma 1. K( ψΣs)\k is a cyclic extension of degree 8, and K(tf2£)IQ is
normal with a dihedral group of order 16 as Galois group.

Proof. As Nκ/k(2£)=— 4 we deduce from [6; Satz 1] that K(^2£)jk is

cyclic of degree 8. If σ0 generates the Galois group of K/k, then σo(2£)=^ '->
and thus a generator σ of the Galois group of K{ tf2£)/k is given by

Let τ0 be the generator of the Galois group of K\F\ then τo(2£)=2£ and
thus τ 0 has an extension τ to K{ Λ^2£) defined by

But τo|& generates the Galois group of k/Q, and therefore K{^2s)jQ is
normal with Galois group generated by σ and T. NOW we can check the relations
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σ

8 = r2 = id, <rτ = τσ - 1

by applying the automorphisms to $28 and /; this proves the assertion. •

Lemma 2. Let E be a quadratic number field, p an odd rational prime
which is inert in E and P~(p) the prime divisor of p in E. Then, for any rational

integer r, prime to p, we have (—j=l and

1, ifp= — l mod 4 ,

(JL\ i f ^ = l mod 4 .
\pj

Proof. By Euler's criterion, we have

P

( r \
—1 = 1 since r(p - 1 ) / 2 = ( r ^ 1 ) ^ / 2 = l mod p. In the same

way,

m o d P ,r

and if J Ξ Ξ - 1 mod 4, ^ 2 - 1 ) / 4 - ( r ^ 1 ) ^ + 1 ^ = l mod ^ implies (~\ = 1 . If ^ = 1

mod 4, •*—t- is odd and the decomposition -2 =-2 .P~J~ shows that r(p2~1)/4

= 1 mod P if and only if T^-WΞΞ 1 mod p, i.e., ( — ) = 1 . •

\ρ/
REMARK. Lemma 2 is a very special case of a general formula for the

power residue symbol, see [5; §14, IV.].
Now we are well prepared to prove the reciprocity criteria for inert primes:

Theorem 1. Let p be an odd rational prime inert in F, i.e. (—) = — 1,
and let P—(p) be the prime divisor of p in F. Then: **

•> ( I H
b)

Proof. Let pk resp. pκ be a prime divisor of p in k resp. K; then pκ is
a prime divisor of P of relative degree 1 and the prime residue class groups
modulo P and pκ coincide.

If p=— 1 mod 4, pk is inert in K> and as K{\/2S)lk is cyclic, pk remains
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inert in K{y/2s). Thus pκ is inert in K{\/2έ) too, and we obtain

--(£)-(£) -(!)•£)-(£)
using lemma 2.

If p= 1 mod 4, ̂ > is inert in k and therefore pk splits completely in
by [9; Satz 25] and lemma 1. Thus pκ splits completely in K($2S) too, and
we obtain

by lemma 2, which is the assertion. •

4. The ring class groups and ring class fields involved

In this section we study the subίields of the ring class field modulo 8 of
Q(\/—m) which can be generated by radicals; the arithmetic of these fields is
used in the next section to derive the announced power residue criteria.

From noλv on, we will assume that

is the product of d> 1 different primes qly •••, qd with

q1 = q2="-=qd=l mod 8 .

For s>0 let R(s) be the ring class group modulo 2s of k and R(s)' the
2-comρonent of R(s); especially, R(0) is the ideal class group and R(0)' is the
2-class group of k. For an integral ideal a of k (prime to 2 if s>\) let [o]$e
R(s) be the ring class which contains a.

Let Q, •••, Cd be a basis of JR(O)/

> 2 0 > l the order of Cjy and nij a primi-
tive ambiguous ideal of k in CfJ'1 (see [4; §29]). If mj=N(mj)9 then m^lm
for y = l , •••, rf, and we may assume that m1=2m/ι and that wί, τw2r •••, md divide
m (especially Wi=w 2= = % = l mod 8). Asm has only prime factors j ; = l
mod 8, the prime divisor of 2 lies in the principal genus of k [4, §26] and thus
we have ΐj>2. Let tj&Cj be integral ideals prime to 2, tj=nij in case tj=l.
Set

tψ =

with integral μj^k(j=ly •••, J ) . Then we obtain:

L e m m a 3. TAere βJiώί rational integers rly * yrd such that μ{=rx\/—

m o d 8 and μj=rj m o d 8forj=2, •••, rf.

Proof. As if'~ and w ; are both contained in Cψ~x we have
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with

and

xjyyj9

N(tfJ~x) is integral and congruent to 1 modulo 8, if tj>2.
As ίχ^>2, we have z1=2z{ and x^y^zΊ^l mod 2; therefore

±μ =

fore

— ^ mod 8

If in the case/>2 we have tj=l then tj=mjy μj—±.mj and we are done.
If y > 2 and tj>2 then *j is odd and either Xj or yj is divisible by 4; there-

Zj Zj Zj

and the assertion follows from 2xjyj=0 mod 8. •

Now we are in position to determine the structure of the group R(s)' in
our special situation, at least for s<3 (compare [6; §7] where this was done
under somewhat different assumptions).

Proposition 1. Let m be a product of d>\ different primes ?y=l mod 8
and keep all the notation introduced above. Then:

a) For ίG {0, 1}, R(s)' is of type

(2Ί+ , 2 V ,2'<)

with basis

b) For s e {2, 3}, R(s)' of is type

with basis

c) For *^4, i?(ί)' « generated by [ ( -

elements do not necessarily form a basis).

,, - , [ίj,
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Proof. Let P(s) be the prime residue class group modulo 2s in k and P0(s)
aP(s) the subgroup generated by those prime residue classes modulo 2s which
contain rational numbers. For an integral ccEzk, prime to 2, let {a}s€ΞP(s)IP0(s)
be the class determined by a. Then we see from [8]:

P(0) = P0(ί) = 1,

P(ί) = P(l)/P0(l) is of order 2, generated by {\f^h}ι,

and for

P(s)IP0(s) is of type (2s"1, 2) with basis ( { -

Now R(s) is determined by the exact sequence

with <p({a}s)=[(a)]t and ψ ([a]s)—[a]0. Obviously, im(φ)c:R(s)', and we get
the exact sequence

1 - P(s)IP0(s) -* R(s)' -* R(0)' - 1

which determines R(s)' as follows:
R(s)' is generated by im(φ)i [t^, •••, [td]s. This, together with lemma 3,

proves the proposition. •

Now let, for s>0, k(s) be the ring class field modulo 2s over k and k(s)'
the maximal 2-extension contained in k(s). Then &($)/& is abelian, and the
Artin map gives isomorphisms

φ(s):R{s)-»Gal{k{s)lk)

with φ(s)(R(s)')=Gal(k(syik). The decomposition law for rational primes
in k(s) can be described using binary quadratic forms as follows:

Let C(s) be the composition class group of integral primitive binary quad-
ratic forms f=aX2+bXY+cY2<=ΞZ[X, Y] with discriminant D(f)=b2~-4ac=
—4$ 4w; then there is an isomorphism

\5:R(s)~C(s)

(called canonical) such that for each positive rational integer a with (a, 2m) =1
and each class QeC(s) the following holds:

Q represents properly a if and only if a=N(a) for some integral primitive
ideal a with Q=\([a]s).

Concerning the structure of the fields k(s) we will have to use the following
corollary to proposition 1:
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Corollary 1. Let Llk be a cyclic extension of degree 4 and suppose Lck{s)
for some s;> 0 then Ldk(3).

Proof. Actually we have L(Zk{s)f for some s>3. Let %: R(s)'-+Cx be the
character of degree 4 defining L, and let z9: R(s)'->R(3)' be the natural
epimorphism defined by ^([α] s)=[α]3. Then we have to show that there is a
factorization %=%0°# for some character Xo; i?(3)'->Cx, but this is equivalent to

ker{β)<zker(X).

Suppose C^ker(ϋ)\ then by proposition 1, c)

c = [(-i+v^)ys°-πU[Φ

with a0, av •••, ad&N0, and as #(C) = 1 we deduce from proposition 1, b)

^ 0 = ^ = 0 mod 4,

α y =0 mod 4 if j>2 and ί y > 2 ,

•aj = 0 mod 2 i f j>2 and ts = 1 .

Then

but if ί y = l , [ίy]ϊ=[(«i)],= l and thus X([ίy]#)2=l, which implies %(C)=1. •

Now we are well prepared to study the Galois theory and the ramification
of those fields, which control the quartic character of 6.

If m is a product of different primes congruent to 1 modulo 8, then the
prime divisor of 2 in k lies in the principal genus and therefore there are rational
integers ayb.u^Z such that

K α δ Ξ 3 mod 4

and

a2+mb2 = 2u2

we fix such a triple (a, b, u) in the sequel and consider the algebraic integer

δ = a+b^/^nEΞk

it has the ideal decomposition

(δ) = U? M2

where w is the prime divisor of 2 in k and u is a primitive integral ideal of k
with N(u)=u.
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Proposition 2.

a) K{ψε82(l—i)2)lk is a cyclic extension of degree 8, K($Sh2(\—if)IQ is
normal with a dihedral group of order 16 as Galois group, and K($'eh2(1—j)2)c

b) k(\/ (2+ vΊΓ) δ)/& w # ςyc/ic extension of degree 4, k(y/ (2-\-\/~2) δ)IQ
is normal with a dihedral group of order 8 as Galois group, and &(λ/(2+V~2~) δ)
cA(3). _ _

c) i£( $2e)lk is a cyclic extension of degree 8, i£($2S)IQ is normal with a
dihedral group of order 16 as Galois group, and K($2e)c:K(<γs82(l—i)2)*

)J but
Proof.
a) We set

then Nκ/k(rf)=— 4δ4, and from [6; Satz 1] we deduce that K(η)jk is cyclic of
degree 8. Let σ0 be the generator of the Galois group of K\k\ then cro(η4)=
6~2 ?/, and thus we may fix an extension σ of σ0 to K(η) by setting

and σ generates the Galois group of K(η)lk. Let τ0 be the generator of the
Galois group of K/F; then τo(i?4)=[(l—ϊ) wδ"1]4-^4 and thus τ 0 has an extension
to an automorphism r of K(η) satisfying

As τ01 k generates the Galois group of kjQ we deduce that K(η)jQ is normal
with Galois group generated by σ and T. NOW we can check the relation

~ισs = τ2 = id, στ = τσ

by applying the automorphisms to S, ί and 97. Thus the Galois group of
K{ η)jQ is a dihedral group of order 16, and K{η) is contained in a ring class
field over k by [9; Satz 11].

It remains to show that the conductor f of K{η)jk devides 2. By [6;
Satz 13] the extension K(\/~£~)jk is urnamified; thus, if d and d* denote the
relative discriminants of K(η)/K(\/~£^) and K(η)lk, we have

d* =

Let % be a generating character of K(η)/k and /χ%') be the conductor of X*
(j=0, 1, - , 7). Then, by [14; §4], we have the following relations:
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f = f(χ3) for j= 1 mod 2 ,

f (%>') = 1 for JΞΞO mod 2

and

d* = Π f(XJ) = /*
y=o

From these we see that in order to prove f \ 2 it is sufficient to show d|2; but
this demands a careful analysis of the relative quadratic extension K(η)jK(\/r£~).
Setting

„_ VT δ

we have ϋΓ(i7)=i£(\/"^") ( V α ) a n d the ideal decomposition of δ shows that
K(η)jK(y/Y) is unramified outside 2. Let w be a prime divisor of 2 in i£(>/~£~)
then ordw(2)=2> and thus it is sufficient to show ordw{d)<s2, which, by [3; § 11]
is equivalent to:

a is a quadratic residue modx w3.

We have

a\\-if = S82 = (U+Wm) (a2-mb2+2abV~^tn)

by [6; Satz 13]

£/=0 mod 4, V=l mod 4

which, together with ab=3 mod 4 and a2—mb2=0 mod 8 implies α 2(l— i)2=
(I—/)2 mod 8 and thus

α 2 = l mod 4 .

Therefore -^— is an algebraic integer, i.e.

a=\ mod 2 .

Let zre-R^v^) be an element with ordw(π)=l; then

a=l-\-ωπ2 mod w3

for some ω^K{\/~s). As the prime residue class group modulo w is of odd

order, ω = ωl mod w for some ωo^K(\/~ϊf), and then

α = (l+ωo7r)2 mod w3

as asserted.
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b) We consider the field

with

Ύ =

As NQ(^)/Q(rγ)=2(a2—2u2)=—2mb2, MjQ is not normal, its normal closure

L = Q(V2y V—2m, \ί^γ)

is cyclic of degree 4 over k, and the Galois group of LjQ is a dihedral group of
order 8 [9; Satz 1, 2]. Finally, the identity

shows that

The prime ideal decomposition of δ shows that Ljk is unramified outside 2,
and by [9; Satz 11] Ldk(s) for some s^O, so L(Zk(3) by corollary 1.

c) The Galois theoretic assertion comes from lemma 1. The asserted
inclusion of fields follows from the identities

and

with

i-tγ) Hv (2+VT) δ).

Now suppose we have K(tf2s)cik(2). By lemma 1, K{^2β)jk is cyclic of de-
gree 8; let X: R(2)->CX be a generating character of K{^2β). Then, by prop-
osition 1, X2=ψ°θ where θ: R(2)->R(0) is the natural epimorphism defined by
θ([a]2)=[a]0 and ψ is a character on JR(O) of degree 4. Thus, K(y/2ε)/k is
defined by X2 and also by ψ and therefore unramified, a contradiction. •

Remark. Proposition 2 a) generalizes [6 Satz 14, a] the Galois theoretic
assertion in c) could equally be deduced from [2; Proposition 1].

Proposition 3. Suppose M=K(χ/S(l—i))'y let p be a rational prime with

p = ί mod 4, (2n = l for j=l9

 a

 yd, and let P be a prime divisor of p in F.
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Then there exist w,r, sξ=Z with

(r, s) = 1, r—s = 1 mod 4,

= r2—ms2

and

If w,rys are as above then P splits in M if and only if

r—s=l mod 8 .

If p=ί mod 8 then s=0 mod 4, and the two prime divisors of p in F either both
split in M or both do not if p = 5 mod 8 then s = 2 mod 4 and exactly one of the
prime divisors of p in F splits in M.

When showing proposition 3 we shall also prove the following congruence
which has not been noticed hitherto:

Proposition 4. We have

= mod 2 .
4 2

Remark. If m is a prime a short proof of proposition 4 can be given as
follows: The prime divisor u of u in k lies in an ideal class of order 4 and
thus the class number of k is divisible by 8 if and only if u lies in the principal
genus, i.e., u=\ mod 4. On the other hand, U = 0 mod 8, if and only if 8
divides the class number of k [1].

P. Kaplan remarked that proposition 4 can also be deduced from [12] by

appealing to theorem 1 and formula (2.6) of that paper (with A=[2>2> ]
and a square root B1 of A representing u).

Proof of propositions 3 and 4. The identity

' 12+. 2 8(1-ί)

shows that

and asp=ί mod 4, p splits completely in K. Thus P splits in M if and only

if it splits in
2

As α+ό v/w/>0, M > 0 and
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a+by/tn+u ^ t o t a U y p o s i t i γ e i n p^ a n d F Ua+byS™+u)lF is unramified

at infinity. As the ideal (δ(l— i)) is a square in Ky M\F and thus also

a y^m+u)/F are unramified outside 2. Let z, z' be the prime divisors

of 2 in JP, normed such that

χ/m= — 1 mod s2,

Then we have (1 + \/m)2=ί-\-m-\-2\/m = 0 mod z4 and thus

y/m=-!*±L mod z".

From

α 2 +wi 2 = (a+by/m) {a-by/m)+2mb2 = 2w2

and

2mό2=2w2=2mod 16

we deduce

(a+by/rn) (a—b\/m)^0 mod 16 ,

and <zi=3 mod 4 implies

a—b\/m=a—b=2 mod z'2

consequently

a+b\/m=0 mod z' 3.

This implies

a s Λ Γ F / β ( ^ ± | ^ + M ) = l («+«)«, 0 , 4 ( ^ + 1 ^ + ^ 1 mod 2.

Now let f be the conductor and φ the generating ideal character of

+ \ιF I t follows f r o m [3; § 11] that

f = z3z'p

with
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0, if u=l mod 4 ,
1 2, if w=3 mod 4 .

For an integral a^F with α = 1 mod 4 we have in any case

1, if a = ϊ mod £ ,

ίl\=l for j = l , •••, d, and let P be a prime di-

visor of p in F. Then P lies in the principal genus (in the narrow sense), so
there is a primitive integral ideal w prime to 2p such that w2P is principal,

2 /

with r\ s'^Zy (r\ s')\2, r'=s' mod 2 and

ΛΓ(uΛP) = w2p = ^ = ^

As n ^ = l mod 4, we have r ' = ί ' = 0 mod 2, r '=2r, ί ' =

and from ZU 2/)^! mod 4 we deduce r = l mod 2, ί = 0 mod 2. By changing
signs if necessary we may assume

r—s=ί mod 4 .

Then we obtain

r-{-s\/m=r-\-s=r—s=ί mod 4,

and as

r+s\/m=r~s mod z3,

we deduce:

φ((r-\-s\/m)) = 1 if and only if r—s=l mod 8 .

Now P splits in FfJa+b^it+u) if and only if φ(P)=l, but

and this proves the first part of proposition 3 the second part is obvious.

To prove proposition 4, consider £=U+V\/m and observe that
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C/=0 mod 4, F = ^ ± i mod 8

by [6; Satz 13], which implies

£= E/_(!±!?y= U-\ mod z3,

whilst

S=\/m=l mod z'2,

If now α=0, F {JaJr vm+u)/F has conductor JT3 and thus there is no unit η

in F with 37= 1 mod z2, η^ 1 mod z3. As —£ = 1 mod z2 we have — £ = 1 — J7=
1 mod z3 which implies £7=0 mod 8.

If v=2y F(Ja+by/™+u)lF has conductor * 3 j?/2 and thus there is no unit 77

in F with 37= 1 mod zz, η^ 1 mod z3 z2'. As — £ ί 1 mod z'2 we have — £ = 1 —
mod z3 which implies ?7=4 mod 8. •

5. Residuacity criteria for splitting primes

Theorem 2. Suppose m=q1 qd is a product of d>l different primes
#y=l mod 8 and suppose that the ideal class group of k has only one invariant 2*
(t>2) divisible by 4; then the fundamental unit S=Sm of F satisfies NF/Q(6)= — l.

Let I be a prime satisfying / = 3 mod 4 and l2t=ξ2-\-mη2 with ξ,η^Z,(ξ, η)
= 1.

Let p be a prime such that p=\ mod 4 and (2z)=l for j—l> -",d, and let
P be a prime divisor of p in F; suppose ^

w2p = r2—ms2

with w,r,s^Z such that

(ry s) = 1, r—s= 1 mod 4, 2/\
/w

and

A. There is a unique exponent n£ΞN0 satisfying n<2*~1 such that

wίthX, YeZ,(X, F ) = l .
B. The following assertions are equivalent:
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b) In (*), we have n=0 mod 2;
c) p is represented by a class Q G C ( O ) which is a 4-th power.

d) p2t~H=x2+my2 with x3y^Zy (x, y ) = 1 .

e) p is represented by a class Q G C ( 1 ) which is a 4-thpower.
f) p2t~ h—x2+4my2 with x,y^Z, (x,y)=l.

C. Suppose (—)==^ 7 ^ w = 0 ^ o d 2 in (*).

J L | __ / 1\(n/2)+(r-s-l/4)

D. Suppose ( — ) = 1 Λ»wί ί Ξ l mod 8. ΓA^z, in (*)

mod 2, rf P

\ p /i κ

E. Suppose ( — ) = 1 tfwrf /> = 1 mod 8 feί Q e C(3) represent p. Then either
\p/

(I) p2t-2h = X2+16mY2

or

(II) p2t~2h =

wώA I , Y e Z , (X, Y)=ly and we obtain:

)p n

if and only if
in case (I): Q is an 8-th power;
in case (II): Q is no 4-th power.
F. Suppose pΞ=l mod 8 and ph=16X2+mY2 with Xy Y^Z, (X, Y ) = l .

Then (—1=1, and we have
\p/

Remark. 1. In theorem 2, / plays the role of an auxiliary parameter. If
C is an absolute ideal class of k of order 2* and Z e C is a prime ideal of degree
1 then the underlying prime / satisfies all requirements.

2. Criteria for the quadratic character of 6 under more general conditions
were proved in [6]; for a different approach see [2].

Proof. NF/Q(£)= — 1 follows from [6; Satz 14]. The assumption concern-
ing the ideal class group implies tx=t>2 and t~\ for j=2, •••, d in the termi-
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nology of §4. Let p be a prime divisor of p in k.
For ί > 0 , let k(s)* be the genus field of k(s), i.e. the greatest absolutely

abelian subfield of k(s). Then, by [10],

and k(s)* is the greatest multiquadratic extension of k inside k(s).

As p=l mod 4 and ( ^ - Ί = 1 for7=1, •••*/, jp splits completely in k(s)* for
V j ) /

s<l; but this implies <p{[p]s)=l for all quadratic characters ψ of i?(s), i.e. [p]s

is a square in /?(s) for s<\. If, in addition, p=\ mod 8, then [p]Sris a square
in i?(ί) also for s>2.

By proposition 1, i?(3)' is of type (4, 2t+1, 2, •••, 2) with basis ([(—1 +
^rn)]3y [<J3, —, [*J3), and we set

For 5<3, let ωs: R(3)->R(s) be the canonical epimorphism defined by ωs([a]3)=
[α]s; then &?r(ω2H<C0

2>, Aβr(ω1)=<C0> and Aβr(ωo)=<C0, Cf>. From C f =
[ ( v / _ w ) ] 3 we see that, for ί < 3 , λ soω s(Cf) contains the form 4sX2+tnY2.

By proposition 2, i£( ̂ fδ2(l—i)2) is a cyclic extension of & of degree 8 con-
tained in &(1). Let Xx: i?(l)->Cx be a generating character for K(4/SS2(ί—i)2)l
k; then (by raising Xλ to an odd power if necessary) we may assume Xi([tι]ι)=ζ,

where ζ=^i^Cx is a primitive 8-th root of unity. Then X=X1oω1: R(3)-+Cx

also defines K(<γeS2(l—i)2), X2 defines K(\/e), %4 defines K, and we have

X(C0) = 1 , %(Q) = ζ .

As [p]j is a square in i?(l), we may set

[p]3=Cao.Clb U

with «', b&NOy a'<\, b<2< and a class U^R(3) of odd order.

Proof of A. As I2t=r2+rns2, ( — j = l , and (1)=^ l2 with different prime

ideals lv l2 of k which lie in ideal classes of even order. ω0 induces an iso-
morphism of the odd parts of R(3) and R(0), and thus we have

[IJa = Co

v C? Γ, [IJ3 = Cg"v C2t~» T

with exponents z;, μ^N0> v<2> μ<2* and a class T&R(3) with Γ 2 = l . As /=3
mod 4, /x is inert in K, and thus —1=%4([/1]3)=(— l)μ, i.e.
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μ = l mod 2 .

Now, for weiVo the integer l2n ph is properly represented by the classes
λi([*in Ph]i)y \{[l2n Ph]i) and their inverses in C(l). So the existence of Xy Y&Z
with (X, Y)=l and l2n ph=X2+4mY2 is equivalent to [l\» p\=\ or [llnphl=
1, i.e. to [Ij pA]3G<C0> for 7=1 or j=2. From

\l2 P J3 = = *-Ό *t-Ί

we see that it is sufficient to show that there is a unique neiV0 with
for which one of the congruences

2bh±2nμ==0 mod 2'+1

holds; but this is obvious.

Proof of B. As p= 1 mod 4, (—) is well defined, and as X2 defines K(\/~£),
\p/

- ) = 1, if and only if %2([p]3) = 1 .
p/

From the above we deduce

and the congruence 2bh±2nμ = 0 mod 2 ί + 1 together with t>2 and h = μ^l mod
2 implies

6=tt mod 2 ,

thus

which proves the equivalence of a) and b).
For ίG {0, 1}, p is represented by the class λs

oωs([p]3)=λs([ί1]s)
2* λsoω5(ί7)

and its inverse in C(s), and as Xsoωs(U) is of odd order, p is represented by a
4-th power in C(s) if and only if 6 = 0 mod 2; this proves the equivalence of a)
with c) and e).

For s<Ξ{0, I},p2t+5~2h is properly represented by the class \([t1]sf
+s~2b\

and this is the principal class if and only if b = 0 mod 2 this proves the equiva-
lence of a) with d) and f).

Proof of C: If (— ) = 1 , then by B. we have w = έ = 0 mod 2, and from
\p/

2bh±2nv = 0 mod 2'+\ t>2 and h = μ = l mod 2 we infer
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b n JO- Ξ -mod2.

Now let Pκ be a prime divisor of P in K; as K( ̂ £S2(1—z)2)/Q is normal,
Pκ splits in K(<tfe82(l—i)2) if and only if p does; therefore, Pκ splits in

^ — if) if and only if p does, and as % defines i f(^£S 2 (l— t)2), this is
equivalent to X([p]3)= 1. As

we obtain

The prime residue class groups of P and P ^ coincide, thus we conclude

As ί _i—Zίi J = l if and only if Pκ splits in K(VS(ί—i)), it follows from proposi-
\ Pκ /

tion 3 that

/δ(l—1)\ = / j\(r- -l)/4

Putting all together, we deduce

Proof of D: Let ψ: i?(3)->Cx be a generating character for K(^
By raising ψ to an odd power if necessary, we may assume that

By proposition 2, K(^2ε)(tk(2), thus ^r(ω2)=<Co>ct:^(Λ|r) and consequently

As /)=1 mod 8, [jp]3Gi2(3) is a square, and thus α' = 0 mod 2,

a' = 2a, 0<a<2.

From ί — 1 = 1 we deduce as in the proof of C. b=n = 0 mod 2 and

2 2

This implies

b n i O= — mod 2 .
2
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(ψj =ψ
p

In (*), we have Y = 0 mod 4 if and olny if l2n ph is properly represented by the
principal class of C(3); but as l2n ph is properly represented by the classes
λ3([ZyΛpA]3) 0 = 1 , 2) and their inverses in C(3), Y = 0 mod 4 is equivalent to

1 = [Zf p%=Clah-C\bh±2niL

for 7=1 or y=2, i.e. for one choice of the sign in the exponent of Cv As n
was determined so that 2bh±2nμ = 0 mod 2 ί + 1 for one choice of the sign, Y = 0
mod 4 is equivalent to # = 0 mod 2, thus

a=~ mod 2

and

(?£\ = (_i)(»/2)+O72) #

Proof of E: As ( — ) = 1 and/>= 1 mod 8 we have a'=2a, i = w = 0 mod 2

b P

and — = — mod 2 as in the proof of C. p is represented by the class λ3(Coβ C\b

U) and its inverse in C(3). Thus, if Q G C ( 3 ) represents^), Q is a 4-th power
if and only if # = 0 mod 2.

As p2'~2h is properly represented by the ambiguous class 1

C(2), we deduce

b=0 mod 4 in case (I),

ft=2 mod 4 in case (II) .

As in the proof of D. we obtain

In case (I), έ = 0 mod 4 and thus (—) = 1 if and only if Λ = 0 mod 2, i.e. Q is

an 8-th power. In case (II), 6 = 2 mod 4 and thus ί—J = 1 if and only if
a=ί mod 2, i.e. Q is not a 4-th power. **

Proof of F: As p=ί mod 8, we have a' = Q mod 2, a'=2a, and ^ is re-
presented by the classes λ3(Coβ C\bU)±ι^C(Z)\ thus ^)A is properly represented
by Xz(ClaC\hh)±ιZiC{Z) and by \2oω2{Cla Cf h)±1=\2oω2(Ct2bh)^C(2). As
ph=ί6X2+mY2 with Z, Y G Z , (X, Y)=l, ph is also properly represented by
λ2°ω2(Cf) and this implies
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b = 2'"1 .

As in B. we have b=n mod 2 and thus

p = (-»•=>•
Further, we have X=0 mod 2 if and only if ph is properly represented by

λ3(Ci'), and as ph is properly represented by λ3(CoΛ Cf) this is equivalent to
# = 0 mod 2. This implies

fl=I mod 2

and

6. Residuacity criteria for ramified primes

In this final section we assume that m is a prime and consider 6m modulo
the prime dividing m.

Theorem 3. Let m=q^l mod 4 be a prime and Q=(\/~<[) the prime
divisor of q in F. Then:

a) 7/?=5 mod 8, ( i Λ = - l .

b) / / ? Ξ 1 mod 8,

( i t ) =(_l)(f-υ/* and (^s-) = (—I)**-1.

Proof. 6 ί = ? 7 + F \ / γ , and C/2—?F2= — 1. Therefore we have £,=
mod 5,

and, if ? = 1 mod 8,

To show ί—^J = ( — I ) 2 ' " 2 we adopt the terminology of the proof of the-

orem 2. Then

and
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Corollary 3. t ;> 3 if and only if ( — ) = 1

Proof. ( — If =

orem. •

Remark. Corollary 3 was first proved in [1]; it is not surprising that an

extensive study of the structure of the ring class fields as we have done in this

paper delivers this basic fact too.
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