Halter-Koch, F. and Ishii, N. Osaka J. Math. 26 (1989), 625-646

RING CLASS FIELDS MODULO 8 OF $Q(\sqrt{-m})$ AND THE QUARTIC CHARACTER OF UNITS OF $Q(\sqrt{m})$ FOR $m \equiv 1$ MOD 8

FRANZ HALTER-KOCH AND NOBURO ISHII

(Received March 8, 1988)

1. Introduction

For a positive squarefree rational integer m let E_m be the fundamental unit of Q(√m) and suppose N_{Q(√m)/Q}(E_m)=-1. Then, for s≥1 and any prime ideal P of Q(√m) with N(P)≡1 mod 2^s, the 2^s-th power residue symbol (E_m/P)_{2^s} is defined and has value ±1 provided that E_m is a 2^{s-1}-th power residue modulo P, i.e. (E_m/P)_{2^{s-1}}=1. Especially, if p is a rational prime with p≡1 mod 2^{s+1} and (m/p)=1, the symbol (E_m/P)_{2^s} for P | p depends only on p and is denoted by (E_m/P)_{2^s}. Concerning this latter case, explicit criteria for (E_m/P)_{2^s}=1 in terms of representations of powers of p by binary quadratic forms have been given in the following cases ([13], [6], [2]):
A. m≡5 mod 8 or m≡2 mod 4, and the ideal class group of Q(√-m) has no invariant divisible by 4; s=1 and s=2.
B. m≡1 mod 8, and the ideal class group of Q(√-m) has only one invariant

B. $m \equiv 1 \mod 8$, and the ideal class group of $Q(\sqrt{-m})$ has only one invariant divisible by 4; s=1.

In this paper we treat the case s=2 for **B**, which could not be settled up to now (§5); in this case we also determine the quartic residue symbol $\left(\frac{\mathcal{E}_m}{P}\right)_4$, where **P** is a prime divisor in $Q(\sqrt{m})$ of a prime p with $\left(\frac{-1}{p}\right) = \left(\frac{m}{p}\right) = 1$ (if $p \equiv 5 \mod 8$, this symbol depends on **P** and not only on p). Further we derive criteria for $\left(\frac{\mathcal{E}_m}{P}\right)_{2^s} = 1$ (s=1, 2) for inert prime ideals **P** of $Q(\sqrt{m})$ under quite general assumptions (§3) and criteria for $\left(\frac{\mathcal{E}_m}{q}\right)_{2^s} = 1$ (s=1, 2) in the case where m=q is a prime and $q = (\sqrt{q})$ (§6). The proofs depend on the generation of suitable subfields of the ring class field modulo 8 of $Q(\sqrt{-m})$ by radicals (§4). There is a similar and even more complete series of results including octic residuacity in the case $N_{Q(\sqrt{m})/Q}(\mathcal{E}_m)=1$ (see [13], [6], [7] and [11]).

2. Notation

Throughout this paper we keep the following notation: m>1 is a squarefree rational integer;

$$F = \mathbf{Q}(\sqrt{m}), \ k = \mathbf{Q}(\sqrt{-m});$$

$$K = F \cdot k = \mathbf{Q}(\sqrt{m}, \sqrt{-m}) = F(i) = k(i), \text{ where } i = \sqrt{-1};$$

h is the odd part of the class number of *k*; $\varepsilon = U + V \sqrt{m}$ is the fundamental unit of $\mathbb{Z}[\sqrt{m}]$ with

U,
$$V \in \mathbf{N}$$
, so $\varepsilon > 1$,
 $N_{\mathbf{Q}(\sqrt{m})/\mathbf{Q}}(\varepsilon) = U^2 - mV^2 = -1$.

If \mathcal{E}_m is the fundamental unit of $Q(\sqrt{m})$ then either $\mathcal{E}=\mathcal{E}_m$ or $\mathcal{E}=\mathcal{E}_m^3$ where the latter case can only occur if $m\equiv 5 \mod 8$. In any case, \mathcal{E} and \mathcal{E}_m have the same 2^s-th power residue properties and we shall prefer to work with \mathcal{E} instead of \mathcal{E}_m .

3. Residuacity criteria for inert primes

We start with two simple lemmas; the first concerns Galois theory, the second quadratic reciprocity.

Lemma 1. $K(\sqrt[4]{2\varepsilon})/k$ is a cyclic extension of degree 8, and $K(\sqrt[4]{2\varepsilon})/Q$ is normal with a dihedral group of order 16 as Galois group.

Proof. As $N_{K/k}(2\varepsilon) = -4$ we deduce from [6; Satz 1] that $K(\sqrt[4]{2\varepsilon})/k$ is cyclic of degree 8. If σ_0 generates the Galois group of K/k, then $\sigma_0(2\varepsilon) = \frac{(1-i)^4}{2\varepsilon}$, and thus a generator σ of the Galois group of $K(\sqrt[4]{2\varepsilon})/k$ is given by

$$\sigma(\sqrt[4]{2\varepsilon}) = \frac{1-i}{\sqrt[4]{2\varepsilon}}.$$

Let τ_0 be the generator of the Galois group of K/F; then $\tau_0(2\varepsilon)=2\varepsilon$ and thus τ_0 has an extension τ to $K(\sqrt[4]{2\varepsilon})$ defined by

$$\tau(\sqrt[4]{2\varepsilon}) = \sqrt[4]{2\varepsilon}$$
.

But $\tau_0 | k$ generates the Galois group of k/Q, and therefore $K(\sqrt[4]{2\varepsilon})/Q$ is normal with Galois group generated by σ and τ . Now we can check the relations

RING CLASS FIELDS MODULO 8 OF $Q(\sqrt{-m})$

$$\sigma^8 = \tau^2 = id$$
, $\sigma \tau = \tau \sigma^{-1}$

by applying the automorphisms to $\sqrt[4]{2\varepsilon}$ and *i*; this proves the assertion.

Lemma 2. Let E be a quadratic number field, p an odd rational prime which is inert in E and $\mathbf{P}=(p)$ the prime divisor of p in E. Then, for any rational integer r, prime to p, we have $\left(\frac{r}{P}\right)=1$ and

$$\left(\frac{r}{P}\right)_{4} = \begin{cases} 1, & \text{if } p \equiv -1 \mod 4, \\ \left(\frac{r}{p}\right), & \text{if } p \equiv 1 \mod 4. \end{cases}$$

Proof. By Euler's criterion, we have

$$\left(\frac{r}{P}\right) \equiv r^{(p^2-1)/2} \mod P$$

as $N(\mathbf{P}) = p^2$, thus $\left(\frac{r}{\mathbf{P}}\right) = 1$ since $r^{(p^2-1)/2} = (r^{p-1})^{(p+1)/2} \equiv 1 \mod p$. In the same way,

$$\left(\frac{r}{P}\right)_4 \equiv r^{(p^2-1)/4} \mod P$$
,

and if $p \equiv -1 \mod 4$, $r^{(p^2-1)/4} \equiv (r^{p-1})^{(p+1)/4} \equiv 1 \mod p$ implies $\left(\frac{r}{P}\right)_4 = 1$. If $p \equiv 1 \mod 4$, $\frac{p+1}{2}$ is odd and the decomposition $\frac{p^2-1}{4} = \frac{p-1}{2} \cdot \frac{p+1}{2}$ shows that $r^{(p^2-1)/4} \equiv 1 \mod p$ if and only if $r^{(p-1)/2} \equiv 1 \mod p$, i.e., $\left(\frac{r}{p}\right) = 1$.

REMARK. Lemma 2 is a very special case of a general formula for the power residue symbol, see [5; §14, IV.].

Now we are well prepared to prove the reciprocity criteria for inert primes:

Theorem 1. Let p be an odd rational prime inert in F, i.e. $\left(\frac{m}{p}\right) = -1$, and let P = (p) be the prime divisor of p in F. Then:

a)
$$\left(\frac{\varepsilon}{P}\right) = \left(\frac{-1}{p}\right)$$
.
b) If $p \equiv 1 \mod 4$, $\left(\frac{\varepsilon}{P}\right)_4 = \left(\frac{2}{p}\right)$.

Proof. Let p_k resp. p_K be a prime divisor of p in k resp. K; then p_K is a prime divisor of P of relative degree 1 and the prime residue class groups modulo P and p_K coincide.

If $p \equiv -1 \mod 4$, p_k is inert in K, and as $K(\sqrt{2\varepsilon})/k$ is cyclic, p_k remains

inert in $K(\sqrt{2\varepsilon})$. Thus p_{κ} is inert in $K(\sqrt{2\varepsilon})$ too, and we obtain

$$-1 = \left(\frac{2\varepsilon}{\boldsymbol{p}_{\boldsymbol{K}}}\right) = \left(\frac{2\varepsilon}{\boldsymbol{P}}\right) = \left(\frac{2}{\boldsymbol{P}}\right) \cdot \left(\frac{\varepsilon}{\boldsymbol{P}}\right) = \left(\frac{\varepsilon}{\boldsymbol{P}}\right)$$

using lemma 2.

If $p \equiv 1 \mod 4$, p is inert in k and therefore p_k splits completely in $K(\sqrt[4]{2\varepsilon})$ by [9; Satz 25] and lemma 1. Thus p_k splits completely in $K(\sqrt[4]{2\varepsilon})$ too, and we obtain

$$1 = \left(\frac{2\varepsilon}{\boldsymbol{p}_{\boldsymbol{K}}}\right)_{4} = \left(\frac{2\varepsilon}{\boldsymbol{P}}\right)_{4} = \left(\frac{2}{\boldsymbol{P}}\right)_{4} \cdot \left(\frac{\varepsilon}{\boldsymbol{P}}\right)_{4} = \left(\frac{2}{\boldsymbol{p}}\right) \cdot \left(\frac{\varepsilon}{\boldsymbol{P}}\right)_{4}$$

by lemma 2, which is the assertion.

4. The ring class groups and ring class fields involved

In this section we study the subfields of the ring class field modulo 8 of $Q(\sqrt{-m})$ which can be generated by radicals; the arithmetic of these fields is used in the next section to derive the announced power residue criteria.

From now on, we will assume that

$$m = q_1 \cdot \cdots \cdot q_d$$

is the product of $d \ge 1$ different primes q_1, \dots, q_d with

$$q_1 \equiv q_2 \equiv \cdots \equiv q_d \equiv 1 \mod 8.$$

For $s \ge 0$ let R(s) be the ring class group modulo 2^s of k and R(s)' the 2-component of R(s); especially, R(0) is the ideal class group and R(0)' is the 2-class group of k. For an integral ideal a of k (prime to 2 if $s \ge 1$) let $[a]_s \in R(s)$ be the ring class which contains a.

Let C_1, \dots, C_d be a basis of $R(0)', 2^{t_j} > 1$ the order of C_j , and m_j a primitive ambiguous ideal of k in $C_j^{2^{t_j-1}}$ (see [4; §29]). If $m_j = N(m_j)$, then $m_j | 2m$ for $j=1, \dots, d$, and we may assume that $m_1=2m'_1$ and that m'_1, m_2, \dots, m_d divide m (especially $m'_1 \equiv m_2 \equiv \dots \equiv m_d \equiv 1 \mod 8$). As m has only prime factors $q_j \equiv 1$ mod 8, the prime divisor of 2 lies in the principal genus of k [4, §26] and thus we have $t_1 \ge 2$. Let $t_j \in C_j$ be integral ideals prime to 2, $t_j = m_j$ in case $t_j = 1$. Set

$$\boldsymbol{t}_{j}^{2^{\prime j}}=(\mu_{j})$$

with integral $\mu_j \in k(j=1, \dots, d)$. Then we obtain:

Lemma 3. There exist rational integers r_1, \dots, r_d such that $\mu_1 \equiv r_1 \sqrt{-m} \mod 8$ and $\mu_j \equiv r_j \mod 8$ for $j=2, \dots, d$.

Proof. As $t_j^{2^{t_j-1}}$ and m_j are both contained in $C_j^{2^{t_j-1}}$ we have

RING CLASS FIELDS MODULO 8 OF $Q(\sqrt{-m})$

$$t_j^{2^{t_j-1}} = m_j \cdot (\gamma_j)$$

with

$$\gamma_j = \frac{x_j + y_j \sqrt{-m}}{z_j} \in k, \ x_j, \ y_j, \ z_j \in \mathbb{Z}, \ (x_j, y_j, z_j) = 1$$

and

$$N(t_{j}^{2^{t_{j}-1}}) = m_{j} \cdot \frac{x_{j}^{2} + my_{j}^{2}}{z_{j}^{2}}$$

 $N(t_j^{2^{t_j-1}})$ is integral and congruent to 1 modulo 8, if $t_j \ge 2$. As $t_1 \ge 2$, we have $z_1 = 2z'_1$ and $x_1 \equiv y_1 \equiv z'_1 \equiv 1 \mod 2$; therefore

$$\pm \mu = m_1 \gamma_1^2 = m_1 \cdot \frac{x_1^2 + my_1^2}{z_1^2} - \frac{m_1' my_1^2}{z_1'^2} + \frac{m_1' x_1 y_1}{z_1'^2} \cdot \sqrt{-m}$$

$$\equiv x_1 y_1 \sqrt{-m} \mod 8.$$

If in the case $j \ge 2$ we have $t_j=1$ then $t_j=m_j$, $\mu_j=\pm m_j$ and we are done. If $j\ge 2$ and $t_j\ge 2$ then z_j is odd and either x_j or y_j is divisible by 4; there-

fore

$$\pm \mu_{j} = m_{j} \gamma_{j}^{2} = m_{j} \cdot \frac{x_{j}^{2} + my_{j}^{2}}{z_{j}^{2}} - \frac{2m_{j} my_{j}^{2}}{z_{j}^{2}} + \frac{2x_{j} y_{j}}{z_{j}^{2}} \cdot \sqrt{-m},$$

and the assertion follows from $2x_j y_j \equiv 0 \mod 8$.

Now we are in position to determine the structure of the group R(s)' in our special situation, at least for $s \leq 3$ (compare [6; §7] where this was done under somewhat different assumptions).

Proposition 1. Let m be a product of $d \ge 1$ different primes $q_j \equiv 1 \mod 8$ and keep all the notation introduced above. Then:

a) For $s \in \{0, 1\}$, R(s)' is of type

$$(2^{t_1+s}, 2^{t_2}, \cdots, 2^{t_d})$$

with basis

(
$$[t_1]_s, [t_2]_s, \dots, [t_d]_s$$
).
b) For $s \in \{2, 3\}$, $R(s)'$ of is type
 $(2^{s-1}, 2^{t_1+1}, 2^{t_2}, \dots, 2^{t_d})$

with basis

$$([(-1+2\sqrt{-m})]_{s}, [t_{1}]_{s}, [t_{2}]_{s}, \cdots, [t_{d}]_{s})$$

c) For $s \ge 4$, R(s)' is generated by $[(-1+2\sqrt{-m})]_s, [t_1]_s, \cdots, [t_d]_s$ (but these elements do not necessarily form a basis).

Proof. Let P(s) be the prime residue class group modulo 2^s in k and $P_0(s) \subset P(s)$ the subgroup generated by those prime residue classes modulo 2^s which contain rational numbers. For an integral $\alpha \in k$, prime to 2, let $\{\alpha\}_s \in P(s)/P_0(s)$ be the class determined by α . Then we see from [8]:

$$P(0) = P_0(1) = 1$$
,
 $P(1) = P(1)/P_0(1)$ is of order 2, generated by $\{\sqrt{-m}\}_1$

and for $s \ge 2$

$$P(s)/P_0(s)$$
 is of type $(2^{s-1}, 2)$ with basis $(\{-1+2\sqrt{-m}\}_s, \{\sqrt{-m}\}_s)$.

Now R(s) is determined by the exact sequence

$$1 \to P(s)/P_0(s) \xrightarrow{\varphi} R(s) \xrightarrow{\psi} R(0) \to 1$$

with $\varphi(\{\alpha\}_s) = [(\alpha)]_s$ and $\psi([\alpha]_s) = [\alpha]_0$. Obviously, $im(\varphi) \subset R(s)'$, and we get the exact sequence

$$1 \to P(s)/P_0(s) \to R(s)' \to R(0)' \to 1$$

which determines R(s)' as follows:

R(s)' is generated by $im(\varphi)$, $[t_1]_s$, ..., $[t_d]_s$. This, together with lemma 3, proves the proposition.

Now let, for $s \ge 0$, k(s) be the ring class field modulo 2^s over k and k(s)' the maximal 2-extension contained in k(s). Then k(s)/k is abelian, and the Artin map gives isomorphisms

$$\phi(s): R(s) \rightarrow Gal(k(s)/k)$$

with $\phi(s)(R(s)')=Gal(k(s)'/k)$. The decomposition law for rational primes in k(s) can be described using binary quadratic forms as follows:

Let C(s) be the composition class group of integral primitive binary quadratic forms $f=aX^2+bXY+cY^2 \in \mathbb{Z}[X, Y]$ with discriminant $D(f)=b^2-4ac=-4^s\cdot 4m$; then there is an isomorphism

$$\lambda_s: R(s) \cong C(s)$$

(called canonical) such that for each positive rational integer a with (a, 2m)=1and each class $Q \in C(s)$ the following holds:

Q represents properly a if and only if a=N(a) for some integral primitive ideal **a** with $Q=\lambda_s([a]_s)$.

Concerning the structure of the fields k(s) we will have to use the following corollary to proposition 1:

Corollary 1. Let L/k be a cyclic extension of degree 4 and suppose $L \subset k(s)$ for some $s \ge 0$; then $L \subset k(3)$.

Proof. Actually we have $L \subset k(s)'$ for some $s \ge 3$. Let $\chi: R(s)' \to C^*$ be the character of degree 4 defining L, and let $\vartheta: R(s)' \to R(3)'$ be the natural epimorphism defined by $\vartheta([\mathbf{a}]_s) = [\mathbf{a}]_3$. Then we have to show that there is a factorization $\chi = \chi_0 \circ \vartheta$ for some character $\chi_0: R(3)' \to C^*$, but this is equivalent to

$$ker(\vartheta) \subset ker(\chi)$$
.

Suppose $C \in ker(\vartheta)$; then by proposition 1, c)

$$C = [(-1 + \sqrt{-m})]_{s_{j}}^{a_{0}} \cdot \prod_{j=1}^{d} [t_{j}]_{s_{j}}^{a_{j}}$$

with $a_0, a_1, \dots, a_d \in N_0$, and as $\vartheta(C) = 1$ we deduce from proposition 1, **b**)

$$a_0 \equiv a_1 \equiv 0 \mod 4,$$

$$a_j \equiv 0 \mod 4 \text{ if } j \ge 2 \text{ and } t_j \ge 2,$$

$$a_i \equiv 0 \mod 2 \text{ if } j \ge 2 \text{ and } t_i = 1.$$

Then

$$\chi(C) = \prod_{\substack{j=1\\t_i=1}}^{d} \chi([t_j]_s)^{a_j};$$

but if $t_j=1$, $[t_j]_s^2=[(m_j)]_s=1$ and thus $\chi([t_j]_s)^2=1$, which implies $\chi(C)=1$.

Now we are well prepared to study the Galois theory and the ramification of those fields, which control the quartic character of \mathcal{E} .

If m is a product of different primes congruent to 1 modulo 8, then the prime divisor of 2 in k lies in the principal genus and therefore there are rational integers $a, b, u \in \mathbb{Z}$ such that

 $u>0, a+b\sqrt{m}>0, 2 \not\mid u, ab \equiv 3 \mod 4$

and

 $a^2 + mb^2 = 2u^2$;

we fix such a triple (a, b, u) in the sequel and consider the algebraic integer

$$\delta = a + b\sqrt{-m} \in k ;$$

it has the ideal decomposition

$$(\delta) = \boldsymbol{w} \cdot \boldsymbol{u}^2$$

where \boldsymbol{w} is the prime divisor of 2 in k and \boldsymbol{u} is a primitive integral ideal of k with $N(\boldsymbol{u})=\boldsymbol{u}$.

Proposition 2.

a) $K(\sqrt[4]{\varepsilon\delta^2(1-i)^2})/k$ is a cyclic extension of degree 8, $K(\sqrt[4]{\varepsilon\delta^2(1-i)^2})/Q$ is normal with a dihedral group of order 16 as Galois group, and $K(\sqrt[4]{\varepsilon\delta^2(1-i)^2}) \subset k(1)$.

b) $k(\sqrt{(2+\sqrt{2})\delta})/k$ is a cyclic extension of degree 4, $k(\sqrt{(2+\sqrt{2})\delta})/Q$ is normal with a dihedral group of order 8 as Galois group, and $k(\sqrt{(2+\sqrt{2})\delta}) \subset k(3)$.

c) $K(\sqrt[4]{2\varepsilon})/k$ is a cyclic extension of degree 8, $K(\sqrt[4]{2\varepsilon})/\mathbf{Q}$ is normal with a dihedral group of order 16 as Galois group, and $K(\sqrt[4]{2\varepsilon})\subset K(\sqrt[4]{\varepsilon\delta^2(1-i)^2})\cdot k(\sqrt{(2+\sqrt{2})\delta})\subset k(3)$, but $K(\sqrt[4]{2\varepsilon})\subset k(2)$.

Proof. a) We set

$$\eta = \sqrt[4]{\varepsilon \delta^2 (1-i)^2}$$
 ;

then $N_{K/k}(\eta^4) = -4\delta^4$, and from [6; Satz 1] we deduce that $K(\eta)/k$ is cyclic of degree 8. Let σ_0 be the generator of the Galois group of K/k; then $\sigma_0(\eta^4) = \mathcal{E}^{-2} \eta^4$, and thus we may fix an extension σ of σ_0 to $K(\eta)$ by setting

$$\sigma(\eta) = \frac{1}{\sqrt{\varepsilon}} \cdot \eta,$$

and σ generates the Galois group of $K(\eta)/k$. Let τ_0 be the generator of the Galois group of K/F; then $\tau_0(\eta^4) = [(1-i) u \delta^{-1}]^4 \cdot \eta^4$ and thus τ_0 has an extension to an automorphism τ of $K(\eta)$ satisfying

$$\tau(\eta) = (1-i) \, u \delta^{-1} \cdot \eta \, .$$

As $\tau_0 | k$ generates the Galois group of k/Q we deduce that $K(\eta)/Q$ is normal with Galois group generated by σ and τ . Now we can check the relation

$$\sigma^8 = \tau^2 = id$$
, $\sigma\tau = \tau\sigma^{-1}$

by applying the automorphisms to \mathcal{E} , i and η . Thus the Galois group of $K(\eta)/\mathbf{Q}$ is a dihedral group of order 16, and $K(\eta)$ is contained in a ring class field over k by [9; Satz 11].

It remains to show that the conductor f of $K(\eta)/k$ devides 2. By [6; Satz 13] the extension $K(\sqrt{\varepsilon})/k$ is urnamified; thus, if d and d^* denote the relative discriminants of $K(\eta)/K(\sqrt{\varepsilon})$ and $K(\eta)/k$, we have

$$\boldsymbol{d^*} = N_{K(\sqrt{\epsilon})/k}(\boldsymbol{d}) \, .$$

Let χ be a generating character of $K(\eta)/k$ and $f(\chi^j)$ be the conductor of χ^j (j=0, 1, ..., 7). Then, by [14; §4], we have the following relations:

Ring Class Fields Modulo 8 of $Q(\sqrt{-m})$

$$f = f(X^j)$$
 for $j \equiv 1 \mod 2$
 $f(X^j) = 1$ for $j \equiv 0 \mod 2$

and

$$d^* = \prod_{j=0}^7 f(\chi^j) = f^4.$$

From these we see that in order to prove f|2 it is sufficient to show d|2; but this demands a careful analysis of the relative quadratic extension $K(\eta)/K(\sqrt{\varepsilon})$. Setting

$$\alpha = \frac{\sqrt{\varepsilon} \cdot \delta}{1-i},$$

we have $K(\eta) = K(\sqrt{\varepsilon}) (\sqrt{\alpha})$ and the ideal decomposition of δ shows that $K(\eta)/K(\sqrt{\varepsilon})$ is unramified outside 2. Let w be a prime divisor of 2 in $K(\sqrt{\varepsilon})$; then $ord_w(2)=2$, and thus it is sufficient to show $ord_w(d) \le 2$, which, by [3; §11] is equivalent to:

 α is a quadratic residue mod[×] w^3 .

We have

$$\alpha^{2}(1-i)^{2} = \varepsilon \delta^{2} = (U+V\sqrt{m})(a^{2}-mb^{2}+2ab\sqrt{-m});$$

by [6; Satz 13]

$$U \equiv 0 \mod 4$$
, $V \equiv 1 \mod 4$

which, together with $ab \equiv 3 \mod 4$ and $a^2 - mb^2 \equiv 0 \mod 8$ implies $\alpha^2(1-i)^2 \equiv (1-i)^2 \mod 8$ and thus

$$\alpha^2 \equiv 1 \mod 4$$
.

Therefore $\frac{1+\alpha}{2}$ is an algebraic integer, i.e.

$$\alpha \equiv 1 \mod 2$$
.

Let $\pi \in K(\sqrt{\varepsilon})$ be an element with $ord_w(\pi) = 1$; then

$$\alpha \equiv 1 + \omega \pi^2 \mod w^3$$

for some $\omega \in K(\sqrt{\varepsilon})$. As the prime residue class group modulo \boldsymbol{w} is of odd order, $\omega \equiv \omega_0^2 \mod \boldsymbol{w}$ for some $\omega_0 \in K(\sqrt{\varepsilon})$, and then

$$\alpha \equiv (1 + \omega_0 \pi)^2 \mod w^3$$

as asserted.

b) We consider the field

$$M = \boldsymbol{Q}(\sqrt{2})(\sqrt{\gamma})$$

with

$$\boldsymbol{\gamma} = (a + u\sqrt{2})(2 + \sqrt{2}) \in \boldsymbol{Q}(\sqrt{2})$$

As $N_{Q(\sqrt{2})/Q}(\gamma) = 2(a^2 - 2u^2) = -2mb^2$, M/Q is not normal, its normal closure

$$L = \mathbf{Q}(\sqrt{2}, \sqrt{-2m}, \sqrt{\gamma})$$

is cyclic of degree 4 over k, and the Galois group of L/Q is a dihedral group of order 8 [9; Satz 1, 2]. Finally, the identity

$$a+u\sqrt{2} = \delta \cdot \left(\frac{1}{\sqrt{2}} + \frac{u}{\delta}\right)^2$$

shows that

$$L = k(\sqrt{(2+\sqrt{2})\,\delta})\,.$$

The prime ideal decomposition of δ shows that L/k is unramified outside 2, and by [9; Satz 11] $L \subset k(s)$ for some $s \ge 0$, so $L \subset k(3)$ by corollary 1.

c) The Galois theoretic assertion comes from lemma 1. The asserted inclusion of fields follows from the identities

$$(2+\sqrt{2})\cdot\delta\cdot(\zeta-i)^2=\sqrt{2}\,\delta(1-i)$$

and

$$\sqrt[4]{2\varepsilon} = \sqrt{\sqrt{2}\,\delta(1-i)} \cdot \sqrt{\sqrt{\varepsilon}\,\delta(1-i)} \cdot [\delta(1-i)]^{-1}$$

with

$$\zeta = \frac{1+i}{\sqrt{2}} \in K(\sqrt[4]{\varepsilon\delta^2(1-i)^2}) \cdot k(\sqrt{(2+\sqrt{2})\delta}).$$

Now suppose we have $K(\sqrt[4]{2\varepsilon}) \subset k(2)$. By lemma 1, $K(\sqrt[4]{2\varepsilon})/k$ is cyclic of degree 8; let $\chi: R(2) \rightarrow \mathbf{C}^{\times}$ be a generating character of $K(\sqrt[4]{2\varepsilon})$. Then, by proposition 1, $\chi^2 = \psi \circ \theta$ where $\theta: R(2) \rightarrow R(0)$ is the natural epimorphism defined by $\theta([\mathbf{a}]_2) = [\mathbf{a}]_0$ and ψ is a character on R(0) of degree 4. Thus, $K(\sqrt{2\varepsilon})/k$ is defined by χ^2 and also by ψ and therefore unramified, a contradiction.

Remark. Proposition 2 a) generalizes [6; Satz 14, a]; the Galois theoretic assertion in c) could equally be deduced from [2; Proposition 1].

Proposition 3. Suppose $M = K(\sqrt{\delta(1-i)})$; let p be a rational prime with $p \equiv 1 \mod 4$, $\left(\frac{q_j}{p}\right) = 1$ for $j = 1, \dots, d$, and let P be a prime divisor of p in F.

Then there exist $w, r, s \in \mathbb{Z}$ with

$$(r, s) = 1, r-s \equiv 1 \mod 4, 2 \not\upharpoonright w,$$

 $w^2 \not p = r^2 - ms^2$

and

$$r+s\sqrt{m}\in \mathbf{P}$$
.

If w, r, s are as above then P splits in M if and only if

$$r-s\equiv 1 \mod 8$$
.

If $p \equiv 1 \mod 8$ then $s \equiv 0 \mod 4$, and the two prime divisors of p in F either both split in M or both do not; if $p \equiv 5 \mod 8$ then $s \equiv 2 \mod 4$ and exactly one of the prime divisors of p in F splits in M.

When showing proposition 3 we shall also prove the following congruence which has not been noticed hitherto:

Proposition 4. We have

$$\frac{U}{4} \equiv \frac{u-1}{2} \mod 2.$$

Remark. If *m* is a prime a short proof of proposition 4 can be given as follows: The prime divisor u of u in k lies in an ideal class of order 4 and thus the class number of k is divisible by 8 if and only if u lies in the principal genus, i.e., $u \equiv 1 \mod 4$. On the other hand, $U \equiv 0 \mod 8$, if and only if 8 divides the class number of k [1].

P. Kaplan remarked that proposition 4 can also be deduced from [12] by appealing to theorem 1 and formula (2.6) of that paper (with $A=[2, 2, \frac{1+m}{2}]$ and a square root B_1 of A representing u).

Proof of propositions 3 and 4. The identity

$$\delta \cdot (1-i) \cdot \left\{ \frac{1}{2} + \frac{u}{\delta(1-i)} \right\}^2 = \frac{a+b\sqrt{m}}{2} + u$$

shows that

$$M = K \cdot F\left(\sqrt{\frac{a+b\sqrt{m}}{2}+u}\right),$$

and as $p \equiv 1 \mod 4$, p splits completely in K. Thus **P** splits in M if and only if it splits in $F\left(\sqrt{\frac{a+b\sqrt{m}}{2}+u}\right)$.

As
$$a+b\sqrt{m}>0$$
, $u>0$ and

$$N_{F/Q}\left(\frac{a+b\sqrt{m}}{2}+u\right)=\frac{1}{2}(u+a)^2>0,$$

 $\frac{a+b\sqrt{m}}{2}+u$ is totally positive in F, and $F\left(\sqrt{\frac{a+b\sqrt{m}}{2}+u}\right)/F$ is unramified at infinity. As the ideal $(\delta(1-i))$ is a square in K, M/F and thus also $F\left(\sqrt{\frac{a+b\sqrt{m}}{2}+u}\right)/F$ are unramified outside 2. Let z, z' be the prime divisors of 2 in F, normed such that

$$\sqrt{m} \equiv -1 \mod z^2$$
, $\sqrt{m} \equiv 1 \mod z'^2$.

Then we have $(1+\sqrt{m})^2=1+m+2\sqrt{m}\equiv 0 \mod z^4$ and thus

$$\sqrt{m} \equiv -\frac{m+1}{2} \mod z^3$$

From

$$a^{2}+mb^{2}=(a+b\sqrt{m})(a-b\sqrt{m})+2mb^{2}=2u^{2}$$

and

$$2mb^2 \equiv 2u^2 \equiv 2 \mod 16$$

we deduce

$$(a+b\sqrt{m})(a-b\sqrt{m})\equiv 0 \mod 16$$
,

and $ab \equiv 3 \mod 4$ implies

$$a-b\sqrt{m}\equiv a-b\equiv 2 \mod z^{\prime 2}$$
;

consequently

$$a+b\sqrt{m}\equiv 0 \mod z^{\prime 3}$$
.

This implies

$$\frac{a+b\sqrt{m}}{2}+u\equiv u \mod z^{\prime 2};$$

as
$$N_{F/Q}\left(\frac{a+b\sqrt{m}}{2}+u\right) = \frac{1}{2}(a+u)^2$$
, $ord_z\left(\frac{a+b\sqrt{m}}{2}+u\right) \equiv 1 \mod 2$.
Now let f be the conductor and φ the generating ideal character of $F\left(\sqrt{\frac{a+b\sqrt{m}}{2}+u}\right)/F$. It follows from [3; §11] that

$$f = z^3 z''$$

with

Ring Class Fields Modulo 8 of $Q(\sqrt{-m})$

$$v = \begin{cases} 0, & \text{if } u \equiv 1 \mod 4, \\ 2, & \text{if } u \equiv 3 \mod 4. \end{cases}$$

For an integral $\alpha \in F$ with $\alpha \equiv 1 \mod 4$ we have in any case

$$\varphi((\alpha)) = \left\{ egin{array}{ll} 1, & ext{if} & lpha \equiv 1 \mod oldsymbol{z}^3, \\ -1, & ext{if} & lpha \equiv 5 \mod oldsymbol{z}^3. \end{array}
ight.$$

Now suppose $p \equiv 1 \mod 4$, $\left(\frac{q_j}{p}\right) = 1$ for $j=1, \dots, d$, and let **P** be a prime divisor of p in F. Then **P** lies in the principal genus (in the narrow sense), so there is a primitive integral ideal w prime to 2p such that $w^2 P$ is principal,

$$\boldsymbol{w}^{2}\boldsymbol{P}=\left(\frac{r'+s'\sqrt{m}}{2}\right)$$

with $r', s' \in \mathbb{Z}$, $(r', s') | 2, r' \equiv s' \mod 2$ and

$$N(\boldsymbol{w}^{2}\boldsymbol{P}) = \boldsymbol{w}^{2}\boldsymbol{p} = \frac{r'^{2} - ms'^{2}}{4}.$$

As $w^2 p \equiv 1 \mod 4$, we have $r' \equiv s' \equiv 0 \mod 2$, r' = 2r, s' = 2s,

$$w^2 P = (r + s\sqrt{m}) \subset P$$
,
 $w^2 p = r^2 - ms^2$,

and from $w^2 p \equiv 1 \mod 4$ we deduce $r \equiv 1 \mod 2$, $s \equiv 0 \mod 2$. By changing signs if necessary we may assume

 $r-s\equiv 1 \mod 4$.

Then we obtain

$$r+s\sqrt{m}\equiv r+s\equiv r-s\equiv 1 \mod 4$$
,

and as

$$r+s\sqrt{m}\equiv r-s \mod z^3$$
,

we deduce:

 $\varphi((r+s\sqrt{m})) = 1$ if and only if $r-s \equiv 1 \mod 8$. Now **P** splits in $F\left(\sqrt{\frac{a+b\sqrt{m}}{2}+u}\right)$ if and only if $\varphi(\mathbf{P})=1$, but $\varphi(\mathbf{P}) = \varphi((r+s\sqrt{m}))$,

and this proves the first part of proposition 3; the second part is obvious.

To prove proposition 4, consider $\mathcal{E} = U + V \sqrt{m}$ and observe that

$$U \equiv 0 \mod 4, \ V \equiv \frac{m+1}{2} \mod 8$$

by [6; Satz 13], which implies

$$\mathcal{E} \equiv U - \left(\frac{1+m}{2}\right)^2 \equiv U - 1 \mod \mathbf{z}^3$$

whilst

$$\mathcal{E} \equiv \sqrt{m} \equiv 1 \mod \mathbf{z}^{\prime 2}$$

If now v=0, $F\left(\sqrt{\frac{a+b\sqrt{m}}{2}+u}\right)/F$ has conductor z^3 and thus there is no unit η in F with $\eta \equiv 1 \mod z^2$, $\eta \equiv 1 \mod z^3$. As $-\varepsilon \equiv 1 \mod z^2$ we have $-\varepsilon \equiv 1-U \equiv 1 \mod z^3$ which implies $U \equiv 0 \mod 8$. If v=2, $F\left(\sqrt{\frac{a+b\sqrt{m}}{2}+u}\right)/F$ has conductor $z^3 z'^2$ and thus there is no unit η

in F with $\eta \equiv 1 \mod z^3$, $\eta \equiv 1 \mod z^3 z^{2'}$. As $-\mathcal{E} \equiv 1 \mod z'^2$ we have $-\mathcal{E} \equiv 1 - U \equiv 1 \mod z^3$ which implies $U \equiv 4 \mod 8$.

5. Residuacity criteria for splitting primes

Theorem 2. Suppose $m=q_1 \cdots q_d$ is a product of $d \ge 1$ different primes $q_j \equiv 1 \mod 8$ and suppose that the ideal class group of k has only one invariant 2^t $(t\ge 2)$ divisible by 4; then the fundamental unit $\varepsilon = \varepsilon_m$ of F satisfies $N_{F/Q}(\varepsilon) = -1$.

Let *l* be a prime satisfying $l \equiv 3 \mod 4$ and $l^{2^t} = \xi^2 + m\eta^2$ with $\xi, \eta \in \mathbb{Z}, (\xi, \eta) = 1$.

Let p be a prime such that $p \equiv 1 \mod 4$ and $\left(\frac{q_j}{p}\right) = 1$ for $j=1, \dots, d$, and let **P** be a prime divisor of p in F; suppose

$$w^2 p = r^2 - ms^2$$

with $w, r, s \in \mathbb{Z}$ such that

$$(r, s) = 1, r - s \equiv 1 \mod 4, 2 \not\mid w$$

and

$$r+s\sqrt{m}\in P$$

A. There is a unique exponent $n \in N_0$ satisfying $n \le 2^{t-1}$ such that

(*)
$$l^{2n} p^h = X^2 + 4mY^2$$

with X, $Y \in \mathbb{Z}$, (X, Y) = 1.

- B. The following assertions are equivalent:
- **a**) $\left(\frac{\varepsilon}{p}\right) = 1;$

- **b**) In (*), we have $n \equiv 0 \mod 2$;
- c) p is represented by a class $Q \in C(0)$ which is a 4-th power.
- d) $p^{2^{t-2_k}} = x^2 + my^2$ with $x, y \in \mathbb{Z}$, (x, y) = 1.
- e) p is represented by a class $Q \in C(1)$ which is a 4-th power.
- **f**) $p^{2^{t-1}h} = x^2 + 4my^2$ with $x, y \in \mathbb{Z}$, (x, y) = 1.
- C. Suppose $\left(\frac{\varepsilon}{p}\right) = 1$, i.e. $n \equiv 0 \mod 2$ in (*). Then

$$\left(\frac{\varepsilon}{\boldsymbol{P}}\right)_{4} = (-1)^{(n/2)+(r-s-1/4)}.$$

D. Suppose $\left(\frac{\varepsilon}{p}\right) = 1$ and $p \equiv 1 \mod 8$. Then, in (*) we have $n \equiv Y \equiv 0 \mod 2$, and

$$\left(\frac{2\varepsilon}{p}\right)_4 = (-1)^{(n/2)+(Y/2)}.$$

E. Suppose $\left(\frac{\varepsilon}{p}\right) = 1$ and $p \equiv 1 \mod 8$; let $Q \in C(3)$ represent p. Then either

(I)
$$p^{2^{t-2_h}} = X^2 + 16mY^2$$

or

$$p^{2^{t-2_h}} = 16X^2 + mY^2$$

with X, $Y \in \mathbb{Z}$, (X, Y) = 1, and we obtain:

$$\left(\frac{2\varepsilon}{p}\right)_4 = 1$$

if and only if

in case (I): Q is an 8-th power;

in case (II): Q is no 4-th power.

F. Suppose $p \equiv 1 \mod \overline{8}$ and $p^{k} = 16X^{2} + mY^{2}$ with X, $Y \in \mathbb{Z}$, (X, Y) = 1. Then $\left(\frac{\varepsilon}{p}\right) = 1$, and we have

$$\left(\frac{2\varepsilon}{p}\right)_{4} = (-1)^{2^{t-2}+\chi}.$$

Remark. 1. In theorem 2, l plays the role of an auxiliary parameter. If C is an absolute ideal class of k of order 2^t and $l \in C$ is a prime ideal of degree 1 then the underlying prime l satisfies all requirements.

2. Criteria for the quadratic character of ε under more general conditions were proved in [6]; for a different approach see [2].

Proof. $N_{F/Q}(\varepsilon) = -1$ follows from [6; Satz 14]. The assumption concerning the ideal class group implies $t_1 = t \ge 2$ and $t_j = 1$ for $j = 2, \dots, d$ in the termi-

nology of §4. Let p be a prime divisor of p in k.

For $s \ge 0$, let $k(s)^*$ be the genus field of k(s), i.e. the greatest absolutely abelian subfield of k(s). Then, by [10],

$$k(s)^* = \begin{cases} k(\sqrt{q_1}, \dots, \sqrt{q_{d-1}}, \sqrt{-1}), & \text{if } s \le 1, \\ k(\sqrt{q_1}, \dots, \sqrt{q_{d-1}}, \sqrt{-1}, \sqrt{2}), & \text{if } s \ge 2, \end{cases}$$

and $k(s)^*$ is the greatest multiquadratic extension of k inside k(s).

As $p \equiv 1 \mod 4$ and $\left(\frac{q_j}{p}\right) = 1$ for $j=1, \dots d$, p splits completely in $k(s)^*$ for $s \leq 1$; but this implies $\varphi([p]_s) = 1$ for all quadratic characters φ of R(s), i.e. $[p]_s$ is a square in R(s) for $s \leq 1$. If, in addition, $p \equiv 1 \mod 8$, then $[p]_s$ is a square in R(s) also for $s \geq 2$.

By proposition 1, R(3)' is of type $(4, 2^{t+1}, 2, \dots, 2)$ with basis $([(-1+2\sqrt{-m})]_3, [t_1]_3, \dots, [t_s]_3)$, and we set

$$C_0 = [(-1+2\sqrt{-m})]_3, C_1 = [t_1]_3.$$

For $s \leq 3$, let $\omega_s: R(3) \rightarrow R(s)$ be the canonical epimorphism defined by $\omega_s([a]_3) = [a]_s$; then $ker(\omega_2) = \langle C_0^2 \rangle$, $ker(\omega_1) = \langle C_0 \rangle$ and $ker(\omega_0) = \langle C_0, C_1^{2t} \rangle$. From $C_1^{2t} = [(\sqrt{-m})]_3$ we see that, for $s \leq 3$, $\lambda_s \circ \omega_s(C_1^{2t})$ contains the form $4^s X^2 + m Y^2$.

By proposition 2, $K(\sqrt[4]{\varepsilon\delta^2(1-i)^2})$ is a cyclic extension of k of degree 8 contained in k(1). Let $\chi_1: R(1) \rightarrow C^{\times}$ be a generating character for $K(\sqrt[4]{\varepsilon\delta^2(1-i)^2})/k$; then (by raising χ_1 to an odd power if necessary) we may assume $\chi_1([t_1]_1)=\zeta$, where $\zeta = \frac{1+i}{\sqrt{2}} \in C^{\times}$ is a primitive 8-th root of unity. Then $\chi = \chi_1 \circ \omega_1: R(3) \rightarrow C^{\times}$ also defines $K(\sqrt[4]{\varepsilon\delta^2(1-i)^2}), \chi^2$ defines $K(\sqrt{\varepsilon}), \chi^4$ defines K, and we have

$$\chi(C_0) = 1, \quad \chi(C_1) = \zeta.$$

As $[\mathbf{p}]_1$ is a square in R(1), we may set

$$[\boldsymbol{p}]_3 = C_0^{a'} \cdot C_1^{2b} \cdot U$$

with $a', b \in \mathbb{N}_0$, a' < 4, $b < 2^t$ and a class $U \in \mathbb{R}(3)$ of odd order.

Proof of A. As $l^{2^t} = r^2 + ms^2$, $\left(\frac{-m}{l}\right) = 1$, and $(l) = l_1 l_2$ with different prime ideals l_1 , l_2 of k which lie in ideal classes of even order. ω_0 induces an isomorphism of the odd parts of R(3) and R(0), and thus we have

$$[\boldsymbol{l}_1]_3 = C_0^{\nu} C_1^{\mu} T, [\boldsymbol{l}_2]_3 = C_0^{2-\nu} C_1^{2^{t-\mu}} T$$

with exponents ν , $\mu \in N_0$, $\nu < 2$, $\mu < 2^t$ and a class $T \in R(3)$ with $T^2 = 1$. As $l \equiv 3 \mod 4$, l_1 is inert in K, and thus $-1 = \chi^4([l_1]_3) = (-1)^{\mu}$, i.e.

 $\mu \equiv 1 \mod 2$.

Now, for $n \in N_0$ the integer $l^{2n} p^h$ is properly represented by the classes $\lambda_1([l_1^{2n} p^h]_1), \lambda_1([l_2^{2n} p^h]_1)$ and their inverses in C(1). So the existence of $X, Y \in \mathbb{Z}$ with (X, Y) = 1 and $l^{2n} p^h = X^2 + 4mY^2$ is equivalent to $[l_1^{2n} p^h]_1 = 1$ or $[l_2^{2n} p^h]_1 = 1$, i.e. to $[l_j^{2n} p^h]_3 \in \langle C_0 \rangle$ for j=1 or j=2. From

$$[\boldsymbol{l}_{1}^{2n} \boldsymbol{p}^{h}]_{3} = C_{0}^{a'h+2n\nu} \cdot C_{1}^{2bh+2n\mu},$$
$$[\boldsymbol{l}_{2}^{2n} \boldsymbol{p}^{h}]_{3} = C_{0}^{a'h+2n\nu} \cdot C_{1}^{2bh+2n\mu},$$

we see that it is sufficient to show that there is a unique $n \in N_0$ with $n \le 2^{t-1}$ for which one of the congruences

$$2bh\pm 2n\mu\equiv 0 \mod 2^{t+1}$$

holds; but this is obvious.

Proof of **B**. As $p \equiv 1 \mod 4$, $\left(\frac{\varepsilon}{p}\right)$ is well defined, and as χ^2 defines $K(\sqrt{\varepsilon})$, $\left(\frac{\varepsilon}{p}\right) = 1$, if and only if $\chi^2([p]_3) = 1$.

From the above we deduce

$$\left(rac{arepsilon}{p}
ight)=\chi^2([p]_3)=(-1)^b\,,$$

and the congruence $2bh \pm 2n\mu \equiv 0 \mod 2^{t+1}$ together with $t \ge 2$ and $h \equiv \mu \equiv 1 \mod 2$ implies

$$b \equiv n \mod 2$$
,

thus

$$\left(\frac{\varepsilon}{p}\right) = \left(-1\right)^n,$$

which proves the equivalence of \mathbf{a}) and \mathbf{b}).

For $s \in \{0, 1\}$, p is represented by the class $\lambda_s \circ \omega_s([p]_3) = \lambda_s([t_1]_s)^{2b} \cdot \lambda_s \circ \omega_s(U)$ and its inverse in C(s), and as $\lambda_s \circ \omega_s(U)$ is of odd order, p is represented by a 4-th power in C(s) if and only if $b \equiv 0 \mod 2$; this proves the equivalence of **a**) with **c**) and **e**).

For $s \in \{0, 1\}$, $p^{2^{t+s-2_h}}$ is properly represented by the class $\lambda_s([t_1]_s)^{2^{t+s-2_{bh}}}$, and this is the principal class if and only if $b \equiv 0 \mod 2$; this proves the equivalence of **a**) with **d**) and **f**).

Proof of C: If $\left(\frac{\varepsilon}{p}\right) = 1$, then by **B**. we have $n \equiv b \equiv 0 \mod 2$, and from $2bh \pm 2n\nu \equiv 0 \mod 2^{t+1}$, $t \ge 2$ and $h \equiv \mu \equiv 1 \mod 2$ we infer

$$\frac{b}{2} \equiv \frac{n}{2} \mod 2$$
.

Now let P_{κ} be a prime divisor of P in K; as $K(\sqrt[4]{\varepsilon\delta^2(1-i)^2})/Q$ is normal, P_{κ} splits in $K(\sqrt[4]{\varepsilon\delta^2(1-i)^2})$ if and only if p does; therefore, P_{κ} splits in $K(\sqrt[4]{\varepsilon\delta^2(1-i)^2})$ if and only if p does, and as χ defines $K(\sqrt[4]{\varepsilon\delta^2(1-i)^2})$, this is equivalent to $\chi([p]_3)=1$. As

$$\chi([p]_3) = (-1)^{b/2} = (-1)^{n/2}$$
,

we obtain

$$(-1)^{n/2} = \left(\frac{\varepsilon \delta^2 (1-i)^2}{\boldsymbol{P}_{\boldsymbol{K}}}\right)_4 = \left(\frac{\varepsilon}{\boldsymbol{P}_{\boldsymbol{K}}}\right)_4 \cdot \left(\frac{\delta (1-i)}{\boldsymbol{P}_{\boldsymbol{K}}}\right).$$

The prime residue class groups of P and P_{κ} coincide, thus we conclude

$$\left(\frac{\varepsilon}{\boldsymbol{P}_{K}}\right)_{4} = \left(\frac{\varepsilon}{\boldsymbol{P}}\right)_{4}.$$

As $\left(\frac{\delta(1-i)}{P_{\kappa}}\right) = 1$ if and only if P_{κ} splits in $K(\sqrt{\delta(1-i)})$, it follows from proposition 3 that

$$\left(\frac{\delta(1-i)}{\boldsymbol{P}_{\kappa}}\right) = (-1)^{(r-s-1)/4}$$

Putting all together, we deduce

$$\left(\frac{\varepsilon}{\boldsymbol{P}}\right)_{4} = (-1)^{(r-s-1)/4+\frac{n}{2}}.$$

Proof of **D**: Let ψ : $R(3) \rightarrow C^{\times}$ be a generating character for $K(\sqrt[4]{2\varepsilon})/k$. By raising ψ to an odd power if necessary, we may assume that

$$\psi(C_1)=\zeta.$$

By proposition 2, $K(\sqrt[4]{2\varepsilon}) \oplus k(2)$, thus $ker(\omega_2) = \langle C_0^2 \rangle \oplus ker(\psi)$ and consequently

$$\psi(C_0)=\pm i.$$

As $p \equiv 1 \mod 8$, $[p]_3 \in R(3)$ is a square, and thus $a' \equiv 0 \mod 2$,

$$a'=2a,\,0\leq a<2.$$

From $\left(\frac{\varepsilon}{p}\right) = 1$ we deduce as in the proof of **C**. $b \equiv n \equiv 0 \mod 2$ and

$$\frac{b}{2} \equiv \frac{n}{2} \mod 2.$$

This implies

RING CLASS FIELDS MODULO 8 OF $Q(\sqrt{-m})$

$$\left(\frac{2\varepsilon}{p}\right)_{4} = \psi([p]_{3}) = (-1)^{(b/2)+a} = (-1)^{(n/2)+a}$$

In (*), we have $Y \equiv 0 \mod 4$ if and olny if $l^{2n} p^h$ is properly represented by the principal class of C(3); but as $l^{2n} p^h$ is properly represented by the classes $\lambda_3([l_j^{2n} p^h]_3)$ (j=1, 2) and their inverses in C(3), $Y \equiv 0 \mod 4$ is equivalent to

$$1 = [l_j^{2n} p^h]_3 = C_0^{2ah} \cdot C_1^{2bh \pm 2n\mu}$$

for j=1 or j=2, i.e. for one choice of the sign in the exponent of C_1 . As *n* was determined so that $2bh \pm 2n\mu \equiv 0 \mod 2^{i+1}$ for one choice of the sign, $Y \equiv 0 \mod 4$ is equivalent to $a \equiv 0 \mod 2$, thus

$$a \equiv \frac{Y}{2} \mod 2$$

and

$$\left(\frac{2\varepsilon}{p}\right)_4 = (-1)^{(n/2)+(Y/2)}.$$

Proof of E: As $\left(\frac{\varepsilon}{p}\right) = 1$ and $p \equiv 1 \mod 8$ we have a' = 2a, $b \equiv n \equiv 0 \mod 2$ and $\frac{b}{2} \equiv \frac{n}{2} \mod 2$ as in the proof of C. p is represented by the class $\lambda_3(C_0^{2a} C_1^{2b} \cdot U)$ and its inverse in C(3). Thus, if $Q \in C(3)$ represents p, Q is a 4-th power if and only if $a \equiv 0 \mod 2$.

As $p^{2^{t-2_h}}$ is properly represented by the ambiguous class $\lambda_2 \circ \omega_2(C_1^{2^{t-1_b}}) \in C(2)$, we deduce

$$b \equiv 0 \mod 4$$
 in case (I),
 $b \equiv 2 \mod 4$ in case (II).

As in the proof of **D**. we obtain

$$\left(\frac{2\varepsilon}{p}\right)_4 = (-1)^{(n/2)+a} = (-1)^{(b/2)+a}.$$

In case (I), $b \equiv 0 \mod 4$ and thus $\left(\frac{2\varepsilon}{p}\right)_4 = 1$ if and only if $a \equiv 0 \mod 2$, i.e. Q is an 8-th power. In case (II), $b \equiv 2 \mod 4$ and thus $\left(\frac{2\varepsilon}{p}\right)_4 = 1$ if and only if $a \equiv 1 \mod 2$, i.e. Q is not a 4-th power.

Proof of **F**: As $p \equiv 1 \mod 8$, we have $a' \equiv 0 \mod 2$, a' = 2a, and p is represented by the classes $\lambda_3(C_0^{2a} C_1^{2b} U)^{\pm 1} \in C(3)$; thus p^h is properly represented by $\lambda_3(C_0^{2a} C_1^{2bh})^{\pm 1} \in C(3)$ and by $\lambda_2 \circ \omega_2(C_0^{2a} C_1^{2bh})^{\pm 1} = \lambda_2 \circ \omega_2(C_1^{\pm 2bh}) \in C(2)$. As $p^h = 16X^2 + mY^2$ with $X, Y \in \mathbb{Z}, (X, Y) = 1, p^h$ is also properly represented by $\lambda_2 \circ \omega_2(C_1^{2t})$ and this implies

$$b = 2^{t-1}$$

As in **B**. we have $b \equiv n \mod 2$ and thus

$$\left(\frac{\varepsilon}{p}\right) = (-1)^b = 1 \; .$$

Further, we have $X \equiv 0 \mod 2$ if and only if p^h is properly represented by $\lambda_3(C_1^{2t})$, and as p^h is properly represented by $\lambda_3(C_0^{2a} C_1^{2t})$ this is equivalent to $a \equiv 0 \mod 2$. This implies

$$a \equiv X \mod 2$$

and

$$\left(\frac{2\varepsilon}{p}\right)_{4} = (-1)^{(b/2)+a} = (-1)^{2^{t-2}+\chi}$$

6. Residuacity criteria for ramified primes

In this final section we assume that m is a prime and consider \mathcal{E}_m modulo the prime dividing m.

Theorem 3. Let $m=q\equiv 1 \mod 4$ be a prime and $q=(\sqrt{q})$ the prime divisor of q in F. Then:

a) If
$$q \equiv 5 \mod 8$$
, $\left(\frac{\varepsilon_q}{q}\right) = -1$.
b) If $q \equiv 1 \mod 8$, $\left(\frac{\varepsilon_q}{q}\right) = 1$,
 $\left(\frac{\varepsilon_q}{q}\right)_4 = (-1)^{(q-1)/8}$ and $\left(\frac{2\varepsilon_q}{q}\right)_4 = (-1)^{2^{t-2}}$.

Proof. $\varepsilon_q = U + V \sqrt{q}$, and $U^2 - qV^2 = -1$. Therefore we have $\varepsilon_q \equiv U \mod q$,

$$\left(\frac{\varepsilon_q}{q}\right) = \left(\frac{U}{q}\right) = \left(\frac{U^2}{q}\right)_4 = \left(\frac{-1}{q}\right)_4 = (-1)^{(q-1))/4}$$

and, if $q \equiv 1 \mod 8$,

$$\left(\frac{\varepsilon_q}{q}\right)_4 = \left(\frac{U}{q}\right)_4 = \left(\frac{U^2}{q}\right)_8 = \left(\frac{-1}{q}\right)_8 = (-1)^{(q-1)/8}.$$

To show $\left(\frac{2\varepsilon_q}{q}\right)_4 = (-1)^{2^{t-2}}$ we adopt the terminology of the proof of theorem 2. Then

$$[\mathbf{q}]_3 = [(\sqrt{-q})]_3 = C_1^{24}$$

and

RING CLASS FIELDS MODULO 8 OF $Q(\sqrt{-m})$

$$\left(\frac{2\varepsilon_q}{q}\right)_4 = \psi([q]_3) = (-1)^{2^{t-2}} . \blacksquare$$

Corollary 3. $t \ge 3$ if and only if $\left(\frac{-4}{a}\right)_{8} = 1$.

Proof. $(-1)^{2^{t-2}} = \left(\frac{2\varepsilon_q}{q}\right)_4 = \left(\frac{2}{q}\right)_4 \cdot \left(\frac{\varepsilon_q}{q}\right)_4 = \left(\frac{2}{q}\right)_4 \left(\frac{-1}{q}\right)_8 = \left(\frac{-4}{q}\right)_8$, by the theorem. 🔳

Remark. Corollary 3 was first proved in [1]; it is not surprising that an extensive study of the structure of the ring class fields as we have done in this paper delivers this basic fact too.

References

- [1] P. Barrucand and H. Cohn: Note on primes of type x^2+32y^2 , class number and residuacity, J. Reine Angew. Math. 238 (1969), 67-70.
- Y. Chuman and N. Ishii: On the quartic residue of quadratic units of negative [2] norm, Math. Japonica 32 (1987), 389-420.
- [3] H. Hasse: Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Teil I a. Physica-Verlag, Würzburg 1965.
- [4] H. Hasse: Number Theory. Springer 1980.
- [5] H. Hasse: Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Teil II. Physica-Verlag, Würzburg 1965.
- [6] F. Halter-Koch: Konstruktion von Klassenkörpern und Potenzrestkriterien für quadratische Einheiten, Manuscripta Math. 54 (1986), 453-492.
- [7] F. Halter-Koch: Quadratische Einheiten als 8. Potenzreste, Proc. Int. Conf. on Class Numbers and Fundamental Units, Katata, Japan, 1986.
- [8] F. Halter-Koch: Einseinheitengruppen und prime Restklassengruppen in quadratischen Zahlkörpern, J. Number Theory 6 (1972), 70-77.
- [9] F. Halter-Koch: Arithmetische Theorie der Normalkörper von 2-Potenzgrad mit Diedergruppe, J. Number Theory 3 (1971), 412-443.
- [10] F. Halter-Koch: Geschlechtertheorie der Ringklassenkörper, J. Reine Angew. Math. 250, (1971), 107-108.
- [11] N. Ishii: On the quartic residue symbol of totally positive quadratic units, Tokyo J. of Math. 9 (1986), 53-65.
- [12] P. Kaplan and K.S. Williams: An Artin Character and Representations of Primes by Binary Quadratic Forms, Manuscripta Math. 33 (1981), 339-356.
- [13] P.A. Leonard and K.S. Williams: The quadratic and quartic character of certain quadratic units II, Rocky Mountain J. Math. 9 (1979), 683-692.
- [14] J.-P. Serre: Local Class Field Theory, in "Algebraic Number Theory", ed. by J.W.S. Cassels and A. Fröhlich. Academic Press 1967.

Franz Halter-Koch Institut für Mathematik

der Karl-Franzens-Universität Halbärthgasse 1/I,A-8010 Graz Austria

Noburo Ishii Department of Mathematics University of Osaka Prefecture Sakai, Osaka 591 Japan