A GENERALIZED LOCAL LIMIT THEOREM FOR LASOTA-YORKE TRANSFORMATIONS

Dedicated to Professor N. Ikeda on his sixtieth birthday

Takehiko MORITA

(Received August 1, 1988)

0. Introduction

Let T be a Lasota-Yorke transformation of the unit interval $I=[0,1]$. In virtue of the results in [7], we know that T has an m-absolutely continuous invariant probability measure $\mu=h_{0} m$ with $h_{0} \in B V$ where m denotes the Lebesgue measure on I and $B V$ denotes the totality of functions of bounded variation on I. Hofbauer and Keller [3] investigate the ergodic properties of the dynamical system (T, μ). By use of the results Rousseau-Egele studies the limiting behavior of the distribution of the sum $S_{n} f=\sum_{j=0}^{n-1} f \circ T^{j}$ and proves a local limit theorem for a certain class of $f \in B V$ in [9]. The methods of those papers are based on the spectral analysis of the Perron-Frobenius operator (P-Foperator) $\mathcal{L}: L^{1}(m) \rightarrow L^{1}(m)$ and its perturbed operator $\mathcal{L}(i t): L^{1}(m) \rightarrow L^{1}(m)$ which are defined by $\mathcal{L} g=\frac{d}{d m} \int_{T^{-1}(\cdot)} g d m$ and $\mathcal{L}(i t) g=\mathcal{L}\left(e^{i t f} g\right)$ for $g \in L^{1}(m)$ respectively. We notice that Rousseau-Egele's method is quite similar to Nagaev's method in [8].

In this paper we shall investigate more detailed spectral properties of the perturbed operator $\mathcal{L}(i t)$ and classify the elements in $B V_{0}=\left\{f \in B V_{0}(I \rightarrow \boldsymbol{R})\right.$; $\left.\int_{I} f d \mu=0\right\}$ into six types in Section 3. After the classification we shall prove the main theorem which asserts that the local limit theorem can be expressed in a quite general form in term of Schwartz distributions, for any $f \in B V_{0}(I \rightarrow \boldsymbol{R})$ with non-degenerate vairance. More precisely, imposing the mixing conditon (M) on T (see Section 2) we can prove:

Theorem (Theorem 4.1 in Section 4). Assume that $f \in B V_{0}$ with $\sigma^{2}=$ $\lim _{n \rightarrow \infty} \frac{1}{n} \int\left(S_{n} f\right)^{2} d \mu>0$. Then, there exist a $a>0, \lambda \in S^{1}$, and an S^{1}-valued measurable fun function h such that

$$
\lim _{n \rightarrow \infty} \sup _{z \in R}\left|\sqrt{n} \int_{I} u\left(S_{n} f+z\right) g d m-\Phi_{g, 2, n}(u) \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[\frac{-z^{2}}{2 n \sigma^{2}}\right]\right|=0
$$

holds for any $g \in B V$ and for any rapidly decreasing function u on R, where $\left\{\Phi_{g, z, n}\right\}$ is a bounded family of elements in \mathcal{S}^{\prime} defined by

$$
\Phi_{g, z, n}(u)=\sum_{k=-\infty}^{\infty} \hat{u}(k a) e^{i k a z} \lambda^{k n} \int_{I} \bar{h}^{k} g d m \int_{I} h^{k} h_{0} d m
$$

for any rapodly decreasing function \boldsymbol{u} on \boldsymbol{R}.
In Section 1, we shall give a complete proof a Lasota-Yorke type inequality which will play important roles in our argument. Rousseau-Egele's proof of the local limit theorem also depends on an inequality of the same type but one may find that his proof of the inequality is not complete. In Section 2 , we shall investigate the spectral properties of the perturbed $P-F$ operators and we shall classify the elements in $B V_{0}$ in Section 3. Section 4 is devoted to the proof of the main theorem. In the last section we shall discuss about typical examples.

1. Preliminaries

First of all, we define the Lasota-Yorke transformation.
Definition 1.1. A transformation T from the unit interval $I=[0,1]$ into itself is called a Lasota-Yorke transformation or an $L-Y$ transformation if the follwoing conditions (1), (2), and (3) are satisfied:
(1) There is a partition $\left\{I_{j}\right\}_{j}$ of I consisting of non-empty intervals such that (i) $T \mid \operatorname{Int} I_{j}$ is monotonic for each j, (ii) $T \mid \operatorname{Int} I_{j}$ is of class C^{2} and can be extended to the closed interval \bar{I}_{j} for each j, and (iii) T (Int $\left.I_{j}\right)=(0,1)$ except for a finite number of j.
(2) (Renyi's condition).

$$
\begin{equation*}
\sup _{x} \frac{\left|T^{\prime \prime}(x)\right|}{\left|T^{\prime}(x)\right|^{2}}<\infty \tag{1,.1}
\end{equation*}
$$

where $\sup _{x}$ is taken over all x at which T is twice differentiable.
(3) There is a positive integer N such that

$$
\begin{equation*}
\inf _{x}\left|\left(T^{N}\right)^{\prime}(x)\right| \geqq 1 / c \quad \text { for some } \quad 0<c<1 \tag{1.2}
\end{equation*}
$$

where \inf is taken over all x at which T is differentiable.
We call a partition $P=\left\{I_{j}\right\}_{j^{\prime}}$ a defining partition of T if it satisfies the condition (1) and is minimal in the folloaing sense: If $Q=\left\{I_{k}^{\prime}\right\}_{k}$ is another partition
satisfying the condition (1), then for each k, we can find $j=j(k)$ with $\operatorname{Int} I_{k}^{\prime} \subset$ $\operatorname{Int} I_{j}$.

We call T an $L-Y$ transformation of type I if its defining partition is finite. We call T an $L-Y$ transformation of type $I I$ if its defining partition is infinite.

Remark 1.1. One can easily show that if T is an $L-Y$ transfomation, then so is $T^{n}=\overbrace{T \circ \cdots \circ T}^{n}$ for any $n \in N$.

Throughout the paper functions are assumed to be complex valued unless otherwise stated. For a measure μ on $I L^{1}(\mu)$ denotes the usual L^{1}-space with L^{1}-norm $\|\cdot\|_{1}, \mu$. We denote by $B V$ the totality of elements in $L^{1}(m)$ which have versions of bounded variation. $B V$ turns out to be a Banach space with Banach norm $\|g\|_{B V}=V g+\|g\|_{1, m}$, where $V g$ denotes the infimum of total variations of all versions of $g \in B V . B V_{0}$ denotes the subspace of $B V(I \rightarrow R)$ whose elements satisfy $\int f d \mu=0 . \mathcal{S}, \mathscr{D}$, and \mathscr{D}_{N} denote the spaces of rapidly decreasing functions on \boldsymbol{R}, smooth functions with compact support, and smooth functions on ($-N, N$) with compact support respectively.

Next we define the $P-F$ operators.
Definition 1.2. Let T be an $L-Y$ transformation. Let m be the Lebesgue measure on I. The Perron-Frobenius operator or the P-F operator \mathcal{L} of T with respect to m is defined by

$$
\begin{equation*}
L g=\frac{d}{d m} \int_{T^{-1}(\cdot)} g d m \quad \text { for } \quad g \in L^{1}(m) \tag{1.3}
\end{equation*}
$$

For a real valued measurable function f on I and $t \in \boldsymbol{R}$, the perturbed $P-F$ operator $\mathcal{L}(i t)=\mathcal{L}(i t f)$ of L is defined by

$$
\begin{equation*}
\mathcal{L}(i t) g=\mathcal{L}\left(e^{i t f} g\right) \quad \text { for } \quad g \in L^{1}(m) \tag{1.4}
\end{equation*}
$$

Remark 1.2. (1) For $g \in L^{1}(m), \mathcal{L} g=g$ if and only if the complex measure $g m$ is T-invariant.
(2) For any $n \in N, \mathcal{L}(i t)^{n} g=\mathcal{L}^{n}\left(\left(\exp \left[i t S_{n} f\right]\right) g\right)$ where $S_{n} f=\sum_{j=0}^{n-1} f \circ T^{j}$. In particular $\int \mathcal{L}(i t)^{n} g d m=\int\left(\exp \left[i t S_{n} f\right]\right) g d m$. Therefore the asymptotic behavior of the distribution of $S_{n} f$ can be expressed in terms of the perturbed $P-F$ opertors $L(i t)$.

From the definition of L it is easy to show:
Proposition 1.1. Let \mathcal{L} be the $P-F$ operator of T with respect to m. Let
$\mu=h_{0} m$ be an m-absolutely continuous invariant probability measure with density h_{0}. Consider the operator $\mathcal{L}_{\mu}($ the $P-F$ operator of T with respect to μ) which is defined by $L_{\mu} g=\frac{d}{d \mu} \int_{T^{-1}(\cdot)} g d \mu$ for $g \in L^{1}(\mu)$. Then, for $g \in L^{1}(\mu)$ and an S^{1}-valued function φ the following are equivalent: (1) $\mathcal{L}\left(\phi g h_{0}\right)=g h_{0}$ in $L^{1}(m)$, (2) $L_{\mu}(\phi g)=g$ in $L^{1}(\mu)$, and (3) $g \circ T=\phi g$ in $L^{1}(\mu)$.

Proof. We know that the proposition is ture if φ is a constant function (see Ishitani [6]). In the present case, one can prove the proposition in the same way as in [6] except for the assertion that (2) implies (3). Therefore we restrict ourselves to prove this implication. Assume that $\mathcal{L}_{\mu}(\varphi g)=g$ in $L^{1}(\mu)$. Then it is not hard to see that $\mathcal{L}_{\mu}|g|=|g|$ in $L^{1}(\mu)$. Thus we have $|g| \circ T=$ $|g|$ and $I_{A} \circ T=I_{A}$ in $L^{1}(\mu)$ where $A=\{x ;|g|(x) \neq 0\}$. Since \mathcal{L}_{μ} preserves the value of the integration, we have
$\int I_{A} \frac{\varphi g}{g \circ T} d \mu=\int I_{A} \circ T \frac{\varphi g}{g \circ T} d \mu=\int \mathcal{L}_{\mu}\left(I_{A} \circ T \frac{\varphi g}{g \circ T}\right) d \mu=I_{A} \frac{1}{g} \mathcal{L}_{\mu}(\varphi g) d \mu=\mu(A)$.
On the other hand $\left|\frac{\varphi g}{g \circ T}\right|=|\varphi|=1 \mu$ a.e. on A. Hence we can conslude that
$g \circ T=\varphi g \mu$-a.e.
In the rest of this section we prove the basic inequality in our argument.
Propositon 1.2 (Lasota-Yorke type inequality). Let T be an $L-Y$ transformation which satisfies the expanding condition (1.2) for $N=1$. Let \mathcal{L} be the $P-F$ operator of T with respect to m. Then, for any $n \in N$ and $f_{0}, f_{1}, \cdots, f_{n-1} \in$ $B V\left(I \rightarrow S^{1}\right)$ we have

$$
\begin{equation*}
V\left(\mathcal{L}^{n}\left(\left(\prod_{k=0}^{n-1} f_{k} \circ T^{k}\right)^{\prime} g\right) \leqq\left(2+\sum_{k=0}^{n-1} V f_{k}\right)\left[c^{n} V g+2\left(l_{n}^{-1}+R_{n}(T)\right)\|g\|_{l, m}\right]\right. \tag{1.5}
\end{equation*}
$$

where $l_{n}=\min \left\{1, m\left(J_{j}\right) ; J_{j}\right.$ is the element of a defining partition of T^{n} such that $T\left(\right.$ Int $\left.\left.J_{j}\right) \neq(0,1)\right\}$ and

$$
R_{n}(T)=\sup _{x} \frac{\left|\left(T^{n}\right)^{\prime \prime}(x)\right|}{\left|\left(T^{n}\right)^{\prime}(x)\right|^{2}}
$$

Proof. Let $\left\{J_{j}\right\}_{j}$ be a defining partition of T^{n}. Notice that $S_{j}=T^{n} \mid$ Int J_{j} is a homeomorphism from Int J_{j} onto its image for each j. We have

$$
\begin{aligned}
& V \mathcal{L}^{n}\left(\left(\prod_{k=0}^{n-1} f_{k} \circ T^{k}\right) g\right) \\
& \quad=V\left[\Sigma X_{T^{n} J_{j}}\left(S_{j}^{-1}\right)\left|\left(T^{n}\right)^{\prime}\left(S_{j}^{-1}\right)\right|^{-1} \prod_{k=0}^{n-1} f_{k}\left(T^{k} S_{j}^{-1}\right) g\left(S_{j}^{-1}\right)\right] \\
& \left.\quad \leqq \sum_{j} V\left[\left|\left(T^{n}\right)\right|^{-1} \prod_{k=0}^{n-1} f_{k}-T^{k}\right) g\right]+\sum_{j}^{\prime} \sup _{j}\left|\left(T^{n}\right)^{\prime}\right|^{-1}\left[\left|g\left(a_{j}\right)\right|+\left|g\left(b_{j}\right)\right|\right] \\
& \quad=\sum_{j} I_{j}+\sum_{j}^{\prime} I I_{j}
\end{aligned}
$$

where V_{j} ednotes the total variation on $J_{j} \sup _{j}$ is taken over all $x \in \operatorname{Int} J_{j}$, the summation \sum_{j}^{\prime} is taken over all j such that $T^{n}\left(\operatorname{Int} J_{j}\right) \neq(0,1), a_{j}=\inf J_{j}$, and $b_{j}=\sup J_{j}$.

Before estimating I_{j} and $I I_{j}$ we claim that $\sup _{j}\left|\left(T^{n}\right)^{\prime}\right|^{-1} d_{j}^{-1} \leqq l_{n}^{-1}+R_{n}(T)$, where $d_{j}=m\left(J_{j}\right)$. In fact

$$
\begin{aligned}
\left|\left(T^{n}\right)^{\prime}(x)\right|^{-1} & \leqq\left|\left(T^{n}\right)^{\prime}(x)^{-1}-\left(T^{n}\right)^{\prime}(y)^{-1}\right|+\left|\left(T^{n}\right)^{\prime}(y)\right|^{-1} \\
& \leqq R_{n}(T) d_{j}+\left|\left(T^{n}\right)^{\prime}(y)\right|^{-1} \quad \text { for any } \quad x, y \in \operatorname{Int} J_{j} .
\end{aligned}
$$

Therefore we have $\left|\left(T^{n}\right)^{\prime}(x)\right|^{-1} d_{j}^{-1} \leqq l_{n}^{-1}+R_{n}(T)$.
Using the claim and the inequality $V\left(g_{1} g_{2}\right) \leqq \sup \left|g_{1}\right| V g_{2}+\sup \left|g_{2}\right| V g_{1}$, we have

$$
\begin{array}{r}
I_{j} \leqq\left(\sum_{k=0}^{n-1} V f_{k}\right) \sup _{j}\left(\left|\left(T^{n}\right)^{\prime}\right|^{-j}|g|\right)+V\left(\left|\left(T^{n}\right)^{\prime}\right|^{-1} g\right) \\
\leqq\left(\sum_{k=0}^{n-1} V f_{k}\right)\left[\left(\sup _{j}\left|\left(T^{n}\right)^{\prime}\right|^{-1}\right)\left(d_{j}^{-1} \int_{J_{j}}|g| d m+V g\right)\right] \\
\quad+\left(\sup _{j}\left|\left(T^{n}\right)^{\prime}\right|^{-1}\right) V g+\int_{J_{j}} \frac{\left|\left(T^{n}\right)^{\prime \prime}\right|}{\left|\left(T^{n}\right)^{\prime}\right|^{2}}|g| d m \\
\leqq\left(1+\sum_{k=0}^{n-1} V f_{k}\right)\left[c^{n} V g+\left(l_{n}^{-j}+R_{n}(T)\right) \int_{J_{j}}|g| d m\right] .
\end{array}
$$

On the other hand we have

$$
\begin{aligned}
I I_{j} & \leqq \sup _{j}\left|\left(T^{n}\right)^{\prime}\right|^{-1}\left(V_{j} g+2 d_{j}^{-1} \int_{J_{j}}|g| d m\right) \\
& \left.\leqq c^{n} V g+2\left(l_{n}^{-1}+R_{n}(T)\right) \int_{J_{j}}|g| d m\right] .
\end{aligned}
$$

since $\left|g\left(a_{j}\right)\right|+\left|g\left(b_{j}\right)\right| \leqq\left|g\left(a_{j}\right)-g(x)\right|+\left|g(x)-g\left(b_{j}\right)\right|+2|g(x)|$ for any $x \in$ Int J_{j}. Combining these estimates we obtain the inequality (1.5).

Remark 1.3. Since $\mathcal{L}(i t)^{n} g=\mathcal{L}^{n}\left(\left(\exp \left[i t S_{n} f\right]\right) g\right)=\mathcal{L}^{n}\left(e^{j t f} e^{i t f(T)} \ldots e^{i t f\left(T^{n-1}\right)} g\right)$, we can apply the inequality (1.5) to $\mathcal{L}(i t)^{n} g$ if $f \in B V(I \rightarrow \boldsymbol{R})$. Therefore we can justify Proposition 5 in [9] which asserts that $\mathcal{L}(i t)$ satisfies the conditions of Ionescu Tulcea and Marinescu Theorem (see [5] and [9]).

3. Spectral decomposition of perturbed $\boldsymbol{P}-\boldsymbol{F}$ operators

From now on we impose the following mixing condition (M) on T.
(M) T has a unique m-absolutely continuous probability measure $\mu=h_{0} m$ with support I and the dynamical system (T, μ) is mixing (see Bowen [1, Theorem 2]).

In what follows, T denotes an $L-Y$ transformation which satisfies the condition (M), unless otherwise stated.

Lemma 2.1. For $f \in B V(I \rightarrow \boldsymbol{R})$, and $t \in \boldsymbol{R}$ define $U(i t): L^{1}(\mu) \rightarrow L^{1}(\mu)$ by $U(i t) g=e^{-i t f} g \circ T$. Then we have the following:
(1) For $\lambda \in S^{1}, \lambda$ is an eigenvalue of $\mathcal{L}(i t)$ on $L^{1}(m)$ if and only if $\lambda=\lambda^{-1}$ is an eigenvalue of $U(i t)$.
(2) If h is an eigenvector of $U(i t)$ on $L^{1}(\mu)$ corresponding to an eigenvalue with modulus 1 , then $|h|$ is constant μ-a.e.
(3) Let $\lambda \in S^{1}$ be an eigenvalue of $U(i t)$. For $h \in L^{1}(\mu), h$ is an eigenvector corresponding to λ if and only if $h h_{0}$ is an eigenvector of $\mathcal{L}(i t)$ on $L^{1}(m)$.
(4) If λ is an eigenvalue of $U(i t)$ on $L^{1}(\mu)$, then it is simple.
(5) U(it) has at most one eigenvalue of modulus 1.

Proof. (1) and (3) follows immediately from Proposition 1.1 and (2) is a direct consequence of the ergodicity of the dynamical system (T, μ). Now we prove (4). Assume that $h_{j} \in L^{1}(\mu)(j=1,2)$ satisfies $h_{j} \circ T=\bar{\lambda} e^{i t f} h_{j}$ for $\lambda \in S^{1}$. From (2) we may assume that $\left|h_{j}\right|=1 \mu$-a.e.. Therefore $h_{1} h_{2}^{-1} \in L^{1}(\mu)$ and $\left.\left(h_{1} h_{2}^{11}\right) \circ T=\left(h_{1} \circ T\right)\left(h_{2} \circ T\right)=h_{1} \circ T\right)^{-1}=h_{1} h_{2}^{-1}$. Thus $h_{1} h_{2}^{-1}=$ constant μ-a.e. by the ergodicity of (T, μ). Hence λ is simple.

Next we prove (5). Assume that $h_{j} \in L^{1}(\mu)$ and $\lambda_{j} \in S^{1} j=1,2$ satisfy $h_{j} \circ T$ $=\lambda_{j} e^{i t f} h_{j}$. In the same way as in the proof of (4) we have $\left(h_{1} h_{z}^{-1}\right) \circ T=\lambda_{1} \lambda_{2}^{-1} h_{1} h_{2}^{-1}$ μ-a.e. Since the dynamical system (T, μ) is mixing, $\lambda_{1} \lambda_{2}{ }^{1}$ must be 1 . Thus $\lambda_{1}=\lambda_{2}$.

In virtue of Lemma 2.1, we may write $\lambda(i t)$ to denote the eigenvelue of $\mathcal{L}(i t)$ with modulus 1 if it exists.

Definition 2.1. For $f \in B V(I \rightarrow \boldsymbol{R})$ define
$\Lambda(f)=\left\{t \in \boldsymbol{R} ; \mathcal{L}(i t)\right.$ on $L^{1}(m)$ has an eigenvalue with modulus 1$\}$
$G(f)=\left\{\lambda \in S^{1} ; \lambda=\lambda(i t)\right.$ for some $\left.t \in \Lambda(f)\right\}$
$H_{0}(f)=\left\{h \in L^{1}(\mu) ; h\right.$ is S^{1}-valued and $h \circ T=\bar{\lambda} e^{i t f} h$ for some $t \in \Lambda(f)$ and $\lambda \in G(f)\}$
and

$$
H(f)=\left\{(h) ; h \in H_{0}(f)\right\}
$$

where (h) denotes the equivalent class containing h under the following equivalence relation: $h_{1} \sim h_{2}$ if and only if $h_{1}=\kappa h_{2}$ for some $\kappa \in S^{1}$.

Lemma 2.2. $\Lambda(f)$ is a subgroup of $\boldsymbol{R}, G(f)$ is a subgroup of S^{1} and $H(f)$ is an abelian group under the multiplication $\left(h_{1}\right)\left(h_{2}\right)=\left(h_{1} h_{2}\right)$.

Proof. Let $a_{j} \in \Lambda(f), \lambda_{j} \in G(f)$, and $h_{j} \in H_{0}(f)$ for $j=1,2$ with $h_{j} \circ T=$ $\bar{\lambda}_{j}\left(\exp \left[i a_{j} f\right]\right) h_{j} . \quad$ Then we have $\left(h_{1} h_{2}\right) \circ T=\bar{\lambda}_{1} \bar{\lambda}_{2}\left(\exp \left[i\left(a_{1}+a_{2}\right) f\right]\right) h_{1} h_{2} . \quad$ Thus
$a_{1}+a_{2} \in \Lambda(f), \lambda_{1} \lambda_{2} \in G(f)$, and $h_{1} h_{2} \in H(f)$. On the other hand $\bar{h}_{1} \circ T=$ $\lambda_{1}\left(\exp \left[-i a_{1} f\right]\right) \bar{h}_{1}$ implies that a_{1}, λ_{1}, and h_{1} have inverse elements $-a_{1}, \bar{\lambda}_{1}$, and \bar{h}_{1} respectively. It is obvious that the group operation $\left(h_{1}\right)\left(h_{2}\right)=\left(h_{1} h_{2}\right)$ of $H(f)$ is well-defined.

The following lemma plays important roles throughout the paper.
Lemma 2.3. Let T be an L-Y transformation satisfying the mixing condition (M) and $f \in B V_{0}$. Then we have the following:
(1) For each $t \in \boldsymbol{R}$, the perturbed $P-F$ operator $\mathcal{L}(i t)=\mathcal{L}($ itf $)$ is a bounded operator on $B V$ as well as a bounded operator on $L^{1}(m)$.
(2) If $s \notin \Lambda(f)$ the spectral radius of $\mathcal{L}(i t)$ as an operator on $B V$ is less than 1.
(3) If $s \in \Lambda(f)$ then for t in a heighborhood $N(s)$ of s in $\boldsymbol{C}, \mathcal{L}(i t)$ has the spectral decomposition

$$
\begin{equation*}
\mathcal{L}(i t)^{n}=\lambda(i t)^{n} E(i t)+R(i t)^{n} \quad \text { for } \quad n \geqq 1 \tag{2.1}
\end{equation*}
$$

as an operator on $B V$ with the following properties:
(i) $\lambda(i t)$ is holomorphic in $N(s)$ and coincides with the eigenvalue of $\mathcal{L}(i t)$ with maximal modulus. In addition we have

$$
\begin{equation*}
\lambda^{\prime}(i s)=\left(\frac{d \lambda}{d t}\right)_{t=i s}=0 \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda^{\prime \prime}(i s)=\left(\frac{d^{2} \lambda}{d t^{2}}\right)_{t=i s}=\lim _{n \rightarrow \infty} \frac{1}{n} \int_{I}\left(S_{n} f\right)^{2} d \mu \cdot \lambda(i s)=\sigma(f)^{2} \lambda(i s) . \tag{2.3}
\end{equation*}
$$

(ii) $E(i t)$ is the projection operator onto the one-dimensional eigenspace corresponding to $\lambda(i t)$ which depends holomorphically in $t \in N(s)$ and satisfies

$$
\begin{equation*}
\int E(i s) g d m=\int \bar{h} g d m \int h h_{0} d m \tag{2.4}
\end{equation*}
$$

for any $g \in B V$, where h denotes an arbitrary eigenvector corresponding to λ (is) with $|h|=1 \mu$-a.e.
(iii) $R(i t)$ is the operator valued holomorphic function in $N(s)$ defined by the Dunford integral

$$
\begin{equation*}
R(i t)^{n}=\frac{1}{2 \pi i} \int_{|\gamma|=r} \gamma^{n} R_{\gamma}(i t) d \gamma \tag{2.5}
\end{equation*}
$$

for some $0<r<1$, hwere $R_{\gamma}(i t)=(\gamma I-\mathcal{L}(i t))^{-1}$.
(iv) At $t=s$, the spectral decomposition (2.1) has still a meaning in $L^{1}(m)$. Precisely, $E(i s)$ and $R(i s)$ turn out to be bounded operators on $L^{1}(m)$ and the range of $E(i t)$ as an operator on $L^{1}(m)$ coincides with the range of $E(i t)$ as an operator
on $B V$, and $R(i t)^{n} g \rightarrow 0$ in $L^{1}(m)$ as $n \rightarrow \infty$, for any $g \in L^{1}(m)$.
Proof. In virtue of the Lasota-Yorke type inequality (1.5) for $\mathcal{L}(i t)$, we can apply Ionescu Tulcea and Marinescu Theorem in [5] to $\mathcal{L}(i t)$. On the other hand we know that $\mathcal{L}(i t)$ has at most one eigenvalue of modulus 1 and if it exists, then it is simple for each $t \in \boldsymbol{R}$ from Lemma 2.1. Combining those facts with the general perturbation theorey (see Dunford and Schwartz [2, p. 584-] and Rousseau-Egele [9, Proposition 5]), we can see the lemma except for the equalities (2.2), (2.3), and (2.4). (2.2) and (2.3) can be proved in the same way as Lemma 2 and Lemma 3 in [9] (see also Lemma 5.1 and Lemma 5.2 in [6]). Therefore we restrict ourselves to give a sketch. If $t+s \in N(s)$, we have

$$
\begin{aligned}
\int \exp \left[i t S_{n} f\right] d \mu & =\int\left(\exp \left[i t S_{n} f\right]\right) h_{0} d m \\
& =\int \bar{h} \circ T^{n} \lambda(i s)^{-n}\left(\exp \left[i(s+t) S_{n} f\right]\right) h h_{0} d m \\
& =\lambda(i s)^{-n} \int \bar{h} \mathcal{L}^{n}\left(\left(\exp \left[i(s+t) S_{n} f\right]\right) h h_{0}\right) d m \\
& =\lambda(i s)^{-n} \int \bar{h} \mathcal{L}(i(s+t))^{n}\left(h h_{0}\right) d m
\end{aligned}
$$

for any $h \in H_{0}(f) \cap E(i s)(B V)$. Here we have used the identity $h \circ T^{n}=\lambda(i s)^{-n}$ $\left(\exp \left[i s S_{n} f\right]\right) h$. Thus we have

$$
\begin{align*}
\int \exp \left[i t S_{n} f\right] d \mu= & \lambda(i s)^{-n} \lambda(i(t+s))^{n} \int \bar{h} E(i(t+s))\left(h h_{0}\right) d m \tag{2.6}\\
& +\lambda(i s)^{-n} \int \bar{h} R(i(t+s))^{n}\left(h h_{0}\right) d m \\
= & p(t)+r(t)
\end{align*}
$$

Now we have

$$
\begin{equation*}
\left(\frac{d}{d t}\left(\int \exp \left[i t \frac{S_{n} f}{n}\right] d \mu\right)\right)_{t=0}=\left(\frac{d p\left(t n^{-1}\right)}{d t}\right)_{t=0}+\left(\frac{d r\left(t n^{-1}\right)}{d t}\right)_{t=0} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{d^{2}}{d t^{2}}\left(\int \exp \left[i t \frac{S_{n} f}{\sqrt{n}}\right] d \mu\right)\right)_{t=0}=\left(\frac{d^{2} p\left(t n^{-1 / 2}\right)}{d t^{2}}\right)_{t=0}+\left(\frac{d^{2} r\left(t n^{-1 / 2}\right)}{d t^{2}}\right)_{t=0} \tag{2.8}
\end{equation*}
$$

The left hand side of (2.7) equals $i \int \frac{S_{n} f}{n} d \mu$ and goes to 0 as $n \rightarrow \infty$ by the ergodic theorem. The right hand side goes to $i \lambda(i s)^{\prime-1} \lambda^{\prime}(i s) \int \bar{h} E(i s)\left(h h_{0}\right) d m=i \lambda(i s)^{-1}$ $\times \lambda^{\prime}(i s)$ as $n \rightarrow \infty$, by the same way as in Lemma 2 in [9]. Note that we have used the fact that $h h_{0}$ is an eigenvector of $\mathcal{L}(i t)$ corresponding to $\lambda(i s)$ (see Lemma 2.1). Next the left hand side .of (2.8) equals $-\frac{1}{n}\left(S_{n} f\right)^{2} d \mu$. On the
other hand, the right hand side of (2.8) goes to $-\lambda(i s)^{-1} \lambda^{\prime \prime}(i s)$ by the same way as in Lemma 3 in [9].

Next we prove the identity (2.4). Since $h \circ T^{n}=\lambda(i s)^{-n}\left(\exp \left[i s S_{n} f\right]\right) h$, we have

$$
\begin{equation*}
\int h \circ T^{n} \bar{h} g d m=\lambda(i s)^{-n} \int \mathcal{L}(i s)^{n} g d m \tag{2.9}
\end{equation*}
$$

Since the dynamical system (T, μ) is mixing, the left hand side of (2.9) goes to $\int \hbar g d m \int h h_{0} d m$. Clearly, the right hand side of (2.9) goes to $\int E(i s) g d m$ from (2.1) and (2.5).

As a corollary to Lemma 2.3, we obtain Lemma 2.4. The proof is quite similar to the proof of Lemma 7 in [9] and Lemma 5.3 in [6].

Lemma 2.4. Let $f \in B V_{0}$ with $\sigma^{2}=\sigma(f)^{2}=\lim _{n \rightarrow \infty} \frac{1}{n} \int\left(S_{n} f\right)^{2} d \mu>0$ and $g \in B V$. If $s \in \Lambda(f)$, there exist positive number $A_{3}, A_{4}, A_{1}, A_{2}$, and $0<\rho<1$ depending on s and g such that

$$
\begin{align*}
& \mid \int_{I}\left(\exp \left[i\left(s+t n^{-1 / 2}\right) S_{n} f\right]\right) g d m \tag{2.10}\\
& \quad-\lambda(i s)^{n} \int_{I} \bar{h} g d m \int_{I} h h_{0} d m\left(\exp \left[-\frac{1}{2} \sigma^{2} t^{2}\right]\right) \int_{I} g d m \\
& \quad \leqq \exp \left[-\frac{1}{4} \sigma^{2} t^{2}\right]\left(A_{1}|t|^{3} n^{-1 / 2}+A_{2}|t| n^{-1 / 2}\right)+A_{3} \rho^{n},
\end{align*}
$$

whenever $|t| \leqq A_{4} n^{1 / 2}$, where h is any element in $H_{0}(f) \cap E(i s)(B V)$ and the second term of (2.10) is independent of the choice of h.

Proof. We notice that

$$
\begin{aligned}
& \int_{I}\left(\exp \left[i(s+t) S_{n} f\right]\right) g d m \\
= & \int_{I} \mathcal{L}(i(s+t))^{n} g d m \\
= & \lambda(i s)^{n}\left(\frac{\left.\lambda(i(s+t))\right|^{n}}{\lambda(i s)^{n}}\right) \int_{I} E(i(s+t)) g d m+\int_{I} R(i(s+t))^{n} g d m
\end{aligned}
$$

for t with small modulus. Therefore we can prove the lemma by considering the Taylor expansion of the last line around s as in the proof of Lemma 7 in [9].

3. Classification of $B \boldsymbol{V}_{0}$

Let T be an $L-Y$ transformation which satisfies the condition (M).

Definition 3.1. $\quad B_{0}=\left\{f \in B V_{0} ; \Lambda(f)=\boldsymbol{R}\right\}$, $B_{1}=\left\{f \in B V_{0} ; \Lambda(f) \simeq \boldsymbol{Z}, \boldsymbol{G}(f) \simeq \boldsymbol{Z} \mid p \boldsymbol{Z}, \boldsymbol{H}(f) \simeq \boldsymbol{Z} / q \boldsymbol{Z}\right.$ for some p and $\left.q\right\}$, $B_{2}=\left\{f \in B V_{0} ; \Lambda(f) \simeq \boldsymbol{Z}, \boldsymbol{G}(f) \simeq \boldsymbol{Z} \mid p \boldsymbol{Z}, H(f) \simeq \boldsymbol{Z}\right.$ for some $\left.p\right\}$
$B_{3}=\left\{f \in B V_{0} ; \Lambda(f) \simeq \boldsymbol{Z}, G(f) \simeq \boldsymbol{Z}, \boldsymbol{H}(f) \simeq \boldsymbol{Z} / p \boldsymbol{Z}\right.$ for some $\left.p\right\}$
$B_{4}=\left\{f \in B V_{0} ; \Lambda(f) \simeq \boldsymbol{Z}, \boldsymbol{G}(f) \simeq \boldsymbol{Z}, H(f) \simeq \boldsymbol{Z}\right\} \quad$ and
$B_{4}=\left\{f \in B V_{0} ; \Lambda(f)=\{0\}, G(f)=\{1\}, \boldsymbol{H}_{(}(f)=\{(1)\}\right\}$, where $A \simeq B$ means that A and B are isomorphic as groups.

Then we have:
Theorem 3.1. For $f \in B V_{0}$ we have:
(1) $f \in B_{0}$ if and only if $\sigma(f)=0$. in this case $G(f)$ is automatically $\{1\}$.
(2) $f \in B_{1}$ if and only if there exist $b>0$, and $K \in B V(I \rightarrow Z)$ such that $b f=2 \pi K, \int K d \mu=0$, and $\sigma(K)>0$.
(3) $f \in B_{2}$ if and only if there exist $b>0, K \in B V(I \rightarrow Z)$, and a real valued bounded function g such that $n g$ is not a \boldsymbol{Z}-valued function for $n \in \boldsymbol{Z}-\{0\}$, $b f=2 \pi(g \circ T-g+K), \int K d \mu=0$, and $\sigma(K)>0$.
(4) $f \in B_{3}$ if and only if there exist $b>0, \theta \in(0,1) \cap \boldsymbol{Q}^{c}$ and $K \in B V(I \rightarrow \boldsymbol{Z})$ such that $b f=2 \pi(\theta+K)$ and $\int K d \mu=-\theta$.
(5) $f \in B_{4}$ if and only if there exist $b>0, \theta \in(0,1) \cap \boldsymbol{Q}^{c}$, and a real valued bounded function g such that $n g$ is not a \boldsymbol{Z}-valued function for $n \in \boldsymbol{Z}-\{0\}, b f=$ $2 \pi(g \circ T-g+K+\theta)$, and $\int K d \mu=-\theta$.
(6) $B V_{0}=\bigcup_{j=0}^{5} B_{j}$ (disjoint union).

Proof. (1) If $f \in B V_{0}$ with $\sigma(f)=0$, then we can write $f=g \circ T-g$ for some $g \in L^{2}(\mu)$ (see [4, p. 323], and [9, Lemma 6]). Therefore we have $e^{i t g} \circ T=$ $e^{i t f} e^{i t g}$ for any $t \in \boldsymbol{R}$. Thus we have seen that $\Lambda(f)=\boldsymbol{R}$. Conversely, if $\sigma(f)>0$, then $\lambda^{\prime}(0)=0$ and $\lambda^{\prime \prime}(0)>0$ (i.e. $\left.\left(\frac{d^{2} \lambda(i t)}{d t^{2}}\right)_{t=0}=-\lambda^{\prime \prime}(0)<0\right)$. Therefore in a neighborhood of 0 in $\boldsymbol{R},|\lambda(i t)|<1$ if $t \neq 0$. This implies $\Lambda(f) \neq \boldsymbol{R}$. Hence $f \in B_{0}$ implies $\sigma(f)=0$. Next we prove the assertion (6). For $f \in B V_{0}-B_{0}$, define $a=\inf \{t>0 ; t \in \Lambda(f)\}$ if the set is not empty, $a=\infty$ otherwise. If $a=\infty$, it is obvious that $f \in B_{5}$. If $a<\infty$, then we can show $a \in \Lambda(f)$. In fact if $t_{n} \in \Lambda(f), n=1,2, \cdots t_{n} \downarrow a(n \rightarrow \infty)$, and $h_{n} \circ T=\bar{\lambda}_{n}\left(\exp \left[i t_{n} f\right]\right) h_{n}$ for $h_{n} \in H_{0}(f)$ and $\lambda_{n} \in G(f)$, then there exists a constant $C>0$ such that $V\left(h_{0} h_{n}\right) \leqq C$ for any n, in virtue of the Lasota-Yorke type inequality (1.5) and (iv) of (3) in Lemma 2.3. Therefore we can choose a subsequence $\left\{h_{n^{\prime}}\right\}$ of $\left\{h_{n}\right\}$, an S^{1}-valued measurable function h and $\lambda \in S^{1}$ such that $h_{n^{\prime}} \rightarrow h \mu$-a.e. $\left(n^{\prime} \rightarrow \infty\right)$ and $\lambda_{n^{\prime}} \rightarrow \lambda$. Therefore $h \circ T=\bar{\lambda}(\exp [i a f]) h$. Thus we have seen $a \in \Lambda(f)$. Moreover, it is not hard to
see that $\Lambda(f)=a \boldsymbol{Z}, G(f)=\langle\lambda\rangle=\left\{\lambda^{n} ; n \in \boldsymbol{Z}\right\}$ and $H(f)=\langle(h)\rangle=\left\{\left(h^{n}\right) ; n \in \boldsymbol{Z}\right\}$. Hence $B V_{0}-B_{0}=\bigcup_{j=1}^{5} B_{j}$. The proofs of (2), (3), (4), and (5) are quite similar to one another. So we prove (5) only. If $f \in B_{5}$, then we have $\Lambda(f)=a \boldsymbol{Z}, G(f)=$ $\langle\lambda\rangle=\left\{e^{2 \pi i \theta n} ; \theta \in(0,1) \cap \boldsymbol{Q}^{c}, n \in Z\right\}$ and $H(f)=\left\langle(h) ; h^{n}\right.$ is not constant function $\left.h \in H_{0}(f)\right\rangle$. Putting $g=\arg [h] / 2 \pi$, we have $a f=2 \pi(g \circ T-g+\theta+K)$ for some Z-valued function K. Since $h h_{0} \in B V$ and $h_{0} \in B V$ we can see that g has a version without discontinuities of the second kind. Therefore K has also a version without discontinuities of the second kind. Thus K is in $B V$ since it is Z-valued. Conversely, assume that $b f=2 \pi(g \circ T-g+\theta+K)$ for some $b>0, g, \theta$ and K which satisfy the conditions in the assertion (5). Then we have $\sigma(f)>0$ from the assertion (1). Therefore $b=j a$ for some $j \in N$, where $a=\inf \{t>0$; $t \in \Lambda(f)\}$. From these fact it is not hard to see that $\Lambda(f)=a Z . \quad G(f)=$ $\left\langle e^{2 \pi i \theta / j}\right\rangle \simeq \boldsymbol{Z}$, and $H(f)=\left\langle e^{2 \pi i g / j}\right\rangle$.

4. Generalized local limit theorem

In this section we prove the main theorem.
Theorem 4.1. Let $f \in B V_{0}-B_{0}$. Assume that $a>0, \lambda \in S^{1} h \in H_{0}(f)$ satisfy $\Lambda(f)=a \boldsymbol{Z}, G(f)=\langle\lambda\rangle, H(f)=\langle(h)\rangle$, and $h \circ T=\bar{\lambda}(\exp [i a f]) h$. Then for any $u \in \mathcal{S}$, and for any $g \in B V$ we have
$\lim _{n \rightarrow \infty} \sup _{z \in R} \left\lvert\, \sqrt{n} \int_{I} u\left(S_{n} f(x)+z\right) g(x) m(d x)-\Phi_{g, z, n}(u) \frac{1}{\sqrt{2 \pi} \sigma(f)} \exp \left[\left.\left[\frac{-z^{2}}{2 n \sigma(f)^{2}}\right] \right\rvert\,=0\right.\right.$.
Here for any $g \in B V,\left\{\Phi_{g, z, n}\right\}_{z, n^{\prime}}$ is a bounded set in \mathcal{S}^{\prime} defined by

$$
\begin{equation*}
\Phi_{g, z, n}(u)=\sum_{K=-\infty}^{\infty} \hat{u}(k a) e^{i k a z} \lambda^{k n} \int_{I} \bar{h}^{k} g d m \int_{I} h^{k} h_{0} d m \tag{4.2}
\end{equation*}
$$

for any $u \in S$, where $\hat{u}(t)=\int_{-\infty}^{\infty} e^{-i t x} u(\mathrm{t} x) d x$.
Proof. It suffices to prove the theorem for $g \in B V$ with $g \geqq 0$, and $\int_{I} g d m=1$. First of all, we consider the case $\hat{u} \in \mathscr{D}_{N}$ for some $N>0$. It is easy to see

$$
\begin{aligned}
\sqrt{n} \int_{I} u\left(S_{n} f+z\right) g d m & =\frac{\sqrt{n}}{2 \pi} \int_{R} \hat{u}(t) \phi_{n}(t) e^{i t z} d t \\
& =\sum_{k=-\infty}^{\infty} \frac{\sqrt{n}}{2 \pi} \int_{(-1 / 2) a}^{(1 / 2) a} \hat{u}(k a+t) \phi_{n}(k a+t) e^{i(k a+t) z} d t
\end{aligned}
$$

where $\phi_{n}(t)=\int\left(\exp \left[i t S_{n} f\right]\right) g d m$.

Fix $k \in Z$ for a while.

$$
\begin{align*}
\frac{\sqrt{n}}{2 \pi} \int_{(-1 / 2) a}^{(1 / 2) a} & \hat{u}(k a+t) \phi_{n}(k a+t) e^{i(k a+t) z} d t \tag{4.3}\\
& \quad-\hat{u}(k a) e^{i k a z} \alpha_{k}(n) \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{z^{2}}{2 n \sigma^{2}}\right] \\
= & R_{2}(n)+R_{1}(n)+R_{3}(n)+R_{4}(n)
\end{align*}
$$

where $\alpha_{k}(n)=\lambda^{k n} \int \bar{h} g d m \int h h_{0} d m$,

$$
\begin{aligned}
& R_{1}(n)=\frac{\sqrt{n}}{2 \pi} \int_{\varepsilon_{n} \leq 1 t \mid<(1 / 2) a} \hat{u}(k a+t) \phi_{n}(k a+t) e^{i(k a+t) z} d t, \\
& R_{2}(n)=\frac{1}{2 \pi} \int_{|t| \leq \varepsilon_{n} V \bar{n}} \hat{u}((k a+t / \sqrt{n})-\hat{u}(k a)) \phi_{n}(k a+t / \sqrt{n}) e^{i(k a+t / v \bar{n}) z} d t \\
& R_{3}(n)=\frac{1}{2 \pi} \int_{|t| \leq \varepsilon_{n} \sqrt{n}}\left(\phi_{n}(k a+t / \sqrt{n})-\alpha_{k}(n) \exp \left[-\frac{1}{12} \sigma^{2} t^{2}\right]\right) \hat{u}(k a) e^{i(k a+t / \sqrt{n}) z} d t,
\end{aligned}
$$

and
$R_{4}(n)=-\frac{1}{2 \pi} \int_{|t| \geq \varepsilon_{n} V \bar{n}} \exp \left[-\frac{1}{2} \sigma^{2} t^{2}+i t z / \sqrt{n}\right] d t \alpha_{k}(n) \hat{u}(k a) e^{i k a z}$.
The number ε_{n} will be determined later. Since $\left(\frac{d \lambda(i t)}{d t}\right)_{t=k a}=0,\left(\frac{d^{2} \lambda(i f)}{d t^{2}}\right)_{t=k a}=$ $-\lambda(i k a) \sigma^{2}=-\lambda^{k} \sigma^{2}$, and the spectral radius of $L(i(k a+t))$ is less than 1 for $\varepsilon_{n} \leqq|t|<\frac{1}{2} a$, we have

$$
\begin{align*}
\left|R_{1}(n)\right| & \leqq \frac{\sqrt{n}}{2 \pi} \sup |\hat{u}| \int_{\varepsilon_{n} \leq|t|<(1 / 2) a}\left\|\mathcal{L}(i(k a+t))^{n} g\right\|_{B V} d t \tag{4.4}\\
& \leqq \frac{\sqrt{n}}{2 \pi} \sup |\hat{u}| C_{k} \int_{\varepsilon_{n} \leq|t|<(1 / 2) a}\left(1-\frac{1}{4} \sigma^{2} t^{2}\right)^{n} d t| | g \|_{B V}
\end{align*}
$$

in virtue of the spectral decomposition (2.1). Here C_{k} is a positive constant depending only on k. In virtue of the mean value theorem we have

$$
\begin{equation*}
\left|R_{2}(n)\right| \leqq \frac{1}{2 \pi} \varepsilon_{n}^{2} \sqrt{n} \sup \left|(\hat{u})^{\prime}\right| \tag{4.5}
\end{equation*}
$$

From Lemma 2.4 we have

$$
\begin{align*}
\left|R_{3}(n)\right| & \leqq \frac{1}{2 \pi} C_{k}^{\prime} \int_{|t| \leqq \varepsilon_{u_{u}} \vee n}\left(|t|^{3} / \sqrt{ } \bar{n}+|t| / \sqrt{n} \rho_{k}^{n}\right) d t(\sup |\hat{u}|) \tag{4.6}\\
& \leqq \frac{1}{\pi} C_{k}^{\prime \prime}\left(\varepsilon_{n}^{4} n^{3 / 2}+\varepsilon_{n}^{2} n^{1 / 2}\right)(\sup |\hat{u}|)
\end{align*}
$$

where C_{k}^{\prime} and $\rho_{k}<1$ are positive constants depending only on k. Clearly we
obtain

$$
\begin{equation*}
\left|R_{4}(n)\right| \leqq \frac{1}{2 \pi} \int_{|t| \geq ध_{n} V \bar{n}} \exp \left[-\frac{1}{4} \sigma^{2} t^{2}\right] d t\left|\alpha_{k}(n)\right|(\sup |\hat{u}|) . \tag{4.7}
\end{equation*}
$$

If we take ε_{n} so that $\varepsilon_{n} \downarrow 0, \varepsilon_{n} n^{1 / 2} \uparrow \infty$, and $\varepsilon_{n}^{4} n^{3 / 2} \downarrow 0$ as $n \uparrow \infty$, then we can find a sequence $\left\{\gamma_{n}\right\}_{n}$ with $\gamma_{n} \rightarrow 0$ as $n \uparrow \infty$ such that

$$
\begin{equation*}
\left|R_{1}(n)+R_{2}(n)+R_{3}(n)+R_{4}(n)\right| \leqq C_{N} \gamma_{n}\left(\sup |\hat{u}|+\sup \left|(\hat{u})^{\prime}\right|\right) \tag{4.8}
\end{equation*}
$$

in virtue of the estimates (4.4), (4.5), (4.6), and (4.7), where C_{N} is a positive constant depending only on g and N. We notice that (4.8) shows that the set $\left\{\sqrt{n} \phi_{n}(t) e^{i t z}\right\}_{z, n}$ is a bounded set in the space \mathscr{B}^{\prime} of bounded distributions. In fact we have $\left|\phi_{g, z, n}(u)\right| \leqq 2\left[\frac{N}{a}\right] \sup |\hat{u}|$ for each $\hat{u} \in \mathscr{D}_{N}$. Therefore we obtain

$$
\begin{aligned}
& \left|\int \sqrt{ } \bar{n} \phi_{n}(t) e^{i t z} \hat{u}(t) d t\right| \\
& \quad \leqq\left|R_{1}(n)+R_{2}(n)+R_{3}(n)+R_{4}(n)\right|+\left|\Phi_{g, z, n}(u) \frac{1}{\sqrt{2 \pi \sigma}} \exp \left[-\frac{z^{2}}{2 n \sigma^{2}}\right]\right| \\
& \quad \leqq C_{N}\left(\sup |\hat{u}|+\sup \left|(\hat{u})^{\prime}\right|\right)+\frac{2}{\sqrt{2 \pi} \sigma}\left[\frac{N}{a}\right] \sup |\hat{u}|
\end{aligned}
$$

from the estimate (4.8).
Next we take a sequence $\left\{\rho_{j}\right\}_{j=1}^{\infty}$ of probability measures on R which converges weakly to δ_{0} as $j \rightarrow \infty$ and $\hat{\rho}_{j} \in \mathscr{D}$ for every j. We write $\sqrt{n} \int u\left(S_{n} f+z\right)$ $\times g d m$ as $\int_{R} u(t) \mu_{z, n}(d t)$ for convenience. Clearly the characteristic function $\hat{\mu}_{z, n}$ of $\mu_{z, n}$ is $\sqrt{n} \phi_{n} e^{i t z}$. Take $u \in \mathcal{S}$ and fix it. Then we have

$$
\begin{aligned}
& \left|\int_{R} u(t)\left(\rho_{j} * \mu_{2, n}\right)(d t)-\int_{R} u(t) \mu_{z, n}(d t)\right| \\
\leqq & \int_{|s|<\delta} \rho_{j}(d s)\left|\int_{R}(u(t+s)-u(t)) \mu_{2, n}(d t)\right| \\
& \quad+\int_{|s| \geqq \delta} \rho_{j}(d s)\left|\int_{R}(u(t+s)-u(t)) \mu_{z, n}(d t)\right| \\
= & I_{n}+I I_{n} .
\end{aligned}
$$

Since $\left\{\hat{u}_{z, n}\right\}_{z, n}$ is a bounded set in \mathscr{B}^{\prime} and $\hat{u} \in \mathcal{S} \in \mathscr{B}$ we have

$$
\sup _{s \in \boldsymbol{R}}\left|\int u(t+s) \mu_{z, n}(d t)\right|=\sup _{s \in \boldsymbol{R}}\left|\frac{1}{2 \pi} \int \hat{u}(t) \sqrt{n} \phi_{n}(t) e^{i t((2+s)} d t\right| \leqq C_{1}(u)
$$

where $C_{1}(u)$ is a constant depending only on u. Since the set $\left\{v_{s}(t)=s^{-1}(u(t+s)\right.$ $-u(t))\}_{0<|s| \leqq 1}$ is bounded in \mathcal{S}, we see $\left\{\hat{v}_{s}\right\}_{0<|s| \leqq 1}$ is a bounded set in \mathcal{S} and consequently bounded set in \mathscr{B}. Therefore we have

$$
\sup _{z} \sup _{|s| \leqq 1}\left|\int v_{s}(t) \mu_{z, n}(d t)\right| \leqq C_{2}(u)
$$

where $C_{2}(u)$ is a constant depending only on u. Now we obtain

$$
I_{n} \leqq \int_{|s| \leqq \delta} \rho_{j}(d s)|s|\left|\int v_{s}(t)_{z, n}(d t)\right| \leqq C_{2}(u) \delta \quad \text { and } \quad I I_{n} \leqq \rho_{j}(|s| \geqq \delta) 2 C_{1}(u)
$$

Therefore for any small $\delta>0$, thr there exists $j_{0}=j_{0}(\delta)$ such that

$$
\begin{equation*}
I_{n}+I I_{n} \leqq C_{3}(u) \delta \tag{4.9}
\end{equation*}
$$

On the other hand for j fixed we have

$$
\begin{align*}
& \int_{\boldsymbol{R}} u(t)\left(\rho_{j} * \mu_{z, n}\right)(d t)-\Phi_{g, z, n}\left(\left(\hat{u} \hat{\rho}_{j}\right)^{\sim}\right) \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{z^{2}}{2 n \sigma^{2}}\right] \tag{4.10}\\
& \quad=\frac{1}{2 \pi} \int_{\boldsymbol{R}} \hat{u}(t) \hat{\rho}_{j}(t) \hat{\mu}_{z, n}(t) d t-\Phi_{g, z, n}\left(\left(\hat{u} \hat{\rho}_{j}\right)^{\sim}\right) \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{z^{2}}{2 n \sigma^{2}}\right] \rightarrow 0
\end{align*}
$$

uniformly in z from the estimate (4.8), where $(v)^{\sim}$ denotes the inverse Fourier transform of v. In addition there exists $N_{0}=N_{0}(\delta)$ such that $\sum_{|k|>N_{0}}|\hat{u}(k a)|<\delta$ since $u \in \mathcal{S}$. Therefore we have

$$
\begin{equation*}
\left|\Phi_{g, z, n}\left(\left(\hat{u} \hat{\rho}_{j}\right)^{\sim}\right)-\Phi_{g, z, n}(u)\right| \leqq \sum_{|k| \leqq N_{0}}\left|\hat{u}(k a)\left(\hat{\rho}_{j}-1\right)\right|+\delta . \tag{4.11}
\end{equation*}
$$

The first term goes to 0 as $j \rightarrow \infty$. Combine the estimates (4.9), (4.10), and (4.11) we conclude that if n is large

$$
\sup _{z}\left|\sqrt{n} \int u\left(S_{n} f+z\right) g d m-\Phi_{q, 2, n}(u) \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{z^{2}}{2 n \sigma^{2}}\right]\right| \leqq C_{4}(u) \delta
$$

where $C_{4}(u)$ is a constant depending only on u. Now the proof of the theorem is complete.

Remark 4.1. If $f \in B_{1} \cup B_{3}$, then $H(f) \simeq \boldsymbol{Z} / p \boldsymbol{Z}$. Therefore if we conbine the Poisson summation formula and Theorem 4.1, we obtain the usual local limit theorem. If $f \in B_{4}$ then $\Lambda(f)=\{0\}, G(f)=\{1\}$, and $H(f)=\langle(1)\rangle$. Thus $\Phi_{g, z, n}(u)=\hat{u}(0) \int_{I} g d m$ i.e., $d \Phi_{g, z, n}=\int_{I} g d m d t$ (See Rousseau-Egele [9]).

5. Ezamples

In Section 3 we classified the elements of $B V_{0}$. In the present section we discuss about some examples. For this purpose we need the following theorems.

Theorem 5.1. Let T be an L-Y transformation which satisfies the mixing condition (M). Lei $\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$ be a periodic orbit of T with $p_{j+1}=$
$T p_{j}(\bmod n)$. Assume that T is continuous at each p_{j}. If $f \in B V_{0}$ satisfies $\sum_{j=1}^{n} \bar{f}\left(p_{j}\right) \neq 0$, then $\sigma(f)>0$, i.e., $f \in B V_{0}-B_{0}$, where \bar{f} is the function defined by $\bar{f}(x)=\{f(x+)+f(x-)\} / 2$ for any bounded variation version of f.

Proof. Assume that $\sigma(f)=0$. Then we have $f=g \circ T-g$ for some $g \in L^{2}(\mu)$. Thus, for any $t \in \boldsymbol{R}$, we have $\exp [i t g] \circ T=\exp [i t f] \exp [i t g]$. Therefore $\exp [i t g]$ has a version without discontinuities of the second kind since $(\exp [i t g]) h_{0} \in B V$ and $h_{0} \in B V$ in virtue of (iv) of (3) in Lemma 2.3. Let $g_{t}=t^{-1} \arg [\exp [i t g]]$ for $t \neq 0$. Then we obtain $f=g_{t} \circ T-g_{t}+\frac{2 \pi}{t} K_{t}$ where K_{t} is a Z-valued function. Thus we have

$$
\begin{aligned}
\sum_{j=1}^{n}\left(f\left(p_{j}+\right)+f\left(p_{j}-\right)\right)- & \sum_{j=1}^{n}\left(g_{t}\left(T\left(p_{j}+\right)\right)-g_{t}\left(p_{j}+\right)\right. \\
& \left.+g_{t}\left(T\left(p_{j}-\right)\right)-g_{t}\left(p_{j}-\right)\right) \in \frac{2 \pi}{t} \boldsymbol{Z} \quad \text { for any } \quad t \in \boldsymbol{R}-\{0\}
\end{aligned}
$$

On the other hand we have

$$
\begin{aligned}
& \sum_{j=1}^{n}\left(g_{t}\left(T\left(p_{j}+\right)\right)-g_{t}\left(p_{j}+\right)+g_{t}\left(T\left(p_{j}-\right)\right)-g_{t}\left(p_{j}-\right)\right) \\
= & \sum_{j=1}^{n}\left(g_{t}\left(T\left(p_{j}+\right)\right)+g_{t}\left(T\left(p_{j}-\right)\right)-g_{t}\left(p_{j+1}+\right)-g_{t}\left(g_{j+1}-\right)\right)=0 .
\end{aligned}
$$

Hence we conclude that

$$
2 \sum_{j=1}^{n} \bar{f}\left(p_{j}\right) \in \frac{2 \pi}{t} \boldsymbol{Z} \quad \text { for any } \quad t \in \boldsymbol{R}-\{0\}
$$

This implies that $\sum_{j=1}^{n} \bar{f}\left(p_{j}\right)=0$. Hence we obtain the result.
Theorem 5.2. If T is an $L-Y$ transformation of type $I I$ with the mixing condition (M), then $B_{0}=\{0\}$, and $B V_{0}-B_{0}=B_{1} \cup B_{3} \cup B_{5}$. In particular, $\sigma(f)$ is positive for any non-trivial element $f \in B V_{0}$.

Proof. First of all we show that $h \circ T=\lambda e^{i t f} h, \lambda \in S^{1}$ implies $h=$ constant μ-a.e. We may assume that h has no discontinuity of the second kind. From the assumption there exists a sequence of intervals $I_{j}=\left(a_{j}, b_{j}\right)$ such that $T\left(\operatorname{Int} I_{j}\right)=(0,1)$ and $a_{j}, b_{j} \rightarrow a(j \rightarrow \infty)$ for some $a \in I$. For any $\varepsilon>0$ there exists $\delta>0$ such that $|x-a|<\delta$, and $|y-a|<\delta$ implies $|h(x)-h(y)|<\varepsilon / 2$ and $|t||f(x)-f(y)|<\varepsilon / 2\|h\|_{\infty}$. Thus we have $|h(T x)-h(T y)|=\mid h(x) e^{i t f(x)}-$ $h(y) e^{i t f(y)}\left|\leqq|h(x)-h(y)|+\left|\left|h \|_{\infty}\right| f(x)-f(y)\right|\right| t \mid<\varepsilon$ whenever $|x-a|<\delta$ and $|y-a|<\delta$. If j is large, any point in I_{j} satisfies $|x-a|<\delta$. Thus $\mid h(x)-$ $h(y) \mid<\varepsilon$ for any $x, y \in I$. Hence $h=$ constant μ-a.e. Let $\theta=\arg [h]$, then we can write $t f=\theta+2 \pi K$. This implies $B_{2}=B_{4}=\phi$. If $\sigma(f)=0$ we have $h \circ T=e^{i t f} h$ for some $h \in L^{1}(\mu)$. But in the same way as above, we obtain $h=$ constant μ-a.e.

Therefore $e^{i t f}=1$ for any $t \in \boldsymbol{R}$. Thus $f=0$.
Example 5.1. A typical example of an $L-Y$ transformation of type I is $T x=2 x \bmod 1$. In this case $\mu=m$. Define functions g, K_{1}, and K_{2} by

$$
\begin{aligned}
& g(x)=\cos (2 \pi x) \\
& K_{1}(x)=\left\{\begin{array}{rr}
1 & 0 \leqq x<\frac{1}{2} \\
-1 & \frac{1}{2} \leqq x \leqq 1
\end{array}\right.
\end{aligned}
$$

and

$$
K_{2}(x)=\left\{\begin{array}{rl}
-1 & 0 \leqq x<a \\
1 & a \leqq x \leqq 1
\end{array}\right.
$$

with $\theta=2 a-1 \in \boldsymbol{Q}^{c}$.
Then we have $\sigma(g)>0$ since $g(0) \neq 0$ (Theorem 5.1), $\sigma\left(K_{1}\right)>0$ since $K_{1}(0) \neq 0$, $\int K_{1} d m=0, \int K_{2} d m=-\theta$, and $n g$ can not be Z-valued for any $n \in \boldsymbol{Z}-\{0\}$. Moreover, (1) $2 \pi K_{1} \in B_{1}$, (2) $2 \pi\left(g \circ T-g+K_{1}\right) \in B_{2}$, (3) $2 \pi\left(K_{2}+\theta\right) \in B_{3}$, and (4) $2 \pi\left(g \circ T-g+K_{2}+\theta\right) \in B_{4}$.

Example 5.2. A typical example of an $L-Y$ transformation of type II is the so-called Gauss transformation $T x=\frac{1}{x}-\left[\frac{1}{x}\right]$. In this case $\mu=(\log 2)^{-1}$ $\times(1+x)^{-1} m$. From Theorem 5.2 we can see that any Lipschitz function $f \neq 0$ with $\int f d \mu=0$ belongs to B_{5}.

References

[1] R. Bowen: Bernoulli maps of the interval, Israel J. Math. 28 (1977), 161-168.
[2] N. Dunford and J.T. Schwartz: Linear Operators I, Interscience, New York 1967.
[3] F. Hofbauer and G. Keller: Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z. 180 (1982), 119-140.
[4] I.A. Ibragimov and Y.V. Linnik: Independent and stationary sequence of random variables Wolter-Norolhoff, Groningen 1971.
[5] C. Ionescu Tulcea and G. Marinescu: Theorie ergodique pour des classes d'operations non completement continues, Ann. of Math. 52 (1950) 141-147.
[6] H. Ishitani: A central limit theorem of mixed type for a class of 1-dimensional transformations, Hiroshima Math. J. 16 (1986), 161-188.
[7] A. Lasota and J. Yorke: On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481-488.
[8] S.V. Nagaev: Some limit theorems for stationary Markov chains, Theory Probab. Appl. 3 (1957), 378-406.
[9] J. Rousseau-Egele: Un theoreme de la limite locale pour une classe de transformamations dilatantes et monotones par morceaux, Ann. Probab. 11 (1983), 772-788.
[10] L. Schwartz: Theorie de distributions, Hermann, Paris 1966.

> Department of Mathematics
> Tokyo Institute of Technology
> Oh-okayama, Meguro-ku, Tokyo 152
> Japan

