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0. Introduction

Let Γbe a Lasota-Yorke transformation of the unit interval /=[0, 1]. In
virtue of the results in [7], we know that T has an m-absolutely continuous in-
variant probability measure μ=hom with ho^BV where m denotes the Lebesgue
measure on / and BV denotes the totality of functions of bounded variation
on 7. Hofbauer and Keller [3] investigate the ergodic properties of the dyna-
mical system (T, μ). By use of the results Rousseau-Egele studies the limiting

behavior of the distribution of the sum Snf= Σ / 0 ^ and proves a local limit
y=o

theorem for a certain class of f^BV in [9]. The methods of those papers are
based on the spectral analysis of the Perron-Frobenius operator (P-Foperator)
X: L\m)^L\nί) and its perturbed operator X(it): L\m)-*L\m) which are de-
fined by Xg =— I _ g dm and X(it)g = X(eitfg) for g e L\tn) respectively.

dm JT *(•)
We notice that Rousseau-Egele^ method is quite similar to Nagaev's method in

[8]
In this paper we shall investigate more detailed spectral properties of the

perturbed operator X(ίt) and classify the elements in BV0 = {f^BV0(I->R);

\ fdμ=0} into six types in Section 3. After the classification we shall prove

the main theorem which asserts that the local limit theorem can be expressed in
a quite general form in term of Schwartz distributions, for any/eBFo (I-+R)
with non-degenerate vairance. More precisely, imposing the mixing conditon
(M) on T (see Section 2) we can prove:

Theorem (Theorem 4.1 in Section 4). Assume that f^BVQ with σ2 =

lim — I (Snf)
2dμ>0. Then, there exist a a>0, XG5 1, and an S^-valued mea-

surable fun function h such that
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limsupsup
πσ

holds for any g^BV and for any rapidly decreasing function u on R> where

{Φg,z,n} is a bounded family of elements in <S' defined by

Φ#....(«0 = ίlji(ka)eika*\k» \hkg dm ^ h% dmίlj

for any rapodly decreasing function u on R.

In Section 1, we shall give a complete proof a Lasota-Yorke type ine-
quality which will play important roles in our argument. Rousseau-Egele's
proof of the local limit theorem also depends on an inequality of the same type
but one may find that his proof of the inequality is not complete. In Section
2, we shall investigate the spectral properties of the perturbed P-F operators
and we shall classify the elements in BV0 in Section 3. Section 4 is devoted to
the proof of the main theorem. In the last section we shall discuss about typ-
ical examples.

1. Preliminaries

First of all, we define the Lasota-Yorke transformation.

DEFINITION 1.1. A transformation T from the unit interval /=[0, 1] into
itself is called a Lasota-Yorke transformation or an L-Y transformation if the
follwoing conditions (1), (2), and (3) are satisfied:

(1) There is a partition {//},• of/ consisting of non-empty intervals such
that (i) TI Int 7, is monotonic for each j> (ii) T \ Int 7 ; is of class C2 and can
be extended to the closed interval Ij for each j , and (iii) T'(Int/; )=(0, 1) except
for a finite number of j .

(2) (Renyi's condition).

(1 " I P ^
where sup is taken over all x at which T is twice differentiable.

(3) There is a positive integer N such that

(1.2) mi\(TNY(x)\^i/c for some 0<c<l ,

where inf is taken over all x at which T is differentiable.
We call a partition P— {Ij} y a defining partition of T if it satisfies the con-

dition (1) and is minimal in the folloaing sense: If Q= {Iί}k1S another partition
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satisfying the condition (1), then for each k, we can find j=j(k) with I n t / £ c

We call T an L- Y transformation of type I if its defining partition is finite. We
call T an L- Y transformation of type II if its defining partition is infinite.

REMARK 1.1. One can easily show that if T is an L-Y transfomation, then

n
so is Γ n =Γo. . .oΓ for any

Throughout the paper functions are assumed to be complex valued unless
otherwise stated. For a measure μ on / L\μ) denotes the usual Z^-space with
Z^-norm || ||1>μ. We denote by BV the totality of elements in L\m) which have
versions of bounded variation. BV turns out to be a Banach space with Banach
norm | \g\\Bv—Vg-\-1 \g\ li,», where Vg denotes the infimum of total variations of all
versions of g^BV. BV0 denotes the subspace of BV(I-^R) whose elements

satisfy \fdμ=0. S, W, and 3)N denote the spaces of rapidly decreasing func-

tions on Λ, smooth functions with compact support, and smooth functions on

(—N,N) with compact support respectively.

Next we define the P-F operators.

DEFINITION 1.2. Let T be an L- Y transformation. Let m be the Lebesgue
measure on /. The Perron-Frobenius operator or the P-F operator X of T
with respect to m is defined by

(U) Lg=£l-H,gdm for gGL1{m)

For a real valued measurable function/ on / and ίGΛ, the perturbed P-F opera-
tor X{it)=X{itf) of L is defined by

(1.4) X(it)g = X(e^g) for g^L\m).

REMARK 1.2. (1) For g^L\m)y -Cg—g if and only if the complex measure
gm is T-invariant.
(2) For any nEΞN, X(it)ng=Xn((cxp [itSJ])g) where SJ= ΣfoT*. In par-

ticular \ X(ii)ng dm = \ (exp [itSnf])g dm . Therefore the asymptotic behavior

of the distribution of Snf can be expressed in terms of the perturbed P-F oper-
tors L(it).

From the definition of L it is easy to show:

Proposition 1.1. Let X be the P-F operator of T with respect to m. Let
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μ=hom be an m-absolutely continuous invariant probability measure with density Ao.

Consider the operator Xμ {the P-F operator of T with respect to μ) which is defined

by L^S = j - \ _x gdμ for g(=L\μ). Then, for g(=L\μ) and an Sι-valued
a μ * T \m)

function φ the following are equivalent: (1) -C(φgho)=gho in L\m), (2) Lμ{φg)=g
in L\μ), and (3) goT=φg in L\μ).

Proof. We know that the proposition is ture if φ is a constant function
(see Ishitani [6]). In the present case, one can prove the proposition in the
same way as in [6] except for the assertion that (2) implies (3). Therefore we
restrict ourselves to prove this implication. Assume that -Cμ(φg)=g in L\μ).
Then it is not hard to see that -Cμ\g\ = \g\ in L\μ). Thus we have \g\oT=
\g\ and IA°T=IA in L\μ) where A = {x; I £ | (#)=(= 0}. Since Xμ preserves

the value of the integration, we have

L) ± = μ(A) .2£dμ ( IAoTdμ ( xJlAT)dμ IAg°T J g°l J \ gol / g

On the other hand
goT=φg μ-a.e. ^°

=\φ\=\ μ a.e. on A. Hence we can conslude that

In the rest of this section we prove the basic inequality in our argument.

Propositon 1.2 (Lasota-Yorke type inequality). Let T be an L-Y trans-
formation which satisfies the expanding condition (1.2) for jV=l . Let J2 be the
P-F operator of T with respect to m. Then, for any n^N and fo,fu " ' j / ^ G

S1) we have

(1.5) V{X\{ ff fkoT"yg)^(2+ Σ/Λ) [^^+2(/Λ-1+JR),(Γ))||^||,,J

where / Λ =min{l, m(Jj);Jj is the element of a defining partition of T" such that

Γ(/«ί/y)Φ(O, 1)} and

*m-βupJίΏMLKλl)-S?p\(τy(χ)\*
Proof. Let {J)}} be a defining partition of T". Notice that S, = T* \ Intjj

is a homeomorphism from Intjj onto its image for each j . We have

= V\Σ XTVASJ1) i (τy(sf) i -1 π uτ*s

Σ πκnι-1ff/*-nί']+ Σ'
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where V ednotes the total variation on Jj sup is taken over all x^lntj)y the

summation 2 ' is taken over all j such that Tn(IntJj)^F (0, 1), tfy = inf/y, and

bj = sup Jj.

Before estimating 7y and 77y we claim that sup|(Γ n ) ' | 'ιdjι^lήι+Rn{T)y

where d~m(Jj). In fact

I (τ»y(X) i -^ i ( n ' W M Π W 1 I +1 (τy(y) \ -1

£R.(T)d,+ \(Ty(y)\-1 for any x,y(ΞlntJj.

Therefore we have \(Tn)'(x)\-1dj1^l71+Rn(T).
Using the claim and the inequality Vfagz)^ sup \g1\Vg2 +sap \g2\Vgv

we have

isMΣVf.) sup (\(τy\-^\g\)+v(\(τy\-ιg)

Έ

s£(l+ Σ

On the other hand we have

//

Jj

\g\dni\.

since \g(aj)\ + \g(bj)\ ^ \g(aj)-g(x)\ + \g(x)-g(bj)\ +2\g(x)\ for any
Combining these estimates we obtain the inequality (1.5). //

REMARK 1.3. Since X(it)ng=-Cn((txp [itSJ])g)=Xn(eit'eifW---eit«Tn-1)g)y

we can apply the inequality (1.5) to J2(ίt)ng if f^BV(I->R). Therefore we can
justify Proposition 5 in [9] which asserts that J2(ίt) satisfies the conditions of
Ionescu Tulcea and Marinescu Theorem (see [5] and [9]).

3. Spectral decomposition of perturbed P~F operators

From now on we impose the following mixing condition (M) on T.

(M) T has a unique m-absolutely continuous probability measure μ=hom
with support I and the dynamical system (Γ, μ) is mixing (see Bowen [1, The-
orem 2]).



584 T. MORITA

In what follows, T denotes an L- Y transformation which satisfies the con-
dition (M), unless otherwise stated.

Lemma 2.1. For feίBV{I->R)3 and t(=R define U(it): L\μ)-+L\μ) by
U(it)g=e~itfg° T. Then we have the following:

(1) For X^LS1, X is an eigenvalue of J2(if) on L\m) if and only if %=X~ι

is an eigenvalue of U(it).
(2) If h is an eigenvector of U(it) on L\μ) corresponding to an eigenvalue

with modulus \, then \h\ is constant μ-a.e.
(3) Let λ e S 1 be an eigenvalue of U(it). For h^L\μ), h is an eigenvector

corresponding to X if and only if hh0 is an eigenvector of X(iί) on L\m).
(4) If X is an eigenvalue of U(ίt) on L\μ), then it is simple.
(5) U(it) has at most one eigenvalue of modulus 1.

Proof. (1) and (3) follows immediately from Proposition 1.1 and (2) is a
direct consequence of the ergodicity of the dynamical system (T, μ). Now we
prove (4). Assume that h^L\μ) (j=l, 2) satisfies hjoT=rXeitfhj for λ G S 1 .
From (2) we may assume that |Ay| = l μ-a.e.. Therefore hJι2

λ^L\μ) and
(fahi>Γ=(VT) (h2oT)=VT)-l=hJi2\ Thus h1hj1=constant μ-a.e. by the
ergodicity of (T> μ). Hence λ is simple.

Next we prove (5). Assume that hs^L\μ) and XJ^S1j=ίy 2 satisfy hjoT
=Xjeitfhj. In the same way as in the proof of (4) we have (h1h~1)oT=X1X2~

1h1h2~
1

μ-a.e. Since the dynamical system (Γ, μ) is mixing, X}X2

n must be 1. Thus
λ/j : = Λ2

In virtue of Lemma 2.1, we may write X(it) to denote the eigenvelue of
J2(it) with modulus 1 if it exists.

DEFINITION 2.1. For ftΞBV(I->R) define
A(f)={t^iR; X(it) on L\m) has an eigenvalue with modulus 1}
G{f)={XξΞSι\ X=X(it) for some ίGΛ(/)}
Ho(f)=ih<=L\μ);h is S'-valued and hoT = Xeitfh for some ίGΛ(/) and

λeG(/)>
and

H(f)={(h);h<=H0(f)}

where (h) denotes the equivalent class containing h under the following equi-
valence relation: hλ<^h2 if and only if hλ=κh2 for some κ^S\

Lemma 2.2. Λ(/) is a subgroup of R, G(f) is a subgroup of S1 and H(f)
is an abelίan group under the multiplication {h^)(h2)—(hιh2).

Proof. Let aA <Ξ Λ(/), λ, e G(/), and hj(=H0(f) for j= 1, 2 with hjθT =
Xy(exp [idjf])hj. Then we have (hji2)oΓ=X1X2(exp \i{ax-\-a2)f])hxh2. Thus
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), and hλh2 e H(f). On the other hand hλ°T =
[—ia1f])h1 implies that aly \19 and hx have inverse elements —a19 Xx, and

ϊϊx respectively. It is obvious that the group operation (hι)(h2)=(h1h2) of H(f) is
well-defined. / /

The following lemma plays important roles throughout the paper.

Lemma 2.3. Let T be an L-Y transformation satisfying the mixing condi-
tion (M) andf^BV0. Then we have the following:

(1) For each t^R, the perturbed P-F operator X(it)=J2(itf) is a bounded
operator on BV as well as a bounded operator on L\m).

(2) If ί$Λ(/) the spectral radius of X(ii) as an operator on BV is less
than 1.

(3) // ίGA(/) then for t in a heighborhood N(s) of s in C, X{it) has the
spectral decomposition

(2.1) X(ίt)n = \(it)nE(it)+R(it)H for n ^ l

as an operator on BV with the following properties :
(i) X(it) is holomorphic in N(s) and coincides with the eigenvalue of X(it) with
maximal modulus. In addition we have

(2.2) X\is) = ( ^ ) = 0 ,
\at /ί=ίs

and

(2.3) λ » = (ζ£) = lim i - ( (SJYdμ.Mis) = σ(/)'λ(«).

(ii) E(tt) is the projection operator onto the one-dimensional eigenspace cor-
responding to \(it) which depends holomorphically in t^N(s) and satisfies

(2.4) \ E{is)g dm=\hgdm\ hh0 dm

for any gEΞBV, where h denotes an arbitrary eigenvector corresponding to \(is)
with I h I = 1 μ-a.e.

(iii) R(it) is the operator valued holomorphic function in N(s) defined by the
Dunford integral

(2.5) R(it)" = ±[ Ύ"Ry(it)dΎ

for some 0 < r < l , hwere Ry(it)=(<γI—X(it))~\
(iv) At t=s} the spectral decomposition (2.1) has still a meaning in L\m).

Precisely, E(is) and R(is) turn out to be bounded operators on L\m) and the range
of E(it) as an operator on L\m) coincides with the range of E(tt) as an operator
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on BV, and R(it)ng-*Q in L\m) as w->oo, for

Proof. In virtue of the Lasota-Yorke type inequality (1.5) for J2(it), we
can apply Ionescu Tulcea and Marinescu Theorem in [5] to -C(it). On the
other hand we know that ~C(it) has at most one eigenvalue of modulus 1 and
if it exists, then it is simple for each ίGΛ from Lemma 2.1. Combining those
facts with the general perturbation theorey (see Dunford and Schwartz [2, p.
584- ] and Rousseau-Egele [9, Proposition 5]), we can see the lemma except
for the equalities (2.2), (2.3), and (2.4). (2.2) and (2.3) can be proved in the
same way as Lemma 2 and Lemma 3 in [9] (see also Lemma 5.1 and Lemma
5.2 in [6]). Therefore we restrict ourselves to give a sketch. If t~\-s^N(s), we
have

j exp \ιtSnf]dμ = j (exp \itSJ])h0 dm

= j hoTnX(is)-»(exp[i(s+t)Snf])hh0dm

= λ(ώ)- j hXn((exp [i(s+t)Snf])hh0) dm

= X(is)~» J hX(i(s+t))n(hh0) dm

for any h(=H0(f)f)E(is)(BV). Here we have used the identity hoT"=X(is)-»
(exp [isSnf])h. Thus we have

(2.6) J exp [itSJ]dμ = X{is)-»\(i(t+s))n J h E(i(t+s)) (hh0) dm

+ X(is)-» j h R(t(t+s))n(hh0) dm

= p(t)+r(t).

Now we have

and

S S f
—^dμ and goes to 0 as τz->oo by the ergodic

n

theorem. The right hand side goes to iX(is)'~lX*(is)\ϊiE(is) (hh0) dm = iX(ts)~1

XX'(is) as τz->oo, by the same way as in Lemma 2 in [9], Note that we have
used the fact that hh0 is an eigenvector of -C(it) corresponding to X(is) (see

Lemma 2.1). Next the left hand side ôf (2.8) equals ——(SJfdμ. On the
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other hand, the right hand side of (2.8) goes to —XφyWζis) by the same way
as in Lemma 3 in [9].

Next we prove the identity (2.4). Since hoTn = \(is)"n(txρ [isSnf])h> we
have

(2.9) J ho Tnhg dm = \(is)-» \X(is)ng dm .

Since the dynamical system (Γ, μ) is mixing, the left hand side of (2.9) goes to

I fig dm I hhQ dm. Clearly, the right hand side of (2.9) goes to I E(is)g dm from

(2.1) and (2.5).

As a corollary to Lemma 2.3, we obtain Lemma 2.4. The proof is quite
similar to the proof of Lemma 7 in [9] and Lemma 5.3 in [6],

Lemma 2.4. Letf<=BV0 with σ2=<r(f)2=lim — [(Snf)
2dμ>0 andg^BV.

n-**> ft J

If s^A(f), there exist positive number Az> Aiy Als A2i and 0 < p < l depending on s
and g such that

(2.10) I \{ (exp [i(s+tn-^)Snf])g dm

J \ ^ Γ ^ V Π J g dm

<ί exp [ — l ¥ j ( Λ U I 3 - 1 / 2 + Λ | | - V 2 ) + Λ "

whenever \t\ ^Atn
1/2, where h is any element in H0(f) 0E(is)(BV) and the second

term of (2.10) is independent, of the choice of h.

Proof. We notice that

^(exυ[i(s+t)Snf])gdm

E(i(s+t))gdm+\ R(i(s+t))«gdm

for t with small modulus. Therefore we can prove the lemma by considering
the Taylor expansion of the last line around s as in the proof of Lemma 7 in

3. Classification of BV0

Let T be an L-Y transformation which satisfies the condition (M).
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DEFINITION 3.1. β o = {/

)=Z/qZ for somep and q},

B2 = if<=BV0; A(f)^Z, G(f)^Z/pZ, H(f)=^Z for some p}

0; A(f)^Z, G{f)^Z, HJ)^Z\pZ for some^}

, A(f)^Z, G(f)^Z, H(f)^Z} and

,; Λ(/)={0}, G(/)={1}, HJ) = {(1)}}, where A=^B means that

A and B are isomorphic as groups.

Then we have:

Theorem 3.1. Forf^BV0we have:

(1) f^B0 if and only if σ(f)=0. in this case G(f) is automatically {I}.

(2) / G ΰ j if and only if there exist b>0, and K<=BV(I~->Z) such that

bf=2πK, ^Kdμ=0, and σ(K)>0.

(3) / G ΰ 2 if and only if there exist b>0y K^BV^-^Z), arid a real valued

bounded function g such that ng is not a Z-valued function for n^Z — {0},

bf=2π(goT-g+K), ^Kdμ=0, andσ(K)>0.

(4) /GΞ£3 if and only if there exist δ>0, 0CΞ(O, 1) Γ)QC and KEΞBV(I->Z)

such that bf=2π(θ+K) and [κdμ=—θ

(5) / G δ 4 if and only if there exist b>0, 0e(O, l)ΠQc, and a real valued

bounded function g such that ng is not a Z'-valued function for n€ΞZ—{0}, bf=

2π(goT-g+K+θ)y and
5

(6) BV0= U B: {disjoint union).

Proof. (1) If f€ΞBV0 with σ(/) = 0, then we can write f=goT—g for

some g^L\μ) (see [4, p. 323], and [9, Lemma 6]). Therefore we have eitgoT=

eitfeitg for any t^R. Thus we have seen that A(f)=R. Conversely, if σ(/)>0,

then λ'(0) = 0 and λ"(0)>0 ( i . e . f ^ P ) = -λ"(0)<0). Therefore in a
^ dtr Λ=o

neighborhood of 0 in R, |λ(/ί)l<l ί f tΦO. This implies Λ(/)ΦΛ. Hence

/ G δ 0 implies cr(f) = 0. Next we prove the assertion (6). For f^BV0—Bo,

define a—inf {£>0; ίGΛ(/)} if the set is not empty, a=oo otherwise. If a=oo9

it is obvious that f^B5. If α<oo, then we can show ί/ G Λ(/). In fact if

^ Λ ( / ) , * = 1 , 2, . - ltula(n-+oo), and hnoT=%n(exp [itj])hn for hn<=H0(f)

and λ w eG(/), then there exists a constant C > 0 such that V(hohn)^C for any n,

in virtue of the Lasota-Yorke type inequality (1.5) and (iv) of (3) in Lemma 2.3.

Therefore we can choose a subsequence {hn/} of {hn}, an S ̂ valued measurable

function h and λ G S 1 such that hn'—>h μ-a.e. (nf—>oo) and λΛ/-^λ. Therefore

[iaf])h. Thus we have seen αGΛ(/). Moreover, it is not hard to
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see that K{f)=aZ, G(/)=<λ> = {λΛ;«GZ} and H(f)=φ)y = {(hn); neiZ}.

Hence BV0—B0= U Bj. The proofs of (2), (3), (4), and (5) are quite similar to
j = l

one another. So we prove (5) only. If f^B5> then we have A(f)=aZ, G(f)=
(χy = {e*cm\ 0 e ( O , 1)ΠQC, weZ} and H(f)=φ)\hn is not constant function
AeJEΓ0(/)>. Putting g=arg[h]/2π, we have af=2π(goT—g+θ+K) for some
Z-valued function K. Since hhQ^BV and ho^BV we can see that g has a
version without discontinuities of the second kind. Therefore K has also a ver-
sion without discontinuities of the second kind. Thus K is in BV since it is
Z-valued. Conversely, assume that bf=2π(g°T—g-\-θ-{-K) for some i > 0 , g, θ
and K which satisfy the conditions in the assertion (5). Then we have σ(/)>0
from the assertion (1). Therefore b=ja for some j&N, where β=inf{ ί>0;
ίGΛ(/)}. From these fact it is not hard to see that A(f) = aZ. G(f) =
ζ/**ii>~Z, and H(f)=<e2iei*/j>.

4. Generalized local limit theorem

In this section we prove the main theorem.

Theorem 4.1. Letf^BV0—B0. Assume that a>0, λ e S1 heHQ(f) satisfy
A(f)=aZ, G(/) = <λ>, H(/) = <(*)>, α/zrf /*oΓ=X(exp [ώ/])A. Then for any
u^S, and for any g^BV we have

(4.1)

lim sup I s/τ\ u(SJ(x) +z)g(x)m(dx) - Φ , , » J: exp[ Γ ^ = ^ - 2 1 1 = 0 .
n+oo 2(ΞR Ji V2πσ{f) L2nσ(f) A

Here for any g^BV, {ΦgtZf1}zy is a bounded set in Sr defined by

(4.2) Φg z n(u) = Σ ύ{ka)eikaz\kn [ hkg dm [ h% dm
Jζ=-oo J/ J z

- o

I

asy to

V V ( u{Snf+z)gdm = ^ ϋ _ f ύ(t)φn(t)e^dt

= Σ ^-^- I ύ(ka+t)φn(ka+t)e«ka+t)zdt

where φΛ(ί) = I (exp [itSnf])g dm.

Proof. It suffices to prove the theorem for g^BV with £ ^ 0 , and

gdm=l. First of all, we consider the case ά^3)N for some N>0. It is

easy to see
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Fix k&Z for a while.

Λ / f(l/2)β

(4.3) Ύ-JL \ ύ(ka+t)φn(ka+t)e^ka+t^ dt

where ak{n) = Xin 1 Έg dm 1

*a(«) = f t , (Φ.(*β+ί/Vr«)-α»(n) exp [- ±

and

2

The number £M will be determined later. Since (**M) =0,

—X(ika)σ2=—Xkσ2, and the spectral radius of L(i{ka-\-t)) is less than 1 for

£U<Z \t\ <—a, we have

(4.4) l ^ φ l ^ ^ β u p l Λ l f t ι _ \\Ai(ka+t))"g\\BVdt

~ 2π

in virtue of the spectral decomposition (2.1). Here Ck is a positive constant
depending only on k. In virtue of the mean value theorem we have

(4.5) \R2{U)\<LU
2π

From Lemma 2.4 we have

lπ

^ ^-Cί'(εi,n^+εln^) (snp\ύ\) ,
π

where C'k and ρk<ί are positive constants depending only on k. Clearly we
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obtain

(4.7) I R4(n) I ̂  1 f exp [- \<τH*\dt \ ak{n) I (sup | ύ | ) .

If we take Sn so that Sn [ 0, Snn
ι/2 f oo, and S$n3/Z j 0 as n f oo, then we can find

a sequence {%,}„ with γn-»0 as n f oo such that

(4.8) I R ^ r ή + R M + R ^ + R M \ <ίCNyn(sup\ύ\+sup\(ύ)'\)

in virtue of the estimates (4.4), (4.5), (4.6), and (4.7), where CN is a positive
constant depending only on g and N. We notice that (4.8) shows that the set
{\Z~n φn(t)eitz}zn is a bounded set in the space 3? of bounded distributions. In

fact we have \φg,z,n(
u)\ ^ Γ — 1 sup|ώ| for each άe<DN. Therefore we ob-

L a Jtain

M \ + \ Φ , , 2 » - ^ exp [-

from the estimate (4.8).

Next we take a sequence {py}7-i °f probability measures on R which con-

verges weakly to δ0 as j->°° and (S^S) for every j . We write \J~n \ u(Snf+z)

Xgdm as I u(t)μZttι(dt) for convenience. Clearly the characteristic function βZftl

of μtn is \/^ϊφne
itz. Take wG Ŝ and fix it. Then we have

U(t) (Pj*μ,,n) (dt)- \ U(t)μitn(dt) I
JR

^ ( , Pj(ds)\[ (u(t+s)-u(t))μ,.n(dt)\
JlsKδ JR

Pj(ds)\\ (u(t+s)~u(t))μ,is\^8 JR

Since {ύlin}ZiX is a bounded set in $}' and U^S^IB we have

sup I ( u(t+s)μ,ιH(dt) I = sup I -L

where Cx{u) is a constant depending only on u. Since the set {vs(t)=s~\u(tJt-s)
—u(t))}Q<\s\^1 is bounded in <S, we see { ŝ}o<ι5ι̂ i is a bounded set in S and con-
sequently bounded set in 35. Therefore we have
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sup sup I \ vs(t)μZtn(dt) I ̂  C2(u)

where C2(u) is a constant depending only on u. Now we obtain

/„<;( Pj(ώ)\s\\\v,(t)Udt)\^C2(u)S and //„£Pj{\s| >S)2Q(M)

Therefore for any small δ>0, thr there exists jo—jo(δ) such that

(4.9) In+II^Ca(u)S.

On the other hand for j fixed we have

(4.10) j Λ u(t) (Pi*μ,,u) ( Δ J - Φ ^ W ) ^L- exp [- j £ J

[ £] * o
uniformly in ,sr from the estimate (4.8), where (©)" denotes the inverse Fourier
transform of v. In addition there exists N0=N0(δ) such that 2
since wecS. Therefore we have > °

(4.11) | Φ ,

The first term goes to 0 as j->°o. Combine the estimates (4.9), (4.10), and
(4.11) we conclude that if n is large

sup I V^" J u(SJ+z)g dm-Φ,^u)-jL= exp [- JjjL] | ̂  C4(M)δ

where C4(w) is a constant depending only on u. Now the proof of the theorem
is complete. //

REMARK 4.1. If f(=Bx\lBz, then H{j)—Z\pZ. Therefore if we conbine
the Poisson summation formula and Theorem 4.1, we obtain the usual local limit
theorem. If / e £ 4 then A(/) = {0>, G(/) = {1}, and #(/) = <(l)>. Thus

Φggn(u)=ύ(0)[ gdm i.e., dΦgtZ>n= \ gdmdt (See Rousseau-Egele [9]).

5. Ezamples

In Section 3 we classified the elements of BV0. In the present section we
discuss about some examples. For this purpose we need the following theorems.

Theorem 5.1. Let T be an L-Y transformation which satisfies the mixing
condition (M). Lei {pv p2y •••, p^ be a periodic orbit of T with pj+1 —
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Tpj (mod ή). Assume that T is continuous at each pj. If f&BV0 satisfies
Σy-i/(/>,)ΦO, then cr(/)>0, i.e., f(=BV0-B0, where f is the function defined
by /(#)={/(*+)+/(#—)}/2/or any bounded variation version of f.

Proof. Assume that <τ(f)=0. Then we have f=go T—g for some g G L\μ).
Thus, for any t^Ry we have exp [itg]oT= exp [itf] exp [itg]. Therefore exp [itg]
has a version without discontinuities of the second kind since (exp[itg])ho^BV
and ho^BV in virtue of (iv) of (3) in Lemma 2.3. Let ^ r

/=ί"1arg[exp [itg]] for

£4=0. Then we obtain f=gt°T—gt-\- — Kt where Kt is a ϋΓ-valued function.
Thus we have

Σ (AP,+)+APJ-))- Σ (gt

+gt(T(Pi-))-gt(Ps-))<=ZξZ for any t(=R-{0}

On the other hand we have

Σ(

))-ft(ίy+1+)-Λ(Λ+1-)) = 0 .Σ

Hence we conclude that

2 Σ f(Pj)^~Z for any < e Λ - {0} .
/ = 1 ί

This implies that Σy-i /(ίy)=0. Hence we obtain the result.

Theorem 5.2. i/" Γ ώ ΛΛ L-Y transformation of type II with the mixing
condition {M), then B0={0}, and BV0-B0=B1ΌBZ\JB5. In particular, σ{f)
is positive for any non-trivial el

Proof. First of all we show that hoT=\eitfhy XG51 implies h=constant
μ-a.e. We may assume that h has no discontinuity of the second kind. From
the assumption there exists a sequence of intervals Ij = (ajy bj) such that
Γ(Int/y)=(0, 1) and ajy bj-+a(j-*oo) for some αG/. For any 8>0 there exists
δ>0 such that \x — a\<8< and \y — a\<8 implies |h(x) — h(y)\ <Sj2 and
\t\\f(x)-f(y)\<εβ\\h\\-. Thus^we have \h(Tx)-h(Ty)\ = \h(x)ei"^-
h(y)eii^\^\h(x)-h(y)\+\\h\Uf(x)-f(y)\\t\<S whenever | * - α | < δ and
\y — a\<8. If j is large, any point in Ij satisfies \x—a\<8. Thus \h(x)—
h(y)\<6 for any ^ J G / . Hence A=constant /Λ-a.e. Let 0=arg[λ], then we
can write tf=θ+2πK. This implies B2=B4=φ. If σ(/)=0 we have ho T=eitfh
for some h^L\μ). But in the same way as above, we obtain h=constant μ~a.e.
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Therefore eitf=l for any t&R. Thus/=0.

EXAMPLE 5.1. A typical example of an L-Y transformation of type I is

Tx=2x mod 1. In this case μ=m. Define functions g> Kv and K2 by

g(x) = cos (2πx)

f 1 0^x<h
KAx) = <

and

(—1

I 1
with θ=2a—

(

Then we have σ(g)>0 since £(0)4=0 (Theorem 5.1), σ{Kλ)>Q since ϋΓ,(0)Φ0,

\K1dm=09 \K2dm=—θ, and ng can not be Z-valued for any » E Z - { 0 } .

Moreover, (1) 2πK^Bl9 {2)2π{goT-g+Kx)^B2, (3) 2π(K2+θ)(ΞB3y and (4)

2π(goT-g+K2+θ)eiB4.

EXAMPLE 5.2. A t}φical example of an L-Y transformation of type II is

the so-called Gauss transformation Tx= — I . In this case μ=(log2)~1

x L x J

χ ( l + Λ?)~1m. From Theorem 5.2 we can see that any Lipschitz function

/ΦO with \fdμ=0 belongs to B5. //
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