ALGORITHMS WITH MEDIANT CONVERGENTS AND THEIR METRICAL THEORY

Shunji ITO (Tsuda College)

(Received February 16, 1988)
(Revised January 30, 1989)

0 Introduction

Let $x \in(0,1)$ be an irrational number and $x=\left[0: a_{1}, a_{2}, \cdots\right]$ be the continued fraction expansion of x. The principal convergents p_{n} / g_{n} of x are obtained by so called continued fraction transformation S as follows: let S be a transformation on $X=[0,1)$ such that

$$
S x=\left\{\begin{array}{lll}
\frac{1}{x}-\left[\frac{1}{x}\right] & \text { if } & x \in(0,1) \\
0 & \text { if } & x=0
\end{array}\right.
$$

and put $a_{n}(x)=\left[\frac{1}{S^{n-1} x}\right]$, then the principal convergents $p_{n} / q_{n}, n=1,2, \cdots$ of α are given by

$$
\left(\begin{array}{cc}
q_{n} & q_{n-1} \\
p_{n} & p_{n-1}
\end{array}\right)=\left(\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{n} & 1 \\
1 & 0
\end{array}\right) .
$$

We know in [1] and [5] that the transformation S has an invariant measure ν with density

$$
d \nu=\frac{1}{\log 2} \frac{d x}{(1+x)}
$$

and that the natural extension \bar{S} of S on $\bar{X}=[0,1) \times[0,1)$ given by

$$
\bar{S}(x, y)=\left(\frac{1}{x}-\left[\frac{1}{x}\right], \frac{1}{[1 / x]+y}\right)
$$

has an invariant measure $\bar{\nu}$ with density

$$
d_{\bar{\nu}}=\frac{1}{\log 2} \frac{d x d y}{(1+x y)^{2}}
$$

and that the dynamical systems (X, S, ν) and $(\bar{X}, \bar{S}, \bar{\nu})$ are ergodic.

As an application of Birkhoff's ergodic theorem, we obtain several metrical results.

Theorem. For almost $x \in[0,1)$,
(1) $\lim _{n \rightarrow \infty} \frac{1}{n} \log q_{n}=\frac{\pi^{2}}{12 \log 2}$,
(2) $\lim _{n \rightarrow \infty}-\frac{1}{n} \log \left|x-\frac{p_{n}}{q_{n}}\right|=\frac{\pi^{2}}{6 \log 2}$,
(3) $\lim _{N \rightarrow \infty} \frac{1}{N}:\left\{n\left|0 \leqq n \leqq N, q_{n}\right| q_{n} x-p_{n} \mid<\lambda\right\}$

$$
= \begin{cases}\frac{\lambda}{\log 2} & \text { for } 0 \leqq \lambda<1 / 2 \\ \frac{-\lambda+\log 2 \lambda+1}{\log 2} & \text { for } 1 / 2 \leqq \lambda<1\end{cases}
$$

(4) $\lim _{N \rightarrow \infty} \frac{\{(q, p)|q| q x-p \mid<\lambda,(q, p)=1, q<N\}}{\log N}=\frac{\pi^{2}}{12} \lambda$ for $0<\lambda<1 / 2$.

Remark. The first proof of the statement (1) and (2) is given by Kinchine, and the proof from ergodic theoretical standpoint is given by C. Ryll-Nardzewski in [7]. The statement (3) is obtained from the ergodicity of the natural extension of S (see [2] and [5]). The number theoretical proof of statement (4) is given by P. Erdos for "any" $\lambda>0$ in [4], and an ergodic theoretical proof for $0<\lambda<1 / 2$ is found in [5].

In this paper, an algorithm T which induces the mediant convergents $\left\{\left.\frac{k p_{n}+p_{n-1}}{k q_{n}+q_{n-1}} \right\rvert\, k=1, \cdots, a_{n+1}-1, n=1,2 \cdots\right\}$ of x is proposed as follows: let T be a transformation on X such that

$$
T x=\left\{\begin{array}{lll}
\frac{x}{1-x} & \text { if } & x \in I_{0}=[0,1 / 2) \\
\frac{1-x}{x} & \text { if } & x \in I_{1}=[1 / 2,1]
\end{array}\right.
$$

and put

$$
\varepsilon_{n}(x)=\left\{\begin{array}{lll}
0 & \text { if } & T^{n-1} x \in I_{0} \\
1 & \text { if } & T^{n-1} x \in I_{1}
\end{array}\right.
$$

Let us define the matrices

$$
A_{0}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad A_{1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

and

$$
\left(\begin{array}{cc}
r_{n} & s_{n} \\
t_{n} & u_{n}
\end{array}\right)=A_{\mathfrak{e}_{1}} A_{\mathbf{\varepsilon}_{2}} \cdots A_{\mathbf{e}_{n}}
$$

Then the convergents $w_{n} / v_{n}, n=1,2, \cdots$, where $v_{n}=r_{n}+s_{n}$ and $w_{n}=t_{n}+u_{n}$, are not only principal convergents of x but also mediant convergents of x. However, the mediant convergents transformation T has only a σ-finite but infinite invariant measure μ with density $d_{\mu}=d x / x$, and so the ergodic theorem is not useful to observe the limit distribution. Therefore a modified algorithm T_{1}, which is constructed by the jump transformation from T, is provided as follows:

$$
T_{1} x= \begin{cases}\frac{1-x}{x} & \text { if } \quad x \in[1 / 2,1) \\ \frac{x}{1-x} & \text { if } x \in[1 / 3,1 / 2) \\ \frac{x}{1-(k-2) x} & \text { if } \quad x \in[1 /(k+1), 1 / k) \quad(k \geqq 3)\end{cases}
$$

We see in Theorem 2.1 the algorithm T_{1} generates the approximation fractions $w_{n}^{(1)} / v_{n}^{(1)}$ of $x, n=1,2, \cdots$, which is not only the principal convergents but also the first mediant convergents $\frac{p_{n}+p_{n-1}}{q_{n}+q_{n-1}}$ and the last mediant convergents $\frac{p_{n}-p_{n-1}}{q_{n}-q_{n-1}}$.

We see also the transformation T_{1} has a finite invariant measure μ_{1} with density

$$
d \mu_{1}=\left\{\begin{array}{lll}
\frac{1}{2 \log 2} \frac{d x}{1+x} & \text { if } & x \in[0,1 / 3) \\
\frac{1}{2 \log 2} \frac{d x}{x} & \text { if } & x \in[1 / 3,1),
\end{array}\right.
$$

and the dynamical system is ergodic.
By constructing of natural wxtension of T_{1} and applying ergodic theorem, we obtain the metrical results.

Result. For almost all $x \in[0,1)$,
(1) $\lim _{n \rightarrow \infty} \frac{1}{n} \log v_{n}^{(1)}=\frac{\pi^{2}}{24 \log 2}$,
(2) $\lim _{n \rightarrow \infty}-\frac{1}{n} \log \left|x-\frac{v_{n}^{(1)}}{v_{n}^{(1)}}\right|=\frac{\pi^{2}}{12 \log 2}$,
(3) $\lim _{N \rightarrow \infty} \frac{\left\{n\left|v_{n}^{(1)}\right| v_{n}^{(1)} x-w_{n}^{(1)} \mid<\lambda, 1 \leqq n \leqq N\right\}}{N}$

$$
=\left\{\begin{array}{lll}
\frac{\lambda}{2 \log 2} & \text { for } & \lambda \leqq 1 \\
\frac{2-\lambda+2 \log \lambda}{2 \log 2} & \text { for } & 1 \leqq \lambda<2
\end{array}\right.
$$

(4) $\lim _{x \rightarrow \infty} \cdot \frac{\{(q, p)|q| q x-p \mid<\lambda,(q, p)=1, q<N\}}{\log N}=\frac{\pi^{2}}{12} \lambda \quad$ for $\quad 0<\lambda<1$.

1 Mediant convergent transformation

In this section an algorithm which induces mediant convergents is proposed.
Let $X=[0,1]$ and let the map T be defined on X by

$$
T x=\left\{\begin{array}{lll}
\frac{x}{1-x}, & \text { if } & x \in I_{0} \tag{1,1}\\
\frac{1-x}{x}, & \text { if } & x \in I_{1}
\end{array}\right.
$$

where $I_{0}=[0,1 / 2]$ and $I_{1}=[1 / 2,1]$ (see figure 1).

figure 1
We denote the inverse branches of T by

$$
\begin{equation*}
V_{0}(x)=\frac{x}{x+1} \quad \text { and } \quad V_{1}(x)=\frac{1}{x+1} . \tag{1,2}
\end{equation*}
$$

All inverse branches are modular transformations. So we use the following matrix representations for them:

$$
A_{0}=\left(\begin{array}{ll}
1 & 1 \tag{1,3}\\
0 & 1
\end{array}\right)\left(=\frac{0+1 \cdot x}{1+1 \cdot x}\right) \quad \text { and } \quad A_{1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\left(=\frac{1+0 \cdot x}{1+1 \cdot x}\right) .
$$

For irrational $x \in(0,1)$ put

$$
\varepsilon_{n}=\varepsilon_{n}(x)=\left\{\begin{array}{lll}
0, & \text { if } & T^{n-1} x \in I_{0} \tag{1,4}\\
1, & \text { if } & T^{n-1} x \in I_{1}
\end{array}\right.
$$

and

$$
\left(\begin{array}{cc}
r_{n} & s_{n} \tag{1,5}\\
t_{n} & u_{n}
\end{array}\right)=\left(\begin{array}{cc}
r_{n}(x) & s_{n}(x) \\
t_{n}(x) & u_{n}(x)
\end{array}\right)=A_{\varepsilon_{1}(x)} A_{\varepsilon_{2}(x)} \cdots A_{\varepsilon_{n}(x)} .
$$

Then we obtain the following.

Proposition 1.1. For any irrational $x \in X$ we have

$$
\begin{equation*}
x=\frac{t_{n}(x)+T^{n} x \cdot u_{n}(x)}{r_{n}(x)+T^{n} x \cdot s_{n}(x)} \tag{1,6}
\end{equation*}
$$

Proof. Let $X_{\mathbf{z}_{1} \cdots \varepsilon_{n}}$ be a cylinder set of rank n, that is,

$$
X_{\varepsilon_{1} \cdots \varepsilon_{n}}=\left\{x ; T^{k-1} x \in I_{\varepsilon_{k}} \quad 1 \leq k \leq n\right\}
$$

Then T^{n} is a bijective map from $X_{\mathbf{z}_{1} \cdots \mathfrak{e}_{n}}$ to I, and the matrix representation of the inverse branch of T^{n} restricted to $X_{\mathbf{z}_{1} \cdots \varepsilon_{n}}$ is $\left(\begin{array}{ll}r_{n} & s_{n} \\ t_{n} & u_{n}\end{array}\right)$.

Let S be the simple continued fraction transformation:

$$
\begin{equation*}
S x=\frac{1}{x}-k, \quad \text { if } \quad x \in\left[\frac{1}{k+1}, \quad \frac{1}{k}\right)(k \geq 1) \tag{1,7}
\end{equation*}
$$

We denote the inverse branches of S by

$$
\begin{equation*}
W_{k}(x)=\frac{1}{x+k} \tag{1,8}
\end{equation*}
$$

and the associated matrices by

$$
C_{k}=\left(\begin{array}{cc}
k & 1 \tag{1,9}\\
1 & 0
\end{array}\right)\left(=\frac{1+0 \cdot x}{k+1 \cdot x}\right) .
$$

For each irrational $x \in(0,1)$ put

$$
a_{n}=a_{n}(x)=k, \quad \text { if } \quad S^{n-1} x \in\left[\frac{1}{k+1}, \frac{1}{k}\right)
$$

and

$$
\left(\begin{array}{ll}
q_{n} & q_{n-1} \tag{1,10}\\
p_{n} & p_{n-1}
\end{array}\right)=\left(\begin{array}{ll}
a_{1}(x) & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{ll}
a_{n}(x) & 1 \\
1 & 0
\end{array}\right)
$$

where

$$
\left(\begin{array}{ll}
q_{0} & q_{-1} \\
p_{0} & p_{-1}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

The following formula is well known: For any irratoinal $x \in(0,1)$

$$
\begin{equation*}
x=\frac{p_{n}+S^{n} x \cdot p_{n-1}}{q_{n}+S^{n} x \cdot q_{n-1}} \quad(n \geq 1) \tag{1,11}
\end{equation*}
$$

The relation between T and S is given by

$$
\begin{equation*}
S x=T^{k} x, \quad \text { if } \quad x \in\left[\frac{1}{k+1}, \frac{1}{k}\right) \tag{1,12}
\end{equation*}
$$

If $x \in\left[\frac{1}{k+1}, \frac{1}{k}\right)$, then $\left(\varepsilon_{1}(x), \cdots, \varepsilon_{k}(x)\right)=(0,0, \cdots, 0,1)$. Therefore the inverse map W_{k} of S is represented by

$$
W_{k}=V_{\mathbf{z}_{1}(x)} V_{\mathbf{z}_{2}(x)} \cdots V_{\mathbf{z}_{k}(x)}
$$

, that is,

$$
\left(\begin{array}{ll}
k & 1 \tag{1,13}\\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \cdots\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) .
$$

Lemma 1.1. Put $j=j(n: x)=\left\{k ; \varepsilon_{k}(x)=1, k \leq n\right\} \quad$ and $1=1(n ; x)=$ $\max \left\{k ; \varepsilon_{k}(x)=1, k \leq n\right\}$ where $\underline{1}=\underline{1}(n ; x)=0$ if $\left\{k ; \varepsilon_{k}(x)=1, k \leq n\right\}=\phi$. Then, for any irrational $x \in(0,1)$

$$
\left(\begin{array}{ll}
r_{n}(x) & s_{n}(x) \tag{1,14}\\
t_{n}(x) & u_{n}(x)
\end{array}\right)=\left(\begin{array}{cc}
q_{j} & q_{j-1} \\
p_{j} & p_{j-1}
\end{array}\right)\left(\begin{array}{cc}
1 & n-1 \\
0 & 1
\end{array}\right) \quad(n \geq 1)
$$

Proof. If $j=0$, then

$$
\begin{aligned}
\left(\begin{array}{cc}
r_{n}(x) & s_{n}(x) \\
t_{n}(x) & u_{n}(x)
\end{array}\right) & =\left(\begin{array}{ll}
1 & 1 \\
0 & \underbrace{1}_{n}
\end{array}\right) \cdots\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
q_{0} & q_{-1} \\
p_{0} & p_{-1}
\end{array}\right)\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right)
\end{aligned}
$$

If $j \geq 1$, then $S^{j} x=T^{a_{1}+\cdots+a_{j} x}$ and $T^{n} x=T^{n-1}\left(T^{1} x\right)=T^{n-1}\left(S^{j} x\right)$. Therefore, by $(1,13)$, the representation of the inverse branch of T^{n} is

$$
\left(\begin{array}{ll}
a_{1} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a_{2} & 0 \\
1 & 1
\end{array}\right) \ldots\left(\begin{array}{cc}
a_{j} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & n-\underline{1} \\
0 & 1
\end{array}\right) .
$$

The fraction $\frac{p_{n}}{q_{n}}$ is called the n-th principal convergent of x and the fractions $\left\{\frac{\lambda \cdot p_{n}+p_{n-1}}{\lambda \cdot q_{n}+q_{n-1}}: \lambda=1,2, \cdots, a_{n+1}-1\right\}$ are called mediant convergents of $\frac{p_{n}}{q_{n}}$.

Theorem 1.1. Put $v_{n}(x)=r_{n}(x)+s_{n}(x)$ and $w_{n}(x)=t_{n}(x)+u_{n}(x)$. Then for any irrational $x \in(0,1)$

$$
\left\{\frac{w_{n}}{v_{n}}: n \geqq 1\right\}=\bigcup_{k=0}^{\infty}\left\{\frac{\lambda \cdot p_{k}+p_{k-1}}{\lambda \cdot q_{k}+q_{k-1}}: \lambda=1,2, \cdots, a_{k+1}\right\} .
$$

Proof. Put

$$
\begin{aligned}
& \overline{1}=\overline{1}(n: x)=\min _{k}\left\{k: \varepsilon_{k}(x)=1, n<k\right\} \\
& \underline{1}=\underline{1}(n: x)=\max _{k}\left\{k ; \varepsilon_{k}(x)=1, k \leqq n\right\} .
\end{aligned}
$$

Then from $(1,12)$ we have

$$
\overline{1}-\underline{1}=a_{j+1}(x)
$$

By the lemma 1.1.

$$
\binom{r_{n}+s_{n}}{t_{n}+u_{n}}=\binom{(n-\underline{1}+1) q_{j}+q_{j-1}}{(n-\underline{1}+1) p_{j}+p_{j-1}} .
$$

Putting $\lambda=n-\underline{1}+1$, we have $1 \leq \lambda \leq a_{j+1}$ and so we obtain the result.
We now call a fraction

$$
\frac{w_{n}}{v_{n}}=\frac{t_{n}(x)+u_{n}(x)}{r_{n}(x)+s_{n}(x)}
$$

the n-th mediant convergent of x, and the algorithm (X, T) the mediant convergent transformation. We prepare some formulae concerning the approximation.

Proposition 1.2. For any irrational $x \in(0,1)$

$$
\begin{equation*}
\left|x-\frac{w_{n}(x)}{v_{n}(x)}\right|=\frac{1-T^{n} x}{v_{n}^{2}(x)\left\{\frac{r_{n}}{v_{n}}\left(1-T^{n} x\right)+T^{n} x\right\}} . \tag{1,15}
\end{equation*}
$$

In particular,

$$
\left|x-\frac{w_{n}(x)}{v_{n}(x)}\right| \text { and }\left|v_{n}(x) \cdot x-w_{n}(x)\right|
$$

converge to 0 as $n \rightarrow \infty$.
Proof. By proposition 1.1. and since $r_{n} u_{n}-s_{n} t_{n}= \pm 1$, we have

$$
\begin{aligned}
\left|x-\frac{w_{n}}{v_{n}}\right| & =\left|\frac{t_{n}+T^{n} x \cdot u_{n}}{r_{n}+T^{n} x \cdot s_{n}}-\frac{t_{n}+u_{n}}{r_{n}+s_{n}}\right| \\
& =\frac{1-T^{n} x}{v_{n}\left(r_{n}+T^{n} x \cdot s_{n}\right)}
\end{aligned}
$$

From $r_{n} \not \nearrow \infty$ and the definition of v_{n}, w_{n}, we obtain the proposition.
For any $0-1$ sequence $\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n}$, let $\varphi_{s_{i}}$ be the affine transformation of the $\left(\xi_{i-1}, \eta_{i-1}\right)$-plane into the $\left(\xi_{i}, \eta_{i}\right)$-plane such that

$$
\varphi_{\mathbf{\varepsilon}_{i}}:\binom{\xi_{i-1}}{\eta_{i-1}}=A_{\mathbf{v}_{i}}\binom{\xi_{i}}{\eta_{i}}
$$

Then we have

Proposition 1.3. For any irrational $x \in(0,1)$

$$
\begin{equation*}
\left|x \cdot \xi_{0}-\eta_{0}\right|=g(x) g(T x) \cdots g\left(T^{n-1} x\right)\left|T^{n} x \cdot \xi_{n}-\eta_{n}\right| \tag{1,16}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\left|x \cdot v_{n}-w_{n}\right|=g(x) g(T x) \cdots g\left(T^{n-1} x\right)\left(1-T^{n} x\right) \tag{1,17}
\end{equation*}
$$

where

$$
g(x)=\left\{\begin{array}{cl}
1-x, & \text { if } x \in I_{0} \\
x, & \text { if } x \in I_{1} .
\end{array}\right.
$$

Proof. By $\varphi_{\mathrm{a}_{1}(x)}$ the linear form $x \xi_{0}-\eta_{0}$ is transformed into the following linear form:

$$
x \cdot \xi_{0}-\eta_{0}=\left\{\begin{array}{lll}
(1-x)\left(T x \cdot \xi_{1}-\eta_{1}\right), & \text { if } & x \in I_{0} \\
-x\left(T x \cdot \xi_{1}-\eta_{1}\right), & \text { if } x \in I_{1}
\end{array}\right.
$$

This shows that formula $(1,16)$ is valid for $n=1$. The general case is obtained by induction. Using the relation

$$
\binom{\xi_{0}}{\eta_{0}}=A_{\varepsilon_{1}(x)} \cdots A_{\varepsilon_{n}(x)}\binom{\xi_{n}}{\eta_{n}}=\left(\begin{array}{cc}
r_{n} & s_{n} \\
t_{n} & u_{n}
\end{array}\right)\binom{\xi_{n}}{\eta_{n}} .
$$

We obtain $(1,17)$ by putting $\left(\xi_{n}, \eta_{n}\right)=(1,1)$.
It is well known that the simple continued fraction transformato transformation (X, S) has the invariant measure ν with density $d \nu=\frac{1}{\log 2} \frac{d x}{1+x}$ and that the dynamical system (X, S, ν) is ergodic. The following was proved in [3] and [6].

Theorem. The mediant convergent transformation (X, T) has a σ-finite invariant measure μ :

$$
d \mu=\frac{d x}{x}
$$

and the dynamical system (X, T, μ) is ergodic.
This can also be seen by using a suitable jump transformation [9].
Here we introduce the natural extension of (X, T). We will see afterwards that the natural extension is useful for number theoretical considerations.

Let $\bar{X}=[0,1] \times[0,1]$ and let the map \bar{T} be defined on \bar{X} by

$$
\begin{align*}
\bar{T}(x, y) & = \begin{cases}\left(\frac{x}{1-x}, \frac{y}{1+y}\right), & \text { if } x \in I_{0} \\
\left(\frac{1-x}{x}, \frac{1}{1+y}\right), & \text { if } x \in I_{1}\end{cases} \tag{1,18}\\
& =\left\{\begin{array}{lll}
\left(T x, V_{0} y\right), & \text { if } & x \in I_{0} \\
\left(T x, V_{0} y\right), & \text { if } & x \in I_{1}
\end{array}\right.
\end{align*}
$$

Then we see the map \bar{T} is one to one and onto.
Theorem 1.3. Let $\bar{\mu}$ be the measure on \bar{X} given by

$$
\begin{equation*}
d \bar{\mu}=\frac{d x d y}{(x+y-x y)^{2}} \tag{1,19}
\end{equation*}
$$

Then $\bar{\mu}$ is a σ-finite invariant measure for \bar{T}, and the natural extension $(\bar{X}, \bar{T}, \bar{\mu})$ is ergodic.

Proof. The Jacobian $J(\bar{T})$ of \bar{T} is

$$
J(\bar{T})= \begin{cases}\frac{1}{(1-x)^{2}} \cdot \frac{1}{(1+y)^{2}}, & \text { if } \\ \frac{1}{x^{2}} \cdot \frac{1}{(1+y)^{2}}, & \text { if } \quad x \in I_{0}\end{cases}
$$

Putting $k(x, y)=\frac{1}{(x+y-x y)^{2}}$, it is not difficult to see that the following equation holds:

$$
k(\bar{T}(x, y)) J(\bar{T})=k(x, y)
$$

Hence $\bar{\mu}$ is an invariant measure for \bar{T}. The ergodicity of $(\bar{X}, \bar{T}, \bar{\mu})$ is due to [6].

Sub-lemma. Let $\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)$ be a $0-1$ sequence. Put

$$
\left(\begin{array}{cc}
r_{n} & s_{n} \\
t_{n} & u_{n}
\end{array}\right)=A_{\mathbf{e}_{1}} \cdots A_{\mathbf{\varepsilon}_{n}}
$$

and

$$
\left(\begin{array}{cc}
r_{n}^{\prime} & s_{n}^{\prime} \tag{1,20}\\
t_{n}^{\prime} & u_{n}^{\prime}
\end{array}\right)=A_{\mathbf{\varepsilon}_{n}} \cdots A_{\mathbf{\varepsilon}_{1}} .
$$

Then

$$
\begin{equation*}
t_{n}^{\prime}+u_{n}^{\prime}=r_{n} \quad \text { and } \quad r_{n}^{\prime}+s_{n}^{\prime}=r_{n}+s_{n} \tag{1,21}
\end{equation*}
$$

The proof is easily obtained by induction.

Fundamental-lemma.

$$
\bar{T}^{n}(x, 1)=\left(T^{n} x, \frac{r_{n}}{r_{n}+s_{n}}\right) .
$$

Proof. By the definition of \bar{T} and notation (1,20), we have

$$
\bar{T}^{n}(x, y)=\left(T^{n} x, \frac{t_{n}^{\prime}+u_{n}^{\prime} y}{r_{n}^{\prime}+s_{n}^{\prime} y}\right) .
$$

In particular,

$$
\bar{T}^{n}(x, 1)=\left(T^{n} x, \frac{r_{n}}{r_{n}+s_{n}}\right) \quad \text { (sub-lemma) } .
$$

We know the following basic properties:
(1) If $q|q x-p|<1 / 2$ and $(q, p)=1$, then $\frac{p}{q}$ is a principal convergent of x, i.e., there exists k such that $\frac{p}{q}=\frac{p_{k}}{q_{k}}$ (Legendre's theorem [8]).
(2) If $q|q x-p| \leq 1$ and $(q, p)=1$, then $\frac{p}{q}$ si a principal or a mediant conver-
gent of x. gent of x.
Conversly, for all irrational x

$$
\begin{equation*}
q_{n}\left|q_{n} x-p_{n}\right|<1 \quad \text { for all } \quad n \geq 1 \tag{3}
\end{equation*}
$$

For the mediant convergents $\frac{w_{n}}{v_{n}}$, the values $v_{n}\left|v_{n} \cdot x-w_{n}\right|$ are unbounded in general. In fact, put

$$
\begin{equation*}
f(x, y)=\frac{1-x}{y(1-x)+x} \quad \text { on } \quad \bar{X} \tag{1,22}
\end{equation*}
$$

Then from proposition 1.2. and the fundamental lemma we have

$$
\begin{equation*}
v_{n}\left|v_{n} \cdot x-w_{n}\right|=f\left(\bar{T}^{n}(x, 1)\right) \quad n \geq 1 \tag{1,23}
\end{equation*}
$$

This suggests that the values $v_{n}\left|v_{n} \cdot x-w_{n}\right|$ are unbounded for some x.
Let $D_{\lambda}(\lambda>0)$ be the subset of \bar{X} defined by

$$
D_{\lambda}=\{(x, y) \in \bar{X} ; f(x, y) \leq \lambda\} .
$$

Then we have
Proposition 1.4. For any irrational $x \in(0,1)$

$$
v_{n}\left|v_{n} \cdot x-w_{n}\right| \leq \lambda \quad \text { iff } \bar{T}^{n}(x, 1) \in D_{\lambda} .
$$

2 Nearest mediant convergent transformation

In this section another algorithm which will be called nearest mediant convergents transformation is proposed.

Let $X=[0,1]$ and let the map T_{1} be defined on X by
$(2,1)$

$$
T_{1} x= \begin{cases}\frac{1-x}{x}, & \text { if } x \in J_{1} \\ \frac{x}{1-x}, & \text { if } x \in J_{2} \\ \frac{x}{1-(k-2) x}, & \text { if } x \in J_{k} \quad(k \geq 3)\end{cases}
$$

where

$$
J_{n}=\left[\frac{1}{n+1}, \frac{1}{n}\right)
$$

(see figure 2).

The relations between the maps T, S and T_{1} are as follows:

$$
T_{1} x=\left\{\begin{array}{lll}
T x, & \text { if } & x \in J_{1} \cup J_{2} \tag{2,2}\\
T^{k-2} x, & \text { if } & x \in \bigcup_{k \geq 3} J_{k}
\end{array}\right.
$$

and

$$
S x= \begin{cases}T_{1} x, & \text { if } x \in J_{1} \tag{2,3}\\ T_{1}^{2} x, & \text { if } x \in J_{2} \\ T_{1}^{3} x, & \text { if } x \in \bigcup_{k \geq 3} J_{k}\end{cases}
$$

We denote the inverse branches of T_{1} by

$$
\begin{array}{ll}
Z_{1}(x)=\frac{1}{1+x} & x \in[0,1] \\
Z_{2}(x)=\frac{x}{1+x} & x \in[1 / 2,1] \tag{2,4}
\end{array}
$$

and

$$
Z_{k}(x)=\frac{x}{1+(k-2) x} \quad x \in[1 / 3,1 / 2] \quad(k \geq 3)
$$

and their associated matrices by

$$
B_{1}=\left(\begin{array}{ll}
1 & 1 \tag{2,5}\\
1 & 0
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad B_{2}=\left(\begin{array}{cc}
1 & k-2 \\
0 & 1
\end{array}\right)
$$

Then, the relations $(2,2)$ and $(2,3)$ have the representations:

$$
B_{k}=\left\{\begin{array}{lll}
A_{1}, & \text { if } & k=1 \tag{2,6}\\
A_{0}, & \text { if } & k=2 \\
\underbrace{}_{0} \cdots A_{0}, & \text { if } & k \geq 3
\end{array}\right.
$$

and

$$
C_{k}=\left(\begin{array}{ll}
k & 1 \tag{2,7}\\
1 & 0
\end{array}\right)= \begin{cases}B_{1}, & \text { if } k=1 \\
B_{2} B_{1}, & \text { if } k=2 \\
B_{k} B_{2} B_{1}, & \text { if } k \geq 3\end{cases}
$$

Put $\delta_{n}=\delta_{n}(x)=k$, if $T_{1}^{n-1} x \in J_{k}$. Then the sequences of digits δ_{n} have the following Markov property:
if $\delta_{i} \geq 3, \quad$ then $\delta_{i+1}=2$
if $\delta_{i}=2$, then $\delta_{i+1}=1$.
if $\delta_{i}=1, \quad$ then there is no restriction on δ_{i+1}.
Let the 2×2 matrix $\left(\begin{array}{ll}r_{n}^{(1)} & s_{n}^{(1)} \\ t_{n}^{(1)} & u_{n}^{(1)}\end{array}\right)$ be defined by

$$
\left(\begin{array}{ll}
r_{n}^{(1)} & s_{n}^{(1)} \tag{2,9}\\
t_{n}^{(1)} & u_{n}^{(1)}
\end{array}\right)=B_{\delta_{1}(x)} B_{\delta_{2}(x)} \cdots B_{\delta_{n}(x)} .
$$

Then we have the following.
Proposition 2.1. For any irrational $x \in(0,1)$

$$
\begin{equation*}
x=\frac{t_{n}^{(1)}+u_{n}^{(1)} \cdot T_{1}^{n} x}{r_{n}^{(1)}+s_{n}^{(1)} \cdot T_{1}^{n} x} \tag{2,10}
\end{equation*}
$$

The proof is easily obtained by using the identity:

$$
x=Z_{\delta_{1}(x)}\left(Z_{\delta_{2}(x)} \cdots Z_{\delta_{n}(x)}\left(T_{1}^{n} x\right)\right)
$$

Sub-lemma

(i) If $x \in J_{k}(k \geq 3)$, then (1) $a_{1}(x)=\delta_{1}(x)=k, \delta_{2}(x)=2, \delta_{3}(x)=1$
(2) $T_{1}^{3} x=S x$
(3) $B_{\delta_{1}(x)} B_{\delta_{2}(x)} B_{\delta_{3}(x)}=\left(\begin{array}{ll}a_{1}(x) & 1 \\ 1 & 0\end{array}\right)$
(ii) If $x \in J_{2}$, then
(1) $a_{1}(x)=\delta_{1}(x)=2, \delta_{2}(x)=1$
(2) $T_{1}^{2} x=S x$
(3) $B_{\delta_{1}(x)} B_{\delta_{2}(x)}=\left(\begin{array}{ll}a_{1}(x) & 1 \\ 1 & 0\end{array}\right)$
(iii) If $x \in J_{1}$, then
(1) $a_{1}(x)=\delta_{1}(x)=1$
(2) $T_{1} x=S x$
(3) $\quad B_{\delta_{1}(x)}=\left(\begin{array}{ll}a_{1}(x) & 1 \\ 1 & 0\end{array}\right)$.

Lemma 2.1. Let $j=j(n: x)={ }^{\prime}\left\{k: \delta_{k}(x)=1, k \leq n\right\} \quad$ and $\quad l=l(n: x)=$ $\max \left\{k: \delta_{k}(x)=1, k \leq n\right\}$. Then the matrix $\left(\begin{array}{ll}(1) & s_{n}^{(1)} \\ t_{n}^{(1)} & u_{n}^{(1)}\end{array}\right)$ has one of the following
forms:

$$
\left(\begin{array}{ll}
r_{n}^{(1)} & s_{n}^{(1)} \\
t_{n}^{(1)} & u_{n}^{(1)}
\end{array}\right)=\left\{\begin{array}{lll}
\left(\begin{array}{cc}
q_{j} & q_{j-1} \\
p_{j} & p_{j-1}
\end{array}\right), & \text { if } & n=l \\
\left(\begin{array}{cc}
q_{j} & q_{j-1} \\
p_{j} & p_{j-1}
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), & \text { if } & n-l=1 \text { and } \\
\left(\begin{array}{cc}
q_{j} & q_{j-1} \\
p_{j} & p_{j-1}
\end{array}\right)\left(\begin{array}{cc}
1 & a_{j+1}-2 \\
0 & 1
\end{array}\right), & \text { if } & n-l=1 \text { and } \\
\left(\begin{array}{cc}
q_{j} & q_{j-1} \\
p_{j} & p_{j-1}
\end{array}\right)\left(\begin{array}{cc}
1 & a_{j+1}-2 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), & \text { if } & n-l=2 \text { and } \\
S^{j} x \in J_{k} \\
S^{j} x \in J_{k}
\end{array}\right.
$$

Proof. From the sublemma we have

$$
B_{\delta_{1}(x)} B_{\delta_{2}(x)} \cdots B_{\delta_{n}(x)}=\left\{\begin{array}{ccc}
\left(\begin{array}{cc}
a_{1}(x) & 1 \\
1 & 0
\end{array}\right) B_{\delta_{4}(x)} \cdots B_{\delta_{n}(x)}, & \text { if } & x \in J_{k} \\
\left(\begin{array}{cc}
a_{1}(x) & 1 \\
1 & 0
\end{array}\right) B_{\delta_{3}(x)} \cdots B_{\delta_{n}(x)}, & \text { if } & x \in J_{2} \\
\left(\begin{array}{cc}
a_{1}(x) & 1 \\
1 & 0
\end{array}\right) B_{\delta_{2}(x)} \cdots B_{\delta_{n}(x)}, & \text { if } & x \in J_{1}
\end{array}\right.
$$

Repeating this procedure with x replaced by $S x, S^{2} x, \cdots, S^{j} x$ and so on, we obtain the lemma. For $j=0$, lemma 2.1. is also valid.

Theorem 2.1. Put $v_{n}^{(1)}=r_{n}^{(1)}(x)+s_{n}^{(1)}(x)$ and $w_{n}^{(1)}=t_{n}^{(1)}(x)+u_{n}^{(1)}(x)$. Then for any irrational $x \in(0,1)$

$$
\left\{\frac{w_{n}^{(1)}}{v_{n}^{(1)}} ; n \geq 1\right\}=\bigcup_{k=1}^{\infty}\left\{\frac{p_{k}-p_{k-1}}{q_{k}-q_{k-1}}, \frac{p_{k}}{q_{k}}, \frac{p_{k}+p_{k-1}}{q_{k}+q_{k-1}}\right\} .
$$

Proof. By lemma 2.1.

$$
\frac{w_{n}^{(1)}}{v_{n}^{(1)}}= \begin{cases}\frac{p_{j}+p_{j-1}}{q_{j}+q_{j-1}}, & \text { if } n=l \\ \frac{2 p_{j}+p_{j-1}}{2 q_{j}+q_{j-1}}=\frac{p_{j+1}}{q_{j+1}}, & \text { if } n-l=1 \text { and } S^{j} x \in J_{2} \\ \frac{\left(a_{j+1}-1\right) p_{j}+p_{j-1}}{\left(a_{j+1}-1\right) q_{j}+q_{j-1}}=\frac{p_{j+1}-p_{j}}{q_{j+1}-q_{j}}, & \text { if } n-l=1 \text { and } S^{j} x \in J_{k} \\ \frac{p_{j+1}}{q_{j+1}}, & \text { if } n-l=2 \text { and } S^{j} x \in J_{k}\end{cases}
$$

Therefore for any $n \geq 1$.

$$
\frac{w_{n}^{(1)}}{v_{n}^{(1)}} \in \bigcup_{k=1}^{\infty}\left\{\frac{p_{k}-p_{k-1}}{q_{k}-q_{k-1}}, \frac{p_{k}}{q_{k}}, \frac{p_{k}+p_{k-1}}{q_{k}+q_{k-1}}\right\}
$$

Conversely, from (2,7), for any $\frac{p_{k}+p_{k-1}}{q_{k}+q_{k-1}}$ there exists n such that

$$
\left(\begin{array}{cc}
q_{k} & q_{k-1} \\
p_{k} & p_{k-1}
\end{array}\right)=\left(\begin{array}{cc}
r_{n}^{(1)} & s_{n}^{(1)} \\
t_{n}^{(1)} & u_{n}^{(1)}
\end{array}\right)
$$

Therefore

$$
\frac{q_{k}+q_{k-1}}{p_{k}+p_{k-1}}=\frac{w_{n}^{(1)}}{v_{n}^{(1)}}
$$

Similary, for any $\frac{p_{k}}{q_{k}}$, if $a_{k} \geqq 2$ then there exists an n such that

$$
\left(\begin{array}{cc}
q_{k-1} & q_{k-2} \\
p_{k-1} & p_{k-2}
\end{array}\right)\left(\begin{array}{cc}
1 & a_{k}-2 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
r_{n}^{(1)} & s_{n}^{(1)} \\
t_{n}^{(1)} & u_{n}^{(1)}
\end{array}\right)
$$

if $a_{k}=1$ then there exists an n such that

$$
\left(\begin{array}{ll}
q_{k-1} & q_{k-2} \\
p_{k-1} & p_{k-2}
\end{array}\right)=\left(\begin{array}{ll}
r_{n}^{(1)} & s_{n}^{(1)} \\
t_{n}^{(1)} & u_{n}^{(1)}
\end{array}\right)
$$

Therefore

$$
\frac{p_{k}}{q_{k}}=\frac{w_{n}^{(1)}}{v_{n}^{(1)}}
$$

Finally, for any $\frac{p_{k}-p_{k-1}}{q_{k}-q_{k-1}}\left(\neq \frac{p_{k-2}}{q_{k-2}}\right)$, there exists an n such that

$$
\left(\begin{array}{cc}
q_{k-1} & q_{k-2} \\
p_{k-1} & p_{k-2}
\end{array}\right)\left(\begin{array}{cc}
1 & a_{k}-2 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
r_{n}^{(1)} & s_{n}^{(1)} \\
t_{n}^{(1)} & u_{n}^{(1)}
\end{array}\right),
$$

hence

$$
\frac{p_{k}-p_{k-1}}{q_{k}-q_{k-1}}=\frac{w_{n}^{(1)}}{v_{n}^{(1)}}
$$

We now call the fraction $\frac{w_{n}^{(1)}}{v_{n}^{(1)}}=\frac{t_{n}^{(1)}(x)+u_{n}^{(1)}(x)}{r_{n}^{(1)}(x)+s_{n}^{(1)}(x)}$ the n-th nearest mediant convergent of x, and the algorithm $\left(X, T_{1}\right)$ the nearest mediant convergent transformation. We prepare also some formula concering the approximation.

Proposition 2.2. For any irrational $x \in(0,1)$

$$
\begin{equation*}
\left|x-\frac{w_{n}^{(1)}(x)}{v_{n}^{(1)}(x)}\right|=\frac{1-T_{1}^{n} x}{\left(v_{n}^{(1)}\right)^{2}\left\{\frac{r_{n}^{(1)}}{v_{n}^{(1)}}\left(1-T_{1}^{n} x\right)+T_{1}^{n} x\right\}} \tag{2,11}
\end{equation*}
$$

The proof is the same as for proposition 1.2.
Proposition 2.3. For any irrational $x \in(0,1)$

$$
\begin{equation*}
\left|x \cdot v_{n}^{(1)}(x)-w_{n}^{(1)}(x)\right|=g_{1}(x) g_{1}\left(T_{1} x\right) \cdots g_{1}\left(T_{1}^{n-1} x\right)\left(1-T_{1}^{n} x\right) \tag{2,12}
\end{equation*}
$$

where

$$
g_{1}(x)= \begin{cases}x, & \text { if } x \in J_{1} \\ 1-x, & \text { if } x \in J_{2} \\ 1-(k-2) x, & \text { if } x \in J_{k} \quad(k \geq 3)\end{cases}
$$

Proof. The proof is similar to that of Proposition 1.3. In fact, for each sequence $\left(\delta_{1}(x), \cdots, \delta_{n}(x)\right)$, we consider the affine transformations $\varphi_{\delta_{i}}$ from $\left(\xi_{i-1}, \eta_{i-1}\right)$-plane to the $\left(\xi_{i}, \eta_{i}\right)$-plane defined by

$$
\varphi_{\delta_{i}}:\binom{\xi_{i-1}}{\eta_{i-1}}=B_{\delta_{i}}\binom{\xi_{i}}{\eta_{i}}
$$

The absolute value of the linear form $x \cdot \xi_{0}-\eta_{0}$ is transformed in the following way:

$$
\left|x \cdot \xi_{0}-\eta_{0}\right|=g_{1}(x)\left|T_{1} x \cdot \xi_{1}-\eta_{1}\right|
$$

Therefore, we have

$$
\begin{equation*}
\left|x \cdot \xi_{0}-\eta_{0}\right|=g_{1}(x) \cdots g_{1}\left(T_{1}^{n-1} x\right)\left|T_{1}^{n} x \cdot \xi_{n}-\eta_{n}\right| \quad(n \geq 1) \tag{2,13}
\end{equation*}
$$

On the other hand we know

$$
\binom{\xi_{0}}{\eta_{0}}=B_{\delta_{1}(x)} \cdots B_{\delta_{n}(x)}\binom{\xi_{n}}{\eta_{n}}=\left(\begin{array}{ll}
r_{n}^{(1)} & s_{n}^{(1)} \\
t_{n}^{(1)} & u_{n}^{(1)}
\end{array}\right)\binom{\xi_{n}}{\eta_{n}}
$$

Hence, we obtain the result by putting the value $\left(\xi_{n}, \eta_{n}\right)=(1,1)$ into $(2,13)$.
Now, we introduce the natural extension of $\left(X, T_{1}\right)$. Let R be the subset of \bar{X} such that

$$
\begin{aligned}
R & =\{(x, y) \in \bar{X} ; x \geq 1 / 3 \text { or }(x \leq 1 / 3 \text { and } y \geq 1 / 2)\} \\
& =J_{1} \times I \cup J_{2} \times I \cup\left(\cup_{k \geq 3} J_{k} \times I_{1}\right)
\end{aligned}
$$

where $I=[0,1]$ and $I_{1}=[1 / 2,1]$, and let the map \bar{T}_{1} be defined on R by

$$
\bar{T}_{1}(x, y)= \begin{cases}\left(\frac{1-x}{x}, \frac{1}{1+y}\right), & \text { if } \quad(x, y) \in J_{1} \times I \\ \left(\frac{x}{1-x}, \frac{y}{1+y}\right), & \text { if } \quad(x, y) \in J_{2} \times I \\ \left(\frac{x}{1-(k-2) x}, \frac{y}{1+(k-2) y}\right), & \text { if } \quad(x, y) \in J_{k} \times I_{1}\end{cases}
$$

In other words,

$$
= \begin{cases}\left(T_{1} x, Z_{1}(y)\right), & \text { if } \quad(x, y) \in J_{1} \times I \\ \left(T_{1} x, Z_{2}(y)\right), & \text { if }(x, y) \in J_{2} \times I \\ \left(T_{1} x, Z_{k}(y)\right), & \text { if } \quad(x, y) \in J_{k} \times I_{1}\end{cases}
$$

Theorem 2.1. The transformation $\left(R, \bar{T}_{1}\right)$ is the induced map of (\bar{X}, \bar{T}) on R. Therefore, the transformation $\left(R, \bar{T}_{1}\right)$ has an invariant probability measure $\bar{\mu}_{R}$ with density

$$
d \bar{\mu}_{R}=\frac{1}{2 \log 2} \cdot \frac{d x d y}{(x+y-x y)^{2}} .
$$

Moreover, the dynamical system ($R, \bar{T}_{1}, \bar{\mu}_{R}$) is ergodic.
Proof. From the definition (2,1), we can easily see that

$$
\begin{aligned}
& \bar{T}\left(J_{1} \times I\right)=I \times[1 / 2,1] \\
& \bar{T}\left(J_{2} \times I\right)=J_{1} \times[0,1 / 2]
\end{aligned}
$$

and for $k \geq 3$

$$
\bar{T}^{k-2}\left(J_{k} \times I\right)=J_{2} \times\left[\frac{1}{k}, \frac{1}{k-1}\right)
$$

and

$$
\bar{T}^{j}\left(J_{k} \times I\right) \cap R=\phi \quad(1 \leq j<k-2) .
$$

(see figure 3).

Therefore let \bar{T}_{R} be the induced automorphism of \bar{T} on R, then

$$
\bar{T}_{R}(x, y)=\bar{T}_{1}(x, y)
$$

Hence by proposition 2.1. the invariant measure $\bar{\mu}_{R}$ is given by

$$
d \bar{\mu}_{R}=\frac{1}{2 \log 2} \cdot \frac{d x d y}{(x+y-x y)^{2}}
$$

where $2 \log 2$ is a normalizing constant. The ergodicity of the dynamical system $\left(R, \bar{T}_{1}, \bar{\mu}_{R}\right)$ follows from the ergodicity of $(\bar{X}, \bar{T}, \bar{\mu})$.

Taking the marginal distribution we have
Corollary 2.1. The transformation $\left(X, T_{1}\right)$ has an invariant measure μ_{1} :

$$
d \mu_{1}=\left\{\begin{array}{lll}
\frac{1}{2 \log 2} \cdot \frac{d x}{1+x}, & \text { if } & x \in[0,1 / 3] \\
\frac{1}{2 \log 2} \cdot \frac{d x}{x}, & \text { if } & x \in[1 / 3,1]
\end{array}\right.
$$

and the dynamical system $\left(X, T_{1}, \mu_{1}\right)$ is ergodic.

Corollary 2.3.

$$
\bar{T}_{1}^{n}(x, 1)=\left(T_{1}^{n} x, \frac{\boldsymbol{r}_{n}^{(1)}}{\boldsymbol{r}_{n}^{(1)}+s_{n}^{(1)}}\right)
$$

Proof. There exists an $m=m(n, x, 1)$ such that $\bar{T}_{1}^{n}(x, 1)=\bar{T}^{m}(x, 1)$ and so $r_{m}=r_{n}^{(1)}$ and $s_{m}=s_{n}^{(1)}$. Therefore we obtain the result, from the fundamental lemma in $\S 1$.

Corollary 2.3.

(i) Let a fraction $\frac{p}{q}$ satisfies $q|q \cdot x-p|<1$ and $(q, p)=1$. Then there exists a k such that $\frac{p}{q}=\frac{w_{k}^{(1)}}{v_{k}^{(1)}}$ (Fatou).
(ii) If $\frac{w_{n}^{(1)}}{v_{n}^{(1)}}$ is the n-th convergent of x, then $v_{n}^{(1)}\left|v_{n}^{(1)} \cdot x-w_{n}^{(1)}\right| \leq 2$.

Proof. To prove (i), note that by property 1.2. and theorem 1.1., there exists n such that $\frac{p}{q}=\frac{w_{n}}{v_{n}}$, that is, $\frac{w_{n}}{v_{n}}$ is the n-th mediant convergent and satisfies

$$
v_{n}\left|v_{n} x-w_{n}\right| \leq 1
$$

From proposition 1.4. this is equivalent to

$$
\bar{T}^{n}(x, 1) \in D_{1}
$$

Since D_{1} is a subset of R, there exists k such that

$$
\bar{T}_{R}^{k}(x, 1)=\bar{T}^{n}(x, 1)
$$

, in other words, $\bar{T}_{R}^{k}(x, 1)=\bar{T}_{1}^{k}(x, 1)$. Therefore

$$
\frac{w_{n}}{v_{n}}=\frac{w_{k}^{(1)}}{v_{k}^{(1)}} .
$$

Part (ii) can be seen as follows. By proposition 2.1. and corollary 2.2.

$$
v_{n}^{(1)}\left|v_{n}^{(1)} \cdot x-w_{n}^{(1)}\right|=f\left(\bar{T}_{1}^{k}(x, 1)\right) .
$$

On the other hand, $\bar{T}_{1}^{n}(x, 1) \in R$ and $D_{2} \supset R$. Therefore

$$
v_{n}^{(1)}\left|v_{n}^{(1)} \cdot x-w_{n}^{(1)}\right| \leq 2 .
$$

3. Some metrical results

In this section we prove Erdös' theorem for $0<\lambda \leqq 1$ by using the ergodic theorem.

Proposition 3.1. For almost all $x \in(0,1)$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \log v_{n}^{(1)}(x)=\frac{\pi^{2}}{24 \log 2} \tag{3,1}
\end{equation*}
$$

Proof. Let $\left\{a_{k}(x) ; k \leqq N\right\}$ be a sequence of digits with respect to a simple continued fraction. Put
$n(m)={ }^{\prime}\left\{k ; a_{k}(x)=1, k \leq m\right\}+2^{\ddagger}\left\{k ; a_{k}(x)=2, k \leq m\right\}+3^{\sharp}\left\{k ; a_{k}(x) \geq 3, k \leq m\right\}$.
Then, from theorem 2.1. we have

$$
v_{n(m)}^{(1)}=q_{m} \quad \text { for all } \quad m \geq 1
$$

By using the ergodic theorem for the dynamical system (X, S, ν), we know ([1]) that for almost all $x \in(0,1)$
(1) $\lim _{m \rightarrow \infty} \frac{n(m)}{m}=\nu\left(J_{1}\right)+2 \nu\left(J_{2}\right)+3 \nu\left(\bigcup_{k \geq 3} J_{k}\right)=2$
and
(2) $\lim _{m \rightarrow \infty} \frac{1}{m} \log q_{m}=\frac{\pi^{2}}{12 \log 2}$.

Therefore,

$$
\lim _{m \rightarrow \infty} \frac{1}{n(m)} \log v_{n(m)}^{(1)}=\lim _{m \rightarrow \infty} \frac{m}{n(m)} \frac{1}{m} \log q_{m}=\frac{\pi^{2}}{24 \log 2}
$$

Noting that $m n(m+1)-n(m) \leq 3$ and $v_{n+1}^{(1)}>v_{n}^{(1)}$, we get the result.
Proposition 3.3. For almost all $x \in(0,1)$
(i) $\lim _{n \rightarrow \infty}-\frac{1}{n} \log \left|v_{n}^{(1)} \cdot x-w_{n}^{(1)}\right|=\frac{\pi^{2}}{24 \log 2}$
and
(ii) $\lim _{n \rightarrow \infty}-\frac{1}{n} \log \left|x-\frac{w_{n}^{(1)}}{v_{n}^{(1)}}\right|=\frac{\pi^{2}}{12 \log 2}$

Proof. From proposition 2.2. we have

$$
-\frac{1}{n} \log \left|v_{n}^{(1)} \cdot x-w_{n}^{(1)}\right|=\frac{1}{n} \log v_{n}^{(1)}-\frac{1}{n} \log f\left(\bar{T}_{1}^{n}(x, 1)\right) .
$$

We show that for almost all $x \in(0,1)$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \log f\left(\bar{T}_{1}^{n}(x, 1)\right)=0 . \tag{3,2}
\end{equation*}
$$

From $(1,21)$ and theorem 2.2. we have

$$
\bar{\mu}_{1}\left(f\left(\bar{T}_{1}^{n}(x, y)\right)>\eta\right)=\bar{\mu}_{1}(f(x, y)<\eta)=\frac{\eta}{2 \log 2}
$$

for $0<\eta \leq 1$.
Therefore, we see that for any $\varepsilon>0$

$$
\sum_{n=1}^{\infty} \bar{\mu}_{1}\left\{f\left(\bar{T}_{1}^{n}(x, y)\right)<e^{-n \varepsilon}\right\}<+\infty .
$$

Hence, by using the Borel-Cantelli lemma,

$$
\left\{n ;-\frac{1}{n} \log f\left(\bar{T}^{n}(x, y)>\varepsilon\right\}<+\infty\right.
$$

for almost all (x, y), that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \log f\left(\bar{T}_{1}^{n}(x, y)\right)=0 \quad \text { for } \quad \text { a.a. }(x, y) . \tag{3,3}
\end{equation*}
$$

Note that the following inequality holds:

$$
\left|f(x, y)-f\left(x, y^{\prime}\right)\right| \leq c\left|y-y^{\prime}\right|
$$

where

$$
c=\frac{1}{\min _{(x, y) \in R}\left(y+\frac{x}{1-x}\right)} .
$$

In particular, remarking that from the definition of \bar{T}_{1}

$$
\bar{T}_{1}^{n}(x, y)=\left(T_{1}^{n} x, \frac{t_{n}^{\prime(1)}+y \cdot u_{n}^{\prime(1)}}{r_{n}^{\prime(1)}+y \cdot s_{n}^{\prime(1)}}\right)
$$

we have from sublemma in $\S 1$

$$
\begin{aligned}
\left|f\left(\bar{T}_{1}^{n}(x, y)\right)-f\left(\bar{T}_{1}^{u}(x, 1)\right)\right| & \leqq c\left|\frac{t_{n}^{\prime(1)}+y u_{n}^{\prime(1)}}{r_{n}^{\prime(1)}+y s_{n}^{(1)}}-\frac{t_{n}^{\prime(1)}+u_{n}^{\prime(1)}}{r_{n}^{\prime(1)}+s_{n}^{(1)}}\right| \\
& <\frac{c}{r_{n}^{\prime(1)}+s_{n}^{\prime(1)}}=\frac{c}{v_{n}^{(1)}}
\end{aligned}
$$

Therefore, from proposition 3.1. there exists $0<\eta<1$ such that

$$
\left|f\left(\bar{T}_{1}^{n}(x, y)\right)-f\left(\bar{T}_{1}^{n}(x, 1)\right)\right|<c \cdot \eta^{n},
$$

and so $(3,3)$ imply $(3,2)$. This completes the proof of (i). Part (ii) is obtained from

$$
-\frac{1}{n} \log \left|x-\frac{w_{n}^{(1)}}{v_{n}^{(1)}}\right|=2 \frac{1}{n} \log v_{n}^{(1)}-\frac{1}{n} \log f\left(\bar{T}_{1}^{n}(x, 1)\right) .
$$

Theorem 3.1. For almost all $x \in(0,1)$
$\lim _{N \rightarrow \infty} \frac{\left\{n ; v_{n}^{(1)}\left|v_{n}^{(1)} \cdot x-w_{n}^{(1)}\right| \leqq \lambda, 1 \leq n \leq N\right\}}{N}=\left\{\begin{array}{lll}\frac{\lambda}{2 \log 2} & \text { for } & 0 \leqq \lambda<1 \\ \frac{2-\lambda+2 \log \lambda}{2 \log 2} & \text { for } & 1 \leqq \lambda<2 .\end{array}\right.$
Proof. From proposition 1.4. we get

$$
\frac{\left\{n ; v_{n}^{(1)}\left|v_{n}^{(1)} \cdot x-w_{n}^{(1)}\right| \leqq \lambda, 1 \leq n \leq N\right\}}{N}=\frac{\sum_{n=1}^{N} \chi_{\lambda}\left(\bar{T}_{1}^{n}(x, 1)\right)}{N},
$$

where χ_{λ} is the indicator function of the set D_{λ}.

On the other hand, it is clear from the ergodic theorem that

$$
\lim _{N \rightarrow \infty} \frac{\sum_{n=1}^{N T} \chi_{\lambda}\left(\bar{T}_{1}^{n}(x, y)\right)}{N}=\bar{\mu}_{1}\left(D_{\lambda}\right)
$$

for almostl al (x, y).
Note that

$$
\begin{aligned}
& \left\{(x, y): \chi_{\lambda}\left(\bar{T}_{1}^{n}(x, y)\right) \neq \chi_{\lambda}\left(\bar{T}_{1}^{n}(x, 1)\right)\right\} \\
& \quad \subset\left\{(x, y): \lambda-c \eta^{n}<f\left(\bar{T}_{1}^{n}(x, y)\right)<\lambda+c \eta^{n}\right\}
\end{aligned}
$$

where c and η are the same constants as in the proof of proposition 3.2. Therefore, we have

$$
\bar{\mu}_{1}\left\{\chi_{\lambda}\left(\bar{T}_{1}^{n}(x, y)\right) \neq \chi_{\lambda}\left(\bar{T}_{1}^{n}(x, 1)\right)\right\}<\frac{c \eta^{n}}{\log 2} .
$$

Hence, by using the Borel-Cantelli lemma, for almost all (x, y)

$$
:\left\{n ; \chi_{\lambda}\left(\bar{T}_{1}^{n}(x, y)\right) \neq \chi_{\lambda}\left(\bar{T}_{1}^{n}(x, 1)\right)\right\}<\infty .
$$

By easy calculation for $\bar{\mu}_{1}\left(D_{\lambda}\right)$, we obtain the conclusion.
Theorem 3.3. For $1 \geq \lambda \geq 0$

$$
\lim _{N \rightarrow \infty} \frac{\{(q, p) ; q|q x-p|<\lambda,(q, p)=1, q \leq N\}}{\log N}=\lambda \frac{12}{\pi^{2}}
$$

for almost all x.
Proof. If $v_{n-1}^{(1)} \leq N<v_{n}^{(1)}$, then by corollary 2.3.

$$
\begin{gathered}
\{(q, p) ; q|q x-p|<\lambda,(q, p)=1, q \leq N\} \\
\geqq\left\{\left(v_{k}^{(1)}, w_{k}^{(1)}\right) ; v_{k}^{(1)}\left|v_{k}^{(1)} x-w_{k}^{(1)}\right|<\lambda, k \leq n-1\right\} .
\end{gathered}
$$

Hence, by theorem 3.1. and proposition 3.1.

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\{(q, p) ; q|q x-p|<\lambda,(q, p)=1, q \leq N\}}{\log N} \\
\geqq & \lim _{n \rightarrow \infty} \frac{\left\{k ; v_{k}^{(1)} v\left|x_{k}^{(1)}-w_{k}^{(1)}\right|<\lambda, 1 \leq k<n-1\right\}}{\log v_{n}^{(1)}} \\
= & \lambda \cdot \frac{12}{\pi^{2}} \quad \text { for almost all } x .
\end{aligned}
$$

Replacing $v_{n}^{(1)}$ by $v_{n-1}^{(1)}$ we obtain the reverse inequaliiy.

Acknowledgements

This paper was written during a stay at Institut fur Mathematik, Universitat Salzburg in 1985.

The author would like to thank Prof. F. Schweiger and Dr. M. Thaler for their interest in the problem and for valuable advice.

References

[1] P. Billingsly: Ergodic theory and information, New York, London, Sydney 1965.
[2] W. Bosma, H. Jager and F. Wiedjik: Some metrical observation on the approximation by continued fractions, Indag. Math. 65 (1983), 281-299.
[3] H.E. Daniels: Processes generating permutation sequences, Biometrika 69 (1962), 139-149.
[4] P. Erdös: Some results on Diophantine approximation, Acta Arith. 5 (1959), 359369.
[5] Sh. Ito and H. Nakada: On natural extensions of transformations related to Diophantine approximations, Proceedings of the conference on Number Theory and Combinatorics, World Scientific Publ. Co., Singapore (1985), 185-207.
[6] W. Parry: Ergodic properties of some permutation processes, Biometrika 69 (1962), 151-154.
[7] C. Ryll-Nardzewski: On the ergodic theorem, Studia Math., 13 (1951).
[8] W.M. Schmidt: Diophantine Approximation, Springer Lecture note 785 (1980).
[9] F. Schweiger: Numbertheoretical endomorphisms with σ-finite invariant measure, Israel Jour. Math. vol. 31, No. 6 (1975), 308-318.

Department of Mathematics Tsuda College
Kodaira-shi, Tokyo 187
Japan

