THE REDUCIBILITY OF THE BOUNDARY CONDITIONS IN THE ONE-PARAMETER FAMILY OF ELLIPTIC LINEAR BOUNDARY VALUE PROBLEMS II

Ryuichi ASHINO

(Received December 16, 1987)
(Revised November 1, 1988)

1. Introduction

Let $P_{1}(D)$ and $P_{2}(D)$ be linear partial differential operators with constant coefficients. Let the order of P_{1} with respect to ξ_{1} be m, that of P_{2} be m^{\prime}, and $m>m^{\prime}$. Let $b_{j_{k}}(D), k=1, \cdots, \mu$ be normal boundary operators of order j_{k} and $\boldsymbol{R}_{+}^{n}=\left\{x_{1}>0\right\}$. We shall consider the following one-parameter family of unilateral boundary value problems:

$$
\left[\begin{array}{l}
\left(\varepsilon^{m-m^{\prime}} P_{1}(D)+P_{2}(D)\right) u(x)=0 \text { in } R_{+}^{n} \tag{1.1}\\
\left.b_{j_{k}}(D) u(x)\right|_{x_{1} \downarrow 0}=\phi_{k}\left(x^{\prime}\right), k=1, \cdots, \mu
\end{array}\right.
$$

Here $\phi=\left(\phi_{1}, \cdots, \phi_{\mu}\right)$ belongs to $\mathrm{F}^{-1}\left(C_{0}^{\infty}\left(\boldsymbol{R}^{n-1}\right)\right)^{\mu}$, where F^{-1} denotes the inverse Fourier transformation. We shall choose $b_{j_{k}}(D), k=1, \cdots, \mu$ so that the bounded solutions are uniquely determined. We have introduced the notion of "reducibility" for the family of elliptic boundary value problems in [1] and that of "admissibility" for the family of Cauchy problems in [2]. In §3, by using the localization in the Fourier images of the solutions of (1.1), which we may call the local Fourier analysis, we shall introduce the notion of "micro-admissibility" and "micro-reducibility" of (1.1) and show the same kind of results as those on the reducibility of the family of elliptic boundary value problems in [1]. As a preliminary, we shall study in $\S 2$ asymptotic behaviour of the characteristic roots more deeply than [1]. In §4, we shall pacth up the localization in the Fourier images and study relation between the reducibility and the microreducibility on various examples. In $\S 5$, we shall show the normal reducibility of the following one-parameter family of non-characteristic Cauchy problems for kowalewskian operators:

$$
\left[\begin{array}{l}
\left(\varepsilon \cdot P_{1}(D)+P_{2}(D)\right) u=0, \text { in } \boldsymbol{R}^{n} ; \tag{1.2}\\
\left.b_{j}(D) u\right|_{x_{1}=0}=\phi_{j}, j=0, \cdots, m-1 .
\end{array}\right.
$$

If the Cauchy problems (1.2) are uniquely solvable and the limit u_{0} of the solutions u_{z} of (1.2) exists in $C\left(\boldsymbol{R}_{x_{1}} ; \mathscr{D}^{\prime}\left(\boldsymbol{R}_{x^{\prime}}^{n-1}\right)\right)$, which denotes the space of continuous functions of x_{1} in $\boldsymbol{R}_{x_{1}}$ valued in $\mathscr{D}^{\prime}\left(\boldsymbol{R}_{x}^{n-1}\right)$, then u_{0} satisfies

$$
\left[\begin{array}{l}
P_{2}(D) u=0, \text { in } \boldsymbol{R}^{n} ; \tag{1.3}\\
\left.b_{j}(D) u\right|_{x_{1}=0}=\phi_{j}, j=0, \cdots, m^{\prime}-1 .
\end{array}\right.
$$

Here $m=\operatorname{ord} P_{1}$ (the order of P_{1}), $m^{\prime}=\operatorname{ord} P_{2}$, and $m>m^{\prime}$. In appendix, we shall give a brief survey of boundary values of solutions to a non-characteristic hyperplane according to [4].

2. Preliminaries

In this section, we shall study necessary properties of the characteristic roots and the asymptotic behaviour of determinants more deeply than [1].

Let $P_{1}(D)$ and $P_{2}(D)$ be linear partial differential operators with constant coefficients. Let the order of F_{1} with respect to ξ_{1} be m, that of P_{2} be m^{\prime}, and $m>m^{\prime}$. Let their symbols be

$$
\begin{gather*}
P_{1}(\xi)=\xi_{1}^{m}+\sum_{j=1}^{m} p_{1, j}\left(\xi^{\prime}\right) \xi_{1}^{m-j} \tag{2.1}\\
P_{2}(\xi)=p \cdot \xi_{1}^{m^{\prime}}+\sum_{j=1}^{m^{\prime}} p_{2, j}\left(\xi^{\prime}\right) \xi_{1}^{m^{\prime}-j} \tag{2.2}
\end{gather*}
$$

Here $p_{1, j}\left(\xi^{\prime}\right)$ and $p_{2, j}\left(\xi^{\prime}\right)$ are polynomials of ξ^{\prime} without restrictions on orders, that is, $P_{1}(D)$ and $P_{2}(D)$ are non-kowlaewskian in general and p is a non-zero constant.

We shall deal with the following polynomial with a small positive parameter ε :

$$
\begin{equation*}
\varepsilon^{m-m^{\prime}} \cdot P_{1}(\xi)+P_{2}(\xi)=0 \tag{2.3}
\end{equation*}
$$

By replacing ε by $\varepsilon \cdot|p|^{1 /\left(m-m^{\prime}\right)}$, we may assume that $|p|=1$. Denote the characteristic roots of (2.3) with respect to ξ_{1} by $\tau_{j}\left(\varepsilon, \xi^{\prime}\right), j=1, \cdots, m$ and those of

$$
\begin{equation*}
P_{2}(\xi)=0 \tag{2.4}
\end{equation*}
$$

with respect to ξ_{1} by $\sigma_{j}\left(\xi^{\prime}\right), j=1, \cdots, m^{\prime}$, respectively.
Assumption 2.1. There exists a point ξ_{0}^{\prime} in \boldsymbol{R}^{n-1} such that for $1 \leqq j<k \leqq m^{\prime}$

$$
\sigma_{i}\left(\xi_{0}^{\prime}\right)=\sigma_{k}\left(\xi_{0}^{\prime}\right) .
$$

Remark. If Assumption 2.1 is satisfied, then there exists an open ball $B_{0}=B_{0}\left(r_{0} ; \xi_{0}^{\prime}\right)$ of radius r_{0} with the centre ξ_{0}^{\prime} such that all $\sigma_{j}\left(\xi^{\prime}\right)$ are simple on the closure of B_{0}.

Under Assumption 2.1, we have essentially studied the asymtotic properties
of the characteristic roots of (2.3) in [1]. We shall calculate the second and the third terms of the asymptotic expansions of the characteristic roots of (2.3). Denote by θ the argument of $-p$ satisfying $0 \leqq \theta<2 \pi$, that is, $-p=\exp i \theta$. Denote

$$
\Theta=\exp \frac{i \theta}{m-m^{\prime}}, \zeta=\exp \frac{2 \pi i}{m-m^{\prime}}, \quad \text { and } \quad \tau_{j}^{\prime}=\zeta^{j-m^{\prime}-1}, j=m^{\prime}+1, \cdots, m
$$

Lemma 2.2. Let Assumption 2.1 be satisfied and B_{0} be the open ball in Remark to Assumption 2.1. If the suffixes $\{j\}$ of the characteristic roots $\tau_{j}\left(\varepsilon, \xi^{\prime}\right)$, $j=1, \cdots, m$ of (2.3) are properly chosen, then there exists a positive number ε_{0} such that if $0<\varepsilon<\varepsilon_{0}$, then $\tau_{j}\left(\varepsilon, \xi^{\prime}\right), j=1, \cdots, m$ satisfy the following asymptotic properties on the closure of B_{0} :
For $j=1, \cdots, m^{\prime}$

$$
\begin{equation*}
\tau_{j}\left(\varepsilon, \xi^{\prime}\right)=\sigma_{j}\left(\xi^{\prime}\right)+s_{j, 2}\left(\xi^{\prime}\right) \varepsilon^{m-m^{\prime}}+s_{j, 3}\left(\xi^{\prime}\right) \varepsilon^{2\left(m-m^{\prime}\right)}+O\left(\varepsilon^{3\left(m-m^{\prime}\right)}\right) \tag{2.5}
\end{equation*}
$$

where $\quad \partial_{1}=\frac{\partial}{\partial \xi_{1}}$,

$$
\begin{gather*}
s_{j, 2}=-P_{1}\left(\sigma_{j}, \xi^{\prime}\right) \cdot \partial_{1} P_{2}\left(\sigma_{j}, \xi^{\prime}\right)^{-1}, \tag{2.6}\\
s_{j, 3}=-\frac{1}{2!} \cdot \partial_{1}{ }^{2} P_{2}\left(\sigma_{j}, \xi^{\prime}\right) \cdot \partial_{1} p_{2}\left(\sigma_{j}, \xi^{\prime}\right)^{-1} \cdot s_{j, 2}^{2} \tag{2.7}\\
-\partial_{1} P_{1}\left(\sigma_{j}, \xi^{\prime}\right) \cdot \partial_{1} P_{2}\left(\sigma_{j}, \xi^{\prime}\right)^{-1} \cdot s_{j, 2}
\end{gather*}
$$

For $j=m^{\prime}+1, \cdots m$

$$
\begin{equation*}
\tau_{j}\left(\varepsilon, \xi^{\prime}\right)=\Theta \tau_{j}^{\prime} \cdot \frac{1}{\varepsilon}+t_{2}\left(\xi^{\prime}\right)+\left(\Theta \tau_{j}^{\prime}\right)^{-1} \cdot t_{3}\left(\xi^{\prime}\right) \cdot \varepsilon+O\left(\varepsilon^{2}\right) \tag{2.8}
\end{equation*}
$$

where

$$
\begin{gather*}
t_{2}=\frac{-p_{1,1}+p_{2,1} \cdot p^{-1}}{m-m^{\prime}} \tag{2.9}\\
t_{3}=\left(m-m^{\prime}\right)^{-1}\left[\frac{m^{\prime}\left(m^{\prime}-1\right)-m(m-1)}{2!} \cdot t_{2}^{2}\right. \tag{2.10}\\
\left.+\left(\left(m^{\prime}-1\right) p^{-1} p_{2,1}-(m-1) p_{1,1}\right) t_{2}+p^{-1} p_{2,2}-p_{1,2}\right] .
\end{gather*}
$$

Proof. In [1], we have calculated the first terms of the expansion of the characteristic roots. Put $\varepsilon^{\prime}=\varepsilon^{m-m^{\prime}}$. When Assumption 2.1 is satisfied, we know that m^{\prime} characteristic roots of $\varepsilon^{\prime} \cdot P_{1}(\xi)+P_{2}(\xi)=0$ are analytic for sufficiently small ε^{\prime} and ξ^{\prime} in a neighbourhood of the closure of B_{0}. As we need the first three terms of the expansion of the characteristic roots $\boldsymbol{\tau}_{j}\left(\varepsilon, \xi^{\prime}\right)$, we may assume that

$$
\tau_{j}\left(\varepsilon, \xi^{\prime}\right)=\sigma_{j}\left(\xi^{\prime}\right)+s_{j, 2}\left(\xi^{\prime}\right) \cdot \varepsilon^{\prime}+s_{j, 3}\left(\xi^{\prime}\right) \cdot \varepsilon^{\prime 2}, j=1, \cdots, m^{\prime}
$$

Expand the left-hand side of

$$
\varepsilon^{\prime} \cdot P_{1}\left(\tau_{j}, \xi^{\prime}\right)+P_{2}\left(\tau_{j}, \xi^{\prime}\right)=0
$$

as a power series of ε^{\prime}. Differentiate the power series by ε^{\prime} and put $\varepsilon^{\prime}=0$. Then the coefficient of ε^{\prime} is

$$
P_{1}\left(\sigma_{j}, \xi^{\prime}\right)+\partial_{1} P_{2}\left(\sigma_{j}, \xi^{\prime}\right) \cdot s_{j, 2}
$$

and this must be zero. Since $\sigma_{j}\left(\xi^{\prime}\right)$ are simple on the closure of B_{0}, it implies that $\partial_{1} P_{2}\left(\sigma_{j}, \xi^{\prime}\right) \neq 0$. Hence we have (2.6). By differentiating two times the power series by ε^{\prime} and putting $\varepsilon^{\prime}=0$, we have (2.7). Thus we have (2.5).

Multiply (2.3) by $\varepsilon^{m^{\prime}}$, and put $t=\varepsilon \cdot \xi_{1}$. Then

$$
\begin{equation*}
t^{m}+\sum_{j=1}^{m} p_{1, j}\left(\xi^{\prime}\right) \varepsilon^{j} t^{m-j}+p \cdot t^{m^{\prime}}+\sum_{j=1}^{m^{\prime}} p_{2, j}\left(\xi^{\prime}\right) \varepsilon^{j} t^{m^{\prime}-j}=0 \tag{2.11}
\end{equation*}
$$

We know that $m-m^{\prime}$ roots of (2.11) are analytic in a neighbourhood of the closure of B_{0} for sufficiently small ε. Put $t_{j}=\varepsilon \cdot \tau_{j}\left(\varepsilon, \xi^{\prime}\right), j=m^{\prime}+1, \cdots, m$. Then $t_{j}, j=m^{\prime}+1, \cdots, m$ are the roots of (2.11). As we need first three terms of the expansion of t_{j}, we may assume that

$$
t_{j}=\Theta \tau_{j}^{\prime}+t_{j, 2}\left(\xi^{\prime}\right) \cdot \varepsilon+t_{j, 3}\left(\xi^{\prime}\right) \cdot \varepsilon^{2}, j=m^{\prime}+1, \cdots, m
$$

Substitute t_{j} for t in (2.11) and expand the left-hand side of (2.11) as a power series of ε. Then the coefficient of ε is

$$
m\left(\Theta \tau_{j}^{\prime}\right)^{m-1} t_{j, 2}+p_{1,1}\left(\Theta \tau_{j}^{\prime}\right)^{m-1}+p m^{\prime}\left(\Theta \tau_{j}^{\prime}\right)^{m^{\prime}-1} t_{j, 2}+p_{2,1}\left(\Theta \tau_{j}^{\prime}\right)^{m^{\prime}-1}
$$

and this must be zero. As $\left(\Theta \tau_{j}^{\prime}\right)^{m-m^{\prime}}=-p$, we have

$$
\begin{equation*}
t_{j, 2}=\frac{-p_{1,1}+p_{2,1} \cdot p^{-1}}{m-m^{\prime}} \tag{2.12}
\end{equation*}
$$

Since the right-hand side of (2.12) is independent of j, we may write $t_{j, 2}=t_{2}$. The coefficient of ε^{2} is

$$
\begin{aligned}
& m t_{j, 3}\left(\Theta \tau_{j}^{\prime}\right)^{m-1}+\frac{m(m-1)}{2!} \cdot t_{j, 2}^{2}\left(\Theta \tau_{j}^{\prime}\right)^{m-2}+(m-1) p_{1,1} t_{j, 2}\left(\Theta \tau_{j}^{\prime}\right)^{m-2}+p_{1,2}\left(\Theta \tau_{j}^{\prime}\right)^{m-2} \\
& +m^{\prime} p t_{j, 3}\left(\Theta \tau_{j}^{\prime}\right)^{m^{\prime}-1}+\frac{m^{\prime}\left(m^{\prime}-1\right)}{2!} \cdot p t_{j, 2}^{2}\left(\Theta \tau_{j}^{\prime}\right)^{m^{\prime}-2} \\
& \quad+\left(m^{\prime}-1\right) p_{2,1} t_{j, 2}\left(\Theta \tau_{j}^{\prime}\right)^{m^{\prime}-2}+p_{2,2}\left(\Theta \tau_{j}^{\prime}\right)^{m^{\prime}-2}
\end{aligned}
$$

and this must be zero. Hence

$$
\begin{aligned}
& t_{j, 3}=\left(m-m^{\prime}\right)^{-1}\left(\Theta \tau_{j}^{\prime}\right)^{-1}\left[\frac{m^{\prime}\left(m^{\prime}-1\right)-m(m-1)}{2!} \cdot t_{2}^{2}\right. \\
& \left.\quad+\left(\left(m^{\prime}-1\right) p^{-1} p_{2,1}-(m-1) p_{1,1}\right) t_{2}+p^{-1} p_{2,2}-p_{1,2}\right]=\left(\Theta \tau_{j}^{\prime}\right)^{-1} \cdot t_{3}
\end{aligned}
$$

Thus we have (2.8).
[Q.E.D].
Let ν and μ be integers such that $1 \leqq \nu \leqq m^{\prime}$ and $\nu+1 \leqq \mu \leqq m$. Let j_{1}, \cdots, j_{μ} be a series of integers with

$$
\begin{equation*}
0 \leqq j_{1}<\cdots<j_{\mu} \leqq m-1 \tag{2.13}
\end{equation*}
$$

Let $b_{j}\left(\tau, \xi^{\prime}\right), j=j_{1}, \cdots, j_{\mu}$ be polynomials of order j as

$$
\begin{equation*}
b_{j}\left(\tau, \xi^{\prime}\right)=\tau^{j}+\sum_{k=1}^{j} b_{j, k}\left(\xi^{\prime}\right) \tau^{j-k}, j=j_{1}, \cdots, j_{\mu}, \tag{2.14}
\end{equation*}
$$

which are denoted by $b_{j}(\tau)$ when regarded as polynomials of τ with polynomial coefficients. We shall use the same notation as in [1] except T_{k}^{\prime} and ∂D_{k}^{\prime} as follows.

Notation 2.3. For polynomials $b_{j}(\tau), j=1, \cdots, \mu$ and for complex numbers or functions τ_{j} and $\phi_{j}, j=1, \cdots, \mu$,

$$
\begin{aligned}
& \text { Mat } D_{0}=\text { Mat } D_{0}\left(\tau_{1}, \cdots, \tau_{\mu} ; b_{1}, \cdots, b_{\mu}\right)=\left[\begin{array}{ccc}
b_{1}\left(\tau_{1}\right) & \cdots & b_{1}\left(\tau_{\mu}\right) \\
\vdots & & \vdots \\
b_{\mu}\left(\tau_{1}\right) & \cdots & b_{\mu}\left(\tau_{\mu}\right)
\end{array}\right], \\
& \text { Mat } D_{k}=\text { Mat } D_{k}\left(\tau_{1}, \cdots, \tau_{\mu} ; b_{1}, \cdots, b_{\mu} ; \phi_{1}, \cdots, \phi_{\mu}\right) \\
& \quad=\left[\begin{array}{cccc}
b_{1}\left(\tau_{1}\right) & \cdots & b_{1}\left(\tau_{k-1}\right) & \phi_{1} \\
\vdots & b_{1}\left(\tau_{k+1}\right) & \cdots & b_{1}\left(\tau_{\mu}\right) \\
\vdots & \vdots & \vdots & \vdots \\
b_{\mu}\left(\tau_{1}\right) & \cdots & b_{\mu}\left(\tau_{k-1}\right) & \\
\phi_{\mu} & b_{\mu}\left(\tau_{k+1}\right) & \cdots & \vdots \\
b_{\mu}\left(\tau_{\mu}\right)
\end{array}\right],
\end{aligned}
$$

where $k=1, \cdots, \mu$.

$$
\begin{aligned}
& \text { Mat } V_{n}\left(\zeta ; j_{1}, \cdots, j_{n}\right)=\left[\begin{array}{ccc}
1 & \cdots & 1 \\
\zeta^{j_{1}} & \zeta^{j_{n}} \\
\vdots & \vdots \\
\left(\zeta^{j_{1}}\right)^{n-1} & \cdots & \left(\zeta^{j_{n}}\right)^{n-1}
\end{array}\right] \\
& \text { Mat } V_{\mu_{-\nu-1,0}}=\text { Mat } V_{\mu_{-\nu-1}}\left(\zeta ; j_{\nu+2}, \cdots, j_{\mu}\right), \\
& \text { Mat } V_{\mu-\nu, 0}=\text { Mat } V_{\mu_{-\nu}}\left(\zeta ; j_{\nu+1}, \cdots, j_{\mu}\right) .
\end{aligned}
$$

For $1 \leqq k \leqq \mu-\nu$,

$$
j_{k}^{\prime}=j_{v+k}-1
$$

$$
\begin{aligned}
& \text { Mat } V_{\mu-\nu, k}=\operatorname{Mat} V_{\mu_{-v}}\left(\zeta ; j_{\nu+1}, \cdots, j_{\nu+k-1}, j_{k}^{\prime}, j_{\nu+k+1}, \cdots, j_{\mu}\right) \\
& T_{k}^{\prime}=\left(j_{\nu+1} \cdot\left(\zeta^{k-1}\right)^{j_{1}^{\prime}}, \cdots, j_{\mu} \cdot\left(\zeta^{k-1}\right)^{j_{\mu-\nu}}\right) \\
& \quad \text { Mat } \partial D_{k}^{\prime}=\operatorname{Mat} D_{k}\left(1, \zeta, \cdots, \zeta^{\mu \nu-1} ; \tau^{j_{\nu+1}}, \cdots, \tau^{j_{\mu}} ; T_{k}^{\prime}\right) .
\end{aligned}
$$

We shall abbreviate the determinant of Mat D as D, where Mat D is any of the matrices abbreviated as above. Denote $J=j_{\nu+1}+\cdots+j_{\mu}$ and $J^{\prime}=J-j_{\nu+1}$. For $\nu+1 \leqq k \leqq \mu$,

$$
\begin{gathered}
D_{(k)}=\Theta^{J^{\prime}} \cdot D_{0}\left(1, \cdots, \zeta^{k-\nu-2}, \zeta^{k-\nu}, \cdots, \zeta^{\mu-\nu-1} ; \tau^{j_{\nu+2}}, \cdots, \tau^{j \mu}\right) . \\
B_{\mu_{-\nu}}\left(\xi^{\prime}\right)=\sum_{k=1}^{\mu-\nu}\left(b_{j_{v+k}, 1}\left(\xi^{\prime}\right) \cdot V_{\mu-\nu, k}+t_{2}\left(\xi^{\prime}\right) \cdot \partial D_{k}^{\prime}\right) .
\end{gathered}
$$

By the same method as in Lemma 2.4 in [1], we have the following:
Lemma 2.4. Let Assumption 2.1 be satisfied and B_{0} be the open ball in Remark to Assumption 2.1. Then

$$
\begin{align*}
& \lim _{\varepsilon \downarrow 0} D_{0}\left(\tau_{1}, \cdots, \tau_{\mu} ; b_{j_{1}}, \cdots, b_{j_{\mu}}\right) \cdot \varepsilon^{J} \tag{2.15}\\
& \quad=D_{0}\left(\sigma_{1}, \cdots, \sigma_{\nu} ; b_{j_{1}}, \cdots, b_{j_{\nu}}\right) \cdot \Theta^{J} \cdot V_{\mu-v, 0}
\end{align*}
$$

For $k=1, \cdots, \nu$

$$
\begin{align*}
& \lim _{\varepsilon \downarrow 0} D_{k}\left(\tau_{1}, \cdots, \tau_{\mu} ; b_{j_{1}}, \cdots, b_{j_{\mu}} ; \hat{\phi}_{1}, \cdots, \hat{\phi}_{\mu}\right) \cdots \varepsilon^{J} \tag{2.16}\\
& \quad=D_{k}\left(\sigma_{1}, \cdots, \sigma_{\nu} ; b_{j_{1}}, \cdots, b_{j_{v}} ; \hat{\phi}_{1}, \cdots, \hat{\phi}_{v}\right) \cdot \Theta^{J} \cdot V_{\mu_{-\nu, 0}}
\end{align*}
$$

and for $k=\nu+1, \cdots, \mu$

$$
\begin{align*}
& \lim _{\varepsilon \downarrow 0} D_{k}\left(\tau_{1}, \cdots, \tau_{\mu} ; b_{j_{1}}, \cdots, b_{j_{\mu}} ; \hat{\phi}_{1}, \cdots, \hat{\phi}_{\mu}\right) \cdot \varepsilon^{J^{\prime}} \tag{2.17}\\
& \quad=D_{\nu+1}\left(\sigma_{1}, \cdots, \sigma_{\nu+1} ; b_{j_{1}}, \cdots, b_{j_{v+1}} ; \hat{\phi}_{1}, \cdots, \hat{\phi}_{\nu+1}\right) \cdot(-1)^{k-v-1} \cdot \Theta^{J^{\prime}} \cdot V_{\mu-v-1,0}
\end{align*}
$$

where $\sigma_{\nu+1}$ is a dummy variable, that is, the right-hand side of (2.17) is independent of $\sigma_{\nu+1}$.

The convergences are uniform on the closure of B_{0}.
Dente the asymptotic expansions of D_{k} by

$$
D_{k}=d_{k, 0}\left(\xi^{\prime}\right) \cdot \varepsilon^{-J}+d_{k, 1}\left(\xi^{\prime}\right) \cdot \varepsilon^{-J+1}+O\left(\varepsilon^{-J-2}\right), k=0, \cdots, \mu
$$

By the same method as in Lemma 2.6 in [1], we have the following:
Lemma 2.5. Let Assumption 2.1 be satisfied and B_{0} be the open ball in Remark to Assumption 2.1. Assume that $V_{\mu-\nu, 0}=0$.

When $j_{\nu+1}-j_{\nu} \geqq 2$,

$$
\begin{equation*}
d_{0,1}=D_{0}\left(\sigma_{1}, \cdots, \sigma_{\nu} ; b_{j_{1}}, \cdots, b_{j_{\nu}}\right) \cdot \Theta^{J-1} \cdot B_{\mu_{-\nu}} \tag{2.18}
\end{equation*}
$$

For $k=1, \cdots, \nu$

$$
\begin{equation*}
d_{k, 1}=D_{k}\left(\sigma_{1}, \cdots, \sigma_{\nu} ; b_{j_{1}}, \cdots, b_{j_{\nu}} ; \hat{\phi}_{1}, \cdots, \hat{\phi}_{\nu}\right) \cdot \Theta^{J-1} \cdot B_{\mu-\nu} . \tag{2.19}
\end{equation*}
$$

For $k=\nu+1, \cdots, \mu$

$$
\begin{equation*}
d_{k, 1}=0 \tag{2.20}
\end{equation*}
$$

When $j_{v+1}-j_{v}=1$,

$$
\begin{align*}
& d_{0,1}=D_{0}\left(\sigma_{1}, \cdots, \sigma_{\nu} ; b_{j_{1}}, \cdots, b_{j_{\nu}}\right) \cdot \Theta^{J-1} \cdot B_{\mu_{-\nu}} \tag{2.21}\\
& \quad+D_{0}\left(\sigma_{1}, \cdots, \sigma_{\nu} ; b_{j_{1}}, \cdots, b_{j_{\nu-1}}, b_{j_{\nu+1}}\right) \cdot \Theta^{J-1} \cdot V_{\mu-\nu, 1}
\end{align*}
$$

For $k=1, \cdots, \nu$

$$
\begin{align*}
& d_{k, 1}=D_{k}\left(\sigma_{1}, \cdots, \sigma_{\nu} ; b_{j_{1}}, \cdots, b_{j_{\nu}} ; \hat{\phi}_{1}, \cdots, \hat{\phi}_{\nu}\right) \cdot \Theta^{J-1} \cdot B_{\mu_{-\nu}} \tag{2.22}\\
& \quad+D_{0}\left(\sigma_{1}, \cdots, \sigma_{\nu} ; b_{j_{1}}, \cdots, b_{j_{\nu-1}}, b_{j_{\nu+1}} ; \hat{\phi}_{1}, \cdots, \hat{\phi}_{\nu-1}, \hat{\phi}_{\nu+1}\right) \cdot \Theta^{J-1} \cdot V_{\mu_{-\nu, 1}}
\end{align*}
$$

For $k=\nu+1, \cdots, \mu$ there are two cases as follows.
When $\nu=1$ and $j_{\nu}=0$, it may be assumed that $b_{j_{1}}=b_{0}=1$ and $b_{j_{2}}=b_{1}=\xi_{1}+$ $b_{1,1}\left(\xi^{\prime}\right)$. Then

$$
\begin{equation*}
d_{k, 1}=(-1)^{k-2}\left(\hat{\phi}_{2}-\left(\sigma_{1}+b_{1,1}\left(\xi^{\prime}\right)\right) \hat{\phi}_{1}\right) \cdot D_{(k)} . \tag{2.23}
\end{equation*}
$$

When $\nu \geqq 2$ or $j_{\nu} \geqq 1$,

$$
\begin{equation*}
d_{k, 1}=0 \tag{2.24}
\end{equation*}
$$

3. The micro-reducibility

Let the symbol of P_{1} be (2.1) and that of P_{2} be (2.2). Let $b_{j_{k}}(D), k=1, \cdots, \mu$ be normal and $\boldsymbol{R}_{+}^{n}=\left\{x_{1}>0\right\}$. We shall consider the following one-parameter family of unilateral boundary value problems:

$$
\left[\begin{array}{l}
\left(\varepsilon^{m-m^{\prime}} P_{1}(D)+P_{2}(D)\right) u(x)=0 \text { in } \boldsymbol{R}_{+}^{n} \tag{3.1}\\
\left.b_{j_{k}}(D) u(x)\right|_{x_{1} \downarrow 0}=\phi_{k}\left(x^{\prime}\right), k=1, \cdots, \mu
\end{array}\right.
$$

Here we shall choose $b_{j_{k}}(D), k=1, \cdots, \mu$ so that the bounded solutions solved by the partial Fourier transformation with respect to x^{\prime} are uniquely determined. In this paper, we hsall only deal with such solutions in order to determine a unique solution of (3.1) for every fixed ε. Denote by $B\left(\boldsymbol{R}_{+}^{n}\right)$ the space of bounded continuous functions in \boldsymbol{R}_{+}^{n}.

Definition 3.1. A one-parameter family of the unilateral boundary value problems (3.1) is said to be micro-admissible at ξ_{0}^{\prime} if there exist an open ball B with centre ξ_{0}^{\prime} in $\boldsymbol{R}_{\xi^{\prime}}^{n-1}$ and a positive number ε_{0} such that the one-parameter family of (3.1) satisfies the following two conditions:
(1) For every ε with $0<\varepsilon<\varepsilon_{0}$ and for every $\Phi=\left(\phi_{1}, \cdots, \phi_{\mu}\right)$ in $\mathrm{F}^{-1}\left(C_{0}^{\infty}(B)\right)^{\mu}$, the unilateral boundary value problem (3.1) has a unique solution $u_{\mathrm{e}}(x ; \Phi)$ in $B\left(\boldsymbol{R}_{+}^{n}\right)$.
(2) For every Φ in $\mathrm{F}^{-1}\left(C_{0}^{\infty}(B)\right)^{\mu}$, there exists a function $u_{0}(x ; \Phi)$ such that

$$
\lim _{\mathfrak{z} \downarrow 0} u_{\mathfrak{e}}(x ; \Phi)=u_{0}(x ; \Phi) \text { in } C\left(\boldsymbol{R}_{+}^{n}\right) .
$$

A one-parameter family of the unilateral boundary value problems (3.1) is said to be micro-reducible at ξ_{0}^{\prime} if the family (3.1) is micro-admissible at ξ_{0}^{\prime} and
satisfies the following two conditions:
(3) There exists a series (k_{1}, \cdots, k_{v}) such that

$$
1 \leqq k_{1}<\cdots<k_{\nu} \leqq \mu ; \quad 0 \leqq j_{k_{1}}<\cdots<j_{k_{\nu}} \leqq m^{\prime}-1 ;
$$

and every $u_{0}(x ; \Phi)$ satisfies the following unilateral bounadry value problem:

$$
\left[\begin{array}{l}
P_{2}(D) u(x)=0 \text { in } \boldsymbol{R}_{+}^{n} \tag{3.2}\\
\left.b_{j_{k_{l}}}(D) u(x)\right|_{x_{1} \downarrow 0}=\phi_{k_{l}}\left(x^{\prime}\right), l=1, \cdots, \nu
\end{array}\right.
$$

(4) The reduced unilateral boundary value problem (3.2) is uniquely solvable.

In particular, when $k_{l}=l, l=1, \cdots, \nu$, the family (3.1) is said to be normally micro-reducible at ξ_{0}^{\prime}. The family (3.1) is said to be abnormally micro-reducible at ξ_{0}^{\prime} if the family (3.1) is micro-reducible at ξ_{0}^{\prime} but not normally microreducible at ξ_{0}^{\prime}.

Remark. When $\nu=m^{\prime}$, the micro-reducibility is equivalent to the normal micro-reducibility. We can also define the micro-admissibility at ($x_{0}^{\prime} ; \xi_{0}^{\prime}$) and the micro-reducibility at ($x_{0}^{\prime} ; \xi_{0}^{\prime}$) by replacing $\boldsymbol{R}_{x^{\prime}}^{n-1}$ with a neighbourhood U^{\prime} of x_{0}^{\prime}. Since we only treat solutions solved by the partial Fourier transformation, we do not need licaliaztion in x^{\prime}-space.

Let us consider the partial Fourier transform with respect to x^{\prime} of (3.1):

$$
\left[\begin{array}{l}
\left(\varepsilon^{m-m^{\prime}} P_{1}\left(D_{1}, \xi^{\prime}\right)+P_{2}\left(D_{1}, \xi^{\prime}\right)\right) \hat{u}\left(x_{1}, \xi^{\prime}\right)=0 ; \tag{3.3}\\
\left.b_{j_{k}}\left(D_{1}, \xi^{\prime}\right) \hat{u}\left(x_{1}, \xi^{\prime}\right)\right|_{x_{1} \downarrow 0}=\hat{\phi}_{k}\left(\xi^{\prime}\right), k=1, \cdots, \nu
\end{array}\right.
$$

Let Assumption 2.1 be satisfied, B_{0} be the open ball in Remark to Assumption 2.1, and $\Phi=\left(\phi_{1}, \cdots, \phi_{\mu}\right)$ belong to $\mathrm{F}^{-1}\left(C_{0}^{\infty}\left(B_{0}\right)\right)^{\mu}$. If the suffixes $\{j\}$ of the characteristic roots $\boldsymbol{\tau}_{j}\left(\varepsilon, \xi^{\prime}\right), j=1, \cdots, m$ are properly chosen, which are simple in B_{0} for sufficiently small ε, then the solutions of (3.3) are represented as

$$
\begin{equation*}
\hat{u}\left(x_{1}, \xi^{\prime}\right)=Y\left(x_{1}\right) \cdot \sum_{k=1}^{\mu} C_{k}\left(\varepsilon, \xi^{\prime} ; \Phi\right)\left(\exp i \tau_{k}\left(\varepsilon, \xi^{\prime}\right) x_{1}\right) \tag{3.4}
\end{equation*}
$$

Here $Y\left(x_{1}\right)$ is the Heaviside function and for $k=1, \cdots, \mu$,

$$
\begin{equation*}
C_{k}\left(\varepsilon, \xi^{\prime} ; \Phi\right)=\frac{D_{k}\left(\tau_{1}, \cdots, \tau_{\mu} ; b_{j_{1}}, \cdots, b_{j_{\mu}} ; \hat{\phi}_{1}, \cdots, \hat{\phi}_{\mu}\right)}{D_{0}\left(\tau_{1}, \cdots, \tau_{\mu} ; b_{j_{1}}, \cdots, b_{j_{\mu}}\right)} \tag{3.5}
\end{equation*}
$$

Next we shall study sufficient conditions for the unique solvability of (3.3). Assume that there exists an open ball B^{\prime} with the centre ξ_{0}^{\prime} included in B_{0} such that on the closure of B^{\prime} and for sufficiently small ε,

$$
\begin{equation*}
\operatorname{Im} \tau_{k}\left(\varepsilon, \xi^{\prime}\right)>0, k=1, \cdots, \mu \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Im} \tau_{k}\left(\varepsilon, \xi^{\prime}\right)<0, k=\mu+1, \cdots, m \tag{3.7}
\end{equation*}
$$

where the suffixes $\{j\}$ of $\tau_{j}\left(\varepsilon, \xi^{\prime}\right), j=1, \cdots, m$ are properly chosen. Then bounded solutions of (3.3) are uniquely determined for Φ in $\mathrm{F}^{-1}\left(C_{0}^{\infty}\left(B^{\prime}\right)\right)^{\mu}$. We shall only deal with bounded solutions of (3.1) whose partial Fourier transforms are (3.4).

Use the same suffixes $\{j\}$ of $\tau_{j}\left(\varepsilon, \xi^{\prime}\right), j=1, \cdots, m$ as in Lemma 2.2. Denote

$$
\begin{aligned}
& N^{+}(\theta)=\#\left\{j ; \operatorname{Im} \Theta \tau_{j}^{\prime}>0, j=m^{\prime}+1, \cdots, m\right\} \\
& N^{0}(\theta)=\#\left\{j ; \operatorname{Im} \Theta \tau_{j}^{\prime}=0, j=m^{\prime}+1, \cdots, m\right\}
\end{aligned}
$$

and

$$
N^{-}(\theta)=\#\left\{j ; \operatorname{Im} \Theta \tau_{j}^{\prime}<0, j=m^{\prime}+1, \cdots, m\right\}
$$

where θ is the argument of $-p$ and $\Theta=\exp \frac{i \theta}{m-m^{\prime}}$. Then we have the follow-
ing:
(1) The case when $m-m^{\prime}=2 l-1$, where l is a positive integer.
(1-a) If $\theta=0$ or π, then

$$
N^{+}(\theta)=l-1, N^{0}(\theta)=1, \quad \text { and } \quad N^{-}(\theta)=l-1
$$

(1-b) If $0<\theta<\pi$, then

$$
N^{+}(\theta)=l, N^{0}(\theta)=0, \quad \text { and } \quad N^{-}(\theta)=l-1
$$

(1-c) If $\pi<\theta<2 \pi$, then

$$
N^{+}(\theta)=l-1, N^{0}(\theta)=0, \quad \text { and } \quad N^{-}(\theta)=l
$$

(2) The case when $m-m^{\prime}=2 l$, where l is a positive integer.
(2-a) If $\theta=0$, then

$$
N^{+}(0)=l-1, N^{0}(0)=2, \quad \text { and } \quad N^{-}(0)=l-1
$$

(2-b) If $0<\theta<2 \pi$, then

$$
N^{+}(\theta)=l, N^{0}(\theta)=0, \quad \text { and } \quad N^{-}(\theta)=l
$$

It must be remarked that

$$
\begin{aligned}
& \left\{\Theta \tau_{k}^{\prime} ; \operatorname{Im} \Theta \tau_{k}^{\prime} \geqq 0, k=m^{\prime}+1, \cdots, m\right\} \\
& \quad=\left\{\Theta \tau_{k}^{\prime} ; k=m^{\prime}+1, \cdots, m^{\prime}+N^{+}(\theta)+N^{o}(\theta)\right\}
\end{aligned}
$$

In order to seek sufficient conditions for (3.6) and (3.7), we introduce
Assumption 3.2.

$$
\operatorname{Im} \sigma_{j}\left(\xi_{0}^{\prime}\right)>0, j=1, \cdots, \nu
$$

$$
\operatorname{Im} \sigma_{j}\left(\xi_{0}^{\prime}\right)<0, j=\nu+1, \cdots, m^{\prime}
$$

Remark. Here the number ν may be changed by ξ_{0}^{\prime}.
Assumption 3.2 implies that there exists an open ball B_{1} with the centre ξ_{0}^{\prime} included in B_{0} such that on the closure of B_{1} and for sufficiently small ε,

$$
\begin{gather*}
\operatorname{Im} \tau_{j}\left(\varepsilon, \xi^{\prime}\right)>0, j=1, \cdots, \nu \tag{3.8}\\
\operatorname{Im} \tau_{j}\left(\varepsilon, \xi^{\prime}\right)<0, j=\nu+1, \cdots, m^{\prime} \tag{3.9}
\end{gather*}
$$

Lemma 2.2 implies that if $\operatorname{Im} \Theta \tau_{j}^{\prime}>0$ (resp. $\operatorname{Im} \Theta \tau_{j}^{\prime}<0$), then there exists an open ball B_{2} with the centre ξ_{0}^{\prime} included in B_{1} such that $\operatorname{Im} \tau_{j}\left(\varepsilon, \xi^{\prime}\right)>0$ (resp. $\left.\operatorname{Im} \tau_{j}\left(\varepsilon, \xi^{\prime}\right)<0\right)$ on the closure of B_{2} and for sufficiently small ε. When $\operatorname{Im} \Theta \tau_{j}^{\prime}$ $=0$, we need the following:

Assumption 3.3.

$$
\operatorname{Im}\left(-p_{1,1}\left(\xi_{0}^{\prime}\right)+p_{2,1}\left(\xi_{0}^{\prime}\right) \cdot p^{-1}\right) \neq 0
$$

Lemma 2.2 implies that if $\operatorname{Im} \Theta \tau_{j}^{\prime}=0$ and

$$
\begin{equation*}
\operatorname{Im}\left(-p_{1,1}\left(\xi_{0}^{\prime}\right)+p_{2,1}\left(\xi_{0}^{\prime}\right) \cdot p^{-1}\right)>0 \tag{3.10}
\end{equation*}
$$

then $\operatorname{Im} \tau_{j}\left(\varepsilon, \xi_{0}^{\prime}\right)>0$ and that if $\operatorname{Im} \Theta \tau_{j}^{\prime}=0$ and

$$
\begin{equation*}
\operatorname{Im}\left(-p_{1,1}\left(\xi_{0}^{\prime}\right)+p_{2,1}\left(\xi_{0}^{\prime}\right) \cdot p^{-1}\right)<0 \tag{3.11}
\end{equation*}
$$

then $\operatorname{Im} \tau_{j}\left(\varepsilon, \xi_{0}^{\prime}\right)<0$. Put

$$
\begin{array}{ll}
\mu=\nu+N^{+}(\theta)+N^{0}(\theta), & (\text { The case when (3.10).) } \\
\mu=\nu+N^{+}(\theta), & \text { (The case when (3.11).). } \tag{3.13}
\end{array}
$$

Then there exists an open ball B^{\prime} with the centre ξ_{0}^{\prime} included in B_{2} such that on the closure of B^{\prime} and for sufficidntly small ε,

$$
\begin{align*}
& \operatorname{Im} \tau_{j}\left(\varepsilon, \xi^{\prime}\right)>0, j=m^{\prime}+1, \cdots, m^{\prime}+\mu-\nu \tag{3.14}\\
& \operatorname{Im} \tau_{j}\left(\varepsilon, \xi^{\prime}\right)<0, j=m^{\prime}+\mu-\nu+1, \cdots, m \tag{3.15}
\end{align*}
$$

When $m-m^{\prime}=2 l-1$ and $(0<\theta<\pi$ or $\pi<\theta<2 \pi)$ or when $m-m^{\prime}=2 l$ and $0<\theta<2 \pi$, that is, when $N^{0}(\theta)=0$, Assumption 3.3 is not required, Thus, by permuting the suffixes $\{\nu+1, \cdots, m\}$ of the characteristic roots properly, we can find an open ball B^{\prime} with the centre ξ_{0}^{\prime} included in B_{0} such that for sufficiently small ε, (3.6) and (3.7) are valid on the closure on B^{\prime}.

Notation 3.4.

$$
D_{0}(\sigma)\left(\xi^{\prime}\right)=D_{0}\left(\sigma_{1}, \cdots, \sigma_{\nu} ; b_{j_{1}}, \cdots, b_{j_{\nu}}\right)
$$

$$
D_{0}(\sigma ; \nu)\left(\xi^{\prime}\right)=D_{0}\left(\sigma_{1}, \cdots, \sigma_{\nu} ; b_{j_{1}}, \cdots, b_{j_{v-1}}, b_{j_{v+1}}\right)
$$

We shall need the following assumption of the "micro-ellipticity" of the boundary conditions.

Assumption 3.5.

(1) $D_{0}(\sigma)\left(\xi_{0}^{\prime}\right) \neq 0$.
(2) $D_{0}(\sigma ; \nu)\left(\xi_{0}^{\prime}\right) \neq 0$.
(3) $D_{0}(\sigma)\left(\xi_{0}^{\prime}\right) \cdot B_{\mu_{-\nu}}\left(\xi_{0}^{\prime}\right)+D_{0}(\sigma ; \nu)\left(\xi_{0}^{\prime}\right) \cdot V_{\mu_{-\nu, 1}} \neq 0$.

Remark. If Assumption 3.5 is satisfied, then there exists an open ball B included in B^{\prime} such that (1), (2), and (3) are valid for all ξ_{0}^{\prime} on the closure of B. If $\nu=m^{\prime}$, then we have $D_{0}(\sigma)\left(\xi^{\prime}\right) \neq 0$ on the closure of B.

Recall that $B_{\mu_{-\nu}}\left(\xi^{\prime}\right)$ is a polynomial of ξ^{\prime} and that $V_{\mu_{-\nu, 0}}$ and $V_{\mu_{-\nu, 1}}$ are constants independent of ξ^{\prime}. Then, by the same kind of method as in Theorem 4.4 in [1], we have the following:

Theorem 3.6. Let Assumption 2.1, 3.2, 3.3, and 3.5 be satisfied and B be the open ball in Remark to Assumption 3.5. When $m-m^{\prime}=2 l-1$ and $(0<\theta<\pi$ or $\pi<\theta<2 \pi$) or when $m-m^{\prime}=2 l$ and $0<\theta<2 \pi$, Assumption 3.3 is not required. Let μ be (3.12) or (3.13) and the boundary data space be $\mathrm{F}^{-1}\left(C_{0}^{\infty}(B)\right)^{\mu}$.
(1) The case when rank Mat $V_{\mu_{-\nu, 0}}=\mu-\nu$, that is, $V_{\mu_{-v, 0}} \neq 0$. The family (3.1) is normally micro-reducible at ξ_{0}^{\prime}. In particular, if the boundary conditions are Dirichlet's

$$
\begin{equation*}
b_{j_{k}}(D)=D_{1}^{k-1}, k=1, \cdots, \mu, \tag{3.16}
\end{equation*}
$$

then the family (3.1) is normally micro-reducible at ξ_{0}^{\prime}.
(2) The case when rank Mat $V_{\mu_{-\nu, 0}}=\mu-\nu-1$. Then $V_{\mu_{-\nu, 0}}=0$.
(2-1) If $j_{v+1}-j_{\nu} \geqq 2$ and $B_{\mu_{-\nu}}\left(\xi_{0}^{\prime}\right) \neq 0$, then the family (3.1) is normally microreducible at ξ_{0}^{\prime}.
(2-2) If $j_{\nu+1}-j_{\nu}=1$, then there are three cases as follows.
(2-2-a) If $B_{\mu_{-\nu}}\left(\xi_{0}^{\prime}\right) \neq 0$ and $V_{\mu_{-\nu, 1}}=0$, then the family (3.1) is normally microreducible at ξ_{0}^{\prime}.
(2-2-b) If $V_{\mu_{-v, 1}} \neq 0$ and $D_{\xi^{\prime}}^{\alpha} B_{\mu_{-\nu}}\left(\xi_{0}^{\prime}\right)=0$ for all multi-indexts α, that is, $B_{\mu_{-\nu}}\left(\xi^{\prime}\right)$ $\equiv 0$, then the limit u_{0} of the solutions of (3.1) satisfies the following boundary conditions:

$$
\begin{equation*}
\left.b_{j_{k}}(D) u(x)\right|_{x_{1} \downarrow 0}=\phi_{k}\left(x^{\prime}\right), k=1, \cdots, \nu-1, \nu+1 . \tag{3.17}
\end{equation*}
$$

In particular, when $\nu \leqq m^{\prime}-1$, the family (3.1) is abnormally micro-reducible at ξ_{0}^{\prime}. When $\nu=m^{\prime}$, the family (3.1) is micro-admissible at ξ_{0}^{\prime} but not micro-reducible at ξ_{0}^{\prime}.
(2-2-c) If $V_{\mu_{-\nu, 1}} \neq 0$ and there exists a multi-index α such that $D_{\xi^{\prime}}^{\alpha} B_{\mu-\nu}\left(\xi_{0}^{\prime}\right) \neq 0$,
that is, $B_{\mu_{-v}}\left(\xi^{\prime}\right) \equiv 0$, then the family (3.1) is micro-admissible at ξ_{0}^{\prime} but not microreducible at ξ_{0}^{\prime}.

4. Various examples

We shall patch up the localization in ξ^{\prime}-space and study the reducibility in various examples. We shall require the following "global-ellipticity" of the boundary conditions:

Assumption 4.1. There exist positive numbers I, C, and M independent of $0<\varepsilon<1$ and ξ^{\prime} in \boldsymbol{R}^{n-1} such that

$$
\left|\left(D_{0} \cdot \varepsilon^{I}\right)^{-1}\right| \leqq C\left\langle\xi^{\prime}\right\rangle^{M}
$$

and every cofactor $D_{0, k, l}$ of $D_{0} k, l=1, \cdots, \mu$ satisfies

$$
\left|D_{0, k, l} \cdot \varepsilon^{I}\right| \leqq C\left\langle\xi^{\prime}\right\rangle^{M}
$$

Here $\left\langle\xi^{\prime}\right\rangle=\left(1+\left|\xi^{\prime}\right|\right)^{1 / 2}$.
Remark. In some cases, instead of Assumption 4.1, it might be better to assume

$$
\left|\left(D_{0} \cdot \varepsilon^{I}\right)^{-1}\right| \leqq C\left\langle\xi^{\prime}\right\rangle^{M} /\left|\xi^{\prime}\right|^{n-1-\delta}
$$

where $\delta>0$ and to deal with L^{2}-solutions instead of \mathcal{S}^{\prime}-solutions. Then we can admit some algebraic singularities of D_{0} at $\xi^{\prime}=0$.

Example 4.2. Let $P_{1}(\xi)$ be an elliptic polynomial of order 2μ with real coefficients such that $P_{1}(\xi)>0$ for ξ in \boldsymbol{R}^{n} and

$$
\begin{equation*}
P_{1}(\xi)=\xi_{1}^{2 \mu}+\sum_{j=1}^{2 \mu} p_{1, j}\left(\xi^{\prime}\right) \xi_{1}^{2 \mu-j} . \tag{4.1}
\end{equation*}
$$

Let $P_{2}\left(\xi^{\prime}\right)$ be an elliptic polynomial of ξ^{\prime} with real coefficients such that $P_{2}\left(\xi^{\prime}\right)>$ 0 for ξ^{\prime} in \boldsymbol{R}^{n-1} and ord $P_{2}<$ ord P_{1}. Then, for ξ in \boldsymbol{R}^{n} and for $0<\varepsilon<1$,

$$
\begin{equation*}
\varepsilon^{2 \mu-1} \cdot P_{1}(\xi)+i \xi_{1}+P_{2}\left(\xi^{\prime}\right) \neq 0 \tag{4.2}
\end{equation*}
$$

This implies that the characteristic roots $\tau_{j}\left(\varepsilon, \xi^{\prime}\right), j=1, \cdots, 2 \mu$ satisfy $\operatorname{Im} \tau_{j}\left(\varepsilon, \xi^{\prime}\right)$ >0 or $\operatorname{Im} \tau_{j}\left(\varepsilon, \xi^{\prime}\right)<0$ alternatively in $\boldsymbol{R}_{\xi^{\prime}}^{n-1}$ for $0<\varepsilon<1$.

Let us consider the following one-parameter family of unilateral boundary value problems:

$$
\left[\begin{array}{l}
\left(\varepsilon^{2 \mu-1} \cdot P_{1}(D)+i D_{1}+P_{2}\left(D^{\prime}\right)\right) u(x)=0 \text { in } \boldsymbol{R}_{+}^{n} ; \tag{4.3}\\
\left.b_{j_{k}}(D) u(x)\right|_{x_{1} \downarrow 0}=\phi_{k}\left(x^{\prime}\right), k=1, \cdots, \mu
\end{array}\right.
$$

with $0<\varepsilon<1$. Let $b_{j_{1}}=b_{0}=1$ and $b_{j_{k}}, k=2, \cdots, \mu$ be normal and satisfy Assumption 3.5 for $B=\boldsymbol{R}^{n-1}$. Then the family (4.3) is normally micro-reducible
at every point ξ^{\prime} in \boldsymbol{R}^{n-1}, which will be shown under.
Let Φ in $\mathrm{F}^{-1}\left(C_{0}^{\infty}(B(0 ; R))\right)^{\mu}$, where $B(0 ; R)=\left\{\left|\xi^{\prime}\right|<R\right\}$. Since $j_{\mu} \leqq 2 \mu-1$ and $j_{2} \geqq 1$, it follows that for every pair $\left(l_{1}, l_{2}\right), l_{1}, l_{2} \in A=\left\{j_{2}, \cdots, j_{\mu}\right\}$ with $l_{1}<l_{2}$, we have $0<l_{2}-l_{1} \leqq j_{\mu}-j_{2} \leqq 2 \mu-2$. Hence $l_{1} \equiv l_{2}(\bmod 2 \mu-1)$, and we have rank Mat $V_{\mu_{-1,0}}=\mu-1$. Since the characteristic roots are simple for $\left|\xi^{\prime}\right|<R$ and $\varepsilon<\varepsilon_{R}$, the partial Fourier transforms of the solutions u_{e} of (4.3) can be represented as (3.4). By Lemma 2.2, we have

$$
\begin{equation*}
\tau_{1}\left(\varepsilon, \xi^{\prime}\right)=i P_{2}\left(\xi^{\prime}\right)+O\left(\varepsilon^{2 \mu-1}\right) \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{j}\left(\varepsilon, \xi^{\prime}\right) \cdot \varepsilon=\Theta \zeta^{j-2}+O(\varepsilon), j=2, \cdots, 2 \mu \tag{4.5}
\end{equation*}
$$

Here $\Theta=\exp \frac{3 \pi i}{2(2 \mu-1)}$ and $\zeta=\exp \frac{2 \pi i}{2 \mu-1}$. The imaginary parts of $\tau_{j}\left(\varepsilon, \xi^{\prime}\right)$, $j=1, \cdots, \mu$ are positive. Hence Lemma 2.4 implies

$$
\lim _{\varepsilon \ngtr 0} C_{1}\left(\varepsilon, \xi^{\prime} ; \Phi\right)=\lim _{\varepsilon \neq 0}\left(D_{1} \cdot \varepsilon^{J}\right) /\left(D_{0} \cdot \varepsilon^{J}\right)=\hat{\phi}_{1},
$$

and for $k=2, \cdots, \mu$

$$
\lim _{\varepsilon \neq 0} C_{k}\left(\varepsilon, \xi^{\prime} ; \Phi\right)=\lim _{\varepsilon \neq 0}\left(D_{k} \cdot \varepsilon^{J}\right) /\left(D_{0} \cdot \varepsilon^{J}\right)=0
$$

Therefore

$$
\lim _{\varepsilon \ngtr 0} u_{\mathrm{z}}=u_{0}=Y\left(x_{1}\right) \cdot \mathrm{F}_{\xi^{\prime}}^{-1}\left(\exp -P_{2}\left(\xi^{\prime}\right) x_{1} \cdot \hat{\phi}_{1}\left(\xi^{\prime}\right)\right)
$$

This implies that u_{0} satisfies

$$
\left[\begin{array}{l}
\left(i D_{1}+P_{2}\left(D^{\prime}\right)\right) u(x)=0 \text { in } \boldsymbol{R}_{+}^{n} \tag{4.6}\\
\left.u(x)\right|_{x_{1} \downarrow 0}=\phi_{1}\left(x^{\prime}\right)
\end{array}\right.
$$

Thus (4.3) is normally micro-reducible at every point in $B(0 ; R)$, where R is an arbitrary positive number.

When Assumption 4.1 is satisfied, the family (4.3) is normally reducible. In fact, Assumption 4.1 assures the commutation of the limit $\varepsilon \downarrow 0$ and the inverse Fourier transformation. Then we have only to calculate the pointwise limit of (3.4) in ξ^{\prime}-space, but this is the micro-reducible version.

The above example can be generlized as follows:
Example 4.3. Assume the same assumptions as in Example 4.2. Let $P_{3}(\xi)$ be an elliptic polynomial of order 2κ such that $P_{3}(\xi) \neq 0$ for ξ in \boldsymbol{R}^{n} and the characteristic roots of $P_{3}(\xi)=0$ with respect to ξ_{1} are simple in $\boldsymbol{R}_{\xi^{\prime}}^{n-1}$. Consider the following equation:

$$
\begin{equation*}
\left(\varepsilon^{2 \mu-1} \cdot P_{1}(\xi)+i \xi_{1}+P_{2}\left(\xi^{\prime}\right)\right) P_{3}(\xi)=0 \tag{4.7}
\end{equation*}
$$

Renumber $\tau_{1}\left(\varepsilon, \xi^{\prime}\right)$ of (4.4) as $\tau_{\kappa+1}\left(\varepsilon, \xi^{\prime}\right)$ and $\tau_{j}\left(\varepsilon, \xi^{\prime}\right)$ of (4.5) as $\tau_{\kappa+j}\left(\varepsilon, \xi^{\prime}\right), j=2$, \cdots, μ, respectively. We denote by $\sigma_{j}\left(\xi^{\prime}\right), j=1, \cdots, \kappa$ the characteristic roots of $P_{3}(\xi)=0$, which have positive imaginary parts. Put $\sigma_{\kappa+1}\left(\xi^{\prime}\right)=i \cdot P_{2}\left(\xi^{\prime}\right)$ and $\tau_{j}=\sigma_{j}, j=1, \cdots, \kappa+1$. Let us consider the following one-parameter family:

$$
\left[\begin{array}{l}
\left(\varepsilon^{2 \mu-1} \cdot P_{1}(D)+i D_{1}+P_{2}\left(D^{\prime}\right)\right) P_{3}(D) u(x)=0 \text { in } \boldsymbol{R}_{+}^{n} ; \tag{4.8}\\
\left.b_{j_{k}}(D) u(x)\right|_{x_{1} \downarrow 0}=\phi_{k}\left(x^{\prime}\right), k=1, \cdots, \mu+\kappa
\end{array}\right.
$$

Here we assume that $j_{k} \leqq 2 \mu+2 \kappa-1$ and that $b_{j_{k}}$ satisfy Assumption 3.5 for $B=\boldsymbol{R}^{n-1}$. Then we can apply Theorem 3.6 to this example for $B=\boldsymbol{R}^{n-1}$. When Assumption 4.1 is satisfied, we can have the same result as in Theorem 4.4 in [1].

Let us give an example of the micro-admissible family, which is not microreducible. This is a special case of Example 4.3.

Example 4.4. Put $P_{1}=\xi_{1}{ }^{6}+\left\langle\xi^{\prime}\right\rangle^{6}, P_{2}=\left\langle\xi^{\prime}\right\rangle^{2}$, and $P_{3}=\xi_{1}^{2}+\frac{1}{4}\left\langle\xi^{\prime}\right\rangle^{2}$ in (4.7). Denote $\Theta=\exp \frac{3 \pi i}{10}$ and $\zeta=\exp \frac{2 \pi i}{5}$. Lemma 2.2 implies that $\sigma_{1}\left(\xi^{\prime}\right)=\frac{i}{2}\left\langle\xi^{\prime}\right\rangle$, $\tau_{2}=i\left\langle\xi^{\prime}\right\rangle^{2}+O\left(\varepsilon^{4}\right), \tau_{3} \cdot \varepsilon=\Theta-\frac{i}{5}\left\langle\xi^{\prime}\right\rangle^{2} \cdot \varepsilon+O\left(\varepsilon^{2}\right)$, and $\tau_{4} \cdot \varepsilon=\Theta \zeta-\frac{i}{5}\left\langle\xi^{\prime}\right\rangle^{2} \cdot \varepsilon+O\left(\varepsilon^{2}\right)$. We set the following boundary conditions:

$$
\left.u\right|_{x_{1} \downarrow 0}=\phi_{1},\left.D_{1} u\right|_{x_{1} \downarrow 0}=\phi_{2},\left.D_{1}^{2} u\right|_{x_{1} \downarrow 0}=\phi_{3}, \quad \text { and }\left.\quad D_{1}^{7} u\right|_{x_{1} \downarrow 0}=\phi_{8}
$$

Here $\phi_{1}, \phi_{2}, \phi_{3}$, and ϕ_{8} belong to $\mathrm{F}^{-1}\left(C_{0}^{\infty}\left(\boldsymbol{R}^{n-1}\right)\right)$. Then we have

$$
\begin{aligned}
& D_{0}\left(\frac{i}{2}\left\langle\xi^{\prime}\right\rangle, i\left\langle\xi^{\prime}\right\rangle^{2} ; 1, \tau\right)=i\left\langle\xi^{\prime}\right\rangle\left(\left\langle\xi^{\prime}\right\rangle-\frac{1}{2}\right) \neq 0, \\
& D_{0}\left(\frac{i}{2}\left\langle\xi^{\prime}\right\rangle, i\left\langle\xi^{\prime}\right\rangle^{2} ; 1, \tau^{2}\right)=-\left\langle\xi^{\prime}\right\rangle^{2}\left(\left\langle\xi^{\prime}\right\rangle^{2}-\frac{1}{4}\right) \neq 0, \\
& B_{4-2}=i \zeta(\zeta-1)\left\langle\xi^{\prime}\right\rangle^{2}, \quad \text { and } \quad V_{4-2,1}=\zeta(\zeta-1) .
\end{aligned}
$$

Thus

$$
\begin{gathered}
d_{0,1} / \Theta^{8}=-\zeta(\zeta-1)\left\langle\xi^{\prime}\right\rangle^{2}\left(\left\langle\xi^{\prime}\right\rangle-\frac{1}{2}\right)\left(2\left\langle\xi^{\prime}\right\rangle+\frac{1}{2}\right), \\
d_{1,1} / \Theta^{8}=\left(i\left\langle\xi^{\prime}\right\rangle^{2} \hat{\phi}_{1}-\hat{\phi}_{2}\right) \cdot i \zeta(\zeta-1)\left\langle\xi^{\prime}\right\rangle^{2}-\left(\left\langle\xi^{\prime}\right\rangle^{4} \hat{\phi}_{1}+\hat{\phi}_{3}\right) \cdot \zeta(\zeta-1),
\end{gathered}
$$

and

$$
d_{2,1} / \Theta^{8}=\left(\hat{\phi}_{2}-\frac{i}{2}\left\langle\xi^{\prime}\right\rangle \hat{\phi}_{1}\right) \cdot i \zeta(\zeta-1)\left\langle\xi^{\prime}\right\rangle^{2}+\left(\hat{\phi}_{3}+\frac{1}{4}\left\langle\xi^{\prime}\right\rangle^{2} \hat{\phi}_{1}\right) \cdot \zeta(\zeta-1)
$$

Obviously, this family is micro-admissible at every point in $\boldsymbol{R}_{\xi^{\prime}}^{n-1}$. Denote by u_{0} the limit of u_{e} when $\varepsilon \downarrow 0$. Since

$$
\left.\left(\lim _{\mathfrak{z} \downarrow 0} u_{\mathrm{e}}\right)\right|_{x_{1} \downarrow 0}=\left.u_{0}\right|_{x_{1} \downarrow 0}=\mathrm{F}^{-1}\left(\left(d_{1,1}+d_{2,1}\right) / d_{0,1}\right)=\mathrm{F}^{-1}\left(\hat{\phi}_{1}\right),
$$

u_{0} satisfies the boundary condition $\left.u\right|_{x_{1} \downarrow 0}=\phi_{1}$. We have

$$
\begin{aligned}
\left.D_{1} u_{0}\right|_{x_{1} \downarrow 0} & =\mathrm{F}^{-1}\left(\left(\frac{i}{2}\left\langle\xi^{\prime}\right\rangle d_{1,1}+i\left\langle\xi^{\prime}\right\rangle^{2} d_{2,1}\right) / d_{0,1}\right) \\
& =\mathrm{F}^{-1}\left(C_{1} \hat{\phi}_{1}+C_{2} \hat{\phi}_{2}+C_{3} \hat{\phi}_{3}\right)
\end{aligned}
$$

where $C_{1}=\frac{i\left\langle\xi^{\prime}\right\rangle^{2}}{4\left\langle\xi^{\prime}\right\rangle+1}, C_{2}=\frac{2\left\langle\xi^{\prime}\right\rangle}{4\left\langle\xi^{\prime}\right\rangle+1}$, and $C_{3}=\frac{-2 i}{\left\langle\xi^{\prime}\right\rangle\left(4\left\langle\xi^{\prime}\right\rangle+1\right)}$. We also have

$$
\begin{aligned}
\left.D_{1}^{2} u_{0}\right|_{x_{1} \downarrow 0} & =\mathrm{F}^{-1}\left(\left(-\frac{1}{4}\left\langle\xi^{\prime}\right\rangle^{2} d_{1,1}-\left\langle\xi^{\prime}\right\rangle^{4} d_{2,1}\right) / d_{0,1}\right) \\
& =\mathrm{F}^{-1}\left(C_{4} \hat{\phi}_{1}+C_{5} \hat{\phi}_{2}+C_{6} \hat{\phi}_{3}\right)
\end{aligned}
$$

where $C_{4}=\frac{\left\langle\xi^{\prime}\right\rangle^{4}}{4\left\langle\xi^{\prime}\right\rangle+1}, C_{5}=\frac{i\left\langle\xi^{\prime}\right\rangle^{2}\left(2\left\langle\xi^{\prime}\right\rangle+1\right)}{4\left\langle\xi^{\prime}\right\rangle+1}$, and $C_{6}=\frac{2\left\langle\xi^{\prime}\right\rangle+1}{4\left\langle\xi^{\prime}\right\rangle+1}$. Hence u_{0} does not satisfy the boundary conditions $\left.D_{1} u\right|_{x_{1} \downarrow 0}=\phi_{2}$ and $\left.D_{1}{ }^{2} u\right|_{x_{1} \downarrow 0}=\phi_{3}$. Thus this family is not micro-reducible at every point in $\boldsymbol{R}_{\xi^{\prime}}^{n-1}$.

Since ν depends on ξ_{0}^{\prime}, μ the number of the boundary conditions may be changed by ξ_{0}^{\prime}. When μ is changed by ξ_{0}^{\prime}, we can not set the problem of the reducibility. The following example, to which Theorem 3.6 can not be applied, will show us such a situation.

Example 4.5. Let $P_{1}(\xi)=\langle\xi\rangle^{4}$ and $P_{2}(\xi)=-\langle\xi\rangle^{2}$. Then the characteristic roots of $\varepsilon^{4} \cdot P_{1}(\xi)+P_{2}(\xi)=0$ are $\pm i\left\langle\xi^{\prime}\right\rangle$ and $\pm \frac{1}{\varepsilon} \cdot\left(1-\left\langle\xi^{\prime}\right\rangle^{2} \cdot \varepsilon^{2}\right)^{1 / 2}$. For fixed ε, two characteristic roots have positive imaginary parts for sufficienty large ξ^{\prime}. Therefore, let us consider the following one-parameter family of unilateral boundary value problems:

$$
\left[\begin{array}{l}
\left(\varepsilon^{4} \cdot P_{1}(D)+P_{2}(D)\right) u=0 \text { in } \boldsymbol{R}_{+}^{n} \tag{4.9}\\
\left.u\right|_{x_{1} \downarrow 0}=\phi_{1},\left.D_{1} u\right|_{x_{1} \downarrow 0}=\phi_{2}
\end{array}\right.
$$

where ϕ_{1} and ϕ_{2} belong to $\mathcal{S}\left(\boldsymbol{R}^{n}\right)$. But the \mathcal{S}^{\prime}-solutions of (4.9) are not unique. In fact, if ϕ_{1}, ϕ_{2}, and ϕ_{3} belong to $\mathrm{F}^{-1}\left(C_{0}^{\infty}(B(0 ; R))\right)$ and $\varepsilon<R^{-1}<1$, then the following family

$$
\left[\begin{array}{l}
\left(\varepsilon^{4} \cdot P_{1}(D)+P_{2}(D)\right) u=0 \text { in } \boldsymbol{R}_{+}^{n} ; \tag{4.10}\\
\left.u\right|_{x_{1} \downarrow 0}=\phi_{1},\left.D_{1} u\right|_{x_{1} \downarrow 0}=\phi_{2},\left.D_{1}^{2} u\right|_{x_{1} \downarrow 0}=\phi_{3},
\end{array}\right.
$$

is micro-reducible at every point in $B(0 ; R)$.

5. The convergence of canonical extensions

We shall deduce some results from the convergence of the canonical ex-
tensions, referring to Appendix. Let P_{1} and P_{2} be kowalewskian with their symbols:

$$
\begin{aligned}
& P_{1}(\xi)=\xi_{1}{ }^{m}+\sum_{j=0}^{m-1} p_{1, m-j}\left(\xi^{\prime}\right) \xi_{1}^{j} \\
& P_{2}(\xi)=p_{2,0} \xi_{1}^{m^{\prime}}+\sum_{j=0}^{m^{\prime-1}} p_{2, m^{\prime}-j}\left(\xi^{\prime}\right) \xi_{1}{ }^{j}
\end{aligned}
$$

Denote $P_{\mathrm{z}}(\xi)=\varepsilon \cdot P_{1}(\xi)+P_{2}(\xi)$ and

$$
p_{\varepsilon, j}=\varepsilon \cdot p_{1, m-j}+p_{2, m^{\prime}-j}, j=0, \cdots, m-1
$$

where $p_{2, k}=0$ for $k<0$. Let us consider a sequence of prolongable solutions u_{e} of

$$
\left[\begin{array}{l}
P_{z}(D) u=0, \text { in } \boldsymbol{R}_{+}^{n} \tag{5.1}\\
\left.b_{j}(D) u\right|_{x_{1} \downarrow 0}=\phi_{j}, j=0, \cdots, m-1 .
\end{array}\right.
$$

Here every $b_{j}(D)$ is a normal boundary operator of order j and every ϕ_{j} belongs to $\mathscr{D}^{\prime}\left(\boldsymbol{R}^{\boldsymbol{n}-1}\right)$. Then we have the following lemma.

Lemma 5.1. If there exists a sequence of prolongable solutions u_{e} of (5.1) and a distribution v such that

$$
\begin{equation*}
\left[u_{\mathrm{z}}\right]^{+} \rightarrow v \text { in } \mathscr{D}^{\prime}\left(\boldsymbol{R}^{n}\right), \tag{5.2}
\end{equation*}
$$

then

$$
\begin{gather*}
P_{2}(D) v=0 \quad \text { in } \quad \boldsymbol{R}_{+}^{n} ; v=[v]^{+} ; \tag{5.3}\\
\left.b_{j}(D) v\right|_{x_{1} \downarrow 0}=\left.b_{j}(D) u_{\mathrm{z}}\right|_{x_{1} \downarrow 0}=\phi_{j}, j=0, \cdots, m^{\prime}-1 \tag{5.4}
\end{gather*}
$$

Proof. First we shall prove the assertion when $b_{j}=D_{1}{ }^{j}, j=0, \cdots, m-1$. Denote by $\left\{q_{l, j}\right\}, l=1,2, \varepsilon$ the dual boundary systems of $\left\{D_{1}{ }^{j}\right\}$ with respect to $P_{l}(D), l=1,2, \varepsilon$, respectively. Then by $(A .5), q_{l, j}(\xi)={ }^{t}\left(\frac{1}{i} \cdot \sum_{k=0}^{j} p_{l, k}\left(\xi^{\prime}\right) \xi_{1}^{j-k}\right)$, $l=1,2, \varepsilon$. For every $u(x)$ in $C^{\infty}\left(\boldsymbol{R}^{n}\right)$, we have

$$
\begin{aligned}
& P_{\mathrm{e}}(D)\left(Y\left(x_{1}\right) \cdot u\right)=\varepsilon \cdot P_{1}(D)\left(Y\left(x_{1}\right) \cdot u\right)+P_{2}(D)\left(Y\left(x_{1}\right) \cdot u\right) \\
& =Y\left(x_{1}\right) \cdot \varepsilon \cdot P_{1}(D) u+Y\left(x_{1}\right) \cdot P_{2}(D) u+\varepsilon \cdot \sum_{j=0}^{m-1}{ }^{t} q_{1, m-j-1}(D)\left\{\delta\left(x_{1}\right) \phi_{j}\right\} \\
& \quad+\sum_{j=0}^{m-1}{ }^{t} q_{2, m^{\prime}-j-1}(D)\left\{\delta\left(x_{1}\right) \phi_{j}\right\} \\
& =
\end{aligned}
$$

where $\phi_{j}\left(x^{\prime}\right)=\left.D_{1}{ }^{j} u\right|_{x_{1}=0}, j=0, \cdots, m-1$. Since the dual boundary system is uniquely determined in the case of constant coefficients, it implies that

$$
{ }^{t} q_{2, k}(D)=\varepsilon \cdot{ }^{t} q_{1, k}(D)+{ }^{t} q_{2, k}(D), k=0, \cdots, m^{\prime}-1
$$

and

$$
{ }^{t} q_{\mathrm{e}, k}(D)=\varepsilon \cdot{ }^{t} q_{1, k}(D), k=m^{\prime}, \cdots, m
$$

Thus we can write

$$
\begin{align*}
& P_{\mathrm{e}}(D)\left[u_{\mathrm{e}}\right]^{+}=\sum_{j=0}^{m-1} q_{\mathrm{z}, m-j-1}(D)\left\{\delta\left(x_{1}\right) \phi_{j}\right\} \tag{5.5}\\
& \quad=\varepsilon \cdot \sum_{j=0}^{m-1} q_{1, m-j-1}(D)\left\{\delta\left(x_{1}\right) \phi_{j}\right\}+\sum_{j=0}^{m-1} q_{2, m^{\prime}-j-1}(D)\left\{\delta\left(x_{1}\right) \phi_{j}\right\}
\end{align*}
$$

Letting $\varepsilon \downarrow 0$ in (5.5), we have

$$
\begin{equation*}
P_{2}(D) v=\sum_{j=0}^{m^{\prime}-1} q_{2, m^{\prime}-j-1}(D)\left\{\delta\left(x_{1}\right) \phi_{j}\right\} . \tag{5.6}
\end{equation*}
$$

Since the support of the right-hand side of (5.6) is included in $x_{1}=0$, it follows that $P_{2}(D) v=0$ in \boldsymbol{R}_{+}^{n}. The expression (5.6) and the definition of the boundary values of v imply (5.4). The uniqueness of the expression (5.6) of [$v]^{+}$implies $v=[v]^{+}$.

Denote by $\left\{c_{\mathrm{e}, j}\right\}$ the dual boundary system of $\left\{b_{j}\right\}$ with respect to $P_{\mathrm{e}}(D)$. Then by (A.6),

$$
c_{\varepsilon, j}=\varepsilon \cdot \sum_{k=0}^{j} a_{m-1-j+k, k} q_{1, j-k}+\sum_{k=0}^{j} a_{m^{\prime}-1-j+k, k} q_{2, j-k} .
$$

Here $a_{j, k}$ satisfy (A.4) and $a_{j, k}=0$, for $j<0$. Since $a_{j, k}$ are independent of ε, we have

$$
\lim _{\varepsilon \ngtr 0} c_{\mathrm{e}, j}=\sum_{k=0}^{j} a_{m^{\prime}-1-j+k, k} q_{2, j-k}
$$

Thus we can reduce this general case into the first.
[Q.E.D.]
In [2], we have already studied the necessary conditions for the convergence of solutions of the one-parameter family of Cauchy problems. The following theorem shows that an admissible one-parameter family of Cauchy problems is normally reducible.

Theorem 5.2. Assume that there exists a sequence of solutions u_{z} of the following Cauchy problems:

$$
\left[\begin{array}{l}
P_{z}(D) u=0, \text { in } \boldsymbol{R}^{n} ; \tag{5.7}\\
\left.b_{j}(D) u\right|_{x_{1}=0}=\phi_{j}, j=0, \cdots, m-1
\end{array}\right.
$$

and a distirbution v such that

$$
\begin{equation*}
\lim _{\varepsilon_{\Downarrow} 0} u_{\mathrm{e}}(x)=v(x) \text { in } C\left(\boldsymbol{R}_{x_{1}} ; \mathscr{D}^{\prime}\left(\boldsymbol{R}_{x^{\prime}}^{n-1}\right)\right) . \tag{5.8}
\end{equation*}
$$

Then v satisfies the following reduced Cauchy problem:

$$
\left[\begin{array}{l}
P_{2}(D) u=0, \text { in } R^{n} \tag{5.9}\\
\left.b_{j}(D) u\right|_{x_{1}=0}=\phi_{j}, j=0, \cdots, m^{\prime}-1
\end{array}\right.
$$

Proof. By (5.8), we have

$$
\lim _{\mathfrak{z} \neq 0} Y\left(x_{1}\right) u_{z}(x)=Y\left(x_{1}\right) v(x) \text { in } \mathscr{D}^{\prime}\left(\boldsymbol{R}^{n}\right) .
$$

Since $\left[u_{\mathrm{z}}\right]^{+}=Y\left(x_{1}\right) u_{\mathrm{e}}(x)$, it follows that

$$
\lim _{\varepsilon \neq 0}\left[u_{\mathrm{e}}\right]^{+}=Y\left(x_{1}\right) v(x) \text { in } \mathscr{D}^{\prime}\left(\boldsymbol{R}^{n}\right) .
$$

We know that

$$
\left.b_{j}(D) u_{z}\right|_{x_{1} \downarrow 0}=\left.b_{j}(D) u_{z}\right|_{x_{1}=0}=\phi_{j}, j=0, \cdots, m-1 .
$$

Hence u_{z} satisfies the boundary value problem (5.1). By applying Lemma 5.1, we have $P_{2}(D) v=0$ in $\mathscr{D}^{\prime}\left(\boldsymbol{R}_{+}^{n}\right), v=[v]^{+}$, and

$$
\begin{equation*}
\left.b_{j}(D) v\right|_{x_{1} \downarrow 0}=\left.b_{j}(D) v\right|_{x_{1}=0}=\phi_{j}, j=0, \cdots, m^{\prime}-1 . \tag{Q.E.D}
\end{equation*}
$$

Remark. For example, when P_{1} is strongly hyperbolic and the data belong to $C_{0}^{\infty}\left(\boldsymbol{R}^{n-1}\right)$, then the Cauchy problem (5.7) is uniquely solvable for every $\varepsilon<1$. See Theorem 4.7 and 4.10 in [6]. Hence when P_{1} is strongly hyperbolic and P_{2} is hyperbolic, the admissibility implies the normal reducibility.

The following example shows that as for the one-parameter family of boundary value problems, it is not appropriate to require the convergence of canonical extensions.

Example 5.3. Let us consider the one-parameter family of boundary value problems of ordinary differential operators:

$$
\left[\begin{array}{l}
\left(\left(\varepsilon \cdot \frac{d}{d x}\right)^{2}+2\left(\varepsilon \cdot \frac{d}{d x}\right)+1\right) u=0 \tag{5.10}\\
u(0)=u(\infty)=0
\end{array}\right.
$$

Put $u_{\mathrm{e}}=\frac{x}{\varepsilon^{3}} \cdot \exp \left(-\frac{x}{\varepsilon}\right)$. Then u_{z} is the global solution in $\mathscr{D}^{\prime}(\boldsymbol{R})$, especially in $\mathscr{D}^{\prime}\left(\boldsymbol{R}^{+}\right)$. The canonical extension of u_{z} is $Y(x) u_{\mathrm{z}}(x)$ as we refer in Remark to Lemma A.2. Since

$$
\left\langle Y u_{\mathrm{e}}, \phi\right\rangle=\frac{1}{\varepsilon} \int_{0}^{\infty} t e^{-t} \phi(\varepsilon t) d t, \phi \in C_{0}^{\infty}(\boldsymbol{R}),
$$

$\left\langle Y u_{\mathfrak{e}}, \phi\right\rangle$ does not converge in $\mathscr{D}^{\prime}(\boldsymbol{R})$ when $\varepsilon \downarrow 0$. Put

$$
v_{\mathrm{z}}(x)=\left[\begin{array}{l}
u_{\mathrm{e}}(x), \text { for } \quad x \geqq 0 ; \\
-u_{\mathrm{e}}(-x), \quad \text { for } x<0 .
\end{array}\right.
$$

Then

$$
\left\langle v_{\mathrm{z}}, \phi\right\rangle=\int_{0}^{\infty} t^{2} e^{-t} \cdot \frac{1}{\varepsilon t}(\phi(\varepsilon t)-\phi(-\varepsilon t)) \mathrm{dt}
$$

and $\left\langle v_{\mathfrak{g}}, \phi\right\rangle \rightarrow 2 \phi^{\prime}(0) \Gamma(3)$, when $\varepsilon \downarrow 0$. Here $\Gamma(z)$ is the gamma function. Therefore $v_{\boldsymbol{z}}$ is a solution not in \boldsymbol{R} but in \boldsymbol{R}^{+}and converges in $\mathscr{D}^{\prime}(\boldsymbol{R})$.

Remark. In case of initial value problems with variable coefficients, A. Yoshikawa, [8] studied the same kind of equations as in Example 5.3 in a smart treatment.

Appendix

The boundary values of solutions to a non-characteristic hyperplane
We shall give a brief survey of a general boundary value theory for solutions of linear partial differential equations with constant coefficients according to [4] based on hyperfunction theory.

Let $P(D)$ be a differential operator of order m with constant coefficeints and its symbol be

$$
\begin{equation*}
P(\xi)=\xi_{1}^{m}+\sum_{j=1}^{m} p_{j}\left(\xi^{\prime}\right) \xi_{1}^{m-j} \tag{A.1}
\end{equation*}
$$

Here every $p_{j}\left(\xi^{\prime}\right)$ is a polynomial of ξ^{\prime} with order $p_{j} \leqq j$. Let every $b_{j}(D)$, $j=0, \cdots, m-1$ be a differential operator of order j with constant coefficients and its symbol be

$$
\begin{equation*}
b_{j}(\xi)=\xi_{1}{ }^{j}+\sum_{k=1}^{j} b_{j, k}\left(\xi^{\prime}\right) \xi_{1}^{j-k} . \tag{A.2}
\end{equation*}
$$

Here every $b_{j, k}\left(\xi^{\prime}\right)$ is a polynomial of ξ^{\prime} with order $b_{j, k} \leqq k$. Such a differential operator as $b_{j}(D)$ is said to be normal, and

$$
\begin{equation*}
\left.b_{j}(D) u(x)\right|_{x_{1} \downarrow 0}=\phi_{j}\left(x^{\prime}\right), j=0, \cdots, m-1 \tag{A.3}
\end{equation*}
$$

is called the normal boundary condition. A system $\left\{b_{j}\right\}_{j=0}^{m-1}$ is said to be normal if every b_{j} is normal. When $\left\{b_{j}\right\}_{j=0}^{n-1}$ is normal, there exist normal differential operators $a_{j, k}\left(D^{\prime}\right)$ such that for $j=0, \cdots, m-1$

$$
\begin{equation*}
D_{1}^{j}=\sum_{k=0}^{j} a_{j, k}\left(D^{\prime}\right) \cdot b_{j-k}(D) \tag{A.4}
\end{equation*}
$$

A system $\left\{c_{j}(D)\right\}_{j=0}^{m-1}$ is called the dual boundary system of $\left\{b_{j}(D)\right\}_{j=0}^{m-1}$ with respect to $P(D)$ if for every C^{m} function $u(x)$ it satisfies

$$
P(D)\left(Y\left(x_{1}\right) u(x)\right)=Y\left(x_{1}\right) P(D) u(x)+\sum_{j=0}^{m-1} t c_{m-j-1}(D)\left(\delta\left(x_{1}\right) b_{j}(D) u(x)\right),
$$

in a neighbourhood of $x_{1}=0$. Here $Y\left(x_{1}\right)$ is the Heaviside function and $\delta\left(x_{1}\right)$ is the Driac measure. The symbols of the dual boundary system of $\left\{D_{1}{ }^{j}\right\}_{j=0}^{m-1}$ with respect to $P(D)$ are

$$
\begin{equation*}
q_{j}(\xi)={ }^{t}\left(\frac{1}{i} \cdot \sum_{k=0}^{j} p_{k}\left(\xi^{\prime}\right) \xi_{1}^{j-k}\right) \tag{A.5}
\end{equation*}
$$

and those of $\left\{b_{j}\right\}_{j=0}^{m-1}$ are

$$
\begin{equation*}
c_{j}(\xi)=\sum_{k=0}^{j}{ }^{t} a_{m-1-j+k, k}\left(\xi^{\prime}\right) \cdot q_{j-k}(\xi) \tag{A.6}
\end{equation*}
$$

Let U be a domain containing the origin. Put $U^{+}=U \cap\left\{x_{1}>0\right\}, U^{0}=U \cap$ $\left\{x_{1}=0\right\}, U^{-}=U \cap\left\{x_{1}<0\right\}, \bar{U}^{+}=U^{+} \cup U^{0}$, and $\bar{U}^{-}=U^{-} \cup U^{0}$. When U^{0} is regarded as an open set in R^{n-1}, U^{0} is denoted by U^{\prime}, that is, $U^{0}=\{0\} \times U^{\prime}$.

A distribution u in $\mathscr{D}^{\prime}\left(U^{+}\right)$is said to be prolongable into $x_{1} \leqq 0$ if there exist an open set V and a distribution v in $\mathscr{D}^{\prime}(V)$, which is called an extension of u, such that

$$
V \cap\left\{x_{1}>0\right\}=U^{+} \text {and }\left.v\right|_{U^{+}}=u
$$

Lemma A.1. Let $u(x)$ be a prolongable solution of $P(D) u(x)=0$ in U^{+}. Then there exist a unique extension $[u]^{+}$in $\mathscr{D}^{\prime}(U)$ of u and unique data $\phi_{j}\left(x^{\prime}\right)$ in $\mathscr{D}^{\prime}\left(U^{\prime}\right), j=0, \cdots, m-1$ satisfying supp $[u]^{+} \subset \bar{U}^{+}$and

$$
\begin{equation*}
P(D)[u]^{+}(x)=\sum_{j=0}^{m-1} c_{m-j-1}(D)\left\{\delta\left(x_{1}\right) \phi_{j}\left(x^{\prime}\right)\right\} \tag{A.7}
\end{equation*}
$$

Here the extension $[u]^{+}$is said to be canonical and is independent of the choice of the boundary system. The data $\phi_{j}\left(x^{\prime}\right)$ are called the boundary values to $x_{1}=0$ with respect to $\left\{b_{j}(D)\right\}_{j=0}^{m-1}$. We write $\left.b_{j}(D) u\right|_{x_{1} \downarrow 0}=\phi_{j}$.

Proof. Let $\left\{\rho_{j}\right\}$ be a partition of unity on U and χ be the difining function of the set U^{+}. We can write $\rho_{j} u=\sum_{\infty} D^{\alpha} f_{j, \alpha}$, where $f_{j, \infty}$ are continuous functions with supp $f_{j, \alpha} \subset \operatorname{supp} \rho_{j}$. Put $v=\sum_{j} \sum_{\alpha} D^{\alpha}\left(\chi f_{j, \alpha}\right)$. Then $\left.v\right|_{U^{+}}=\left.u\right|_{U^{+}}$ and supp $v \subset \bar{U}^{+}$. Hence $P(D) v=0$ in U^{+}and supp $P(D) v \subset U^{0}$. By the local structure theorem of a distribution whose support is included in $x_{1}=0$ (See Theorèm XXXVI in [7]), we can write locally

$$
\begin{equation*}
P(D) v=\sum_{k=0}^{M} D_{j}{ }^{k} \delta\left(x_{1}\right) f_{k}\left(x^{\prime}\right) . \tag{A.8}
\end{equation*}
$$

Here $f_{k}\left(x^{\prime}\right)$ are distributions. If $M \geqq m$, then

$$
D_{1}{ }^{M} \delta\left(x_{1}\right) f_{M}\left(x^{\prime}\right)=P(D) D_{1}^{M-m}\left(\delta\left(x_{1}\right) f_{M}\left(x^{\prime}\right)\right)+\sum_{k=0}^{M-1} D_{1}^{k} \delta\left(x_{1}\right) g_{k}\left(x^{\prime}\right) .
$$

By replacing v by $v-D_{1}{ }^{M-m}\left(\delta\left(x_{1}\right) f_{M}\left(x^{\prime}\right)\right)$, we can diminish M by one. Repeating this operation, we can finally let $M=m-1$. We denote this extension by $[u]^{+}$and the coefficients in the right-hand side by $v_{j}\left(x^{\prime}\right)$, then we have a local representation of (A.7) when $c_{j}(D)={ }^{t} D_{1}{ }^{j}$ as

$$
\begin{equation*}
P(D)[u]^{+}=\sum_{j=0}^{m-1} D_{1}^{m-j-1} \delta\left(x_{1}\right) v_{j}\left(x^{\prime}\right) . \tag{A.9}
\end{equation*}
$$

Let $[u]^{\prime+}$ be another extension and

$$
P(D)[u]^{\prime+}=\sum_{j=0}^{m-1} D_{1}^{m-j-1} \delta\left(x_{1}\right) w_{j}\left(x^{\prime}\right)
$$

If $[u]^{+}-[u]^{+}$is not identically zero, then

$$
[u]^{+}-[u]^{++}=\sum_{j=0}^{M} D_{1}^{j} \delta\left(x_{1}\right) h_{j}\left(x^{\prime}\right),
$$

where $h_{M}\left(x^{\prime}\right)$ is not identiaclly zero. But

$$
\begin{aligned}
& P(D)\left([u]^{+}-[u]^{\prime+}\right)=D_{1}^{M+m} \delta\left(x_{1}\right) p_{m} h_{M}\left(x^{\prime}\right)+\cdots \\
& \quad=\sum_{j=0}^{m-1} D_{1}^{m-j-1} \delta\left(x_{1}\right)\left(v_{j}\left(x^{\prime}\right)-w_{j}\left(x^{\prime}\right)\right)
\end{aligned}
$$

This contradicts the uniqueness of the coefficients in the structure theorem. Thus $[u]^{+}$and $v_{j}\left(x^{\prime}\right)$ are uniquely determined locally. The sheaf property of distributions implies that (A.9) holds globally. In the case of general $\left\{c_{j}(D)\right\}$, put

$$
\begin{equation*}
c_{j}(D)=\sum_{k=0}^{j} c_{j, k}\left(D^{\prime}\right)^{t} D_{1}^{j-k}, \tag{A.10}
\end{equation*}
$$

then

$$
\begin{equation*}
{ }^{t} D_{1}^{j}=\sum_{k=0}^{j} d_{j, l}\left(D^{\prime}\right) c_{j-k} \tag{A.11}
\end{equation*}
$$

Hence

$$
\begin{aligned}
& P(D)[u]^{+}=\sum_{j=0}^{m-1} \sum_{k=0}^{m-j-1} t c_{m-j-1-l}(D)^{t} d_{m-j-1, k}\left(D^{\prime}\right)\left\{\delta\left(x_{1}\right) v_{j}\left(x^{\prime}\right)\right\} \\
& \quad=\sum_{l=0}^{m-1}{ }^{t} c_{m-l-1}(D)\left\{\delta\left(x_{1}\right) \sum_{k=0}^{l} d_{m-l-1+k, k}\left(D^{\prime}\right) v_{l-k}\left(x^{\prime}\right)\right\},
\end{aligned}
$$

that is,

$$
\phi_{j}\left(x^{\prime}\right)=\sum_{k=0}^{j} d_{m-j-1+k, k}\left(D^{\prime}\right) v_{j-k}\left(x^{\prime}\right)
$$

Since this equation can be solved with respect to $v_{j}\left(x^{\prime}\right)$, it follows that $\phi_{j}\left(x^{\prime}\right)$ are uniquely determined by u.

Remark. If u can be extended as a solution, then x_{1} is a C^{∞}-parameter, that is, $u(x)$ is microlocally C^{∞} at $(x ; 1,0, \cdots, 0)$ for every x. Hence the product $Y\left(x_{1}\right) u(x)$ can be defined and we have $[u]^{+}=Y\left(x_{1}\right) u$.

The following lemma will clarify the meaning of the limits of boundary values. The proof will be omitted.

Lemma A.2. Let $U=\left\{\left|x_{1}\right|<\delta\right\} \times U^{\prime}$ and $u(x)$ be a prolongable solution of $P(D) u=0$ in U^{+}. Then

$$
\begin{equation*}
\left.\left.b_{j}(D) u(x)\right|_{x_{1}=\delta} \rightarrow b_{j}(D) u(x)\right|_{x_{1} \downarrow 0}, \tag{A.12}
\end{equation*}
$$

in $\mathscr{D}^{\prime}\left(U^{\prime}\right)$ when $\delta \downarrow 0$.

References

[1] R. Ashino: The reducibility of the boundary conditions in the one-parameter family
of elliptic linear boundary value problems 1, Osaka J. Math. 25 (1988), 737-757.
[2] R. Ashino: On the admissibility of singular perturbations in Cauchy problems, Osaka J. Math. 26 (1989), 387-398.
[3] R. Ashino: On the weak admissibility of singular perturbations in Cauchy problems, (to appear in Publ. Res. Inst. Math. Sci., 25 no. 6).
[4] A. Kaneko: Linear Partial Differential Equations with Constant Coefficients, (in Japanese), Iwanami-Shoten (1976).
[5] A. Kaneko: Introduction to Hyperfunctions, Kluwer Academic Publishers (1988).
[6] S. Mizohata: The Theory of Partial Differential Equations, Cambridge (1973).
[7] L. Schwartz: Théorie des distributions, Hermann (1966).
[8] A. Yoshikawa: On a canonical standard form of second order linear ordinary differential equations with a small parameter, Proc. Japan Acad., 63, Ser. A (1987).

Research Institute
For
Mathematical Sciences
Kyoto University
Kyoto, Japan

