Inoue, T. Osaka J. Math. 26 (1989), 527-534

INTEGRAL FORMULAS FOR HARMONIC FUNCTIONS ASSOCIATED WITH BOUNDARIES OF A BOUNDED SYMMETRIC DOMAIN

TORU INOUE

(Received October 20, 1988)

1. Introduction

In the case of the unit disc, or the upper half-plane in the theory of one complex variable, the Poisson kernel can be expressed in terms of the Cauchy kernel in the following simple way; in either case, denoting the Cauchy and the Poisson kernels by $\mathcal{G}(z, w)$, $\mathcal{P}(z, u)$ respectively

(1)
$$\mathscr{P}(z, u) = \frac{|\mathscr{G}(z, u)|^2}{\mathscr{G}(z, z)}.$$

It is natural, therefore, to extend this definition whenever the Cauchy kernel is defined. Hua [3] did this for four classical types of bounded symmetric domains and established some of its basic properties. For generalized half-planes this was done by Korányi [6] who then used the theory of Cayley transform to determine the Cauchy and Poisson kernels for all the bounded symmetric domains (See also [8], [5]).

It is known that the Poisson kernel has another interpretation; it can be regarded as the Jacobian of an automorphism restricted to the boundary. This way of viewing the Poisson kernel was shown to work on arbitrary non-compact Riemannian symmetric spaces by Furstenberg [1]. For any symmetric domain it turns out that these two possible definitions of the Poisson kernel coincide (See [6], though it is not explicitly stated).

Now let D be an irreducible bounded symmetric domain in the canonical Harish-Chandra realization. If r is the rank of D, then the topological boundary ∂D breaks into r boundaries B_1, \dots, B_r , such that $\overline{B}_i \supset B_{i+1}(1 \le i \le r-1)$, and B_r is the Silov boundary. As is shown in [4], for each boundary $B_i(1 \le i \le r)$, there is a natural measure σ_i on B_i and a Cauchy type kernel function $\mathcal{G}_i(z, w)$ such that

$$f(z) = \int_{B_i} \mathscr{G}_i(z, u) f(u) \, d\sigma_i(u)$$

whenever f is holomorphic in a neighborhood of \overline{D} , the closure of D. For the

Silov boundary B_r , the function $\mathscr{G}_r(z, w)$ is the usual Cauchy(-Szegö) kernel of D, from which Hua et al. defined the Poisson kernel by (1). Therefore it is natural to define, for each boundary B_i , the Poisson type kernel $\mathscr{P}_i(z, u)$ by putting

$$\mathscr{P}_i(z, u) = \frac{|\mathscr{G}_i(z, u)|^2}{|\mathscr{G}_i(z, z)|}, \quad z \in D, u \in B_i.$$

In this note we show that the kernel $\mathcal{P}_i(z, u)$ represents harmonic functions f in D in terms of the boundary values on B_i , i.e.,

$$f(z) = \int_{B_i} \mathcal{P}_i(z, u) f(u) \, d\sigma_i(u)$$

whenever f is harmonic in D and continuous on its closure \overline{D} . We also show that the kernel $\mathcal{P}_i(z, u)$ can be regarded as the Jacobian of an automorphism restricted to the boundary B_i , i.e., if g is an automorphism of D,

$$\mathscr{P}_i(g \cdot o, u) = \frac{d\sigma_i(g^{-1} \cdot u)}{d\sigma_i(u)},$$

where o is the origin of D.

2. Preliminaries

We begin by reviewing the general background on bounded symmetric domains (cf. [2], [9]). Every bounded symmetric domain D can be written as D=G/K, where G is a connected semisimple linear Lie group and K is a maximal compact subgroup of G, such that G operates holomorphically on D. In this note we assume that G is simple, i.e., that D is irreducible. We further assume that the complexification G_c of G is simply connected. Let g, \mathfrak{k} be the Lie algebras of G, K and $g=\mathfrak{k}+\mathfrak{p}$ be the corresponding Cartan decomposition. We denote the complexifications of \mathfrak{g} , \mathfrak{k} , \mathfrak{p} by \mathfrak{g}_c , \mathfrak{k}_c , \mathfrak{p}_c , respectively. Then \mathfrak{p}_c is decomposed into the direct sum of two complex subalgebras \mathfrak{p}^+ , \mathfrak{p}^- , which are $(\pm \sqrt{-1})$ -eigenspaces of the complex structure of \mathfrak{p} , respectively, and are abelian subalgebras of \mathfrak{g}_c normalized by \mathfrak{k}_c . Let P^{\pm} , K_c , be the connected subgroups of G_c corresponding to \mathfrak{p}^{\pm} , \mathfrak{k}_c , respectively. Then the map $\mathfrak{p}^+ \times K_c \times \mathfrak{p}^- \to G_c$, given by $(X^+, k, X^-) \to \exp X^+ \cdot k \cdot \exp X^-$, is a holomorphic diffeomorphism onto a dense open subset $P^+K_cP^-$ of G_c , which contains G. Therefore every element $g \in P^+K_cP^-$ can be written in a unique way as

(2)
$$g = \pi_+(g) \cdot \pi_0(g) \cdot \pi_-(g), \quad \pi_0(g) \in K_c, \ \pi_\pm(g) \in P^{\pm}.$$

Furthermore, the map $\zeta: P^+K_cP^- \to \mathfrak{p}^+$, given by $\zeta(g) = \log(\pi_+(g))$ induces a holomorphic diffeomorphism of D = G/K onto $\zeta(G)$, and $\zeta(G)$ is a bounded domain in \mathfrak{p}^+ . Henceforce we assume that D is a bounded symmetric domain

528

in p^+ realized in this manner. In this realization the action of G on D is given by

$$g \cdot z = \zeta(g \exp z), \quad g \in G, z \in D,$$

and extends smoothly to \overline{D} .

Let t be a maximal abelian subalgebra of \mathfrak{k} . Then \mathfrak{t}_c , the complexification of t, is a Cartan subalgebra of \mathfrak{g}_c . Let Φ be the root system of \mathfrak{g}_c relative to \mathfrak{t}_c . For each $\alpha \in \Phi$, let H_{α} , E_{α} denote the usual basis elements of \mathfrak{g}_c . We can choose a linear order in the dual of the real vector space $\sqrt{-1}$ t such that \mathfrak{p}^+ is spanned by the root spaces for noncompact positive roots. We let Φ^+ be the resulting set of positive roots.

We choose a maximal set $\{\gamma_1, \dots, \gamma_r\}$ of strongly orthogonal noncompact positive roots as follows. Let γ_1 be the highest root of Φ and for each j, γ_{j+1} be the highest positive noncompact root that is strongly orthogonal to each of $\{\gamma_1, \dots, \gamma_j\}$. We write H_j, E_j for $H_{\gamma_j}, E_{\gamma_j}$. For each $1 \le i \le r$, we define the partial Cayley transform $c_i \in G_c$ by

$$c_i = \prod_{j=1}^i \exp \frac{\pi}{4} (E_{-j} - E_j).$$

Since $c_i \in P^+K_cP^-$, we can define $o_i = \zeta(c_i)$. Let B_i denote the G-orbit of o_i . Then

$$\bar{D} - D = \underset{1 \leq i \leq r}{\cup} B_i$$
 (disjoint union).

Moreover $\overline{B}_i \supset B_{i+1}$ $(1 \le i \le r-1)$, and B_r is the Silov boundary.

Let $C_i(\subset B_i)$ be the boundary component of D containing o_i , and let $P_i = \{g \in G; g \cdot C_i = C_i\}$ and $S_i = \{g \in G; g \cdot o_i = o_i\}$. Then P_i is a maximal parabolic subgroup of G, and we have a Langlands decomposition $P_i = M_i A_i N_i$ such that if we put $L_i = M_i \cap S_i$ then $S_i = L_i A_i N_i$ (cf. [4]). Further there exists a semisimple subgroup G_i of G such that $C_i = G_i \cdot o_i$.

For each $1 \le i \le r$, we define a C^{∞} function ρ_i on G as follows. Since $P_i = M_i A_i N_i$ is a parabolic subgroup, each $g \in G$ can be uniquely written in the form $g = kman \ (k \in K, m \in M_i \cap \exp \mathfrak{p}, a \in A_i, n \in N_i)$; so put $\rho_i(g) = (\det(\operatorname{Ad}(a)|_{\mathfrak{n}_i}))^{-1}$, where \mathfrak{n}_i is the Lie algebra of N_i . Let dk denote the Haar measure on K such that $\int_K dk = 1$. Then we can normalize various left Haar measures in such a way that

(3)
$$\int_G f(g) \, dg = \int_{K \times G_i \times S_i} f(kg_i s_i) \, \rho_i(s_i)^{-1} \, dk \, dg_i \, ds_i$$

for any integrable f on G (cf. [4], p. 89).

Let $\{\alpha_1, \dots, \alpha_l\}$ be an enumeration of the set of simple roots for Φ^+ such

that α_1 is the unique noncompact simple root for Φ^+ , and let λ be the linear form on \mathbf{t}_c such that

$$2(\lambda, \alpha_1)/(\alpha_1, \alpha_1) = 1$$
 and $(\lambda, \alpha_j) = 0$ for $j = 2, \dots, l$

where (,) is the inner product induced by Killing form of g_c . Then λ is the differential of a holomorphic character of K_c .

Let $\mathbf{t}_{\overline{c}} = \sum_{i=1}^{r} \mathbf{R} H_{j}$. Then the restrictions of \mathbf{t}_{c} -roots to $\mathbf{t}_{\overline{c}}$ are of the form $\pm \gamma_{j}$ (each with multiplicity one), $\pm \frac{1}{2} (\gamma_{j} \pm \gamma_{k}) (j < k$, each with the same multiplicity u > 0), $\pm \frac{1}{2} \gamma_{j}$ (each with the same multiplicity $2v \ge 0$). For each $1 \le i \le r$, let (as in [4], p. 91)

(4)
$$p_i = \frac{1}{2} u(i-1) + u(r-i) + v + 1,$$

and set $\omega_i = -p_i \lambda$. Note that each p_i is an integer or a half-integer. If p_i is an integer, ω_i is also the differential of a holomorphic character of K_c . For the moment we assume that this is the case and let τ_i be the corresponding character of K_c , i.e., $\tau_i = e^{\omega_i}$. We define $J_i: G \times \overline{D} \to C^{\times}$ (C^{\times} =the multiplicative group of non-zero compex numbers) by

$$J_i(g, z) = \tau_i(\pi_0(g \exp z))$$

where π_0 is as in (2). Then we have

$$J_i(g_1g_2,z) = J_i(g_1,g_2\cdot z) J_i(g_2,z), \ g_1,g_2 \in G, z \in \overline{D}.$$

Let $\chi: K_c \rightarrow C^{\times}$ be a holomorphic character of K_c defined by

$$\chi(k) = \det(\mathrm{Ad}(k)|_{\mathfrak{p}^+}),$$

and let $\mathcal{K}: D \times D \rightarrow C^{\times}$ be a function defined by

$$\mathcal{K}(z,w) = \chi(\pi_0(\exp(-\overline{w})\exp z))$$

where $w \to \overline{w}$ denotes the complex conjugation of \mathfrak{g}_c with respect to \mathfrak{g} . Then, up to a constant factor, $\mathcal{K}(z, w)$ is the Bergman kernel function of D (cf. [7], [4]). Let $n=\dim_{\mathfrak{C}} D$, $n_i=\dim_{\mathfrak{C}} C_i$, and $d_i=\dim_{\mathfrak{R}} B_i$, and set

$$q_i = \frac{n - n_i}{3n - n_i - d_i} \, .$$

Since $D \times D$ is simply connected, we can define powers $\mathcal{K}(z, w)^{q_i}$ of $\mathcal{K}(z, w)$ with $\mathcal{K}(o, o)^{q_i} = 1$. We let

$$\mathscr{G}_i(z,w) = \mathscr{K}(z,w)^{q_i}$$
.

530

For a fixed $z \in D$, $\mathscr{G}_i(z, \cdot)$ extends smoothly to \overline{D} . If p_i (in (4)) is an integer, then it follows from Lemma 6.24 of [4] that

$$\mathscr{G}_i(z,w) = \tau_i(\pi_0(\exp(-\overline{w})\exp z)),$$

and we have

$$\mathscr{G}_i(g \cdot z, g \cdot w) = J_i(g, z) \, \mathscr{G}_i(z, w) \, \overline{J_i(g, w)} \,.$$

Up to now we have assumed that the p_i is an integer. We note that, even if p_i is a half-integer, $J_i(g, z)^2$ is a well defined function on $G \times \overline{D}$, and satisfies the following properties

(5)
$$J_i(g_1g_2,z)^2 = J_i(g_1,g_2\cdot z)^2 J_i(g_2,z)^2,$$

(6)
$$\mathscr{G}_i(g \cdot z, g \cdot w)^2 = J_i(g, z)^2 \,\mathscr{G}_i(z, w)^2 \,\overline{J_i(g, w)}^2$$

Let $d\sigma_i$ be the quasi-invariant measure on $B_i = G/S_i$ defined by

$$\int_{B_i} f(u) \, d\sigma_i(u) = \int_{K \times G_i} |J_i(kg_i, o_i)^{-2}| f(kg_i \cdot o_i) \, dk \, dg_i$$

for all $f \in C_{\epsilon}(B_i)$ (continuous functions with compact support). Then Proposition 4.38 of [4] implies that

$$\int_{B_i} d\sigma_i(u) = \int_{K \times G_i} |J_i(kg_i, o_i)^{-2}| dk dg_i < \infty.$$

Therefore we can (and do) normalize the Haar measure dg_i on G_i so that

(7)
$$\int_{B_i} d\sigma_i(u) = 1.$$

It then follows from formula (6.15) of [4] that

$$f(z) = \int_{B_i} \mathscr{G}_i(z, u) f(u) \, d\sigma_i(u)$$

whenever f is holomorphic in the neighborhood of \overline{D} .

3. Integral formulas

As in the introduction we define, for each boundary $B_i(1 \le i \le r)$, the Poisson type kernel function $\mathcal{P}_i(z, u)$ by putting

$$\mathcal{P}_i(z,u) = \frac{|\mathcal{G}_i(z,u)|^2}{\mathcal{G}_i(z,z)}, z \in D, u \in B_i.$$

Proposition. For $g \in G$, $u \in B_i$, we have

$$\mathscr{P}_i(g \cdot o, u) = |J_i(g^{-1}, u)^{-2}| = \frac{d\sigma_i(g^{-1} \cdot u)}{d\sigma_i(u)}$$

Proof. Since $\mathscr{G}_i(o, w) = 1$, (5) and (6) imply

$$\mathscr{G}_i(g \cdot o, u)^2 = J_i(g, o)^2 \overline{J_i(g^{-1}, u)^{-2}}.$$

and

$$\mathscr{G}_i(g \cdot o, g \cdot o) = |J_i(g, o)^2|.$$

So the first equality follows from the definition of $\mathcal{P}_i(g \cdot o, u)$.

For the second equality, it suffices to show that

$$\int_{B_i} f(g \cdot u) \, d\sigma_i(u) = \int_{B_i} |J_i(g^{-1}, u)^{-2}| \, f(u) \, d\sigma_i(u)$$

for $f \in C_c(B_i)$. We first note that

(8)
$$|J_i(s_i, o_i)^{-2}| = \rho_i(s_i) \text{ for } s_i \in S_i;$$

this follows from the argument in the proof of Lemma 6.30 of [4]. Now for each $f \in C_{\epsilon}(B_i)$, we can take $\tilde{f} \in C_{\epsilon}(G)$ such that

$$f(h \cdot o_i) = \int_{s_i} \tilde{f}(hs_i) \, ds_i \, , \quad h \in G \, .$$

Hence

$$\begin{split} &\int_{B_i} f(g \cdot u) \ d\sigma_i(u) \\ &= \int_{K \times G_i} |J_i(kg_i, o_i)^{-2}| \ f(gkg_i \cdot o_i) \ dk \ dg_i \\ &= \int_{K \times G_i \times S_i} |J_i(kg_i s_i, o_i)^{-2}| \ \hat{f}(gkg_i s_i) \ \rho_i(s_i)^{-1} \ dk \ dg_i \ ds_i \quad (by (5) \text{ and } (8)) \\ &= \int_G |J_i(h, o_i)^{-2}| \ \tilde{f}(gh) \ dh \quad (by (3)) \\ &= \int_G |J_i(g^{-1} h, o_i)^{-2}| \ \hat{f}(h) \ dh \\ &= \int_{K \times G_i \times S_i} |J_i(g^{-1} kg_i s_i, o_i)^{-2}| \ \tilde{f}(kg_i s_i) \ \rho_i(s_i)^{-1} \ dk \ dg_i \ ds_i \\ &= \int_{K \times G_i} |J_i(g^{-1} kg_i, o_i)^{-2}| \ f(kg_i \cdot o_i) \ dk \ dg_i \\ &= \int_{K \times G_i} |J_i(g^{-1}, kg_i \cdot o_j)^{-2}| \ |J_i(kg_i, o_i)^{-2}| \ f(kg_i \cdot o_i) \ dk \ dg_i \\ &= \int_{K \times G_i} |J_i(g^{-1}, kg_i \cdot o_j)^{-2}| \ |J_i(kg_i, o_i)^{-2}| \ f(kg_i \cdot o_i) \ dk \ dg_i \quad (by (5)) \\ &= \int_{B_i} |J_i(g^{-1}, u)^{-2}| \ f(u) \ d\sigma_i(u) \,. \end{split}$$

This proves the Proposition.

Theorem. If f is harmonic on D and continuous on \overline{D} , then for all $z \in D$, $f(z) = \int_{B_i} \mathcal{P}_i(z, u) f(u) \, d\sigma_i(u) \, .$

532

Proof. For each $z \in D$, choose $g \in G$ such that $z = g \cdot o$. Then, by the mean value theorem for harmonic functions (cf. [2]), we have

$$f(z) = \int_{K} f(gk \cdot w) \ dk$$

for $w \in D$. The continuity of f on \overline{D} implies that this formula is valid for all $w \in \overline{D}$. Therefore

$$f(z) = \int_{B_i} f(z) \, d\sigma_i(u) \quad (by (7))$$

$$= \int_{B_i} \left(\int_K f(gk \cdot u) \, dk \right) d\sigma_i(u)$$

$$= \int_K \left(\int_{B_i} f(gk \cdot u) \, d\sigma_i(u) \right) dk$$
 (by K-invariance of $d\sigma_i$)

$$= \int_{B_i} f(g \cdot u) \, d\sigma_i(u)$$

$$= \int_{B_i} \mathcal{P}_i(z, u) f(u) \, d\sigma_i(u) \quad (by \text{ Proposition}).$$

This finished the proof.

REMARK. If $i \neq r$, the maximal compact subgroup K of G does not act transitively on the boundary B_i . Therefore Proposition implies that the Poisson type kernel $\mathcal{P}_i(z, u)$ is not necessarily harmonic in the variable z.

EXAMPLE. Let $p \ge q$ and

$$D = \{z \in M_{p,q}(C); 1_q - z^* z > 0\}$$
 .

Here $M_{p,q}(C)$ refers to all p by q complex matrices, 1_q is the identity matrix of size q, z^* is the conjugate transpose of z and ">0" means "is positive definite". Then (cf. [9]) D is the bounded symmetric domain of rank q, and for each $1 \le i \le q$, the *i*-th boundary B_i is given by

$$B_i = \{z \in M_{p,q}(\boldsymbol{C}); 1_q - z^* z \ge 0 \text{ and } \operatorname{rank}(1_q - z^* z) = q - i\}$$

On the other hand the Cauchy type kernel function $\mathscr{G}_i(z, w)$ associated with the boundary B_i is given by (cf. [4], p. 129)

$$\mathscr{G}_i(z,w) = \det(1_a - w^* z)^{-(p+q-i)}$$

Therefore the Poisson type kernel function $\mathcal{P}_i(z, u)$ is given by

$$\mathcal{Q}_{i}(z, u) = \frac{\det(1_{q} - z^{*}z)^{p+q-i}}{|\det(1_{q} - u^{*}z)|^{2(p+q-i)}}, \quad (1 \le i \le q).$$

References

- [1] H. Furstenberg: A Poisson formula for semi-simple Lie groups, Ann. of Math. 77 (1963), 335-386.
- [2] S. Helgason: Differential Geometry and Symmetric Spaces, Academic press, 1962.
- [3] L.K. Hua: Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Trans. Math. Monographs, vol. 6, Amer. Math. Soc. 1963.
- [4] T. Inoue: Unitary representations and kernel functions associated with boundaries of a bounded symmetric domain, Hiroshima Math. J. 10 (1980), 75–140.
- [5] A. Koranyi: A Poisson formula for homogeneous wedge domains, J. Analyse Math. 14 (1965), 275-284.
- [7] I. Satake: Algebraic Structures of Symmetric Domains, Pub. Math. Soc. Japan 14, Iwanami, Tokyo and Princeton Univ. Press, 1980.
- [8] E.M. Stein, G. Weiss and M. Weiss: H^p-classes of holomorphic functions in tube domains, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 1035–1039.
- [9] J.A. Wolf: Fine structure of hermitian symmetric spaces, in "Symmetric spaces", (ed. W. Boothby and G. Weiss), Marcel Dekker, 1972, 271-357.

Department of Mathematics Fuculty of Science Yamaguchi University Yamaguchi 753, Japan