ORIENTATION REVERSING INVOLUTIONS ON CLOSED 3-MANIFOLDS

Dedicated to Professor Fujitsugu Hosokawa on his 60th birthday

Masako KOBAYASHI

(Received June 8, 1988)

1. Introduction.

Let M be a closed connected oientable 3-manifold admitting an oreintation reversing involtuion τ (i.e. $\tau^{2}=$ identity and $\tau_{*}([M])=-[M]$ for the fundamental class [M] of M).

By Smith theory, each component of the fixed point set of $\tau, \operatorname{Fix}(\tau, M)$, is a point or a closed surface and $\chi(\operatorname{Fix}(\tau, M)) \equiv 0(\bmod 2)(\chi(X)$ is the Euler characteristic of X). A. Kawauchi [5] proved that for any (M, τ), Tor $H_{1}(M ; Z)$ $\simeq A \oplus A$ or $\boldsymbol{Z}_{2} \oplus A \oplus A$ for some abelian group A, and that $\operatorname{rank}_{Z_{2}} H_{1}(\operatorname{Fix}(\tau, M)$; $\left.\boldsymbol{Z}_{2}\right) \equiv 0(\bmod 2)$ if and only if $\operatorname{Tor} H_{1}(\boldsymbol{M} ; \boldsymbol{Z}) \cong A \oplus A$. J. Hempel has proved in [3] that if $\operatorname{Fix}(\tau, M)$ is empty or contains a closed orientable surface of positive genus, then the first Betti number of M is greater than zero. He has also shown in [4] that if $\pi_{1}(M)$ is not isomorphic to $\{1\}$ or and \boldsymbol{Z}_{2} is not virtually representable to \boldsymbol{Z}, then $\operatorname{Fix}(\tau, M)$ consists of a 2 -sphere or two points, or contains a projective plane.

The auther gave a characterization of $\operatorname{Fix}(\tau, M)$ when M is a rational homoogy 3-sphere in [6] and, for a general M, an inequality on the first Betti numbers of M and $\operatorname{Fix}(\tau, M)$ in [7]. In this paper we give a complete characterization of the topological type of $\operatorname{Fix}(\tau, M)$ for a general M.

Notations. For a space X, let $\beta_{i}(X)$ denote the $i^{\text {th }}$ Betti number and $\beta_{i}\left(X ; \boldsymbol{Z}_{2}\right)$ the \boldsymbol{Z}_{2}-coefficient Betti number. For a group G, let $\beta_{1}(G)=$ $\operatorname{rank}_{\boldsymbol{Z}} H_{1}(G ; \boldsymbol{Z})$ and $\beta_{1}\left(G ; \boldsymbol{Z}_{2}\right)=\operatorname{rank}_{\boldsymbol{Z}_{2}} H_{1}\left(G ; \boldsymbol{Z}_{2}\right)$.

First, we classify (M, τ) into two types.
Proposition 1. For any (M, τ), one of the following holds:
(1) $M-\operatorname{Fix}(\tau, M)$ consists of two components and $\operatorname{Fix}(\tau, M)$ is a closed orientable 2-manifold.
(2) $M-\operatorname{Fix}(\tau, M)$ is connected.

For each type of (M, τ), we shall prove the following:

Theorem 2. For any (M, τ) with $M-\operatorname{Fix}(\tau, M)$ disconnected, we have the following (1)-(3):
(1) $\operatorname{Tor} H_{1}(M ; \boldsymbol{Z}) \cong A \oplus A$ for some ablelian group A.
(2) $\beta_{1}(\operatorname{Fix}(\tau, M)) / 2+\beta_{2}(\operatorname{Fix}(\tau, M)) \leq 1+\beta_{1}(M)$.
(3) $\quad \beta_{1}(\operatorname{Fix}(\tau, M)) / 2+\beta_{2}(\operatorname{Fix}(\tau, M)) \equiv 1+\beta_{1}(M)(\bmod 2)$.

Remark 1. (1) was proved by Kawauchi [5].
Theorem 3. Let G be an ableian group and E a closed orientable 2-manifold satisfying the following conditions (1)-(3):
(1) $\operatorname{Tor} G \cong A \oplus A$ for some ableian group A.
(2) $\beta_{1}(E) / 2+\beta_{2}(E) \leq 1+\beta_{1}(G)$.
(3) $\beta_{1}(E) / 2+\beta_{2}(E) \equiv 1+\beta_{1}(G)(\bmod 2)$.

Then there exists (M, τ) such that $M-\operatorname{Fix}(\tau, M)$ is disconnected, $H_{1}(M ; \boldsymbol{Z})$ $\cong G$ and $\operatorname{Fix}(\tau, M)=E$.

Theorem 4. For any (M, τ) with $M-\operatorname{Fix}(\tau, M)$ connected, we have the folloaing (1)-(7);
(1) $\operatorname{Tor} H_{1}(M, \boldsymbol{Z}) \cong A \oplus A$ or $\boldsymbol{Z}_{2} \oplus A \oplus A$ for some abelian group A.
(2) $\beta_{1}\left(\operatorname{Fix}(\tau, M) ; \boldsymbol{Z}_{2}\right) \equiv \beta_{1}\left(M ; \boldsymbol{Z}_{2}\right)-\beta_{1}(M)(\bmod 2)$.
(3) $\sum_{i=0}^{2} \beta_{i}\left(\operatorname{Fix}(\tau, M) ; \boldsymbol{Z}_{2}\right) \leq 2+2 \beta_{1}\left(M ; \boldsymbol{Z}_{2}\right)$.
(4) $\chi(\operatorname{Fix}(\tau, M)) / 2-2 \beta_{2}(\operatorname{Fix}(\tau, M)) \geq 1-\beta_{1}(M)$.
(5) $\chi(\operatorname{Fix}(\tau, M)) / 2 \leq 1+\beta_{1}(M)$.
(6) $\chi(\operatorname{Fix}(\tau, M)) / 2 \equiv 1+\beta_{1}(M)(\bmod 2)$.
(7) Consider a direct sum decomposition of Tor $H_{1}(M ; \boldsymbol{Z})$ such that each factor is a cyclic group of prime power order. Let u be the number of \boldsymbol{Z}_{2} factors. Then the number of nonorientable surfaces of odd genera contained in $\operatorname{Fix}(\tau, M)$ is not greater than u.

Remark 2. (1) and (2) were proved by Kawauchi [5]. (3) is obtained by Smith theory (cf. [1] p. 126).

Theorem 5. Let G be an abelian group and X be a disjoint union of points and closed surfaces. If G and X satisfy the following conditions (1)-(7):
(1) $\operatorname{Tor} G \cong A \oplus A$ or $Z_{2} \oplus A \oplus A$ for some abelian group A.
(2) $\beta_{1}\left(X ; \boldsymbol{Z}_{2}\right) \equiv \beta_{1}\left(G ; \boldsymbol{Z}_{2}\right)-\beta_{1}(G)(\bmod 2)$.
(3) $\sum_{i=0}^{2} \beta_{i}\left(X ; Z_{2}\right) \leq 2+2 \beta_{1}\left(G ; \boldsymbol{Z}_{2}\right)$.
(4) $\chi(X) / 2-2 \beta_{2}(X) \geq 1-\beta_{1}(G)$.
(5) $\chi(X) / 2 \leq 1+\beta_{1}(G)$.
(6) $\chi(X) / 2 \equiv 1+\beta_{1}(G)(\bmod 2)$.
(7) Consider a direct sum decomposition of Tor G such that each factor is a cyclic group of prime power order. Let u be the number of \boldsymbol{Z}_{2} factors. Then the number
of nonorientable surfaces of odd genera contained in X is not greater than u.
Then there exists (M, τ) such that $M-\operatorname{Fix}(\tau, M)$ is connected, $H_{1}(M ; \boldsymbol{Z}) \cong$ G and $\operatorname{Fix}(\tau, M)=X$.

Throughout this paper, we will work in the piecewise-linear category, and a surface is assumed to be compact and connected.

The author owes the idea of β_{i}^{+}to Prof. M. Sakuma. She is very grateful to him for suggesting her Lemma 6.

2. Proofs of Proposition 1 and Theorems 2 and 4.

Proof of Proposition 1. We will show that if $M-\operatorname{Fix}(\tau, M)$ is disconnected, then $M-\operatorname{Fix}(\tau, M)$ consists of two components and $\operatorname{Fix}(\tau, M)$ is a closed orientable 2-manifold.

Let $C_{1}, C_{2}, \cdots, C_{r}$ be the components of $M-\stackrel{N}{N}(\operatorname{Fix}(\tau, M))$, where $\stackrel{\circ}{N}$ ($\operatorname{Fix}(\tau, M)$) is the interior of a τ-invariant regular neighborhood of $\operatorname{Fix}(\tau, M)$. Then the identifying space of $C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ by the identifying map $\tau \mid{ }_{v a c_{i}}$ is homeomorphic to M. Since $\tau^{2}=$ identity and M is connected, we can see that $r=2$ and $\tau\left(C_{1}\right)=C_{2}$. Hence $\tau\left(\partial C_{1}\right)=\partial C_{2}$ and for each component X of $\operatorname{Fix}(\tau, M), \partial N(X)$ consists of 2-components. In general, if there exists an isolated point p in $\operatorname{Fix}(\tau, M), N(p)$ is a ball, and if there exists a nonorientable surface F in $\operatorname{Fix}(\tau, M), N(F)$ is a twisted I-bundle over F. Hence this X must be an orientable surface. This completes the proof.

Condider the homomorphism $\tau_{*}^{(i)}$ on $H_{i}(M: \mathbb{Q})$ induced by $\tau(i=1,2)$. We may regard $\boldsymbol{\tau}_{*}^{(i)}$ as a linear transformation of the vector space $H_{i}(M ; \boldsymbol{Q})$ over \boldsymbol{Q}. Since $\left(\tau_{*}^{(i)}\right)^{2}=$ identity, every eigenvalue of $\tau_{*}^{(i)}$ is +1 or -1 . Let B_{i}^{+}and B_{i}^{-}be the eigenspace of $H_{i}(M ; \boldsymbol{Q})$ corresponding to +1 and -1 , respectively. Put $\beta_{i}^{+}=\operatorname{dim} B_{i}^{+}$and $\beta_{i}^{-}=\operatorname{dim} B_{i}^{-} . \quad$ Clearly, $\beta_{1}^{+}+\beta_{1}^{-}=\beta_{2}^{+}+\beta_{2}^{-}=\beta_{1}(M)$. We have the folloaing lemma:

Lemma 6. For any (τ, M), we have

$$
\chi(\operatorname{Fix}(\tau, M))=2\left(1+\beta_{1}(M)-2 \beta_{1}^{+}\right) .
$$

Proof. Let $\left\{a_{1}, a_{2}, \cdots, a_{\beta_{1}^{+}}\right\}$be a basis of B_{1}^{+}and $\left\{b_{1}, b_{2}, \cdots, b_{\beta_{1}^{-}}\right\}$a basis of B_{1}^{-}. Then there exsists a basis $\left\{a_{1}, a_{2}, \cdots, a_{\beta_{1}^{+}}, \bar{b}_{1}, \bar{b}_{2}, \cdots, \bar{b}_{\beta_{1}}\right\}$ of $H_{2}(M ; \boldsymbol{Q})$ such that $\operatorname{Int}\left(a_{i}, a_{j}\right)=\operatorname{Int}\left(b_{i}, \bar{b}_{j}\right)=\delta_{i j}$ and $\operatorname{Int}\left(a_{i}, \bar{b}_{j}\right)=\operatorname{Int}\left(b_{i}, a_{j}\right)=0\left(1 \leq i \leq \beta_{1}^{+}\right.$, $\left.1 \leq j \leq \beta_{1}^{-}\right)$, where $\operatorname{Int}(x, y)$ is the intersection number of x and y, and $\delta_{i j}$ is the Kronecker delta. Then we have

$$
\begin{aligned}
\operatorname{Int}\left(a_{i}, \tau_{*}\left(\bar{a}_{j}\right)\right) & =\left\langle[M], \varphi\left(a_{i}\right) \cup \varphi\left(\tau_{*}\left(a_{j}\right)\right)\right\rangle \\
& =\left\langle\tau_{*}[M], \varphi\left(\tau_{*}\left(a_{i}\right)\right) \cup \varphi\left(\bar{a}_{j}\right)\right\rangle \\
& =\left\langle-[M], \varphi\left(a_{i}\right) \cup \varphi\left(a_{j}\right)\right\rangle=-\delta_{i j}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Int}\left(b_{i}, \tau_{*}\left(a_{j}\right)\right)= & \left\langle[M], \varphi\left(b_{i}\right) \cup \varphi\left(\tau_{*}\left(a_{j}\right)\right)\right\rangle \\
= & -\left\langle[M],\left(-\varphi\left(b_{i}\right)\right) \cup \varphi\left(a_{j}\right)\right\rangle=0 . \\
& (\varphi \text { is the Ponncaré dual map }) .
\end{aligned}
$$

Hence

$$
\tau_{*}\left(a_{i}\right)=-a_{i} .
$$

By the same way, we have $\tau_{*}\left(\bar{b}_{i}\right)=\bar{b}_{i}$. Hence $\left\{a_{1}, \bar{a}_{2}, \cdots, a_{\beta_{1}^{+}}\right\}$is a basis of B_{2}^{-}and $\left\{\bar{b}_{1}, \bar{b}_{2}, \cdots, \bar{b}_{\beta_{1}^{-}}\right\}$is a basis of B_{2}^{+}. Therefore $\beta_{1}^{+}=\beta_{2}^{-}$and $\beta_{1}^{-}=\beta_{2}^{+}$.

On the other hand, it is known that for a periodic transformation f on a compact $\operatorname{ENR} X, L(f)=\chi(\operatorname{Fix}(f, X))$, where $L(f)$ is the Lefschetz number of f (cf. [2], p. 261). For our (M, τ),

$$
\begin{aligned}
L(\tau) & =\sum_{i=0}^{3}(-1)^{i} \operatorname{Trace} \tau_{*}^{(i)} \\
& =1-\left(\beta_{1}^{+}-\beta_{1}^{-}\right)+\left(\beta_{2}^{+}-\beta_{2}^{-}\right)-(-1) \\
& =2\left(1+\beta_{1}(M)-2 \beta_{1}^{+}\right) .
\end{aligned}
$$

Hence we have

$$
\chi(\operatorname{Fix}(\tau, M))=2\left(1+\beta_{1}(M)-2 \beta_{1}^{+}\right) .
$$

This completes the proof.
Proof of Theorem 2. (1) holds from a theorem of Kawauchi [5], since for any closed orientable surface $E, \beta_{1}\left(E ; \boldsymbol{Z}_{2}\right) \equiv 0(\bmod 2)$.
(3) holds from Lemma 6. Since

$$
\begin{aligned}
\chi(\operatorname{Fix}(\tau, M)) & =-\beta_{1}(\operatorname{Fix}(\tau, M))+2 \beta_{2}(\operatorname{Fix}(\tau, M)) \\
& =2\left(1+\beta_{1}(M)-2 \beta_{1}^{+}\right)
\end{aligned}
$$

we have

$$
\begin{aligned}
& \beta_{1}(\operatorname{Fix}(\tau, M)) / 2+\beta_{2}(\operatorname{Fix}(\tau, M)) \\
\equiv & -\beta_{1}(\operatorname{Fix}(\tau, M)) / 2+\beta_{2}(\operatorname{Fix}(\tau, M)) \equiv \beta_{1}(M)+1 \quad(\bmod 2)
\end{aligned}
$$

We will prove (2). Let M_{1} and M_{2} be components of $M-N ْ(\operatorname{Fix}(\tau, M))$. Then ∂M_{1} is homeomorphic to $\operatorname{Fix}(\tau, M)$. We identify ∂M_{1} with $\operatorname{Fix}(\tau, M)$. Let I (resp. J) be the homomorphism from $H_{1}(\operatorname{Fix}(\tau, M) ; \boldsymbol{Q})$ to $H_{1}(M ; \boldsymbol{Q})$ (resp. $H_{1}\left(M_{1} ; \boldsymbol{Q}\right)$) induced by the inclusion map. We show Ker $I=\operatorname{Ker} J$.

Ker $I \supset \operatorname{Ker} J$ is trivial. Let $x=[C]$ be an element of Ker I. Then there exists a 2-chain D in M such that $\partial D=C$. Put $D_{i}=D \cap M_{i}(i=1,2)$. By a tiny collapsing of $D_{1}+\tau\left(D_{2}\right)$, we may obtain a 2 -chain D^{\prime} in M_{1} with $\partial D^{\prime}=C$.

Therefore we obtained $\operatorname{dim} \operatorname{Im} I=\operatorname{dim} \operatorname{Im} J$. Note that for any orientable 3-manifold M with boundary, $\operatorname{dim} \operatorname{Im}\left(\right.$ incl. $\left._{.}: H_{1}(\partial M ; \boldsymbol{Q}) \rightarrow H_{1}(M ; \boldsymbol{Q})\right)=$ $\operatorname{dim} H_{1}(\partial M ; \boldsymbol{Q}) / 2$. Hence $\operatorname{dim} \operatorname{Im} I=\operatorname{dim} H_{1}(\operatorname{Fix}(\boldsymbol{\tau}, M) ; \boldsymbol{Q}) / 2$. On the other hand, for any $x \in \operatorname{Im} I, \tau_{*}(x)=x$. Hence $\operatorname{Im} I \subset B_{1}^{+}$. Thus we obtain that

$$
\beta_{1}(\operatorname{Fix}(\tau, M)) / 2=\operatorname{dim} H_{1}(\operatorname{Fix}(\tau, M) ; \boldsymbol{Q}) / 2 \leq \beta_{1}^{+}
$$

Therefore by Lemma 6,

$$
\begin{aligned}
2 \beta_{2}(\operatorname{Fix}(\tau, M))-\beta_{1}(\operatorname{Fix}(\tau, M)) & =(\operatorname{Fix}(\tau, M)) \\
& =2\left(1+\beta_{1}(M)-2 \beta_{1}^{+}\right) \\
& \leq 2\left(1+\beta_{1}(M)-\beta_{1}(\operatorname{Fix}(\tau, M))\right.
\end{aligned}
$$

Hence

$$
\beta_{1}(\operatorname{Fix}(\tau, M)) / 2+\beta_{2}(\operatorname{Fix}(\tau, M)) \leq \beta_{1}(M)+1
$$

This completes the proof.
Proof of Theorem 4. (1) and (2) are proved by Kawauchi [5]. By Smith theory $\sum_{i} \beta_{i}\left(\operatorname{Fix}(\tau, M) ; \boldsymbol{Z}_{2}\right) \leq \sum_{j} \beta_{j}\left(M ; \boldsymbol{Z}_{2}\right)(\mathrm{cf}[1], \mathrm{p} .126)$, and for a 3-manifold $M, \sum_{j} \beta_{j}\left(M ; \boldsymbol{Z}_{2}\right)=2 \beta_{1}\left(\mathrm{M} ; \boldsymbol{Z}_{2}\right)+2$. Hence (3) holds.

Recall that β_{1}^{+}is a non negative integer. Hence by Lemma $6,0 \leq 2 \beta_{1}^{+}=$ $1+\beta_{1}(M)-(\chi(\operatorname{Fix}(\tau, M)) / 2)$ and $\chi(\operatorname{Fix}(\tau, M)) / 2=1+\beta_{1}(M)-2 \beta_{1}^{+} \equiv 1+\beta_{1}(M)$ $(\bmod 2)$. Therefore (5) and (6) hold.

Note that $M-\operatorname{Fix}(\tau, M)$ is connected and for any orientable surface E contained in $\operatorname{Fix}(\tau, M), \tau(E)=E$ and $[E] \subset B_{2}^{+}$. Hence

$$
\begin{aligned}
\beta_{2}(\operatorname{Fix}(\tau, M)) & \leq \beta_{2}^{+} \\
& =\beta_{1}(M)-\beta_{1}^{+} \\
& =\beta_{1}(M)-\left\{\left(1+\beta_{1}(M)\right) / 2-\chi(\operatorname{Fix}(\tau, M)) / 4\right\}
\end{aligned}
$$

and

$$
\chi(\operatorname{Fix}(\tau, M)) / 2-2 \beta_{2}(\operatorname{Fix}(\tau, M)) \geq 1-\beta_{1}(M)
$$

Therefore (4) holds.
For (7), consider a τ-invariant regular neighborhood N of the unoin of nonorientable surfaces of odd genera contained in $\operatorname{Fix}(\tau, M)$ and let $M^{\prime}=M-\stackrel{\circ}{N}$ (N is the interoir of N). Then the Mayer-Vietoris exact sequence for $M=$ $M^{\prime} \cup N$ and $\partial N=\partial M^{\prime}=M^{\prime} \cap N$ is as follws:

$$
\cdots \rightarrow H_{1}(\partial N ; \boldsymbol{Z}) \xrightarrow{I} H_{1}\left(M^{\prime} ; \boldsymbol{Z}\right) \oplus H_{1}(N ; \boldsymbol{Z}) \xrightarrow{J} H_{1}(M ; \boldsymbol{Z}) \rightarrow \cdots,
$$

where $I=\left(i_{1 *}, i_{2} *\right), i_{1}: \partial N \rightarrow M^{\prime}$ and $i_{2}: \partial N \rightarrow N$ are inclusion maps. Since the image of $i_{2 *} ; H_{2}(\partial N ; \boldsymbol{Z}) \rightarrow H_{1}(N ; \boldsymbol{Z})$ is torsion free, we see that $\left.J\right|_{\text {Tor } H_{1}(N ; Z)}$: Tor $H_{1}(N ; \boldsymbol{Z}) \rightarrow H_{1}(M ; \boldsymbol{Z})$ is injective. Hence (7) holds.

3. Basic manifolds and operations.

For proofs of Theorems 3 and 5, we construct eight basic manifolds with involutions and then introduce six additive operations on manifolds with imvolutions. For this purpose, we difine the data of (M, τ) as follows: Suppose $\operatorname{Fix}(\tau, M)$ consists of m orientable surfaces $E_{1}, E_{2}, \cdots, E_{m}, n$ nonorientable surfaces $F_{1}, F_{2}, \cdots, F_{n}$ and p points, and that the number of nonorientable surfaces of odd genera contained in $F_{1}, F_{2}, \cdots, F_{n}$ is s. Then the data of (M, τ) is defined to be

$$
\left[\beta_{1}(M), s, r, p ; g_{1}, g_{2}, \cdots, g_{m} ; c_{1} c_{2}, \cdots, c_{n}\right]
$$

where $r=\left(\beta_{1}\left(M ; \boldsymbol{Z}_{2}\right)-\beta_{1}(M)-s\right) / 2, g_{i}=\beta_{1}\left(E_{i}\right) / 2$, the genus of $E_{i}(i=1,2, \cdots, m)$ and $c_{j}=\beta_{1}\left(F_{j} ; \boldsymbol{Z}_{2}\right)$, the nonorientable genus of $F_{j}(j=1,2, \cdots, n)$.

Now we consider eight basic manifolds with involutions.
(1) $A_{1}=\left(S^{3}, \tau\right) ; S^{3}$ is the 3-sphere. A_{1} has the data $[0,0,0,2 ; ;]$.
τ is defined as follows: We regard S^{3} as $\boldsymbol{R}^{3} \cup\{\infty\}$. Then $\tau: S^{3} \rightarrow S^{3}$ is an involution defined by $\tau(x, y, z)=(-x,-y,-z)\left((x, y, z) \in \boldsymbol{R}^{3}\right)$ and $\tau(\infty)=\infty$.
(2) $A_{2}=\left(P^{3}, \tau\right) ; P^{3}$ is the 3-dimensional projective space. A_{2} has the data $[0,1,0,1 ; ~ ; 1]$.
τ is defined as follows: We regard P^{3} as $\left\{(x, y, z) \in \boldsymbol{R}^{3} \mid x^{2}+y^{2}+z^{2} \leq 1\right\} /$ $\left((x, y, z) \sim(-x,-y,-z)\left(x^{2}+y^{2}+z^{2}=1\right)\right)$. Then $\tau: P^{3} \rightarrow P^{3}$ is an involution defined by $\tau(x, y, z)=(-x,-y,-z)$.
(3) $A_{3}=\left(S^{2} \times S^{1}, \tau_{1}\right) ; A_{3}$ has the data $[1,0,0,0 ; 1 ;]$.
τ_{1} is defined as follows: Consider an orientation reversing involution τ^{\prime} on S^{2} such that $\operatorname{Fix}\left(\tau^{\prime}, S^{2}\right)$ is a circle. Then $\tau_{1}: S^{2} \times S^{1} \rightarrow S^{2} \times S^{1}$ is an involution defined by $\tau_{1}=\tau^{\prime} \times$ identity.
(4) $A_{4}=\left(S^{2} \times S^{1}, \tau_{2}\right) ; A_{4}$ has the data $[1,0,0,0 ; ; 2]$.
τ_{2} is defined as follows: Consider an orientation reversing involution τ^{\prime} on S^{2} as in (3). Regard $S^{2} \times S^{1}$ as the identifying space of $S^{2} \times I$ with the identifying map from $S^{2} \times\{1\}$ to $S^{2} \times\{0\}:(x, 1) \sim\left(\tau^{\prime}(x), 0\right)$, where I is the unit interval $[0,1]$. Then $S^{2} \times S^{1}$ has an orientation reversing involution τ_{2} extending τ^{\prime} with $\operatorname{Fix}\left(\tau_{2}, S^{1} \times S^{2}\right)$ a Klein bottle.
(5) $A_{5}=\left(N_{1}, \tau\right) ; A_{5}$ has the data $[0,0,1,2 ; ; 2]$ and $H_{1}\left(N_{1} ; \boldsymbol{Z}\right) \cong \boldsymbol{Z}_{2 q} \oplus \boldsymbol{Z}_{2 q}$ ($q \in \boldsymbol{N}$).
$\left(N_{1}, \tau_{1}\right)$ is defined as follows: Consider (V, τ) such that V is a solid torus with $\operatorname{Fix}(\tau, V)$ two points. Let K be a closed curve in V such that $[K]=b$ generates $H_{1}(V ; \boldsymbol{Z})$ with $K \cap \tau(K)=\phi$ (see Figure 1). Let V_{1} and V_{2} be solid tori. Attach them to $V-\stackrel{N}{N}(K \cup \tau(K))$ as follows: ∂V_{1} is identified with $\partial N(K)$

Figure 1
so that a meridian of ∂V_{1} is a curve C on $\partial N(K)$ with $[C]=q c-b \in$ $H_{1}(V-\stackrel{N}{N}(K \cup \tau(K)) ; \boldsymbol{Z}) . \quad \partial V_{2}$ is identified with $\partial N(\tau(K))$ so that a meridian of ∂V_{1} is a curve C^{\prime} on $\partial N(\tau(K))$ with $\left[C^{\prime}\right]=q c^{\prime}-b \in H_{1}(V-N ゚(K \cup \tau(K)) ; \boldsymbol{Z})$ (c and c^{\prime} are generators of $H_{1}(V-\stackrel{N}{(}(K \cup \tau(K)) ; \boldsymbol{Z})$ as indicated in Figure 1). We denote the resulting manifold by M_{1}. Then M_{1} has an orientation reversing involution and

$$
H_{1}\left(M_{1} ; Z\right) \cong\left\langle b, c, c^{\prime}: q c-b=0, q c^{\prime}+b=0\right\rangle
$$

Let $F=\partial M_{1}=\partial V$ and M_{2} a quotient space of $F \times I$ by the identifying map of $F \times\{1\}:(x, 1) \sim\left(\tau^{\prime}(x), 1\right)$, where $\tau^{\prime}=\left.\tau\right|_{F}$. Then M_{2} has an involution $\tau^{\prime \prime}$, induced by τ^{\prime}. Fix $\left(\tau^{\prime \prime}, M_{2}\right)$ consists of a Klein bottle $F \times\{1\} / \sim$.

Let $N_{1}=M_{1} \cup_{h} M_{2}$ where h is the identity map of the boundary F. Then N_{1} has an orientation reversing involution τ such that $\operatorname{Fix}\left(\tau, N_{1}\right)$ consists of two points and a Klein bottle.

To compute $H_{1}\left(N_{1} ; \boldsymbol{Z}\right)$, we choose generators of $H_{1}\left(M_{2} ; \boldsymbol{Z}\right) \cong H_{1}(F \times\{1\} /$ $\sim ; \boldsymbol{Z})$ represented by curves as indicated in Figure 1. Then we have

$$
H_{1}\left(M_{2} ; Z\right) \cong\langle x, y: 2 x+2 y=0\rangle
$$

We can check that

$$
\begin{aligned}
H_{1}\left(N_{1} ; Z\right) & \cong\left\langle b, c, c^{\prime}, x, y: q c-b=0, q c^{\prime}+b=0,2 x+2 y=0\right. \\
& \left.\quad 2 x=c+c^{\prime}, x+y=b\right\rangle \\
& \cong\langle c, x: 2 q c=0,2 q x=0\rangle . \\
& \cong \boldsymbol{Z}_{2 q} \oplus \boldsymbol{Z}_{2 q} .
\end{aligned}
$$

(6) $A_{6}(g)=\left(N_{2}, \tau\right) ; A_{6}(g)$ has the data $[1,0, g, 2 g+2 ; g ;]$ and Tor $H_{1}\left(N_{2} ; \boldsymbol{Z}\right)$ $\cong{\underset{i=1}{g}\left(\boldsymbol{Z}_{2 q_{i}} \oplus \boldsymbol{Z}_{2 q_{i}}\right)\left(g, q_{1}, q_{2}, \cdots, q_{g} \in \boldsymbol{N}\right)}$

Let F be a closed orientable surface of genus g. There exists an orientation
preserving involution α on F such that the fixed point set consists of $2 g+2$ points. Consider $F \times I$ and $\tau^{\prime}: F \times I \rightarrow F \times I, \tau^{\prime}(x, t)=(\alpha(x), 1-t)(x \in F, t \in I)$. Then τ^{\prime} is an orientation reversing involution on $F \times I$, and $\operatorname{Fix}\left(\tau^{\prime}, F \times I\right)$ consists of $2 g+2$ points. Let $K_{1}, K_{2}, \cdots, K_{g}$ be closed curves in $F \times I$ as indicated in Figure 2. These curves satisfy the following:

Figure 2

1. $K_{1}, K_{2}, \cdots, K_{g}, \tau\left(K_{1}\right), \tau\left(K_{2}\right), \cdots, \tau\left(K_{g}\right)$ are mutually disjoint.
2. Let $\left[K_{i}\right]=b_{i} \in H_{1}(F \times I ; \boldsymbol{Z})(i=1,2, \cdots, g)$, then $\left\{b_{1}, b_{2}, \cdots, b_{g}\right\}$ is a basis of $H_{1}(F \times I ; Z)$.

Consider $2 g$ solid tori and attach them to $F \times I-\bigcup_{i=1}^{g} N ゚\left(K_{i} \cup \tau\left(K_{i}\right)\right)$ as in (5) so that the resulting manifold M_{1} has

$$
\begin{aligned}
& H_{1}\left(M_{1} ; \boldsymbol{Z}\right) \cong\left\langle b_{1}, b_{2}, \cdots, b_{g}, c_{1}, c_{1}^{\prime}, c_{2}, c_{2}^{\prime}, \cdots, c_{g}, c_{g}^{\prime}:\right. \\
&\left.q_{i} c_{i}-b_{i}=0, q_{i} c_{i}^{\prime}+b_{i}=0 \quad(i=1,2, \cdots, g)\right\rangle
\end{aligned}
$$

Consider the identifying space of M_{1} by the identifying map of $F \times\{1\}$ to $F \times\{0\} ;(x, 1) \sim(\alpha(x), 0)$, and denote the resulting manifold by N_{2}. Then this manifold has an orientation reversing involution τ induced by τ^{\prime} and the fixed point set consists of $2 g+2$ points and $F \times\{1\}$ (an orientable surface of genus g).

To compute $H_{1}\left(N_{2} ; \boldsymbol{Z}\right)$, we choose generators of $H_{1}\left(N_{2} ; \boldsymbol{Z}\right)$ represented by curves as indicated in Figure 2. Then we have

$$
\begin{aligned}
& H_{1}\left(N_{2} ; \boldsymbol{Z}\right) \\
\cong & \left\langle a_{i}, b_{i}, c_{i}, c_{i}^{\prime}, t ; q_{i} c_{i}-b_{i}=0, q_{i} c_{i}^{\prime}+b_{i}=0, a_{i}-\left(c_{i}+c_{i}^{\prime}\right)=a_{i},\right. \\
& \left.\quad b_{i}=-b_{i} \quad(i=1,2, \cdots, g)\right\rangle \\
\cong & \left\langle a_{i}, c_{i}, t: 2 q_{i} a_{i}=0,2 q_{i} c_{i}=0 \quad(i=1,2, \cdots, g)\right\rangle \\
\cong & \oplus_{i=1}^{g}\left(\boldsymbol{Z}_{2 q_{i}} \oplus \boldsymbol{Z}_{2 q_{i}}\right) \oplus \boldsymbol{Z} .
\end{aligned}
$$

(7) $A_{7}(g)=\left(N_{3}, \tau\right) ; A_{7}(g)$ has the data $[g, 0,0,0 ; g ;](g \in N)$ and $H_{1}\left(N_{3} ; Z\right)$ is a free abelian group.

Consider a handle body V of genus g. Let N_{3} be the double of V and $\tau: N_{3} \rightarrow N_{3}$ a map interchanging the copies of V. Then τ is an orientation revers-
ing involution on N_{3}, $\operatorname{Fix}\left(\tau, N_{3}\right)$ consists of ∂V (a colsed orientable surface of genus g), and clearly $H_{1}\left(N_{3} ; \boldsymbol{Z}\right)$ is a free ablelian group of rank g.
(8) $A_{8}(n)=\left(N_{4}, \tau\right) ;(A_{8}(n)$ has the data $[1,0, n, 0 ; ; \underbrace{2,2, \cdots, 2}_{n+1}]$ and
$H_{1}\left(N_{4} ; \boldsymbol{Z}\right) \cong \stackrel{n}{\oplus}\left(\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}\right)\left(n, q_{1}, q_{2}, \cdots, q_{n} \in \boldsymbol{N}\right)$. Tor $H_{1}\left(N_{4} ; \boldsymbol{Z}\right) \cong \bigoplus_{i=1}^{n}\left(\boldsymbol{Z}_{2 q_{i}} \oplus \boldsymbol{Z}_{2 q_{i}}\right)\left(n, q_{1}, q_{2}, \cdots, q_{n} \in \boldsymbol{N}\right)$.

Consider n manifolds with involutions $\left(M_{1}, \tau_{1}\right),\left(M_{2}, \tau_{2}\right), \cdots,\left(M_{n}, \tau_{n}\right)$ of type A_{5} such that Tor $H_{1}\left(M_{i} ; \boldsymbol{Z}\right) \cong \boldsymbol{Z}_{2 q_{i}} \oplus \boldsymbol{Z}_{2 q_{i}}(i=1,2, \cdots, n)$. Note that $\operatorname{Fix}\left(\tau, M_{i}\right)$ contains two points $(i=1,2, \cdots, n)$. Let $B_{1}\left(B_{n}^{\prime}\right.$, resp.) be a τ-invariant ball in $M_{1}\left(M_{n}\right.$, resp.) containing a fixed point, and B_{i} and B_{i}^{\prime} disjoint τ_{i}-invariant balls in M_{i} such that each balls contain a fixed point $(i=2,3, \cdots, n-1)$. Let $M=\left(M_{1}-\stackrel{\circ}{B}_{1}\right) \cup\left(\bigcup_{i=1}^{n-1}\left(M_{i}-\stackrel{\circ}{B}_{i} \cup \stackrel{\circ}{B}_{i}^{\prime}\right)\right) \cup\left(M_{n}-\stackrel{\circ}{B}_{n}^{\prime}\right)$, where ∂B_{i}^{\prime} is identified with ∂B_{i-1} so that the identifying map commutes with τ_{i-1} and $\tau_{i}(i=2,3, \cdots, n)$. Then M is the connected sum of $M_{1}, M_{2}, \cdots, M_{n-1}$ and M_{n} with an orientation reversing involution τ extending $\tau_{1}, \tau_{2}, \cdots, \tau_{n-1}$ and τ_{n}. Let K be a τ-invariant closed curve in M as indicated in Figure 3.

Figure 3
Let $\boldsymbol{\tau}^{\prime}=\left.\tau\right|_{\partial N(K)}$ and M^{\prime} the identifying space of $\partial N(K) \times[0,1]$ by the identifying map of $\partial N(K) \times\{1\} ;(x, 1) \sim\left(\tau^{\prime}(x), 1\right)$, and let $N_{4}=(M-\stackrel{\circ}{N}(K)) \cup_{h} M^{\prime}$, where h is the identify map of $\partial N(K)$. Then N_{4} has an orientation reversing involution and its fixed point set consisits of $n+1$ Klein bottles.

To compute $H_{1}\left(N_{4} ; \boldsymbol{Z}\right)$, we choose generators of $H_{1}(M-\stackrel{N}{N}(K) ; \boldsymbol{Z})$ and $H_{1}\left(M^{\prime} ; \boldsymbol{Z}\right)$ represented by curves as indicated in Figure 3. Then we have

$$
\begin{aligned}
& H_{1}\left(N_{4} ; \boldsymbol{Z}\right) \\
& \cong\left\langle a_{i}, b_{i}, c_{i}, c_{i}^{\prime}, x_{i}, y_{i}, u, v, d, e:\right. \\
& q_{i} c_{i}-b_{i}=0, q_{i} c_{i}^{\prime}+b_{i}=0, a_{i}=c_{i}+c_{i}^{\prime}+d, e=\sum_{j=1}^{n} b_{j}, 2 x_{i}+2 y_{i}=0, \\
&\left.2 u+2 v=0,2 x_{i}=a_{i}, x_{i}+y_{i}=b_{i}, 2 u=d, u+v=e \quad(i=1,2, \cdots, n)\right\rangle \\
& \cong\left\langle x_{i}, z_{i}, c_{i}, u: z_{i}=x_{i}-u, 2 q_{i} z_{i}=0,2 q_{i} c_{i}=0 \quad(i=1,2, \cdots, n)\right\rangle \\
& \cong\left\langle z_{i}, c_{i}, u: 2 q_{i} z_{i}=0,2 q_{i} c_{i}=0 \quad(i=1,2, \cdots, n)\right\rangle \\
& \cong \oplus_{i=1}^{n}\left(\boldsymbol{Z}_{2 q_{i}} \oplus \boldsymbol{Z}_{2 q_{i}}\right) \oplus \boldsymbol{Z} .
\end{aligned}
$$

We defined eight types of basic manifolds with involutions as follows:

(M, τ)	data
A_{1}	$[0,0,0,22 ; ~ ; ~] ~$
A_{2}	
A_{3}	$[1,0,0,00 ; 1 ;]$
A_{4}	$[1,0,0,0$; ; 2]
A_{5}	$[0,0,1,2$; ; 2]
$A_{6}(\mathrm{~g})$	$[1,0, g, 2 g+2 ; g ;]$
$A_{7}(\mathrm{~g})$	$[g, 0,0,00 ; g ;]$
$A_{8}(n)$	$[1,0, n, 0 ; \quad \underbrace{2,2, \cdots, 2}]$
	$n+1$

Remark 3. We have (M, τ) of type $A_{5}, A_{6}(g)$ or $A_{8}(n)$ such that
 $q_{i} \neq 0(i=1,2, \cdots, g)$ or any $q_{i} \neq 0(i=1,2, \cdots, n)$, respectively.

Now we difine six operations.
Operation 1. Consider ($M^{\prime}, \tau^{\prime}$) and some closed orientable 3-manifold N (which may not have involutions). Let B be a 3 -ball contained in M^{\prime} with $B \cap \tau^{\prime}(B)=\phi$, and B^{\prime} a 3-ball contained in N. Let $M=\left(N-B^{\prime}\right) \cup$ $\left(M^{\prime}-\left(\check{B} \cup \tau^{\prime}(\dot{B})\right) \cup\left(-\left(N-\dot{B}^{\prime}\right)\right)\right.$ where ∂B is identified with ∂B^{\prime} and $\partial\left(\tau^{\prime}(B)\right)$ with ∂B^{\prime} (in $-N$). Then M has an orientation reversing involution τ extending τ^{\prime} with $\operatorname{Fix}(\tau, M)=\operatorname{Fix}\left(\tau^{\prime}, M^{\prime}\right)$. Note that $H_{1}(M ; \boldsymbol{Z}) \cong H_{1}\left(M^{\prime} \boldsymbol{Z}\right) \oplus H_{1}(N ; \boldsymbol{Z})$ $\oplus H_{1}(N ; \boldsymbol{Z})$.

Operation 2. Consider $\left(M_{i}, \boldsymbol{\tau}_{i}\right)$ such that $\operatorname{Fix}\left(\boldsymbol{\tau}_{i}, M_{i}\right)$ contains an isolated point $P_{i}(i=1,2)$. Let B_{i} be a τ_{i}-invariant 3-ball in M_{i} such that $B_{i} \cap \operatorname{Fix}\left(\tau_{i}, M_{i}\right)$ $=P_{i}(i=1,2)$. Let M be an identifying space $\left(M_{1}-\check{B}_{1}\right) \cup_{h}\left(M_{2}-\check{B}_{2}\right)$ where the
identifying map $h: \partial B_{2} \rightarrow \partial B_{1}$ commutes with τ_{1} and τ_{2}. Then M is the connected sum of M_{1} and M_{2} with an orientation reversing involution τ extending τ_{1} and τ_{2}. Suppose that (M_{i}, τ_{i}) has a data as follows;

$$
\begin{aligned}
& \left(M_{1}, \tau_{1}\right) ;\left[\beta_{1}, s_{1}, r_{1}, p_{1}, g_{1}, g_{2}, \cdots, g_{m^{\prime}} ; c_{1}, c_{2}, \cdots, c_{n^{\prime}}\right] \\
& \left(M_{2}, \tau_{2}\right):\left[\beta_{2}, s_{2}, r_{2}, p_{2} ; g_{m^{\prime}+1}, g_{m^{\prime}+2}, \cdots, g_{m} ; c_{n^{\prime}+1}, c_{n^{\prime}+2}, \cdots, c_{n}\right] \quad\left(m^{\prime} \leq m, n^{\prime} \leq n\right)
\end{aligned}
$$

then (M, τ) has the data

$$
\left[*, *, *, p_{1}+p_{2}-2 ; g_{1}, g_{2}, \cdots, g_{m} ; c_{1}, c_{2}, \cdots, c_{n}\right]
$$

($*$ means the sum of numbers which are in the same column. For example, in the first column, * means $\beta_{1}+\beta_{2}$.) Note that $H_{1}(M ; \boldsymbol{Z}) \cong H_{1}\left(M_{1} ; \boldsymbol{Z}\right) \oplus H_{1}\left(M_{2} ; \boldsymbol{Z}\right)$.

Operation 3. Consider $\left(M_{i}, \tau_{i}\right)$ such that $\operatorname{Fix}\left(\tau_{i}, M_{i}\right)$ contains a surface $F_{i}(i=1,2)$. Let $B_{i} \subset M_{i}$ be a τ_{i}-invariant 3-ball such that $B_{i} \cap \operatorname{Fix}\left(M_{i}, \tau_{i}\right)$ is a 2-disk on $F_{i}(i=1,2)$. Let $M=\left(M_{1}-\grave{B}_{1}\right) \cup_{h}\left(M_{2}-\grave{B}_{2}\right)$, where the identifying map $h: \partial B_{2} \rightarrow \partial B_{1}$ commutes with τ_{1} and τ_{2}. Then M is the connected sum of M_{1} and M_{2} with an orientation reversing involution τ extending τ_{1} and τ_{2}. Suppose that $\left(M_{i}, \tau_{i}\right)$ has a data as in the definition of Operation $2(i=1,2)$. If F_{1} and F_{2} are orientable with genera g_{j} and g_{k}, respectively, where $j \leq m^{\prime}<$ $k \leq m$, then (M, τ) has the data

$$
\left[*, *, *, * ; g_{1}, g_{2}, \cdots, g_{j-1}, g_{j}+g_{k}, g_{j+1}, \cdots, \check{g}_{k}, \cdots, g_{m} ; c_{1}, c_{2}, \cdots, c_{n}\right]
$$

(${ }^{\vee}$ means removing the specified element). And if F_{1} and F_{2} are nonorientable with nonorientable genera c_{j} and c_{k}, respectively, where $j \leq n^{\prime}<k \leq n$, then (M, τ) has the data

$$
\left[*, *, *, * ; g_{1}, g_{2}, \cdots, g_{m} ; c_{1}, c_{2}, \cdots, c_{j-1}, c_{j}+c_{k}, c_{j+1}, \cdots, \check{c}_{k}, \cdots, c_{n}\right]
$$

Note that $H_{1}(M ; \boldsymbol{Z}) \cong H_{1}\left(M_{1} ; \boldsymbol{Z}\right) \oplus H_{1}\left(M_{2} ; \boldsymbol{Z}\right)$.
Operation 3'. Consider $\left(M_{1}, \tau_{1}\right),\left(M_{2}, \tau_{2}\right), \cdots,\left(M_{n}, \tau_{n}\right)(n \geq 2)$ and $\left(M^{\prime}, \tau^{\prime}\right)$ such that $\operatorname{Fix}\left(\tau_{i}, M_{i}\right)$ consists of a surface F_{i} and certain points $(i=1,2, \cdots, n)$, and such that $\operatorname{Fix}\left(\tau^{\prime}, M^{\prime}\right)$ consists of n surfaces $E_{1}, E_{2}, \cdots, E_{n}$ and certain points. Let B_{i} be a $\boldsymbol{\tau}_{i}$-invariant 3-ball in M_{i} such that $B_{i} \cap \operatorname{Fix}\left(\tau_{i}, M_{i}\right)$ is a disk on F_{i} $(i=1,2, \cdots, n)$, and let C_{i} be a τ^{\prime}-invariant 3-ball in M^{\prime} such that $C_{i} \cap \operatorname{Fix}\left(\tau^{\prime}, M^{\prime}\right)$ is a disk on $E_{i}(i=1,2, \cdots, n)$. We consider an operation similar to Operation 3 with attaching homeomorphism $h_{i} ; \partial B_{i} \rightarrow \partial C_{i}(i=1,2, \cdots, n)$. Then we can obtain (M, τ) such that M is the connected sum of $M_{1}, M_{2}, \cdots, M_{n}$ and M^{\prime}, and such that $\operatorname{Fix}(\tau, M)$ consists of the connected sum of F_{i} and $E_{i}(i=1$, $2, \cdots, n)$ and certain points. Suppose that $\left(M_{i}, \tau_{i}\right)(i=1,2, \cdots, n)$ and $\left(M^{\prime}, \tau^{\prime}\right)$ have data as follows;

$$
\begin{aligned}
& \left(M_{i}, \tau_{i}\right):\left[\beta_{i}, s_{i}, r_{i}, p_{i} ; \quad ; c_{i}\right] \quad(i=1,2, \cdots, n) \\
& \left(M^{\prime}, \tau^{\prime}\right):\left[\beta^{\prime}, s^{\prime}, r^{\prime}, p^{\prime} ; \quad ; c_{1}^{\prime}, c_{2}^{\prime}, \cdots, c_{n}^{\prime}\right] .
\end{aligned}
$$

Then (M, τ) has the data

$$
\left[\sum_{i=1}^{n} \beta_{i}+\beta^{\prime}, \sum_{i=1}^{n} s_{i}+s^{\prime}, \sum_{i=1}^{n} r_{i}+r^{\prime}, \sum_{i=1}^{n} p_{i}+p^{\prime} ; \quad ; c_{1}+c_{1}^{\prime}, c_{2}+c_{2}^{\prime}, \cdots, c_{n}+c_{n}^{\prime}\right]
$$

Note that $H_{1}(M ; \boldsymbol{Z}) \cong \oplus_{i=1}^{n}\left(M_{i} ; \boldsymbol{Z}\right) \oplus H_{1}\left(M^{\prime} ; \boldsymbol{Z}\right)$.
Operation 4. Consider $\left(M_{1}, \tau_{1}\right)$ and $\left(M_{2}, \tau_{2}\right)$. Let B_{i} be a 3-ball in M_{i} with $B_{i} \cap \tau_{i}\left(B_{i}\right)=\phi(i=i, 2)$. Let $M=\left(M_{1}-\left(\stackrel{\circ}{B}_{1} \cup \tau_{1}\left(\stackrel{\circ}{B}_{1}\right)\right) \cup\left(M_{2}-\left(\stackrel{\circ}{B}_{2} \cup \tau_{2}\left(\stackrel{\circ}{B}_{2}\right)\right)\right.\right.$, where ∂B_{1} is identified with ∂B_{2} and $\partial \tau_{1}\left(B_{1}\right)$ identified with $\partial \tau_{2}\left(B_{2}\right)$ so that the identifying map commutes with τ_{1} and τ_{2}. Then M has an orientation reversing involution τ extending τ_{1} and τ_{2} with $\operatorname{Fix}(\tau, M)=\operatorname{Fix}\left(\tau_{1}, M_{1}\right) \cup \operatorname{Fix}\left(\tau_{2}, M_{2}\right)$. Suppose that $\left(M_{i}, \boldsymbol{\tau}_{i}\right)(i=1,2)$ has a data as in the definition of Operation 2, then (M, τ) has the data

$$
\left[\beta_{1}+\beta_{2}+1, *, *, * ; g_{1}, g_{2}, \cdots, g_{m} ; c_{1}, c_{2}, \cdots, c_{n}\right]
$$

Note that $H_{1}(M ; \boldsymbol{Z}) \cong H_{1}\left(M_{1} ; \boldsymbol{Z}\right) \oplus H_{1}\left(M_{2} ; \boldsymbol{Z}\right) \oplus \boldsymbol{Z}$.
Operation 5. Consider $\left(M_{i}, \tau_{i}\right)$ such that $\operatorname{Fix}\left(\tau_{i}, M_{i}\right)$ contains two isolated points $p_{i_{1}}$ and $p_{i_{2}}(i=1,2)$. Let $B_{i_{j}}$ be a τ_{i}-invariant 3-ball in M_{i} containing $p_{i_{j}}(i=1,2, j=1,2)$. Let $M=\left(M_{1}-\left({\stackrel{\circ}{1_{1}}}^{1} \cup{\stackrel{\circ}{1_{2}}}^{\prime}\right)\right) \cup\left(M_{2}-\left({\stackrel{\circ}{Q_{1}}}^{{ }_{2}} \cup{\stackrel{\circ}{R_{2}}}^{2}\right)\right)$, where $\partial B_{1_{j}}$ is identified with $\partial B_{2_{j}}(j=1,2)$ so that the identifying map commutes with τ_{1} and τ_{2}. Then M has an orientation reversing involution τ extending τ_{1} and τ_{2}. Suppose that $\left(M_{i}, \tau_{i}\right)(i=1,2)$ has the data as in the definition of Operation 2, then (M, τ) has the data

$$
\left[\beta_{1}+\beta_{2}+1, *, *, p_{1}+p_{2}-4 ; g_{1}, g_{2}, \cdots, g_{m} ; c_{1}, c_{2}, \cdots, c_{n}\right]
$$

Note that $H_{1}(M ; \boldsymbol{Z}) \cong H_{1}\left(M_{1} ; \boldsymbol{Z}\right) \oplus H_{1}\left(M_{2} ; \boldsymbol{Z}\right) \oplus \boldsymbol{Z}$.

4. Constructions.

Proof of Theorem 3. Let $E_{1}, E_{2}, \cdots, E_{m}$ be the components of E. Consider a handlebody V_{1} such that $\partial V_{1}=E_{1}$. Let $V_{2}, V_{3}, \cdots, V_{m}$ be murtually disjoint handlebodies contained in \dot{V}_{1} such that the natural homomorphism $H_{1}\left(V_{i} ; \boldsymbol{Z}\right) \rightarrow H_{1}\left(V_{1} ; \boldsymbol{Z}\right)$ is trivial. Let $M_{1}=V_{1}-\bigcup_{i=2}^{m} \dot{V}_{i}$. Then the double of $M_{1}, D M_{1}$, has an orientation reversing involtuion τ interchanging the copies of M_{1} with $\operatorname{Fix}\left(\tau, D M_{1}\right)=\bigcup_{i=1}^{m} V_{i}$. Note that $H_{1}\left(D M_{1} ; \boldsymbol{Z}\right)$ is a free abelian group of rank $m+\sum_{i=1}^{m} g\left(E_{i}\right)-1$.

By (2) and (3), we can see that $\operatorname{rank} G-\left(m+\sum_{i=1}^{m} g\left(E_{i}\right)-1\right)$ is a nonnegative even integer. Hence by (1), we can consider that $H_{1}\left(D M_{1} ; \boldsymbol{Z}\right)$ is a direct summand of G with $G / H_{1}\left(D M_{1} ; \boldsymbol{Z}\right) \cong B \oplus B$ for some abelian group B. Let M_{2} be a closed orientable manifold with $H_{1}\left(M_{2} ; \boldsymbol{Z}\right) \cong B$. Put $M=M_{2} \# D M_{1} \#\left(-M_{2}\right)$ by using Operation 1. Then we can see that M is the required manifold. This completes the proof.

Lemma 7. Let $t, s, r, p, m, n, g_{1}, g_{2}, \cdots, g_{m}, c_{1}, c_{2}, \cdots, c_{n}$ be nonnegative integers satisfying the following conditoins:
(1) $s \leq n, g_{i}>0(i=1,2, \cdots, m), c_{j}>1(j=1,2, \cdots, n)$
(2) $s, p, c_{s+1}, c_{s+2}, \cdots, c_{n}$ are even, and $c_{1}, c_{2}, \cdots, c_{s}$ are odd.
$m+n+\sum_{i=1}^{m} g_{i}+p+\sum_{j=1}^{n} c_{j} \leq 2 s+4 r+2 t+2$.
(4)
$m+n-\sum_{i=1}^{m} g_{i}+\left(p+\sum_{j=1}^{n} c_{j}\right) / 2 \geq 1-t$.
(5)
$m+n-\sum_{i=1}^{m} g_{i}+\left(p-\sum_{j=1}^{n} c_{j}\right) / 2 \leq 1+t$.
$m+n-\sum_{i=1}^{m} g_{i}+\left(p-\sum_{i=1} c_{j}\right) / 2 \equiv 1+t \quad(\bmod 2)$.
Then there exists (M, τ) which has a data $\left[t, s, r, p ; g_{1}, g_{2}, \cdots, g_{m} ; c_{1}, c_{2}, \cdots, c_{n}\right]$.
Proof. We consider the following six cases (where $\sum g_{i}=\sum_{i=1}^{m} g_{i}$ and $\left.\sum c_{j}=\sum_{j=1}^{n} c_{j}\right)$:
Case 1) $2 \sum g_{i}+\sum c_{j} \leq s+2 r$.
Case 2) $2 \sum g_{i}+\sum c_{j}>s+2 r$ and $r \geq n$.
Case 3) $n>r \geq s / 2$ and $p \geq 2$.
Case 4) $s / 2>r$ and $p \geq 2$.
Case 5) $n>r, p=0$ and $r+1 \geq s / 2$.
Case 6) $n>r, p=0$ and $r+1<s / 2$.
Case 1) $2 \sum g_{i}+\sum c_{j} \leq s+2 r$.
We prepare $\mid 1-n+\sum g_{i}+\left(\left(\sum c_{j}-p\right) / 2 \mid\right.$ copies of A_{1}, s copies of A_{2}, $\left(\sum c_{j}-s\right) / 2$ copies of A_{5} and $A_{6}\left(g_{1}\right), A_{6}\left(g_{2}\right), \cdots, A_{6}\left(g_{m}\right)$. Now we have the following data

$$
\begin{aligned}
& A_{1}:[0,0,0,2 \quad ; \quad ; \quad] \quad\left(\left|1-n+\sum g_{i}+\left(\sum c_{j}-p\right) / 2\right| \text { times }\right), \\
& A_{2}:[0,1,0,1 \quad ; \quad \text {; (s times), } \\
& A_{5}:[0,0,1,2 ; \quad ; 2] \quad\left(\left(\sum c_{j}-s\right) / 2 \text { times }\right) \text {, } \\
& A_{6}\left(g_{i}\right):\left[1,0, g_{i}, 2 g_{i}+2 ; g_{i} ; \quad\right] \quad(i=1,2, \cdots, m) \text {. }
\end{aligned}
$$

We denote by $X{ }^{i} Y$ the result of Operation i on the manifolds with involutions X and Y, and by $X(\stackrel{i}{-} Y)^{n}, X \xrightarrow{i} Y \stackrel{i}{-} Y \stackrel{i}{-} Y$ (n copies of Y). Then we apply Operation 3 as indicated in Figure 4 and obtain $B_{1}^{j}(j=1$,

$$
\begin{array}{ll}
B_{1}^{j}=A_{5}\left(\frac{3}{3} A_{5}\right)^{\left(c_{j}-1\right) / 2-1}-3 \\
B_{1}^{j}=A_{5}\left(-\frac{3}{-} A_{5}\right)^{c_{j} / 2-1} & (j=1,2, \cdots, s) \\
& (j=s+1, s+2, \cdots, n)
\end{array}
$$

Figure 4
$2, \cdots, n)$ with data $\left[0,0,\left(c_{j}-1\right) / 2, c_{j} ; \quad ; c_{j}\right]$ or $\left[0,0, c_{j} / 2, c_{j} ; \quad ; c_{j}\right]$ according to whether $j \leq s$ or $j \geq s+1$.

Applying Operation 2 as indicated in Figure 5, we obtain B_{2} with data

$$
\begin{aligned}
B_{2}=B_{1}^{1} \frac{2}{2} & B_{1}^{2} \frac{2}{2} B_{1}^{3} \frac{2}{2} \cdots \\
& \ldots-B_{1}^{n}-A_{6}\left(g_{1}\right) \underline{2} A_{6}\left(g_{2}\right) \underline{2} \cdots 2-A_{6}\left(g_{m}\right)
\end{aligned}
$$

Figure 5

$$
\begin{aligned}
{\left[m, s, \sum g_{i}+\left(\sum c_{j}-s\right) / 2, \sum c_{j}+\sum_{i=1}^{m}\left(2 g_{i}+2\right)-2(m+n-1)\right.} \\
\left.g_{1}, g_{2}, \cdots, g_{m} ; c_{1}, c_{2}, \cdots, c_{n}\right]
\end{aligned}
$$

If $1-n+\sum g_{i}+\left(\sum c_{j}-p\right) / 2 \geq 0$, then we apply Operation 5 as indictaed in Figure 6 and obtain B_{3} with data

$$
\begin{aligned}
& B_{3}=B_{2}\left(\frac{k}{-} A_{1}\right)^{\left|n-1-\Sigma g_{i}+\left(\left(p-\Sigma c_{j}\right) / 2\right)\right|} \\
& \quad k= \begin{cases}4 & \text { if } n-1-\sum g_{i}+\left(\left(p-\sum c_{j}\right) / 2\right) \geq 0 \\
5 & \text { if } n-1-\sum g_{i}+\left(\left(p-\sum c_{j}\right) / 2\right) \leq 0\end{cases}
\end{aligned}
$$

Figure 6

$$
\begin{array}{r}
{\left[1+m-n+\sum g_{i}+\left(\sum c_{j}-p\right) / 2, s, \sum g_{i}+\left(\sum c_{j}-s\right) / 2, p\right.} \\
\left.g_{1}, g_{2}, \cdots, g_{m} ; c_{1}, c_{2}, \cdots, c_{n}\right]
\end{array}
$$

By (4), $1+m-n+\sum g_{i}+\left(\sum c_{j}-p\right) / 2 \leq t . \quad$ By (6), $t-\left(1+m-n+\sum g_{i}+\right.$ $\left.\left(c_{j}-p\right) / 2\right)$ is even. By Assumption of Case 1$), \sum g_{i}+\left(\sum c_{j}-s\right) / 2 \leq r$. Hence we can obtain a manifold with involution with the required data by Operation 1.

If $1-n+\sum g_{i}+\left(\sum c_{j}-p\right) / 2 \leq 0$, then we apply Operation 4 as indicated in Figure 6 and obtain a manifold with data

$$
\begin{aligned}
{\left[-1+m+n-\sum g_{i}+\left(p-\sum c_{j}\right) / 2, s, \sum g_{i}+\left(\sum c_{j}-s\right) / 2, p:\right.} \\
\left.g_{1}, g_{2}, \cdots, g_{m} ; c_{1}, c_{2}, \cdots, c_{n}\right]
\end{aligned}
$$

By (5) and (6), $t-\left(-1+m+n-\sum g_{i}+\left(p-\sum c_{j}\right) / 2\right)$ is a nonnegative even integer. By Assumption of Case 1), $\sum g_{i}+\left(\sum c_{j}-s\right) / 2 \leq r$. Hence by Operation 1, we can obtain a manifold with the required data.

Case 2) $2 \sum g_{i}+\sum c_{j}>s+2 r$ and $r \geq n$.

There exist integers $m^{\prime}, g_{1}^{\prime}, g_{2}^{\prime}, \cdots, g_{m}^{\prime}, c_{1}^{\prime}, c_{2}^{\prime}, \cdots, c_{n}^{\prime}$ satisfying the following conditions;

1. $0 \leq m^{\prime} \leq m$,
2. $0<g_{i}^{\prime} \leq g_{i}\left(i=1,2, \cdots, m^{\prime}\right)$.

3, $1<c_{j}^{\prime} \leq c_{j}$ and $c_{j}^{\prime} \equiv c_{j}(\bmod 2)(j=1,2, \cdots, n)$, and
4. $2 \sum_{i=1}^{m^{\prime}} g_{i}^{\prime}+\sum_{j=1}^{n} c_{j}^{\prime}=s+2 r$.
(Note that if $m^{\prime}=0, c_{j}^{\prime}=3(j=1,2, \cdots, s)$ and $c_{j}^{\prime}=2(j=s+1, s+2, \cdots, n)$, then $\sum_{j=1}^{n} c_{j}^{\prime}=3 s+2(n-s)=s+2 n \leq s+2 r$.)

We prepare the basic manifolds and apply Operations as indicated in Figure
7. Then we obtain B_{6} with the following data

$$
\begin{aligned}
& {\left[m+\sum g_{i}+\left(\sum c_{j}-s-2 r\right) / 2, s, r, 2-2 n+s+2 r ;\right.} \\
& \left.g_{1}, g_{2}, \cdots, g_{m}, c_{1}, c_{2}, \cdots, c_{n}\right] . \\
& B_{4}^{i}=A_{6}\left(g_{i}^{\prime}\right)\left(-\frac{3}{-} A_{3}\right)^{g_{i}-g_{i}^{\prime}} \quad\left(i=1,2, \cdots, m^{\prime}\right) \\
& B_{5}^{j}=A_{5}\left(\frac{3}{-} A_{5}\right)^{\left(c_{j}^{\prime}-1\right) / 2-1}\left(\underline{3} A_{3}\right)^{\left(c_{j}-c_{j}^{\prime}\right) / 2}-3 \quad A_{2} \quad(j=1,2, \cdots, s) \\
& B_{5}^{j}=A_{5}\left(-3 A_{5}\right)_{j}^{c_{j}^{\prime} / 2-1}\left(-\frac{3}{-} A_{3}\right)^{\left.c_{j}-c_{j}^{\prime}\right) / 2} \quad(s+1 \leq j \leq n) \\
& B_{6}=B_{4}^{1} \underline{2} B_{4}^{2} \underline{2} \cdots 2 B_{4}^{m^{\prime}} \underline{2} B_{5}^{1} \underline{2} B_{5}^{2} \underline{2} \ldots \\
& \cdots \underline{2} B_{5}^{n} \underline{4} A_{7}\left(g_{m^{\prime}+1}\right) \underline{4} A_{7}\left(g_{m^{\prime}+2}\right) \underline{4} \cdots \underline{4} A_{7}\left(g_{m}\right) \\
& \text { (if } m^{\prime}=n=0, B_{6}=A_{1} \underline{4} A_{7}\left(g_{1}\right) \underline{4} A_{7}\left(g_{2}\right) \xrightarrow[4]{\cdots}-4 A_{7}\left(g_{m}\right) \text {) }
\end{aligned}
$$

Figure 7
If $2-2 n+s+2 r-p \geq 0$, then we apply Operation 5 as indicated in Figure 8 and obtain B_{7} with data

$$
\begin{gathered}
{\left[1+m-n+\sum g_{i}+\left(\sum c_{j}-p\right) / 2, s, r, p ; g_{1}, g_{2}, \cdots, g_{m} ; c_{1}, c_{2}, \cdots, c_{n}\right] .} \\
\quad B_{7}=B_{6}\left(\frac{k}{\left.A_{1}\right)^{(p-s) 2}(2+n-r-1 \mid}\right. \\
k= \begin{cases}4 & \text { if } \quad(p-s) / 2+n-r-1 \geq 0 \\
5 & \text { if } \quad(p-s) / 2+n-r-1 \leq 0\end{cases}
\end{gathered}
$$

Figure 8
By (4) and (6), $t-\left(1+m-n+\sum g_{i}+\left(\sum c_{j}-p\right) / 2\right)$ is a nonnegative even integer. Hence by Operation 1, we can obtain a manifold with the required data.

If $2-2 n+s+2 r-p \leq 0$, then we apply Operation 4 as indicated in Figure

8 and obtain B_{7} aith data

$$
\left[-(1+s+2 r)+m+n+\Sigma g_{i}+\left(p+\sum c_{j}\right) / 2, s, r, p ; g_{1}, g_{2}, \cdots, g_{m} ; c_{1}, c_{2}, \cdots, c_{n}\right]
$$

By (3) and (6), $t-\left(-(1+s+2 r)+m+n+\sum g_{i}+\left(p+\sum c_{j}\right) / 2\right)$ is a nonnegative even integer. Hence by Operation 1, we can obtain a manifold with the required data.

Case 3) $n>r \geq s / 2$ and $p \geq 2$.
First, consider the numbers $g_{1}, g_{2}, \cdots, g_{m}, c_{1}, c_{2}, \cdots, c_{s / 2}, c_{s+1}, \cdots, c_{r+(s / 2)}$. Note that $\sum_{j=1}^{s / 2} c_{j}+\sum_{j=s+1}^{r+(s / 2)} c_{j} \geq(s / 2)+2 r$ and $s / 2+(r+s / 2-s) \leq r$. Hence, by the same way as in Case 2), we have B_{6}^{\prime} with data

$$
\begin{aligned}
{\left[m+\sum g_{i}+\right.} & \left(\sum_{j=1}^{s / 2} c_{j}+\sum_{j=s+1}^{\left.r+c_{s} / 2\right)} c_{j}-s / 2-2 r\right) / 2, s / 2, r, 2+(s / 2) \\
& \left.g_{1}, g_{2}, \cdots, g_{m} ; c_{1}, c_{1}, \cdots, c_{s / 2}, c_{s+1}, c_{s+2}, \cdots, c_{r+(s / 2)}\right]
\end{aligned}
$$

Applying Operations to B_{6}^{\prime} and the basic manifolds as indicated in Figure 9 , we have B_{9} with data

Figure 9

$$
\left[-(1+s+2 r)+m+n+\sum g_{i}+\left(p+\sum c_{j}\right) / 2, s, r, p ; g_{1}, g_{2}, \cdots, g_{m} ; c_{1}, c_{2}, \cdots, c_{n}\right]
$$

By (3) and (6), $t-\left(-(1+s+2 r)+m+n+\sum g_{i}+\left(p+\sum c_{j}\right) / 2\right)$ is a nonnegative even integer. By Operation 1, we can obtain a manifold with the required data.

Case 4) $s / 2>r$ and $p \geq 2$.
First, consider the numbers $g_{1}, g_{2}, \cdots, g_{m}, c_{1}, c_{2}, \cdots, c_{2 r}, c_{s+1}, c_{s+2}, \cdots, c_{n}$.

Note that $2 r+(n-s) \geq r=2 r / 2$. By the same way as in Case 3), we have B_{9}^{\prime} with data

$$
\begin{aligned}
& {[-(1+2 r+2 r)+m+(2 r+n-s)+} \sum g_{i}+\left(p+\sum_{j=1}^{2 r} c_{j}+\sum_{j=s+1}^{n} c_{j}\right) / 2,2 r, r, p \\
&\left.g_{1}, g_{2}, \cdots, g_{m} ; c_{1}, c_{2}, \cdots, c_{2 r}, c_{s+1}, c_{s+2}, \ldots, c_{n}\right] .
\end{aligned}
$$

Applying Operations to B_{9}^{\prime} and the basic manifolds as indicated in Figure 10 , we obtain B_{11} with data

$$
\begin{aligned}
& {\left[-(1+s+2 r)+m+n+\sum g_{i}+\left(p+\sum c_{j}\right) / 2, s, r, p ; g_{1}, g_{2}, \cdots, g_{m}, c_{1}, c_{2}, \cdots, c_{n}\right] .} \\
& B_{10}^{i}=A_{4}\left(-3 A_{4}\right)^{\left(c_{2 r+2 i-1}-1\right) / 2-1} \underline{3} A_{2} \xrightarrow{2} A_{2}\left(\underline{3} A_{4}\right)^{\left(c_{2 r+2 i}-1\right) / 2} \\
& (1 \leq i \leq s / 2-r) \\
& B_{11}=B_{9}^{\prime} \underline{4} B_{10}^{1} \underline{4} B_{10}^{2} \underline{4} \cdots B_{10}^{s / 2-r}
\end{aligned}
$$

Figure 10
By (4) and (7), $t-\left(-(1+s+2 r)+m+n+\sum g_{i}+\left(p+\sum c_{j}\right) / 2\right)$ is a nonnegative even integer. By Operation 1, we can obtain a manifold with the required data.

Case 5) $n>r, p=0$ and $r+1 \geq s / 2$.
Apply Operations to the basic manifolds as indicated in Figure 11. (In Figure $11, B_{13}$ is created by applying Operation 3^{\prime} to $B_{12}^{1}, B_{12}^{2}, \cdots, B_{12}^{s / 2}, B_{12}^{s+1}$, $B_{12}^{s+2}, \cdots, B_{12}^{r+1+s / 2}$ and $A_{8}(r)$.) We obtain B_{14} with data

$$
\left[-(1+s+2 r)+m+n+\sum g_{i}+\sum c_{j} / 2, s, r, 0 ; g_{1}, g_{2}, \cdots, g_{m} ; c_{1}, c_{2}, \cdots, c_{n}\right] .
$$

$$
\begin{aligned}
& B_{12}^{j}=A_{2}\left(-3 A_{4}\right)^{\left(c_{j}-3\right) / 2} \quad(j=1,2, \cdots, s / 2) \\
& B_{12}^{j}=A_{2}\left(-3 A_{4}\right)^{\left(c_{j}-1\right) / 2} \quad(j=s / 2+1, s / 2+2, \cdots, s) \\
& B_{12}^{j}=A_{4}\left(\frac{3}{} A_{4}\right)^{\left(c_{j}-2\right) / 2-1} \quad(j=s+1, s+2, \cdots, r+1+s / 2) \\
& B_{12}^{j}=A_{4}\left(\frac{3}{-} A_{4}\right)^{c_{j} / 2-1} \quad(j=r+1+s / 2+1, r+1+s / 2+2, \cdots, n) \\
& B_{13}=A_{8}(r) \xrightarrow{3^{\prime}}\left\{B_{12}^{1}, B_{12}^{2}, \cdots, B_{12}^{s / 2}, B_{12}^{s+1}, B_{12}^{s+2}, \cdots, B_{12}^{r+1+s / 2}\right\} \\
& B_{14}=B_{13} \underline{4} B_{12}^{j+1+s / 2+1} \underline{4} B_{12}^{r+1+s / 2+2} \underline{4} \cdots \underline{4} B_{12}^{n} \\
& \begin{array}{ccccc}
2 & & & \\
B_{12}^{s / 2+1} & B_{12}^{s / 2+2} & \cdots & B_{12}^{s}\left(g_{1}\right)
\end{array}
\end{aligned}
$$

Figure 11

By (3) and (6), $t-\left(-(1+s+2 r)+m+n+\sum g_{i}+\sum c_{j} / 2\right)$ is a nonnegative even integer. By Operation 1, we can obtain the required manifold.

Case 6) $n>r, p=0$ and $r+1<s / 2$.
First, consider the numbers $g_{1}, g_{2}, \cdots, g_{m}, c_{1}, c_{2}, \cdots, c_{2(r+1)}, c_{s+1}, c_{s+2}, \cdots, c_{n}$. Since $2(r+1)+(n-s) \geq r$ and $r+1 \geq(2(r+1)) / 2$, by the same way as in case 5$)$ there exists B_{14}^{\prime} with data

$$
\begin{aligned}
& {\left[-(1+2(r+1)+2 r)+m+(2(r+1)+n-s)+\sum g_{i}+\left(\sum_{j=1}^{2(r+1)} c_{j}+\sum_{j=s+1}^{n} c_{j}\right) / 2\right.} \\
& \left.2(r+1), r, 0 ; g_{1}, g_{2}, \cdots, g_{m} ; c_{1}, c_{2}, \cdots, c_{2(r+1)}, c_{s+1}, c_{s+2}, \cdots, c_{n}\right]
\end{aligned}
$$

Applying Operations to B_{14}^{\prime} and the basic manifolds as indicated in Figure 12 , we have B_{16} with data

$$
\begin{aligned}
& {\left[-(1+s+2 r)+m+n+\sum g_{i}+\sum c_{j} / 2, s, r, 0 ; g_{1}, g_{2}, \cdots, g_{m} ; c_{1}, c_{2}, \cdots, c_{n}\right] .} \\
& \left.\left.B_{15}^{i}=A_{4}(-3) A\right)_{4}^{\left(c_{2 r+2+2 i-1}-1\right) / 2-1} \underline{3} A_{2} \underline{2} A_{2}(-3) A_{4}\right)^{\left(c_{2 r+2+2 i}-1\right) / 2} \\
& (1 \leq i \leq s / 2-r-1) \\
& B_{16}=B_{14}^{\prime} \underline{4} B_{15}^{1} \underline{4} B_{15}^{2} \underline{4} \cdots \underline{4} B_{15}^{s / 2-r-1}
\end{aligned}
$$

Figure 12
By (3) and (6), $t-\left(-(1+s+2 r)+m+n+\sum g_{i}+\sum c_{j} / 2\right)$ is a nonnegative even integer. By Operation 1, we can obtain the required manifold.

This completes the proof.
Remark 4. In the proof of Lemma 7, we have constructed (M, τ) with data stated in Lemma 7 such that $\operatorname{Tor} H_{1}(M ; \boldsymbol{Z}) \cong\left(\underset{\oplus}{\oplus} \boldsymbol{Z}_{2}\right) \oplus\left(\underset{i=1}{\oplus}\left(\boldsymbol{Z}_{2 q_{i}} \oplus \boldsymbol{Z}_{2 q_{i}}\right)\right)$ for some nonzero integers $q_{1}, q_{2}, \cdots, q_{r}$. Since (M, τ) is obtained from the basic manifolds with involutions by the Operations, we see from Remark 3 that any given nonzero integers can be taken as $q_{1}, q_{2}, \cdots, q_{r}$.

Lemma 8. Even if the numbers s and p in the assumption of Lemma 7 are odd, the same assertion of Lemma 7 holds.

Proof. We can check that $t, s-1, r, p-1, m, n, g_{1}, g_{2}, \cdots, g_{m}, c_{1}, c_{2}, \cdots$, $c_{s-1}, c_{s}-1, c_{s+1}, \cdots, c_{n}$ satisfy the assumption of Lemma 7. Hence there exists $\left(M^{\prime}, \tau^{\prime}\right)$ with data $\left[t, s-1, r, p-1 ; g_{1}, g_{2}, \cdots, g_{m} ; c_{1}, c_{2}, \cdots, c_{s-1}, c_{s}-1, c_{s+1}, \cdots, c_{n}\right]$. Applying Operation 3 to ($M^{\prime}, \tau^{\prime}$) and $A_{2}\left(A_{2}\right.$ has the data $\left.[0,1,0,1 ; ; 1]\right)$, we can obtain (M, τ) with the data $\left[t, s, r, p ; g_{1}, g_{2}, \cdots, g_{m} ; c_{1}, c_{2}, \cdots, c_{n}\right]$.

This completes the proof.
Proof of Theorem 5. We may assume that X consists of p points, m closed
orientable surfaces $E_{1}, E_{2}, \cdots, E_{m}$ of genera $g_{1}, g_{2}, \cdots, g_{m}$ and n closed nonorientable surfaces $F_{1}, F_{2}, \cdots, F_{n}$ of nonorientable genera $c_{1}, c_{2}, \cdots, c_{n}$ such that $g_{i}>0$ or $=0$ according to whether $1 \leq i \leq m^{\prime}$ or $m^{\prime} \leq i \leq m$ for some m^{\prime} and c_{j} is odd ($\neq 1$), even or 1 according to whether $1 \leq j \leq s, s+1 \leq j \leq n^{\prime}$ or $n^{\prime}+1 \leq j \leq n$ for some s and n^{\prime}. By conditions (1)-(7), we can see that the given abelian group G is isomorphic to $\left({ }^{s+n-n^{\prime}} \boldsymbol{Z}_{2}\right) \oplus\left(\underset{i=1}{\oplus}\left(\boldsymbol{Z}_{2 q_{i}} \oplus \boldsymbol{Z}_{2 q_{i}}\right)\right) \oplus(\dot{\oplus} \oplus \boldsymbol{Z}) \oplus B \oplus B$, where $r=\left(\beta_{1}\left(G ; \boldsymbol{Z}_{2}\right)-\beta_{1}(G)-s\right) / 2, B$ is some abelian group of odd order, and $t, q_{1}, q_{2}, \cdots, q_{r}$ are some integers. We can check that the numbers $t-m+m^{\prime}$, $s, r, p+n-n^{\prime}, m^{\prime}, n^{\prime}, g_{1}, g_{2}, \cdots, g_{m^{\prime}}, c_{1}, c_{2}, \cdots, c_{n^{\prime}}$ satisfy the assmption of Lemma 7 or 8.

Hence by Lemma 7 or 8 and Remark 4 there exists (M_{1}, τ_{1}) with data $\left[t-m+m^{\prime}, s, r, p+n-n^{\prime} ; g_{1}, g_{2}, \cdots, g_{m^{\prime}} ; c_{1}, c_{2}, \cdots, c_{n^{\prime}}\right]$ and Tor $H_{1}\left(M_{1} ; \boldsymbol{Z}\right) \cong$ $\left({ }^{s} \oplus \boldsymbol{Z}_{2}\right) \oplus\left(\oplus_{i=1}^{+}\left(\boldsymbol{Z}_{2 q_{i}} \oplus \boldsymbol{Z}_{2 q_{i}}\right)\right)$. Prepare $n-n^{\prime}$ copies of A_{2} (with data $[0,1,0,1 ; ; 1]$) and $m-m^{\prime}$ copies $A_{7}(0)$ (with data $[0,0,0,0 ; 0 ;]$). Applying Operation 2 $n-n^{\prime}$ times and Operation $4 m-m^{\prime}$ times, we have a manifold M_{2} with data

$$
\left[t, s+n-n^{\prime}, r, p ; g_{1}, g_{2}, \cdots, g_{m} ; c_{1}, c_{2}, \cdots, c_{n}\right] .
$$

Consider a manifold M_{3} with $H_{1}\left(M_{3} ; \boldsymbol{Z}\right) \cong B$ and apply Operation 1 to M_{2} and M_{3}. We denote the resulting manifold with involution by (M, τ). Then we can see that $H_{1}(M ; \boldsymbol{Z}) \cong G$ and $\operatorname{Fix}(\tau, M)=X$.

This completes the proof.

References

[1] G.E. Bredon: Introduction to compact transformation groups, Pure and Applied Mathematics, 46, Academic press, New York, London, 1972.
[2] K.S. Brown: Cohomology of groups, Graduate Texts in Math., 87, SpringerVerlag, New York, Heidelberg and Berlin, 1982.
[3] J. Hempel: Orientation reversing involutions and the first Betti number for finite coverings of 3-manifolds, Invent. Math., 67 (1982), 133-142.
[4] -: Virtually Haken manifolds, in Combinatorial Methods in Topology and Algebraic Geometry, J.R. Harper and R. Mandelbaum, Ed., Contemp. Math. 44, Amer. Math. Soc., Providence R.I., 1985, 149-155.
[5] A. Kawauchi: On 3-manifolds admitting orientation-reversing involutions, J. Math. Soc. Japan, 33 (1981), 571-589.
[6] M. Kobayashi: Rational homology 3 -spheres with orientation reversing involution, Kobe J. Marh., 5 (1988), 109-116.
[7] -: Fixed point sets of orientation reversing involutions on 3-manifolds, Osaka J. Math. 25 (1988), 877-879.

Department of Mathematics
Osaka City University
Sugimoto, Sumiyoshi-ku
Osaka, 558, Japan

