THE REAL K-GROUPS OF SO(n) FOR $\boldsymbol{n} \equiv \mathbf{2}$ MOD 4

Dedicated to Professer Shôrô Araki on his sixtieth birthday

Haruo MINAMI

(Received May 6, 1988)

In [9], [10] we studied the algebra $K O^{*}(S O(n))$ for $n \equiv 0,1,3 \bmod 4$ using an idea of [7]. We first showed that a map from $P^{n-1} \times \operatorname{Spin}(n)$ to $S O(n)$ introduced in [7] to compute $K^{*}(S O(n))$ also induces a monomorphism in $K O$-theory

$$
I: K O^{*}(S O(n)) \rightarrow K O^{*}\left(P^{n-1} \times \operatorname{Spin}(n)\right)
$$

As in [7] using this embedding enabled us to compute $K O^{*}(S O(n))$ from $K O^{*}$ ($P^{n-1} \times \operatorname{Spin}(n)$) whose structure can be obtained from the results of [1], [6], [12], [11].

The purpose of this note is to consider the remaining case, that is, $K O^{*}$ $(S O(n))$ for $n \equiv 2 \bmod 4$. However, in the present case, the analogous homomorphism I is not a monomorphism. This must come from the fact that the simple spin representations of $\operatorname{Spin}(n)$ are neither real nor quaternionic representations. To determine the kernel and image of I so we make use of our results on the algebra structure of $K O^{*}(S O(n))$ for $n \equiv 1 \bmod 4$.

1. $\boldsymbol{K O} O^{*}\left(P^{n-1} \times \operatorname{Spin}(n)\right)$

Throughout this note we regard $K O$ and K as Z_{8}-graded cohomology functors using the Bott periodicity. Let $\eta_{1} \in K O^{-1}(+)$ and $\eta_{4} \in K O^{-4}(+)$ be generators of $K O^{*}(+)$ satisfying the relations $2 \eta_{1}=\eta_{1}^{3}=\eta_{1} \eta_{4}=0, \eta_{4}^{2}=4$ and $\mu \in K^{-2}(+)$ denote the Bott class satisfying the relation $\mu^{4}=1$ ($+=$ point $)$.

Let c and r denote the complexification and realification homomorphisms. According to [3] we then have a useful exact sequence

$$
\begin{equation*}
\cdots \rightarrow K O^{1-q}(X) \xrightarrow{\chi} K O^{-q}(X) \xrightarrow{c} K^{-q}(X) \xrightarrow{\delta} K O^{2-q}(X) \rightarrow \cdots \tag{1.1}
\end{equation*}
$$

which connects $K O$ with K where χ is multiplication by η_{1} and δ is given by $\delta(\mu x)=r(x)$ for $x \in K^{2-q}(X)$.

We also assume that

$$
n \equiv 2 \bmod 4 \quad \text { and } \quad a=\frac{n-2}{2}
$$

throughout this note.
To determine $K O^{*}\left(P^{n-1} \times \operatorname{Spin}(n)\right)$ we first deal with $K O^{*}\left(P^{n-1}\right)$ where P^{n-1} is the real projective $(n-1)$-space. For the additive structure of $K O *\left(P^{l}\right)$ needed below we refer to [6]. Referring also to [4] for the structure of $K^{*}\left(P^{n-1}\right)$ and using (1.1) we can find elements $\tilde{\nu}_{1} \in K O^{-3}\left(P^{n-1}\right)$ and $\tilde{\nu}_{3} \in K O^{-7}\left(P^{n-1}\right)$ such that

$$
\begin{equation*}
c\left(\tilde{\mathscr{D}}_{1}\right)=\mu \nu \quad \text { and } \quad c\left(\widetilde{\nu}_{3}\right)=\mu^{3} \nu \tag{1.2}
\end{equation*}
$$

and we can readily show that $K O^{*}\left(P^{n-1}\right)$ is generated by $\gamma=\gamma^{\prime}-1, \tilde{\nu}_{1}$ and $\tilde{\nu}_{3}$ as follows. Here ν denotes the generator ν_{n-1} of $K^{-1}\left(P^{n-1}\right)$ as in [9], Proposition 2.1 and γ^{\prime} the canonical non-trivial real line bundle over P^{n-1}.

Proposition 1.3. $\widetilde{K O^{0}}\left(P^{n-1}\right)=Z_{2^{a+1}} \cdot \gamma$,

$$
\begin{aligned}
& \widetilde{K O}^{-1}\left(P^{n-1}\right)=Z_{2} \cdot \eta_{1} \gamma \\
& \widetilde{K O}^{-2}\left(P^{n-1}\right)=Z_{2} \cdot \eta_{1}^{2} \gamma \\
& \widetilde{K O}^{-3}\left(P^{n-1}\right)=Z \cdot \widetilde{\nu}_{1} \\
& \widetilde{K O}^{-4}\left(P^{n-1}\right)=Z_{2^{a}} \cdot \eta_{4} \gamma \\
& \widetilde{K O}^{-5}\left(P^{n-1}\right)=\widetilde{K O}^{-6}\left(P^{n-1}\right)=0, \\
& \widetilde{K O}^{-7}\left(P^{n-1}\right)=Z \cdot \widetilde{\nu}_{3}
\end{aligned}
$$

with the relations

$$
\begin{aligned}
& \gamma^{2}=-2 \gamma, \gamma \tilde{\nu}_{1}=\gamma \tilde{\nu}_{3}=\widetilde{\nu}_{1}^{2}=\tilde{\nu}_{3}^{2}=\tilde{\nu}_{1} \tilde{\nu}_{3}=0, \eta_{1} \tilde{\nu}_{1}=2^{a-1} \eta_{4} \gamma, \\
& \eta_{1} \tilde{\nu}_{3}=2^{a} \gamma, \eta_{4} \tilde{\nu}_{1}=2 \tilde{\nu}_{3}, \eta_{4} \tilde{\nu}_{3}=2 \widetilde{\nu}_{1} .
\end{aligned}
$$

Let Δ^{+}and Δ^{-}be the even and odd half-spin representations of $\operatorname{Spin}(n)$. According to [8], $\S 13$ these are neither real nor quaternionic and can be viewed as continuous homomorphisms

$$
\Delta^{+}, \Delta^{-}: \operatorname{Spin}(n) \rightarrow G L\left(2^{a}, C\right)
$$

These maps give rise to the elements of $K^{-1}(\operatorname{Spin}(n))$, denoted by $\beta\left(\Delta^{+}\right)$and $\beta\left(\Delta^{-}\right)$as usual, in a canonical manner.

Since each of Δ^{+}and Δ^{-}is complex conjugate to the other, so that $\beta\left(\Delta^{-}\right)=$ $\beta\left(\Delta^{+}\right)^{*}$, by [11], Proposition 4.6 we have an element $\lambda \in K O(\operatorname{Spin}(n))$ such that

$$
c(\lambda)=\mu^{3} \beta\left(\Delta^{+}\right) \beta\left(\Delta^{-}\right)
$$

Here $*$ is the operation on $K^{*}(X)$ induced by the assignment which sends a complex vector bundle to its complex conjugate bundle.

Set

$$
\lambda_{i}=r\left(\mu^{i} \beta\left(\Delta^{+}\right)\right) \quad \text { in } \quad K O^{-2 i-1}(\operatorname{Spin}(n))
$$

where i is reduced mod 4. Note that using (1.1) when $X=\operatorname{Spin}(n)$ gives

$$
r\left(\mu^{i} \beta\left(\Delta^{-}\right)\right)=(-1)^{i} \lambda_{i}
$$

because $\mu^{*}=-\mu$ and $c r=1+*$.
Let $\rho: S O(n) \subset G L(n, \boldsymbol{R})$ be the evident inclusion and let us denote by the same letter ρ the composite of this with the covering map $\pi: \operatorname{Spin}(n) \rightarrow S O(n)$. Then we obtain the elements

$$
\beta\left(\lambda^{i} \rho\right)(1 \leqq i \leqq n) \quad \text { in } \quad K O^{-1}(\operatorname{Spin}(n))
$$

in a similar way where $\lambda^{i} \rho$ denotes the i-th exterior power of ρ. Using these elements, by [13], Theorem 5.6 we have

Proposition 1.4. $K O^{*}(\operatorname{Spin}(n))$ is generated by $\lambda, \lambda_{1}, \lambda_{2}, \lambda_{3}$ and $\beta\left(\lambda^{k} \rho\right)$ $(1 \leqq k \leqq a-1)$ as a $K O^{*}(+)$-algebra and there hold the relations

$$
\begin{aligned}
& \lambda^{2}=\lambda \lambda_{i}=\eta_{1} \lambda_{i}=0, \eta_{4} \lambda_{i+2}=2 \lambda_{i}, \\
& \lambda_{i} \lambda_{j}=\eta_{1}^{2} \lambda \quad \text { if } \quad i+j \equiv 0 \bmod 4 \text {, } \\
& =(-1)^{j} \eta_{4} \lambda \text { if } \quad i+j \equiv 1 \bmod 4 \text {, } \\
& =0 \quad \text { if } i+j \equiv 2 \bmod 4 \text {, } \\
& =(-1)^{j} 2 \lambda \quad \text { if } \quad i+j \equiv 3 \bmod 4, \\
& \beta\left(\lambda^{k} \rho\right)^{2}=\eta_{1}\left(\beta\left(\lambda^{2}\left(\lambda^{k} \rho\right)\right)+\binom{n}{k} \beta\left(\lambda^{k} \rho\right)\right) .
\end{aligned}
$$

The last relation in the above proposition is due to [5], §6 and the others can be found in [11]. In proving the relations η_{4} is assumed to be chosen so that $r\left(\mu^{2}\right)=\eta_{4}$ and also hereafter is done so. To complete the last relation we must give the explicit form of $\beta\left(\lambda^{2}\left(\lambda^{k} \rho\right)\right)$. But we only show how this can be described in terms of the given generators. It is clear that this can be expressed as a polynomial in $\beta\left(\lambda^{1} \rho\right), \cdots, \beta\left(\lambda^{n} \rho\right)$ and $\beta\left(\lambda^{a+l} \rho\right)=\beta\left(\lambda^{n-a-l} \rho\right)$ for $2 \leqq l \leqq a+2$. Hence it suffices to check $\eta_{1} \beta\left(\lambda^{a} \rho\right)$ and $\eta_{1} \beta\left(\lambda^{a+1} \rho\right)$. We have

$$
\eta_{1}\left(\beta\left(\lambda^{a} \rho\right)+\beta\left(\lambda^{a-2} \rho\right)+\cdots\right)=\eta_{1}^{2} \lambda \quad \text { and } \quad \eta_{1} \beta\left(\lambda^{a-1} \rho\right)=0
$$

which are proved in the last section.
For our calculation we need a result of [2] further. Let $e_{i}=(0, \cdots, 1, \cdots, 0)$ with 1 in the i-th position and let us consider e_{1}, \cdots, e_{n} as multiplicative generators of the Clifford algebra C_{n} satisfying the relations $e_{i}^{2}=-1, e_{i} e_{j}+e_{j} e_{i}=0$ $(i \neq j)$. Let S^{n-1} be the unit sphere in $\boldsymbol{R}^{n} \subset C_{n}$. Then we set

$$
\begin{aligned}
& S_{+}=S^{n-1} \cap\left\{\left(x_{1}, \cdots, x_{n}\right) ; x_{n} \geqq 0\right\} \\
& S_{-}=S^{n-1} \cap\left\{\left(x_{1}, \cdots, x_{n}\right) ; x_{n} \leqq 0\right\} \\
& S^{n-2}=S_{+} \cap S_{-}
\end{aligned}
$$

We view S^{n-1} as the orbit space of e_{n} for $\operatorname{Spin}(n) \subset C_{n}$ acting on R^{n} through π
and $\operatorname{Spin}(n-1)$ as the isotropy subgroup at e_{n}. Thus $\operatorname{Spin}(n) / \operatorname{Spin}(n-1)=S^{n-1}$ and so we have the principal $\operatorname{Spin}(n-1)$-bundle

$$
\phi: \operatorname{Spin}(n) \rightarrow S^{n-1}
$$

Let $G=\{ \pm 1\}$ be the multiplicative subgroup of $\operatorname{Spin}(n-1)$ and let us view as $S O(n)=\operatorname{Spin}(n) / G$ and $S O(n-1)=\operatorname{Spin}(n-1) / G$. Analogously we then have the principal $S O(n-1)$-bundle

$$
\phi: S O(n) \rightarrow S^{n-1}
$$

We parametrize S_{+}and S_{-}by use of polar coordinates as follows.

$$
(x, t)=\cos t \cdot e_{n}+\sin t \cdot x \quad \text { and } \quad(x, t)=-\cos t \cdot e_{n}+\sin t \cdot x
$$

for $x \in S^{n-1}$ and $0 \leqq t \leqq \pi / 2$. Define maps

$$
\begin{aligned}
& j_{1}: S_{+} \times \operatorname{Spin}(n-1) \rightarrow \phi^{-1}\left(S_{+}\right) \\
& j_{2}: S_{-} \times \operatorname{Spin}(n-1) \rightarrow \phi^{-1}\left(S_{-}\right)
\end{aligned}
$$

by

$$
\begin{aligned}
& j_{1}(x, t, g)=\left(-\cos t / 2+\sin t / 2 \cdot x e_{n}\right) g \\
& j_{2}\left(x, t, e_{1} x g\right)=\left(\cos t / 2 \cdot x e_{n}-\sin t / 2\right) g
\end{aligned}
$$

Then it is clear that these maps become $\operatorname{Spin}(n-1)$-bundle isomorphisms. Since j_{1} and j_{2} are compatible with the action of G these maps induces also $S O(n-1)$-bundle isomorphisms

$$
\begin{aligned}
& j_{1}: S_{+} \times S O(n-1) \rightarrow \phi^{-1}\left(S_{+}\right) \\
& j_{2}: S_{-} \times S O(n-1) \rightarrow \phi^{-1}\left(S_{-}\right)
\end{aligned}
$$

Therefore we get
Lemma 1.5 ([2], Proposition 13.2). Let $G(l)=\operatorname{Spin}(l)$ or $S O(l)$ for $l=$ $n-1, n$. Then the principal $G(n-1)$-bundle $\phi: G(n) \rightarrow S^{n-1}$ is isomorphic to the bundle obtained from the two product bundles

$$
S_{+} \times G(n-1) \rightarrow S_{+}, S_{-} \times G(n-1) \rightarrow S_{-}
$$

by the identification

$$
(x, g) \leftrightarrow\left(x, e_{1} x g\right) \quad \text { or } \quad(x, \pi(g)) \leftrightarrow\left(x, \pi\left(e_{1} x g\right)\right)
$$

for $x \in S^{n-2}, g \in \operatorname{Spin}(n-1)$ according as $G(l)=\operatorname{Spin}(l)$ or $S O(l)$.
Denote the map which gives the identification in the above lemma by

$$
d: S^{n-2} \times G(n-1) \rightarrow S^{n-2} \times G(n-1)
$$

Namely d is given by

$$
d(x, g)=\left(x, e_{1} x g\right) \quad \text { or } \quad d(x, \pi(g))=\left(x, \pi\left(e_{1} x g\right)\right)
$$

for $x \in S^{n-2}, g \in \operatorname{Spin}(n-1)$ according as $G(l)=\operatorname{Spin}(l)$ or $S O(l)$. We consider the Mayer-Vietoris exact sequence of ($G(n), \phi^{-1}\left(S_{+}\right), \phi^{-1}\left(S_{-}\right)$) in $K O$ (or K)theory. Then by using Lemma 1.5 we obtain the following exact sequence

$$
\begin{align*}
& \cdots \rightarrow h^{*}\left(X \times S^{n-2} \times G(n-1)\right) \xrightarrow{\delta} h^{*}(X \times G(n)) \xrightarrow{\varphi} \tag{1.6}\\
& h^{*}(X \times G(n-1)) \oplus h^{*}(X \times G(n-1)) \xrightarrow{\psi} h^{*}\left(X \times S^{n-2} \times G(n-1)\right) \rightarrow \cdots
\end{align*}
$$

for $h=K O, K$. Here

$$
\varphi=\left((1 \times i)^{*},(1 \times i)^{*}\right), \quad \psi=(1 \times p)^{*}-(1 \times p d)^{*}
$$

where $i: G(n-1) \subset G(n)$ is the inclusion above and $p: S^{n-2} \times G(n-1) \rightarrow G(n-1)$ the obvious projection. Note that there holds the relation

$$
\delta\left(x(1 \times i p)^{*}(y)\right)=\delta(x) y
$$

for $x \in h^{*}\left(X \times S^{n-2} \times G(n-1)\right), y \in h^{*}(X \times G(n))$.
Let us denote by ρ also the composite ρi and by Δ the simple spin-representation of $\operatorname{Spin}(n-1)$ which is real or quaternionic according as $n \equiv 2$ or 6 $\bmod 8$ ([8], §13). From [11], Theorem 5.6 (also see [9], Prop. 2.4 and [10], Prop. 3.5) again it follows that

$$
\left.K O^{*}(\operatorname{Spin}(n-1))=\wedge_{K O^{*}(+)}\left(\beta\left(\lambda^{1} \rho\right), \cdots, \beta\left(\lambda^{a-1} \rho\right)\right), \tilde{\kappa}\right)
$$

as a $K O^{*}(+)$-module. Here $\tilde{\kappa}=\beta(\Delta)$ or $\tilde{\kappa}_{n-1}$ as in [10] according as $n \equiv 2$ or $6 \bmod 8$ so that

$$
c(\tilde{\kappa})=\mu^{a} c(\beta(\Delta))
$$

where we denote by c two kinds of the complexification homomorphisms $K O(X)$ $\rightarrow K(X)$ and $K H(X) \rightarrow K(X)$.

We now consider behavior of δ, φ and ψ in (1.6) when $X=$ point, $G(l)=$ $\operatorname{Spin}(l)(l=n-1, n)$ and $h=K O$. Clearly

$$
\varphi\left(\beta\left(\lambda^{i} \rho\right)\right)=\left(\beta\left(\lambda^{i} \rho\right)+\beta\left(\lambda^{i-1} \rho\right), \beta\left(\lambda^{i} \rho\right)+\beta\left(\lambda^{i-1} \rho\right)\right) \quad(1 \leqq i \leqq a-1)
$$

and since $i^{*}\left(\Delta^{+}\right)=c(\Delta)$ it is easy to see that

$$
\varphi\left(\lambda_{j}\right)=2 \tilde{\kappa}, \eta_{1}^{2} \widetilde{\kappa}, \eta_{4} \tilde{\kappa} \quad \text { or } \quad 0
$$

according as $j \equiv 0,1,2$ or $3 \bmod 4$.
We have a commutative diagram with δ as in (1.6) when $h=K$

where the lower δ is an isomorphism and q denotes the evident projection. Choose a generator $t \in \widetilde{K O^{2-n}}\left(S^{n-2}\right) \cong Z$ so that

$$
\mu^{a+1} \delta c(t)=\beta(\bar{\delta}) \in \tilde{K}^{3-2 n}\left(S^{n-1}\right) \cong Z
$$

which is a generator of $\tilde{\mathrm{K}}^{3-2 n}\left(S^{n-1}\right)$, where $\bar{\delta}: S^{n-1} \rightarrow G L\left(2^{a}, \boldsymbol{C}\right)$ is a map defined by $\delta(\phi(g))=\Delta^{+}(g) \Delta^{-}(g)^{-1}$ for $g \in \operatorname{Spin}(n)$. Then the commutativity of the diagram above yields

$$
\delta(c(t) \times 1)=\mu^{-a-1}\left(\beta\left(\Delta^{+}\right)-\beta\left(\Delta^{-}\right)\right) .
$$

Hence we have

$$
c \delta(t \times \tilde{\kappa})=\mu^{3} \beta\left(\Delta^{+}\right) \beta\left(\Delta^{-}\right)
$$

because of $i^{*}\left(\beta\left(\Delta^{+}\right)\right)=\beta(\Delta)$. So we may take

$$
\lambda=\delta(t \times \tilde{\kappa}) \text { so that } \varphi(\lambda)=0
$$

By observing $(p d)^{*}(\beta(\Delta))$ we can check that $(p d)^{*}(\tilde{c})$ takes the form of

$$
(p d)^{*}(\tilde{\kappa})=1 \times \tilde{\kappa}+x \times 1 \quad \text { for } \quad x \in \widetilde{K O^{1-n}}\left(S^{n-2}\right)=Z_{2} \cdot \eta_{1} t
$$

Then $\psi(\tilde{\kappa}, \tilde{\kappa})=x \times 1$. Hence if $x=0$, there is an element $y \in K O^{*}(\operatorname{Spin}(n))$ such that $\varphi(y)=(\tilde{\kappa}, \tilde{\kappa})$, that is, $i^{*}(y)=\tilde{\kappa}$. Using this we have $\lambda=\delta(t \times 1) y$ and so applying c to both sides of this we get $\mu^{3} \beta\left(\Delta^{+}\right) \beta\left(\Delta^{-}\right)=\mu^{-a-1}\left(\beta\left(\Delta^{+}\right)-\beta\left(\Delta^{-}\right)\right) c(y)$. This implies that $c(y)=\mu^{a+4} \beta\left(\Delta^{+}\right)$or $\mu^{a+4} \beta\left(\Delta^{-}\right)$, because $K^{*}(\operatorname{Spin}(n))$ is the exterior algebra over $K^{*}(+)$ generated by $\beta\left(\lambda^{1} \rho\right), \cdots, \beta\left(\lambda^{a-1} \rho\right), \beta\left(\Delta^{+}\right), \beta\left(\Delta^{-}\right)$. By exactness of (1.1) when $X=\operatorname{Spin}(n)$ we hence have $\lambda_{a+3}=0$. This is a contradiction because $\lambda_{a+3} \neq 0$ by Proposition 1.4. Therefore $x \neq 0$, that is, $x=\eta_{1} t$ and so we have

$$
(p d) *(\tilde{\kappa})=1 \times \tilde{\kappa}+\eta_{1} t \times 1
$$

Consequently we have

$$
\psi(\tilde{\kappa}, 0)=1 \times \tilde{\kappa}, \quad \psi(0, \tilde{\kappa})=-1 \times \tilde{\kappa}+\eta_{1} t \times 1 .
$$

Since $\pi^{*}: \widetilde{K O^{-1}}\left(P^{n-2}\right) \rightarrow \widetilde{K O^{-1}}\left(S^{n-2}\right)$ is a zero map it is clear that

$$
\psi\left(\beta\left(\lambda^{i} \rho\right), 0\right)=-\psi\left(0, \beta\left(\lambda^{i} \rho\right)\right)=\beta\left(\lambda^{i} \rho\right) \quad(1 \leqq i \leqq a-1) .
$$

Finally we consider $\delta(t \times 1)$. As shown above $c \delta(t \times 1)=\mu^{-a-1}\left(\beta\left(\Delta^{+}\right)-\right.$
$\left.\beta\left(\Delta^{-}\right)\right)$which means $c\left(\delta(t \times 1)-\lambda_{-a-1}\right)=0$ since a is even. Using the exactness of (1.1) when $X=\operatorname{Spin}(n)$ we have an element $x \in K O^{*}(\operatorname{Spin}(n))$ such that $\eta_{1} x=$ $\delta(t \times 1)-\lambda_{-a-1}$. Hence $\eta_{1}^{2} x=\delta\left(\eta_{1} t \times 1\right)=\delta \psi(\tilde{\kappa}, \tilde{c})=0$. So by observing the structure of $K O^{*}(\operatorname{Spin}(n))$ we see that x must be zero. This implies

$$
\delta(t \times 1)=\lambda_{-a-1} .
$$

From these facts we obtain

Lemma 1.7.

$$
K O^{*}\left(P^{n-1} \times \operatorname{Spin}(n)\right)=\left(K O^{*}\left(P^{n-1}\right) \otimes_{\left.K O^{*}+\right)} K O^{*}(\operatorname{Spin}(n))\right) / \mathcal{J}
$$

where \mathcal{J} is the ideal generated by

$$
\begin{array}{ll}
\tilde{\nu}_{1} \otimes \lambda_{0}-\widetilde{\nu}_{3} \otimes \lambda_{2}, & \tilde{\sim}_{1} \otimes \lambda_{2}-\widetilde{\nu}_{3} \otimes \lambda_{0}, \\
\tilde{\nu}_{1} \otimes \lambda_{1}-\widetilde{\nu}_{3} \otimes \lambda_{3}, & \widetilde{\nu}_{1} \otimes \lambda_{3}-\widetilde{\nu}_{3} \otimes \lambda_{1} .
\end{array}
$$

Proof. Consider (1.6) when $X=P^{n-1}, G(l)=\operatorname{Spin}(l)(l=n-1, n)$ and $h=$ $K O$. Since $K O^{*}(\operatorname{Spin}(n-1))$ is $K O^{*}(+)$-free as mentioned above, we have a canonical isomorphism

$$
K O^{*}(X \times \operatorname{Spin}(n-1)) \cong K O^{*}(X) \otimes_{K O^{*}(+)} K O^{*}(\operatorname{Spin}(n-1))
$$

for any finite $C W$-complex X. Applying this fact to (1.6) in the present case we can easily get the lemma from the above results on φ, ψ and δ. Now the relations can be shown as follows. For example,

$$
\begin{aligned}
\widetilde{龴}_{1} \times \lambda_{0} & =r\left(c\left(\widetilde{\perp}_{1} \times 1\right)\left(1 \times \beta\left(\Delta^{+}\right)\right)\right. \\
& =r\left(\mu \nu \times \beta\left(\Delta^{+}\right)\right) \\
& =r\left(\mu^{3} \nu \times \mu^{2} \beta\left(\Delta^{+}\right)\right) \\
& =r\left(c\left(\widetilde{\perp}_{2} \times 1\right)\left(1 \times \mu^{2} \beta\left(\Delta^{+}\right)\right)\right. \\
& =\widetilde{\perp}_{3} \times \lambda_{2}
\end{aligned}
$$

The others are analogous.

2. The module structure of $K O^{*}(S O(n))$

Let ξ^{\prime} be the canonical non-trivial real line bundle over $S O(n)$ and set

$$
\xi=\xi^{\prime}-1 \quad \text { in } K O(S O(n))
$$

Define maps

$$
\delta, \varepsilon: S O(n) \rightarrow G L\left(2^{a}, C\right)
$$

by $\delta(\pi(g))=\Delta^{-}(g)^{-1} \Delta^{+}(g), \varepsilon(\pi(g))=\Delta^{+}(g)^{2}$ for $g \in \operatorname{Spin}(n)$. Then we have the elements $\beta(\varepsilon), \beta(\delta)$ of $K^{-1}(S O(n))$. So we set

$$
\varepsilon_{i}=r\left(\mu^{i} \beta(\varepsilon)\right), \delta_{i}=r\left(\mu^{i} \beta(\delta)\right) \quad \text { in } \quad K O^{-2 i-1}(S O(n))
$$

where i is of course reduced mod 4. Clearly there hold the relations

$$
\eta_{4} \varepsilon_{i}=2 \varepsilon_{i+2}, \quad \eta_{4} \delta_{i}=2 \delta_{i+2}
$$

For the standard representation ρ of $S O(n)$ as in $\S 1$ we also have the elements

$$
\beta\left(\lambda^{j} \rho\right)(1 \leqq j \leqq n) \quad \text { in } \quad K O^{-1}(S O(n))
$$

Let $G=\{ \pm 1\}$ act on $\operatorname{Spin}(n)$ as a subgroup of $\operatorname{Spin}(n)$ and let $R^{p, q}$ be the \boldsymbol{R}^{p+q} with a G-action such that -1 reverses the first p coordinates and fixes the last q. Let $S^{p, q}$ and $B^{p, q}$ be the unit sphere and ball in $R^{p, q}$ and $\Sigma^{p, q}=B^{p, q} / S^{p, q}$ with the collapsed $S^{p, q}$ as base point.

By [7] we have a homeomorphism

$$
S^{n, 0} \times{ }_{G} \operatorname{Spin}(n) \rightarrow P^{n-1} \times \operatorname{Spin}(n)
$$

which is induced by the assignment

$$
(x, g) \mapsto\left(\pi(x), x e_{1} g\right)
$$

for $x \in S^{n, 0}, g \in \operatorname{Spin}(n)$ where $\pi: S^{n, 0} \rightarrow P^{n-1}$ denotes the canonical projection. Using this, from the exact sequence of ($\left.B^{n, 0} \times \operatorname{Spin}(n), S^{n, 0} \times \operatorname{Spin}(n)\right)$ in the equivariant $K O$ (or K)-theory associated with G we have an exact sequence

$$
\left.\begin{array}{rl}
\cdots \rightarrow h^{*}(S O(n)) & \xrightarrow{I} h^{*}\left(P^{n-1} \times \operatorname{Spin}(n)\right) \xrightarrow{\delta} \widetilde{h}_{G}^{*}\left(\Sigma^{n, 0} \wedge \operatorname{Spin}(n)_{+}\right) \tag{2.1}\\
& \rightarrow h^{*}(S O(n))
\end{array}\right) \cdots .
$$

for $h=K O$ or K. Here there holds the relation

$$
\delta(x I(y))=\delta(x) y
$$

for $x \in h^{*}\left(P^{n-1} \times \operatorname{Spin}(n)\right), y \in h^{*}(S O(n))$.
In the case when $h=K O$ we have

$$
\begin{align*}
& I(\xi)=\gamma \times 1, \tag{2.2}\\
& I\left(\beta\left(\lambda^{i} \rho\right)\right)=1 \times \beta\left(\lambda^{i} \rho\right)+\binom{n-2}{i-1} \eta_{1} \gamma \times 1 \quad(1 \leqq i \leqq n), \\
& I\left(\delta_{0}\right)=I\left(\delta_{2}\right)=0, \\
& I\left(\delta_{1}\right)=2\left(1 \times \lambda_{1}-\widetilde{\nu}_{1} \times 1\right), \\
& I\left(\delta_{3}\right)=2\left(1 \times \lambda_{3}-\widetilde{\nu}_{3} \times 1\right), \\
& I\left(\varepsilon_{0}\right)=(\gamma+2) \times \lambda_{0}, \\
& I\left(\varepsilon_{1}\right)=(\gamma+2) \times \lambda_{1}-2 \widetilde{\Sigma}_{1} \times 1, \\
& I\left(\varepsilon_{2}\right)=(\gamma+2) \times \lambda_{2}, \\
& I\left(\varepsilon_{3}\right)=(\gamma+2) \times \lambda_{3}-2 \widetilde{د}_{3} \times 1 .
\end{align*}
$$

The first equality is clear, the second one can be verified in the same way as in [10] and the others follows from [9], Lemma 3.3, iii), iv) immediately.

We consider the image of

$$
J: \widetilde{K O}_{G}^{*}\left(\Sigma^{n, 0} \wedge \operatorname{Spin}(n)_{+}\right) \rightarrow K O^{*}(S O(n)) .
$$

Let $\omega_{s}^{+} \in \widetilde{K O}_{G}\left(\Sigma^{8 s, 0}\right), \tau_{s}^{+} \in \tilde{K}_{G}\left(\Sigma^{2 s, 0}\right)$ be the Bott elements mentioned in [9] such that $j^{*}\left(\omega_{s}^{+}\right)=2^{4 s-1}\left(1-R^{1,0}\right), j^{*}\left(\tau_{s}^{+}\right)=2^{s-1}\left(1-R^{1,0} \otimes C\right)$ where j denotes the inclusions of $\Sigma^{0,0}$ in $\Sigma^{8 s, 0}$ and $\Sigma^{2 s, 0}$. Put $n=8 k+2$ or $8 k+6$. Clearly then any element of $\widetilde{K O_{G}^{*}}\left(\Sigma^{n, 0} \wedge \operatorname{Spin}(n)_{+}\right)$can be written in the form $\omega_{k}^{+} x$ where $x \in \widetilde{K O_{G}^{*}}$ $\left(\Sigma^{2 t, 0} \wedge \operatorname{Spin}(n)_{+}\right)(t=1$ or 3$)$. Moreover if we put $c(x)=\tau_{t}^{+} y$ for $y \in K^{*}(S O(n))$, then we obtain
(a)

$$
J\left(\omega_{k}^{+} x\right)=2^{a-2} \xi r(y c(\xi)) .
$$

According to [9], Theorem 3.5

$$
\begin{align*}
& K^{*}(S O(n))=\wedge_{K^{*}(+)}\left(c\left(\beta\left(\lambda^{1} \rho\right)\right), \cdots, c\left(\beta\left(\lambda^{a-1} \rho\right)\right), \beta(\varepsilon), \beta(\delta)\right) \tag{b}\\
& \quad \otimes_{Z}\left(Z \cdot 1 \oplus Z_{2^{a}} \cdot c(\xi)\right)
\end{align*}
$$

with the relations

$$
c(\xi)^{2}=-2 c(\xi), \beta(\varepsilon) \otimes c(\xi)=0
$$

If we set $\delta(1 \times \lambda)=\omega_{k}^{+} x$, then we have

$$
c\left(\omega_{k}^{+} x\right)=\tau_{4 k}^{+} \tau_{t}^{+} \mu^{3} c(\xi+1)(\beta(\delta)-\beta(\varepsilon))
$$

by using [9], Lemma 3.4, iv), because of $c(\lambda)=\mu^{3} \beta\left(\Delta^{+}\right) \beta\left(\Delta^{-}\right)$. Hence using the relation $c(\xi) \otimes \beta(\varepsilon)=0$ gives

$$
\begin{align*}
2^{a-1} \xi \delta_{3} & =J \delta(1 \times \lambda) \tag{c}\\
& =0 .
\end{align*}
$$

Since $\beta\left(\Delta^{+}\right)^{*}=\beta\left(\Delta^{-}\right)$and $\nu^{*}=-\nu$ by definition of ν, we have $\beta(\delta)^{*}=-\beta(\delta)$ by [9], Lemma 3.3, iii). So, from exactness of (1.1) when $X=S O(n)$ it follows that
(d)

$$
\begin{aligned}
2 \xi \delta_{2 i} & =r\left(\mu^{2 i} c(\xi) \cdot 2 \beta(\delta)\right) \\
& =\delta\left(\mu^{2 i+1} c(\xi)\left(\beta(\delta)-\beta(\delta)^{*}\right)\right) \\
& =\delta c\left(r\left(\mu^{2 i+1} c(\xi) \beta(\delta)\right)\right) \\
& =0
\end{aligned}
$$

for $i=0,1$.
Calculate the right-hand side of (a) making use of (b), (c) and (d). Then we see that $J\left(\omega_{k}^{+} x\right)$ can be written as

$$
J\left(\omega_{k}^{+} x\right)=2^{a} \xi P_{1}+2^{a-1} \eta_{4} \xi P_{2}+2^{a-1} \xi \delta_{1} P_{3}
$$

where P_{i} is a polynomial in $\beta\left(\lambda^{1} \rho\right), \cdots, \beta\left(\lambda^{a-1} \rho\right)$ with integers as coefficients for $i=1,2,3$. So apply I to both sides of such an expression of $J\left(\omega_{k}^{+} x\right)$ and estimate this by using (2.2). Since $I J=0$ it then follows from Lemma 1.7 that the first two terms of $J\left(\omega_{k}^{+} x\right)$ are zero. Thus we have
(2.3) $\operatorname{Im} J$ is generated by elements of the form $2^{a-1} \xi \delta_{1} P$ where P is a polynomial in $\beta\left(\lambda^{1} \rho\right), \cdots, \beta\left(\lambda^{a-1} \rho\right)$ with integers as coefficients, and $\eta_{4} \operatorname{Im} J=0$.

We now obseve the exact sequence

$$
\begin{align*}
\cdots & \rightarrow K O^{*}\left(S^{n-2} \times S O(n-1)\right) \xrightarrow{\delta} K O^{*}(S O(n)) \xrightarrow{\varphi} \tag{2.4}\\
& K O^{*}(S O(n-1)) \oplus K O^{*}(S O(n-1)) \xrightarrow{\psi} K O^{*}\left(S^{n-2} \times S O(n-1)\right) \rightarrow \cdots
\end{align*}
$$

which follows from (1.6).
Denote by ξ also the restriction $i^{*}(\xi)$ to $S O(n-1)$ and by ρ the composite ρi as before. By [9] and [10] we then have
(2.5) As a $K O^{*}(+)$-module, $K O^{*}(S O(n-1))$ is generated by the elements in the form $P, \xi P, \kappa P$ and $v P$ where κ denotes $\beta\left(\varepsilon_{n-1}\right)$ or κ_{n-1} of $K O^{1-n}(S O(n-1))$ and v denotes v_{n-1} or ν_{n-1} of $K O^{-n}(S O(n-1))$ as in [9], [10] according as $n \equiv 2$ or 6 $\bmod 8$ and P denotes a polynomial in $\beta\left(\lambda^{1} \rho\right), \cdots, \beta\left(\lambda^{a-1} \rho\right)$. Also there hold the relations

$$
\begin{aligned}
& \kappa^{2}=v^{2}=\xi \kappa=\eta_{4} v=2 v=0, \kappa v=\eta_{1}^{2} \xi \beta\left(\lambda^{2} \Delta\right) \\
& \eta_{1} \kappa=\xi v, \eta_{1}^{2} v=2^{a-1} \theta \eta, 2^{a-2} \theta \eta_{4} \xi=0
\end{aligned}
$$

where $\theta=\eta_{4}$ or 2 according as $n \equiv 2$ or $6 \bmod 8$.
Let $t r: h^{*}(\operatorname{Spin}(n-1)) \rightarrow h^{*}(S O(n-1))$ be the transfer where $h=K O$ or K. Then observation of the definitions of $\tilde{\kappa}$ and κ ([9], [10]) gives

$$
\operatorname{tr}(\tilde{\kappa})=\kappa
$$

because of $\operatorname{tr}(\beta(\Delta))=\beta(\varepsilon)$ and

$$
\operatorname{tr}(1)=\xi+2
$$

Therefore we have from the formula on $\tilde{\kappa}$ given in $\S 1$

$$
\begin{equation*}
\psi(\kappa, 0)=1 \times \kappa, \psi(0, \kappa)=-1 \times \kappa+\eta_{1} t \times \xi . \tag{2.6}
\end{equation*}
$$

We now show that

$$
\begin{equation*}
\psi(v, 0)=1 \times v, \psi(0, v)=1 \times v+\eta_{1}^{2} t \times(l \xi+1) \quad(l=0,1) . \tag{2.7}
\end{equation*}
$$

The first equality is clear. To prove the second one we define maps

$$
\begin{aligned}
& m: \quad S^{n-2} \times S O(n-1) \rightarrow S O(n-1), \\
& m^{\prime}: S^{n-1} \times \operatorname{Spin}(n-1) \rightarrow \operatorname{Spin}(n-1), \\
& m_{0}: P^{n-2} \times \operatorname{Spin}(n-1) \rightarrow S O(n-1), \\
& m_{1}: S^{n-2} \times P^{n-2} \times \operatorname{Spin}(n-1) \rightarrow P^{n-2} \times \operatorname{Spin}(n-1), \\
& m_{2}: S^{n-2} \times P^{n-2} \rightarrow P^{n-2}, \\
& m_{2}^{\prime}: \\
& S^{n-2} \times S^{n-2} \rightarrow S^{n-2}, \\
& m_{3}: \\
& S \operatorname{Sin}(n-1) \times \operatorname{Spin}(n-1) \rightarrow \operatorname{Spin}(n-1)
\end{aligned}
$$

by

$$
\begin{aligned}
& m(x, \pi(g))=\pi\left(e_{1} x g\right), m^{\prime}(x, g)=e_{1} x g, \quad m_{0}(\pi(x), g)=\pi\left(e_{1} x g\right), \\
& m_{1}(x, \pi(y), g)=\left(m_{2}(x, \pi(y)), x e_{1} g\right), \quad m_{2}(x, \pi(y))=\pi\left(x e_{1} y e_{1} x\right), \\
& m_{2}^{\prime}(x, y)=x e_{1} y e_{1} x, \quad m_{3}\left(g, g^{\prime}\right)=g g^{\prime} g
\end{aligned}
$$

for $x, y \in S^{n-2}, g, g^{\prime} \in \operatorname{Spin}(n-1)$. Here by π we denote the obvious projection. Moreover we define embeddings

$$
i: S^{n-2} \rightarrow \operatorname{Spin}(n-1), \quad \iota: P^{n-2} \rightarrow S O(n-1)
$$

by $i(x)=x e_{1}, \iota(\pi(x))=\pi\left(x e_{1}\right)$.
According to [9] and [10], m_{0} yields a monomorphism

$$
I: K O^{*}(S O(n-1)) \rightarrow K O^{*}\left(P^{n-2} \times \operatorname{Spin}(n-1)\right)
$$

and by [9], (4.17) and [10], (4.20) we have

$$
I(v)=1 \times \eta_{1} \tilde{c}+\tilde{\nu} \times 1
$$

where $\bar{\Sigma}$ denotes $\bar{\nu}_{n-2}$ or μ_{n-2} of $K O^{-n}\left(P^{n-2}\right)$ as in [9] or [10] according as $n \equiv 2$ or $6 \bmod 8$. From this equality it follows readily that

$$
\pi^{*}(v)=\eta_{1} \tilde{\kappa} \quad \text { and } \quad \iota^{*}(v)=\tilde{\mathcal{D}} .
$$

Let

$$
\delta: K O^{-n}\left(P^{n-2}\right)=K O_{G}^{-n}\left(S^{n-1,0}\right) \rightarrow \widetilde{K O_{G}^{1-n}}\left(\Sigma^{n-1,0}\right)
$$

be the coboundary homomorphism appeared in the exact sequence of ($B^{n-1,0}$, $\left.S^{n-1,0}\right)$. Furthermore we then see that $\delta(\widetilde{\mathcal{D}})$ is a generator of $\widetilde{K O_{G}^{1-n}\left(\Sigma^{n-1,0}\right) \cong Z_{2}, ~}$ and the forgetful homomorphism $K O_{G}^{1-n}\left(\Sigma^{n-1,0}\right) \rightarrow K O^{1-n}\left(S^{n-1}\right)$ becomes an isomorphism. From these facts we obtain

$$
\begin{equation*}
\pi^{*}(\tilde{\mathcal{D}})=\eta_{1}^{2} t, \quad \text { so that } \quad \bar{\iota}^{*}\left(\eta_{1} \tilde{\kappa}\right)=\eta_{1}^{2} t . \tag{a}
\end{equation*}
$$

Since $m_{3}^{*}(\beta(\Delta))=2 \beta(\Delta) \times 1+1 \times \beta(\Delta)$ in $K O$ or $K H$-theory, we have
(b)

$$
m_{3}^{*}\left(\eta_{1} \tilde{\kappa}\right)=1 \times \eta_{1} \tilde{\kappa} .
$$

By (a), (b) we get

$$
m_{2}^{\prime *}\left(\eta_{1}^{2} t\right)=1 \times \eta_{1}^{2} t
$$

So, using (a) again gives

$$
(1 \times \pi)^{*} m_{2}^{*}(\tilde{\mathcal{L}})=1 \times \eta_{1}^{2} t .
$$

This and (a) imply

$$
m_{2}^{*}(\widetilde{\mathcal{D}})=1 \times \tilde{\mathcal{L}}+t \times x \quad \text { for some } \quad x \in K O^{-2}\left(P^{n-2}\right) .
$$

Since degree $\mathcal{D}=-n$ and degree $t=2-n$, we can infer from the structure of $K O^{-2}\left(P^{n-2}\right)$ that

$$
x=0 \quad \text { or } \quad \eta_{1}^{2} \gamma
$$

where γ denotes also the restriction $\iota^{*}(\gamma)$ to P^{n-2}. Therefore

$$
m_{2}^{*}(\mathfrak{D})=1 \times \mathfrak{D}+t \times l \eta_{1}^{2} \gamma \quad(l=0,1),
$$

so that
(c)

$$
m_{1}^{*}(\tilde{\mathcal{D}} \times 1)=1 \times \tilde{\mathcal{D}} \times 1+\eta_{1}^{2} t \times l \boldsymbol{l} \times 1 \quad(l=0,1) .
$$

On the other hand, the argument parallel to that about $(p d)^{*}$ in $\S 1$ yields

$$
m^{\prime *}(\tilde{\kappa})=1 \times \tilde{\kappa}+\eta_{1} t \times 1 .
$$

Hence

$$
m_{1}^{*}(1 \times \tilde{\kappa})=1 \times 1 \times \tilde{\kappa}+\eta_{1} t \times 1 \times 1 .
$$

From this and (c) it follows that

$$
m_{1}^{*} I(v)=1 \times 1 \times \eta_{1} \tilde{\kappa}+\eta_{1}^{2} t \times(l \gamma+1) \times 1+1 \times \widetilde{\nu} \times 1 \quad(l=0,1)
$$

and so

$$
\left(1 \times m_{0}\right) * m^{*}(v)=\left(1 \times m_{0}\right) *\left(1 \times v+\eta_{1}^{2} t \times(l \xi+1)\right) \quad(l=0,1) .
$$

Since $K O^{*}(S O(n-1))$ is $K O^{*}(+)$-free, we see from the injectivity of I that $\left(1 \times m_{0}\right)^{*}$ is a monomorphism. Therefore

$$
m^{*}(v)=1 \times v+\eta_{1}^{2} t \times(l \xi+1) \quad(l=0,1),
$$

which is the required result because $m=p d$. This completes the proof of (2.7).
Further, clearly we have

$$
\begin{aligned}
& \varphi(\xi)=(\xi, \xi), \\
& \left.\varphi\left(\beta\left(\lambda^{i} \rho\right)\right)=\beta\left(\lambda^{i} \rho\right)+\beta\left(\lambda^{i-1} \rho\right), \beta\left(\lambda^{i} \rho\right)+\beta\left(\lambda^{i-1} \rho\right)\right) \quad(1 \leqq i \leqq n) .
\end{aligned}
$$

Using (2.5), (2.6), (2.7) and these formulas, we obtain easily the following result concerning ψ and φ of (2.4)
(2.8) As KO* $(+)$-modules, Coker ψ is generated by elements of the form $t \times P$, $t \times \xi P, t \times \kappa P, t \times u P, t \times \eta_{1} P, t \times \eta_{1} \kappa P, t \times \eta_{1} v P, t \times \eta_{1}^{2} \kappa P, t \times \eta_{4} P, t \times \eta_{4} \xi P, t \times \eta_{4} \kappa P$ and $t \times \eta_{4} v P$, and $\operatorname{Im} \varphi$ by elements of the form $(P, P), 2(\kappa P, \kappa P), \eta_{1}(v P, v P), \eta_{1}^{2}$ $(\kappa P, \kappa P)$ and $\eta_{4}(\kappa P, \kappa P)$. Here P denotes a polynomial as in (2.5).

Now we add some generators for $K O^{*}(S O(n))$ to the ones given at beginning of this section. Since $\lambda=\delta(t \times \tilde{\kappa})$, we have

$$
\operatorname{tr}(\lambda)=\delta(t \times \kappa) \quad \text { in } \quad K O^{2-n}(S O(n))
$$

for which we write $\operatorname{tr} \lambda$ simply.
By (2.7) and exactness of (2.4) there is an element $\nu_{1} \in K O^{-n-1}(S O(n))$ such that

$$
\varphi\left(\nu_{1}\right)=\eta_{1}(v, v) .
$$

But we need to choose such an element so that

$$
\begin{equation*}
I\left(\nu_{1}\right)=\tilde{\nu}_{a+1} \times 1-1 \times \lambda_{a+1} \tag{2.9}
\end{equation*}
$$

where $a+1$ is reduced $\bmod 4$. The equality $\varphi\left(\nu_{1}\right)=\eta_{1}(v, v)$ follows from (2.9). Because $i^{*}\left(\widetilde{\nu}_{a+1}\right)=\eta_{1} \bar{\nu}, i^{*}\left(\lambda_{a+1}\right)=\eta_{1}^{2} \tilde{\kappa}$ and $I(v)=1 \times \eta_{1} \tilde{\kappa}+\tilde{\nu} \times 1$ where i denotes the inclusions $P^{n-2} \subset P^{n-1}, \operatorname{Spin}(n-1) \subset \operatorname{Spin}(n)$. We construct such an element actually. Let δ be as in (2.1) and set $n=8 k+2 s$ where $s=1$ or 3 . Then by [9], Lemma 3.4 we have $\delta\left(1 \times \mu^{a+1} \beta\left(\Delta^{+}\right)\right)=\tau_{4 k}^{+} \tau_{s}^{+} \mu^{a+1} c(\xi+1)$ and so

$$
\delta\left(1 \times \lambda_{a+1}\right)=\omega_{k}^{+} r\left(\tau_{s}^{+} \mu^{a+1}\right)(\xi+1) .
$$

Also, we have $\delta\left(\mu^{a+1} \nu \times 1\right)=\tau_{4 k}^{+} \tau_{s}^{+} \mu^{a+1} c(\xi+2)$ and hence we get

$$
\delta\left(\widetilde{\mathcal{D}}_{a+1} \times 1\right)=\omega_{k}^{+} r\left(\tau_{s}^{+} \mu^{a+1}\right)
$$

by using the facts that $\widetilde{K O_{G}^{s}}\left(\Sigma^{s, 0}\right)=Z \cdot r\left(\tau_{s}^{+} \mu^{a+1}\right)$ and $\tau_{s}^{+*}=-\left(R^{1,0} \otimes \boldsymbol{C}\right) \tau_{s}^{+}$. From this and the fromula of (2.1) we have $r\left(\tau_{s}^{+} \mu^{a+1}\right) \xi=0$ since $\gamma \tilde{\nu}_{a+1}=0$ and so we have

$$
\delta\left(\widetilde{D}_{a+1} \times 1-1 \times \lambda_{a+1}\right)=0 .
$$

This and using (2.1) give rise to the required element.
Define $\tau \in K O^{-1}(S O(n))$ and $\nu_{3} \in K O^{3-n}(S O(n))$ as

$$
\tau=\delta(t \times v) \quad \text { and } \quad \nu_{3}=-\delta(t \times(\xi+1))
$$

Here let δ be as in (2.4). Then using the formula after (1.6) we have

$$
\begin{aligned}
& \delta\left(t \times i^{*}(P)\right)=-(\xi+1) \nu_{3} P, \quad \delta\left(t \times \xi i^{*}(P)\right)=\xi \nu_{3} P, \\
& \delta\left(t \times \kappa i^{*}(P)\right)=(\operatorname{tr} \lambda) P, \quad \delta\left(t \times v i^{*}(P)\right)=\tau P
\end{aligned}
$$

where P is a ploynomial as in (2.3). Moreover as stated above

$$
\varphi\left(\nu_{1}\right)=\eta_{1}(v, v)
$$

and by definition we have

$$
\varphi\left(\varepsilon_{i}\right)=2(\kappa, \kappa), \eta_{1}^{2}(\kappa, \kappa), \eta_{4}(\kappa, \kappa) \quad \text { or } \quad 0
$$

according as $i \equiv-a, 1-a, 2-a$ or $3-a \bmod 4$. From (2.8) and these equalities we obtain immediately
(2.10) As a $K O^{*}(+)$-module, $K O^{*}(S O(n))$ is generated by elements of the form P, $(\operatorname{tr} \lambda) P, \tau P, \nu_{1} P, \nu_{3} P, \varepsilon_{-a} P, \varepsilon_{1-a} P$ and $\varepsilon_{2-a} P$ where P denotes a polynomial in ξ, $\beta\left(\lambda^{1} \rho\right), \cdots, \beta\left(\lambda^{a-1} \rho\right)$ and the indices of ε are reduced mod. 4.

In (2.10) we find that ε_{1-a} can be expressed by the other generators.
To show this we need some results. Define a map $m: P^{n-1} \times S^{n-1} \rightarrow S^{n-1}$ by $m(\pi(x), \phi(g))=\phi\left(e_{1} x g\right)$ for $x \in S^{n-1}, g \in \operatorname{Spin}(n-1)$. Then from construction of $\beta(\bar{\delta})$ and ν it follows that

$$
m^{*}(\beta(\delta))=c(\gamma+1) \times \beta(\delta)-\nu \times 1
$$

This implies that

$$
c\left(m^{*} \delta(t)\right)=c\left((\gamma+1) \times \delta(t)-\tilde{\Sigma}_{-a-1} \times 1\right)
$$

because $c \delta(t)=\mu^{-a-1} \beta(\delta)$ and so using (1.1) we have

$$
m^{*} \delta(t)=(\gamma+1) \times \delta(t)-\nu_{-a-1} \times 1+\eta_{1}(x \times \delta(t)+y \times 1)
$$

for some $x \in \widetilde{K O^{-7}}\left(P^{n-1}\right), y \in \widetilde{K O^{-n-4}}\left(P^{n-1}\right)$. Since $I(\delta(t \times 1))=(1 \times \phi)^{*} m^{*} \delta(t)$, $\phi^{*} \delta(t)=\lambda_{-a-1}$ by the result just before Proposition 1.7, $\eta_{1} \lambda_{-a-1}=0$ and $\phi^{*}(y)=0$ for the reason of dimension, we obtain

$$
I(\delta(t \times 1))=(\gamma+1) \times \lambda_{-a-1}-\nu_{-a-1} \times 1,
$$

so that

$$
\begin{equation*}
I\left(\nu_{3}\right)=\nu_{-a-1} \times 1-1 \times \lambda_{-a-1} \tag{2.11}
\end{equation*}
$$

because of $\gamma \tilde{\nu}_{-a-1}=0$ where also $a+1$ is reduced mod 4 .
By [9], Therorem 3.5

$$
2^{a} c(\xi)=0, \text { so that } 2^{a+1} \xi=2^{a} \eta_{4} \xi=0
$$

On the other hand $\iota^{*}(\xi)=\gamma$ and $\iota^{*}\left(\eta_{4} \xi\right)=\eta_{4} \gamma$ are the generators of $\widetilde{K O^{0}}\left(P^{n-1}\right) \cong$
$Z_{2^{a+1}}$ and $\widetilde{K O^{-4}}\left(P^{n-1}\right) \cong Z_{2^{a}}$ respectively where ι is an embedding of P^{n-1} in $S O(n)$. Hence we get

(2.12) The orders of ξ and $\eta_{4} \xi$ are 2^{a+1} and 2^{a} respectively.

From (2.2), (2.9) and (2.11) it follows that

$$
I\left(\delta_{1}+2 \nu_{a+1}\right)=I\left(\delta_{1}+\eta_{4} \nu_{a+3}\right)=0
$$

because of $\eta_{4} \nu_{a+3}=2 \nu_{a+1}, \eta_{4} \lambda_{a+3}=2 \lambda_{a+1}$. So, by (2.3)

$$
\delta_{1}+2 \nu_{a+1}=2^{a-1} \xi \delta_{1} P, \delta_{1}+\eta_{4} \nu_{a+3}=2^{a-1} \xi \delta_{1} P^{\prime}
$$

for some ploynomials P, P^{\prime} as in (2.3). This and (2.12) mean that

$$
\begin{equation*}
2^{a-1} \xi \delta_{1}=-2^{a} \xi \nu_{a+1}=-2^{a-1} \eta_{4} \xi \nu_{a+3} . \tag{2.13}
\end{equation*}
$$

Again by (2.2), (2.9) and (2.11) we have

$$
I\left(\varepsilon_{1}+(\xi+2) \nu_{1}\right)=0 \quad \text { or } \quad I\left(\varepsilon_{2}+(\xi+2) \nu_{1}\right)=0
$$

according as $n \equiv 2$ or $6 \bmod 8$, because $\gamma \widetilde{\mathcal{D}}_{1}=\gamma \widetilde{\nu}_{3}=0$.
In any case, by (2.3) and (2.13) we therefore see that ε_{1-a} can be described by ξ, ν_{1}, ν_{3}. Thus, by (2.10) we obtain

Lemma 2.14. As a $K O^{*}(+)$-module, $K O^{*}(S O(n))$ is generated by elements in the form $P,(\operatorname{tr} \lambda) P, \tau P, \nu_{1} P, \nu_{3} P, \varepsilon_{-a} P$ and $\varepsilon_{2-a} P$ where P is a polynomial as in (2.10) and the indices of ε are reduced mod 4.

Further we provide a lemma. Because of $\nu_{3}=-\delta(t \times(\xi+1))$, (2.13) yields

$$
2^{a-1} \xi \delta_{1}=-\delta\left(t \times 2^{a-1} \theta \xi\right),
$$

that is, $2^{a-1} \xi \delta_{1} \in \operatorname{Im} \delta$ where δ is as in (2.4) and θ as in (2.5). Clearly Coker $\psi \cong \operatorname{Im} \delta$ and this isomorphism sends $-t \times 2^{a-1} \theta \xi i^{*}(P)$ to $2^{a-1} \xi \delta_{1} P$ where P is a polynomial as in (2.3). From (2.3), (2.8) and (2.13) we therefore have

Lemma 2.15. As a $K O^{*}(+)$-module

$$
\operatorname{Im} J=\wedge_{z_{2}}\left(\beta\left(\lambda^{1} \rho\right), \cdots, \beta\left(\lambda^{a-1} \rho\right)\right)\left\{2^{a} \xi \nu_{a+1}\right\}
$$

and $z \operatorname{Im} J=0$ for $z=\xi, \eta_{1}$ and η_{4} where the index of ν is reduced $\bmod 4$.

3. The algebra structure of $\mathrm{KO}^{*}(\mathbf{S O}(n))$

For our aim we need the formulas for $I(\operatorname{tr} \lambda)$ and $I(\tau)$ similar to those of (2.2). We begin with calculating $I(\operatorname{tr} \lambda)$. Since $c(\lambda)=\mu^{3} \beta\left(\Delta^{+}\right) \beta\left(\Delta^{-}\right)$and $\pi^{*}(\beta(\varepsilon)-\beta(\delta))=\beta\left(\Delta^{+}\right)+\beta\left(\Delta^{-}\right)$by construction of $\beta(\varepsilon)$ and $\beta(\delta)$, it follows that $c(\lambda)=\mu^{3} \beta\left(\Delta^{+}\right) \pi^{*}(\beta(\varepsilon)-\beta(\delta))$, so that we have $c(\operatorname{tr} \lambda)=\mu^{3} \beta(\delta) \beta(\varepsilon)$ because
$\operatorname{tr}\left(\beta\left(\Delta^{+}\right)\right)=\beta(\varepsilon)$ and $\beta(\varepsilon)^{2}=0$. From this and [9], Lemma 3.2, iii), iv) we get

$$
c\left(I(\operatorname{tr} \lambda)-\left((\gamma+2) \times \lambda-\widetilde{\nu}_{3} \times \lambda_{0}\right)\right)=0 .
$$

So, by (1.1) and Lemma 1.7 we can write
(a)

$$
\begin{aligned}
& I(\operatorname{tr} \lambda)=(\gamma+2) \times \lambda-\tilde{\nu}_{3} \times \lambda_{0}+\eta_{1} \alpha \quad \text { and } \\
& \alpha=1 \times x_{1}+\gamma \times x_{2}+\nu_{1} \times x_{3}+\tilde{\nu}_{3} \times x_{4}
\end{aligned}
$$

for some $x_{i} \in K O^{*}(\operatorname{Spin}(n))$.
Let $S^{n-2,0}=S^{n, 0} \cap\left\{\left(x_{1}, \cdots, x_{n}\right) ; x_{1}=x_{n}=0\right\}$ and $P^{n-3}=S^{n-2,0} / G$. Define a map

$$
m: S^{n-2} \times P^{n-3} \times \operatorname{Spin}(n-1) \rightarrow S^{n-2} \times S O(n-1)
$$

by $m(x, \pi(y), g)=\left(e_{1} y x y e_{1}, \pi\left(e_{1} y g\right)\right)$ for $x \in S^{n-2}, y \in S^{n-2,0}, g \in \operatorname{Spin}(n-1)$. Then the following diagram with δ as in (1.6) is commutative.

$$
\begin{array}{ccc}
K O^{*}\left(S^{n-2} \times S O(n-1)\right) & \stackrel{\delta}{\rightarrow} & K O^{*}(S O(n)) \\
m^{*} \downarrow & m^{*} \downarrow \\
)^{*}\left(S^{n-2} \times P^{n-3} \times \operatorname{Spin}(n-1)\right) & \xrightarrow{\delta} K O^{*}\left(P^{n-3} \times \operatorname{Spin}(n)\right)
\end{array}
$$

Also, obviously $m^{*}=(j \times 1)^{*} I$ where j denotes the inclusion of P^{n-3} in P^{n-1}. Apply $(j \times 1)^{*}$ to both sides of the first equality of (a). Then considering the order of γ we have
(b)

$$
m^{*}(\operatorname{tr} \lambda)=(\gamma+2) \times \lambda+\eta_{1} \times x_{1}+\eta_{1} \gamma \times x_{2}
$$

where γ denotes $j^{*}(\gamma)$. On the other hand by discussion similar to that about $(p d)^{*}$ in $\S 1$ we get

$$
\begin{equation*}
m^{*}(t \times 1)=t \times(\gamma+1) \times 1+x \tag{c}
\end{equation*}
$$

for some $x \in(1 \times 2 \gamma \times 1) K O^{*}\left(S^{n-2} \times P^{n-3} \times \operatorname{Spin}(n)\right)$. Moreover, by [9], Lemma 4.14, iii) and [10], Lemma 4,.18, iii) we have $I(\kappa)=(\gamma+2) \times \tilde{\kappa}$. From this and (c) we have $m^{*}(t \times \kappa)=t \times(\gamma+2) \times \tilde{\kappa}$. Since $\operatorname{tr} \lambda=\delta(t \times \kappa)$ and $\lambda=\delta(t \times \tilde{\kappa})$, it therefore follows from the commutativity of the above diagram and (b) that

$$
\eta_{1} \times x_{1}+\eta_{1} \gamma \times x_{2}=0 .
$$

Hence we may put

$$
\alpha=\tilde{\nu}_{1} \times x_{3}+\tilde{\nu}_{3} \times x_{4},
$$

so that we have

$$
\begin{equation*}
I(\operatorname{tr} \lambda)=(\gamma+2) \times \lambda-\widetilde{\nu}_{3} \times \lambda_{0}+\eta_{1} \alpha \tag{3.1}
\end{equation*}
$$

and there hold the relations $\eta_{1}^{2} \alpha=\gamma \alpha=\alpha^{2}=0$.

Since $I(v)=1 \times \eta_{1} \tilde{\kappa}+\tilde{\nu} \times 1$ and $c(\tilde{\mathcal{V}})=2^{a-1} \mu^{a+1} c(\gamma)$ we get $c(\nu)=2^{a-1} \mu^{a+1} c(\xi)$. Also, by (2.11) and [9], Lemma 3.3, iii) we have $c\left(\nu_{3}\right)=-\mu^{a+3} \beta(\delta)$. Using these facts we obtain

$$
c\left(I(\tau)-2^{a-1} \gamma \times \lambda_{0}\right)=0 .
$$

Analogously from this equality we can show that

$$
\begin{equation*}
I(\tau)=(\gamma+1) \times \eta_{1} \lambda+2^{a-1} \gamma \times \lambda_{0}+\eta_{1} \beta \tag{3.2}
\end{equation*}
$$

and there hold the relations $\eta_{1}^{2} \beta=\gamma \beta=\beta^{2}=0$.
We are now ready to obtain
Theorem 3.3. As a $K O^{*}(+)$-module

$$
\begin{aligned}
& K O^{*}(S O(n))=\wedge_{K O *(+)}\left(\beta\left(\lambda^{1} \rho\right), \cdots, \beta\left(\lambda^{a-1} \rho\right), \varepsilon_{0}, \varepsilon_{2}, \nu_{1}, \nu_{3}\right) \\
& \quad \otimes_{Z}\left(Z \cdot 1 \oplus Z_{2^{a+1}} \cdot \xi \oplus Z_{2} \cdot \tau \oplus Z \cdot \operatorname{tr} \lambda\right)
\end{aligned}
$$

in which the following relations hold:

$$
\begin{aligned}
& \xi^{2}=-2 \xi, \beta\left(\lambda^{k} \rho\right)^{2}=\eta_{1}\left(\beta\left(\lambda^{2}\left(\lambda^{k} \rho\right)\right)+\binom{n}{k} \beta\left(\lambda^{k} \rho\right)\right) \quad(1 \leqq k \leqq a-1), \\
& \eta_{1} \varepsilon_{i}=0, \eta_{1} \nu_{a+3}=2^{a} \xi, \eta_{1} \nu_{a+1}=2^{a-1} \eta_{4} \xi, \eta_{4} \varepsilon_{i}=2 \varepsilon_{i+2}, \\
& \eta_{4} \nu_{j}=2 \nu_{j+2}, \eta_{4} \tau=0, \varepsilon_{i}^{2}=\nu_{j}^{2}=(\operatorname{tr} \lambda)^{2}=\tau^{2}=0, \\
& \xi \varepsilon_{i}=\xi \operatorname{tr} \lambda=\varepsilon_{i} \operatorname{tr} \lambda=\varepsilon_{i} \tau=\nu_{j} \operatorname{tr} \lambda=\nu_{j} \tau=\varepsilon_{0} \varepsilon_{2}=\tau \operatorname{tr} \lambda=0, \\
& \nu_{1} \nu_{3}=\eta_{1}(\xi+1) \tau, \xi \tau=\eta_{1} \operatorname{tr} \lambda, \varepsilon_{0} \nu_{a+1}=\varepsilon_{2} \nu_{a+3}=\eta_{4} \operatorname{tr} \lambda, \\
& \varepsilon_{0} \nu_{a+3}=\varepsilon_{2} \nu_{a+1}=2 \operatorname{tr} \lambda
\end{aligned}
$$

for $i=0,2, j=1,3$ if the indices of ε and ν are reduced $\bmod 4$ and \otimes_{Z} is left out.
Proof. From Lemma 2.15 we see that I induces a monomorphism

$$
K O^{*}(S O(n)) /\left(2^{a} \xi \nu_{a+1}\right) \rightarrow K O^{*}\left(P^{n-1} \times \operatorname{Spin}(n)\right) .
$$

Let R denote the right-hand side of the equality stated in the theorem. Then a computation, using (2.2), (2.9), (2.11), (3.1), (3.2), Lemmas 1.7 and 2.14, shows that as a $K O^{*}(+)$-module

$$
K O^{*}(S O(n)) /\left(2^{a} \xi \nu_{a+1}\right)=R /\left(2^{a} \xi \nu_{a+1}\right)
$$

in which there hold the above relations reduced $\bmod \left(2^{a} \xi \nu_{a+1}\right)$. So, if it is shown that in $K O^{*}(S O(n))$ these relations hold, then the theorem follows immediately.

We now consider the relations. The first relation is clear. The second one and the relations $\nu_{j}^{2}=0$ are due to [5], $\S 6$.

$$
\begin{aligned}
\eta_{1} \varepsilon_{i} & =\eta_{1} r\left(\mu^{i} \beta(\delta)\right) \\
& =\chi \delta\left(\mu^{i+1} \beta(\varepsilon)\right)=0 \quad \text { since } \quad \chi \delta=0 \quad \text { in }(1.1) .
\end{aligned}
$$

By definition $\eta_{1}^{2} \nu_{1}=\delta c\left(\nu_{3}\right)=0$. So, by exactness of (1.1) there is an element $x \in K^{*}(S O(n))$ such that

$$
\eta_{1} \nu_{1}=r(x) .
$$

Then $r I(x)=2^{a-1} \theta \gamma \times 1$ by Proposition 1.3 where θ is as in (2.5). Observing $\operatorname{Im} r I$, we get $I(x)=2^{a-2} c(\theta \gamma) \times 1$. Since I in complex case is injective, we have

$$
x=2^{a-2} c(\theta \xi)
$$

and so

$$
\eta_{1} \nu_{1}=2^{a-1} \theta \xi
$$

By arguing as above we get also another relation $\eta_{1} \nu_{3}=2^{a-2} \theta \eta_{4} \xi$.

$$
\begin{aligned}
& \eta_{4} \varepsilon_{i}=r\left(c\left(\eta_{4}\right) \mu^{i} \beta(\varepsilon)\right)=r\left(2 \mu^{i+2} \beta(\varepsilon)\right)=2 \varepsilon_{i+2} \\
& \eta_{4} \nu_{j}=r\left(\mu^{2} c\left(\nu_{j}\right)\right)=r c\left(\nu_{j+2}\right)=2 \nu_{j+2} \quad \text { since } \quad c\left(\nu_{j}\right)=-\mu^{a+j} \beta(\delta) \\
& \eta_{4} \tau=\delta\left(t \times \eta_{4} v\right)=0 \quad \text { by }(2.5) . \\
& \varepsilon_{i}^{2}=r\left(c\left(\varepsilon_{i}\right) \mu^{i} \beta(\varepsilon)\right) \\
& \quad=(-1)^{i} 2 \delta\left(\mu^{2 i+1} \beta(\varepsilon) \beta(\delta)\right) \quad \text { since } \quad \beta(\varepsilon)^{*}=\beta(\varepsilon)-c(\xi+2) \beta(\delta) \\
& \quad=(-1)^{i+1} \delta c\left(\varepsilon_{2 i-a} \nu_{1}\right)=0 \quad \text { since } \delta c=0 \text { in }(1.1) . \\
& \tau^{2}=\delta\left(t \times v i^{*}(\tau)\right)=0 \quad \text { since } \quad i^{*}(\tau)=0 . \\
& (\operatorname{tr} \lambda)^{2}=\operatorname{tr}\left(\pi^{*}(\operatorname{tr} \lambda) \lambda\right)=2 \operatorname{tr} \lambda^{2}=0 \quad \text { since } \quad \lambda^{2}=0 .
\end{aligned}
$$

Similarly the others can be shown, so we omit the proof of them. Thus the theorem follows.

Finally we show how we can get the explicit description of $\eta_{1} \beta\left(\lambda^{2}\left(\lambda^{k} \rho\right)\right)$ appeared in the second relation of Theorem 3.3. Analogously to the case of $K O^{*}(\operatorname{Spin}(n))$, also in the present case it suffices to check $\eta_{1} \beta\left(\lambda^{a} \rho\right)$ and $\eta_{1} \beta$ ($\lambda^{a+1} \rho$). We now prove the following

$$
\begin{equation*}
\eta_{1} \beta\left(\lambda^{a+1} \rho\right)=0 \quad \text { in } K O^{*}(S O(n)) \quad \text { or } \quad K O^{*}(\operatorname{Spin}(n)) \tag{3.4}
\end{equation*}
$$

and $\quad \eta_{1}\left(\beta\left(\lambda^{a} \rho\right)+\beta\left(\lambda^{a-2} \rho\right)+\cdots\right)=\eta_{1} \tau+\eta_{1}^{2} t r \lambda$ in $K O^{*}(S O(n))$ or $=\eta_{1}^{2} \lambda \quad$ in $K O^{*}(\operatorname{Spin}(n))$
according as ρ is viewed as a representation of $S O(n)$ or $\operatorname{Spin}(n)$.
As shown in [10] we have

$$
\begin{aligned}
& \beta\left(\lambda^{a+1} \rho\right)=2^{a} \theta \kappa-\beta\left(\lambda^{a} \rho\right)-\cdots-\beta\left(\lambda^{1} \rho\right) \text { in } K O^{*}(S O(n+1)), \\
& \beta\left(\lambda^{a+1} \rho\right)=2^{a+1} \theta \tilde{\kappa}-\beta\left(\lambda^{a} \rho\right)-\cdots-\beta\left(\lambda^{1} \rho\right) \text { in } K O^{*}(\operatorname{Spin}(n+1)) .
\end{aligned}
$$

Here θ is as in (2.5), $\kappa=\kappa_{n+1}$ or $\beta\left(\varepsilon_{n+1}\right)$ and $\tilde{\kappa}=\tilde{\kappa}_{n+1}$ or $\beta\left(\Delta_{n+1}\right)$ as in [10] according as $n \equiv 2$ or $6 \bmod 8$ and ρ denotes also the $(n+1)$-dimensional stan-
dard representations of $S O(n+1)$ and $\operatorname{Spin}(n+1)$. So it follows that in either case

$$
\eta_{1}\left(\beta\left(\lambda^{a+1} \rho\right)+\beta\left(\lambda^{a} \rho\right)+\cdots+\beta\left(\lambda^{1} \rho\right)\right)=0
$$

By restricting this to $S O(n)$ or $\operatorname{Spin}(n)$ according as we consider ρ as a representation of $S O(n+1)$ or $\operatorname{Spin}(n+1)$ we get readily

$$
\eta_{1} \beta\left(\lambda^{a+1} \rho\right)=0 .
$$

By Proposition $1.4 \eta_{1}^{2} \lambda=\lambda^{2}=\beta\left(r\left(\Delta^{+}\right)\right)^{2}$ and so from the square formula of [5] it follows that

$$
\eta_{1}^{2} \lambda=\eta_{1} \beta\left(\lambda^{2}\left(r\left(\Delta^{+}\right)\right)\right) .
$$

Considering the character of Δ^{+}on a maximal torus of $\operatorname{Spin}(n)([8], \S 13$, Prop. 9.4) we see that

$$
\lambda^{2}\left(r\left(\Delta^{+}\right)\right)=\left(\lambda^{a} \rho+\lambda^{a-2} \rho+\cdots\right)+2 s\left(\lambda^{a-3} \rho+\lambda^{a-5} \rho+\cdots\right)
$$

for some integer s. Hence we have

$$
\eta_{1}^{2} \lambda=\eta_{1}\left(\beta\left(\lambda^{a} \rho\right)+\beta\left(\lambda^{a-2} \rho\right)+\cdots\right) \text { in } K O^{*}(\operatorname{Spin}(n))
$$

To show the remaining case we recall the equality $\Delta^{+} \otimes_{c} \Delta^{-}=c\left(\lambda^{a} \rho+\lambda^{a-2} \rho\right.$ $+\cdots)$ from [8]. This gives $c\left(\left(\beta\left(\lambda^{a} \rho\right)+\beta\left(\gamma^{a-2} \rho\right)+\cdots\right)-2^{a} \lambda_{0}\right)=0$. Therefore we may put

$$
\beta\left(\lambda^{a} \rho\right)+\beta\left(\gamma^{a-2} \rho\right)+\cdots=2^{a} \lambda_{0}+\eta_{1}(P+\lambda Q)+\eta_{1}^{2}\left(P^{\prime}+\lambda Q^{\prime}\right)
$$

where P, P^{\prime}, Q and Q^{\prime} are polynomials in $\beta\left(\lambda^{1} \rho\right), \cdots, \beta\left(\lambda^{a-1} \rho\right)$ as in (2.3). Since, by [10], $\beta\left(\lambda^{a} \rho\right)+\beta\left(\lambda^{a-1} \rho\right)+\cdots=2^{a} \theta \tilde{\kappa}$ in $K O^{*}(\operatorname{Spin}(n-1))$, comparing this equality with the restriction of the above to $\operatorname{Spin}(n-1)$ yields $P=P^{\prime}=0$ and so the previous result implies $Q=1$. Hence
(a) $\quad \beta\left(\lambda^{a} \rho\right)+\beta\left(\lambda^{a-2} \rho\right)+\cdots=2^{a} \lambda_{0}+\eta_{1} \lambda+\eta_{1}^{2} \lambda Q^{\prime}$ in $K O^{*}(\operatorname{Spin}(n))$.

Also we have

$$
c\left(\left(\beta\left(\lambda^{a} \rho\right)+\beta\left(\lambda^{a-2} \rho\right)+\cdots\right)-2^{a-1} \varepsilon_{0}-\tau\right)=0 \quad \text { in } \quad K O^{*}(S O(n))
$$

So we can set
(b)

$$
\beta\left(\lambda^{a} \rho\right)+\beta\left(\lambda^{a-2} \rho\right)+\cdots=2^{a-1} \varepsilon_{0}+\tau+\eta_{1} x
$$

for some $x \in K O^{*}(S O(n))$. Apply π^{*} to both sides of (b) and compare this with (a), then we have

$$
\pi^{*}(x)=\eta_{1} \lambda Q^{\prime}
$$

On the other hand, applying I to both sides of (b) again and using (a) yield $I\left(\eta_{1} x+\eta_{1} \operatorname{tr} \lambda+\eta_{1}(\xi+1) \tau Q^{\prime}\right)=\eta_{1} \beta$ where β is as in (3.2). Since $\eta_{1}^{2} \beta=0$ and $\operatorname{Ker} I=\left(\eta_{1}^{2}(\xi+1) \tau\right)$ by Theorem 3.4, it follows that $I\left(\eta_{1}^{2}(x+\operatorname{tr} \lambda)\right)=0$, so that we can set

$$
\eta_{1}^{2}(x+\operatorname{tr} \lambda+(\xi+1) \tau R)=0
$$

for some polynomial R in $\beta\left(\lambda^{1} \rho\right), \cdots, \beta\left(\lambda^{a-1} \rho\right)$ as above. By observing the relations of Theorem 3.4 we therefore see that $x+\operatorname{tr} \lambda+(\xi+1) \tau R$ is described in terms of $\varepsilon_{0}, \varepsilon_{2}, \nu_{1}$ and ν_{3} and so $\eta_{1} \lambda Q^{\prime}+2 \lambda+\eta_{1} \lambda R$ in terms of $\lambda_{i}(i=0,1,2,3)$ because of $\pi^{*}(x)=\eta_{1} \lambda Q^{\prime}, \pi^{*}(\operatorname{tr} \lambda)=2 \lambda, \pi^{*}(\tau)=\eta_{1} \lambda, \pi^{*}\left(\varepsilon_{0}\right)=2 \lambda_{0}, \pi^{*}\left(\varepsilon_{2}\right)=2 \lambda_{2}$, $\pi^{*}\left(\nu_{1}\right)=-\lambda_{a+1}$ and $\pi^{*}\left(\nu_{3}\right)=-\lambda_{-a-1}$. Hence, from the relations of Proposition 1.4 we infer that Q^{\prime} and R are divisible by η_{1}. This implies $\eta_{1}^{2} x=\eta_{1}^{2} \operatorname{tr} \lambda$. Thus by (b) we have

$$
\eta_{1}\left(\beta\left(\lambda^{a} \rho\right)+\beta\left(\lambda^{a-2} \rho\right)+\cdots\right)=\eta_{1} \tau+\eta_{1}^{2} \operatorname{tr} \lambda \quad \text { in } \quad K O^{*}(S O(n))
$$

References

[1] J.F. Adams: Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
[2] M.F. Atiyah, R. Bott and A. Shapiro: Clifford modules, Topology 3 (1964), 338.
[3] M.F. Atiyah: K-theory and reality, Quart. J. Math. Oxford 17 (1966), 367-386.
[4] —: K-theory, Benjamin Inc. 1967.
[5] M.C. Crabb: \boldsymbol{Z}_{2}-homotopy theory, London Math. Soc. Lecture Note Series 44 (1980).
[6] M. Fujii: K_{o}-groups of projective spaces, Osaka J. Math. 4 (1967), 141-149.
[7] R.P. Held und U. Suter: Die bestimmung der unitären K-theorie von $S O(n)$ mit hilfe der Atiyah-Hirzebruch-spectralreihe, Math. Z. 122 (1971), 33-52.
[8] D. Husemoller: Fibre bundles, McGraw Hill Book Co. 1966.
[9] H. Minami: On the K-theory of $S O(n)$, Osaka J. Math. 21 (1984), 789-808.
[10] -: The real K-groups of $S O(n)$ for $n \equiv 3,4$ and $5 \bmod 8$, Osaka J. Math. 25 (1988), 185-211.
[11] R.M. Seymour: The Real K-theory of Lie groups and homogeneous spaces, Quart. J. Math. Oxford 24 (1973), 7-30.
[12] H. Toda: Order of the identity class of a suspension space, Ann. of Math. 78 (1963), 300-325.

