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In [9], [10] we studied the algebra KO*(SO(n)} for n = 0, 1, 3 mod 4 using
an idea of [7]. We first showed that a map from P""1 x Spin(w) to SO(n) intro-
duced in [7] to compute K*(SO(ri)) also induces a monomorphism in AΌ-theory

/: KO*(SO(n)) -+ KO*(Pn~l X Spin (n)) .

As in [7] using this embedding enabled us to compute KO*(SO(ri)) from KO*
(Pn~lX Spin(ft)) whose structure can be obtained from the results of [1], [6], [12],

The purpose of this note is to consider the remaining case, that is,
(SO(ri)) for n=2 mod 4. However, in the present case, the analogous homomor-
phism / is not a monomorphism. This must come from the fact that the simple
spin representations of Spin(n) are neither real nor quaternionic representations.
To determine the kernel and image of / so we make use of our results on the
algebra structure of KO*(SO(ri)) for n= 1 mod 4.

Throughout this note we regard KO and K as Z8-graded cohomology

functors using the Bott periodicity. Let τj1^KO~l(+) and η^KO~\+] be
generators of KO*(+) satisfying the relations 2^=971=^974—0, 97^=4 and
μ^K~2(+) denote the Bott class satisfying the relation μ*=l (+= point).

Let c and r denote the complexification and realification homomorphisms.
According to [3] we then have a useful exact sequence

Y r ^(1.1) •••-> KOl~«(X) -> KO~«(X) -> K~*(X) -> K02-«(X)-* ~

which connects KO with K where % is multiplication by ηl and δ is given by
8(μx)=r(x) for x<=K2-«(X).

We also assume that

_ o

n = 2 mod 4 and a — -
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throughout this note.

To determine KO*(Pn~l X Spin(ra)) we first deal with KO*(Pn~l) where P*~l

is the real projective (Λ— l)-sρace. For the additive structure of KO*(Pl) need-
ed below we refer to [6], Referring also to [4] for the structure of X^*(PΛ"1) and

using (1.1) we can find elements v^KO'^P*-1) and ^3GKO"7(Pn"1) such that

(1.2) c(pj) = μv and c(p3) = μ*v

and we can readily show that KO*(Pn~l) is generated by 7=7'— 1, PI and P3 as

follows. Here v denotes the generator vn^ of K^P*"1) as in [9], Proposition 2.1
and 7' the canonical non-trivial real line bundle over P*""1.

Proposition 1.3. KO\Pn~l) = Z2«+ι 7 ,

*λ the relations

72 = -27, 7ΪΊ = 7^3 = Pf = Pi = P! P3 = 0, ̂  Pj = 2e-J 974 7 ,

*ι*3 = 2β 7, ̂ ^1 - 2P3, ^4P3 = 2^ .

Let Δ+ and Δ~ be the even and odd half-spin representations of Spin(w).
According to [8], §13 these are neither real nor quaternionic and can be viewed

as continuous homomorphisms

Δ+, Δ- : Spin(n) -> GL(2a, C)

These maps give rise to the elements of ^~1(Sρin(w)), denoted by /3(Δ+) and

y9(Δ") as usual, in a canonical manner.
Since each of Δ+ and Δ~~ is complex conjugate to the other, so that /3(Δ~)=

y3(Δ+)*, by [11], Proposition 4.6 we have an element \^KO(Spin(n)) such that

Here * is the operation on K*(X) induced by the assignment which sends a

complex vector bundle to its complex conjugate bundle.

Set

X. = r(μ'/3(Δ+)) in

where i is reduced mod 4. Note that using (1.1) when J\Γ=Sρin(w) gives
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because μ*=—μ and cr= l+#.
Let p: SO(n)dGL(n,R) be the evident inclusion and let us denote by the

same letter p the composite of this with the covering map π: Spm(ri)-*SO(ri).
Then we obtain the elements

^^n n

in a similar way where X'p denotes the ί-th exterior power of p. Using these
elements, by [13], Theorem 5.6 we have

Proposition 1.4. KO*(Spm(ri)) is generated by \, \lt \2) λ3 and β(\kp)
(l^k^a— 1) as a KO*(+)-algebra and there hold the relations

λ = λλ, = TJ! λ, = 0, 074 λ/+2 = 2λ, ,

λ, \j = η\\ if i+j = 0 mod 4 ,

= (~ !)̂ 4 * if i+j = 1 mod 4 ,

= 0 if i+j = 2 mod 4 ,

= (- l)'2λ if i+j =Ξ 3 mod 4 ,

The last relation in the above proposition is due to [5], §6 and the others
can be found in [11]. In proving the relations 974 is assumed to be chosen so
that r(μ2)—-η4ι and also hereafter is done so. To complete the last relation we
must give the explicit form of /3(λ2(λ*p)). But we only show how this can be
described in terms of the given generators. It is clear that this can be expressed

as a polynomial in β(\lp), •••, β(\"p) and β(λa+lρ)=β(\n~*~lρ) for 2^/^0+2.
Hence it suffices to check ^!/3(λβp) and i7ι/?(λβ+1p). We have

rίl(β(\ap)+β(\a-2p)+-) = τίl\ and ιβ(\ -lp) = Q

which are proved in the last section.
For our calculation we need a result of [2] further. Let £t =(0, •••, 1, •••, 0)

with 1 in the z'-th position and let us consider ely ••-,€„ as multiplicative genera-
tors of the Clifford algebra Cn satisfying the relations βf= — 1, eiej+ejei=0

Let Sn~l be the unit sphere in RndCn. Then we set

We view S""1 as the orbit space of en for Spin (n)dCn acting on R* through π
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and Spin(w— 1) as the isotropy subgroup at en. Thus Spin(w)/Sρin(w— 1)=S"~1

and so we have the principal Spin(n— l)-bundle

φ: Spin(rc) -> S^1 .

Let G={±1} be the multiplicative subgroup of Sρin(w— 1) and let us view as
SO(ri)=Spin(ri)/G and SO(n—l)=Spin(n—l)/G. Analogously we then have
the principal SO(n— -l)-bundle

φ:SO(n)-+SΛ-1.

We parametrize S+ and 5_ by use of polar coordinates as follows.

(x, t) = cos t en+siτι t x and (x, t) = —cos t en-\-sin t x

for x&S"-1 and O^t^π/2. Define maps

J2: S_ X Spin(n-l) -> φ"\S^)

by
Jι(^ *>g) = (— cos ί/2+sin t/2 xen)g ,

h(x, t, e1 xg) = (cos tβ xen— sin

Then it is clear that these maps become Spin(w— l)-bundle isomorphisms.
Since jl and j2 are compatible with the action of G these maps induces also
SO(n— l)-bundle isomorphisms

Therefore we get

Lemma 1.5 ([2], Proposition 13.2). Let G(/)=Spin(/) or SO(l) for 1=
n—\y n. Then the principal G(n—l)-bundle φ: G(n)-*Sn~l is isomorphic to the
bundle obtained from the two product bundles

S+xG(n-l) -> S+, 5_ xG(w-l) -> S.

by the identification

(x, g) «-> (x, eλ xg) or (x, π (g)) <-> (x, π (e1 xg))

for x<ESn~2,g&Spm(n-l) according as G(l)=Spm(l) or SO(l).

Denote the map which gives the identification in the above lemma by

d: S»-2χG(n-l)->S»-2xG(n-l).
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Namely d is given by

d(x> g) = (x, *ι xg) °r d(x,

for #eSn~2, £eSρin(w— 1) according as G(/)=Spin(/) or SO(l). We consider
the Mayer- Vietoris exact sequence of (G(n)9 φ~\S+), φ"\S^)) in KO(or K)-
theory. Then by using Lemma 1.5 we obtain the following exact sequence

c\

(1.6) ~

for h=KO, K. Here

<p = ((Ixί)*, (IX*)*) , ψ =

where z: G(«— l)cG(w) is the inclusion above and p: S"~2xG(n— l)-*G(w— 1)
the obvious projection. Note that there holds the relation

for x<=h*(Xx S"-2 X G(n- 1)), ytΞ h*(Xχ G(n)).
Let us denote by p also the composite pi and by Δ the simple spin-repre-

sentation of Spin(w— 1) which is real or quaternionic according as n= 2 or 6
mod 8 ([8], §13). From [11], Theorem 5.6 (also see [9], Prop. 2.4 and [10],
Prop. 3.5) again it follows that

JΓO*(Spin(fi-l)) = Λ*0*c+)(/?(λV), •• ,£(λ -lp)),«)

as a jKΌ*(+)-module. Here £=/3(Δ) or ίcn_1 as in [10] according as n=2 or

6 mod 8 so that

C(K) - μ'c(β(Δ))

where we denote by c two kinds of the complexification homomorphisms KO(X)
-+K(X) and KH(X)-+K(X).

We now consider behavior of δ, φ and Λ|Γ in (1.6) when X= point, G(l)=

Spin (/) (l=n- 1, it) and A= JKλ Clearly

and since *'*(Δ+)=£(Δ) it is easy to see that

2#, 971 ,̂ 774/c or 0

according as j = 0, 1, 2 or 3 mod 4.
We have a commutative diagram with δ as in (1.6) when h=K
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<>

Jξ?-«(Spin(ιι))

ί* t δ ί Φ*
£2-«(S»-2) -* -̂"(S"-1)

where the lower S is an isomorphism and q denotes the evident projection.

Choose a generator t eKO2-n(S"-2)^Z so that

μβ+1 Sc(t) =

which is a generator of ̂ -""(S"-1), where δ: S"-l-*GL(2a, C) is a map defined
by S(φ(£))=Δ+(£)Δ~(£)~1 for ^eSpin(«). Then the commutativity of the
diagram above yields

δ(c(ί)X 1) = /»-'-1

Hence we have

because of i*(β(Δ+))=β(Δ). So we may take

λ = δ(ίX/c) so that

By observing (pd)*(β(Δ)) we can check that (pd)*(κ) takes the form of

(ρd)*(R) = Ixίc+xx I for x^KOl-*(S*-2) = Z2 7l ί .

Then ψ(/c, Λ)=Λ;X 1. Hence if x=Q, there is an element y^KO*(Sp'm(ri)) such
that φ(y)=(%, ίc), that is, i*(y)=^. Using this we have \=S(t X 1)̂ ; and so ap-
plying c to both sides of this we get μ3β(Δ+) )9(Δ")=^"Λ~1(/3(Δ+)— /3(Δ")) c(y).
This implies that c(y)=μa+4β(Δ+) or μa+4β(Δ')ί because jRΓ*(Spin(n)) is the
exterior algebra over K*(+) generated by /3(Vp), — , /3(Xe~V)> )S(Δ+), /3(Δ~).
By exactness of (1.1) when X=Sρin(n) we hence have λβ+3=0. This is a con-
tradiction because λβ+3Φθ by Proposition 1.4. Therefore #ΦO, that is, oc—^t
and so we have

Consequently we have

Since π*: I&-\P*-2)-*KO-l(Sn-2) is a zero map it is clear that

ψ(/3(λ'», 0) = -ψ(0, /3(λ'») = ̂ (λ'p) (l^ί^β-1) .

Finally we consider δ(ίxl). As shown above cS(tx l)=μ~a~\β(Δ+)
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yS(Δ")) which means c ( S ( t X 1)— λ.^^O since a is even. Using the exactness
of (1.1) when X=Sp'm(ri) we have an element x^KO*(Spm(ri)) such that ^x—
S(tχl)—\_a_1. Hence ηιX=S(ηίtx l)=Sψ(κ, ίc)=0. So by observing the
structure of KO*(Spin(n)) we see that x must be zero. This implies

From these facts we obtain

Lemma 1.7.

KO*(P»-lxSpm(n)) =

where <3 is the ideal generated by

Proof. Consider (1.6) when X=Pn^9 G(/)=Spin(/) (/=n-l, n) and A=
. Since jK^O*(Sρin(n — 1)) is ^O*(+)-free as mentioned above, we have a

canonical isomorphism

KO*(Xx Spin(n-l)) tt KO*(X)®κo*MKO*(Spm(n-l))

for any finite CPF-complex X. Applying this fact to (1.6) in the present case we
can easily get the lemma from the above results on φ, ψ and δ. Now the re-
lations can be shown as follows. For example,

The others are analogous.

2. The module structure of KO*(SO(n))

Let ξ' be the canonical non-trivial real line bundle over SO(n) and set

ξ = ξ'-l in KO(SO(n)).

Define maps

δ, 6:SO(n)-+GL(2a,C)

by S(π(g))=Δ,-(gΓ1A+(g), 6(π(g))=Δ+(gγ for £<ΞSpin(rc). Then we have the
elements /?(£), β(8) of K~\SO(n)). So we set
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€, = r(μ'β(€)), δ, - ιV£(δ)) in

where i is of course reduced mod 4. Clearly there hold the relations

ηfi = 2βi+2 , τ;4δ, = 2δί+2 .

For the standard representation p of SO(n) as in § 1 we also have the ele-
ments

β(\'p)(lgj£n) in KO~l(SO(n)) .

Let G={±1} act on Spin(w) as a subgroup of Sρin(w) and let Rp * be the
Rp+4 with a G-action such that — 1 reverses the first p coordinates and fixes the
last q. Let Sp * and B*« be the unit sphere and ball in Rp« and 2p'q=Bp'q/Sp'q

with the collapsed Sp>q as base point.
By [7] we have a homeomorphism

Sn °XGSp'm(n) -> Pn^x Spin(w)

which is induced by the assignment

for ffeS 0, ^eSpin(w) where TT: ^"'O-^P^-1 denotes the canonical projection.
Using this, from the exact sequence of (J3n 0xSρin(n), 5*f°xSpin(n)) in the
equivariant KO( or .K'J-theory associated with G we have an exact sequence

(2.1) •••-* A*(SO(n)) - A^P ^x Spίn(n))

for h—KO or ̂ . Here there holds the relation

for βeA^P ^X Spin(β)), yeA*(5O(n)).
In the case when h=KO we have

(2.2)

7(δ0) = 7(δ2) = 0 ,

1) = 2(lxλ1-P1xl),

= (y +2) xx,,
= (r+2)xλ3-2P3x
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The first equality is clear, the second one can be verified in the same way as

in [10] and the others follows from [9], Lemma 3.3, iii), iv) immediately.
We consider the image of

/: KO$(Σ» «/\Spm(n)+) -* KO*(SO(n)) .

Let ωίe^OG(Σ8s °), τs

+ejtG(Σ25 °) be the Bott elements mentioned in [9] such
that </*(ωί)=24 -1(l-JZ1 °), j*(τί)=2f-1(l--lZ1 0®C) where j denotes the in-
clusions of Σ° ° in Σ8*'° and Σ2s'°. Put n=8k+2 or 8ft +6. Clearly then any

element of KO$(Σn'° /\Sρm(n)+) can be written in the form ω*# where x&KO$
(Σ2MΛSpin(τz)+) (t=l or 3). Moreover if we put c(x)=τΐ y for y&K*(SO(n)),
then we obtain

(a)

According to [9], Theorem 3.5

(b) ΛΓ*(SO(»))=ΛI.(+,(c03(λ1p)), -, c(£(X"V>)), β(€),

with the relations

c(ξ)2 = -2c(ξ), β(€)®c(ξ) = 0 .

If we set δ(l X λ)=ωίΛ?, then we have

c(ωϊx) = τϊk τϊ μ* c(ξ+l) (β(8)-β(S))

by using [9], Lemma 3.4, iv), because of £(λ)=μ3/3(Δ+)/3(Δ~). Hence using

the relation c(ξ)®β(6)=Q gives

(c) 2*-1fS3=/δ(lχλ)

= 0.

Since β(Δ+)*=β(Δ~) and v*= -v by definition of v, we have β(S)*=—β(δ)
by [9], Lemma 3.3, iii). So, from exactness of (1.1) when X=SO(n) it follows
that

(d)

= 0

for ί=0, 1.
Calculate the right-hand side of (a) making use of (b), (c) and (d). Then we

see that J(ωkX) can be written as
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J(ωίx) = 2* ξP1+2a^ K ξPz+2*-1 ξδl P3

where Pt is a polynomial in yS(λV), •••, β(\a~lρ) with integers as coefficients for
ί= 1, 2, 3. So apply / to both sides of such an expression of J(&ϊx) and estimate
this by using (2.2). Since //=0 it then follows from Lemma 1.7 that the first
two terms of /(ωί#) are zero. Thus we have

(2.3) Im / is generated by elements of the form 2a~l fSj P where P is a polyno-
mial in β(\lρ)9 •••, βfa'^p) with integers as coefficients, and 9?4 Im/=0.

We now obseve the exact sequence

«\
(2.4) •••-> KO*(S»-2xSO(n-l)) -+ KO*(SO(n))

which follows from (1.6).

Denote by ξ also the restriction ί*(f) to SO(n— 1) and by p the com-
posite pi as before. By [9] and [10] we then have

(2.5) As a KO*(+)-module, KO*(SO(n—l)) is generated by the elements in the
form P, ζP, fcP and vP where K denotes β(6n^) or κn^ of KOl~n(SO(n— 1)) and
υ denotes Vt-i or v^ of KO~n(SO(n—ί)) as in [9], [10] according as n=2 or 6
mod 8 and P denotes a polynomial in β(\lp), •••, β(\'~lp). Also there hold the
relations

W = ξv, ηlv = 2*-1 θη, 2a~2 θη,ξ = 0

where Θ=η4 or 2 according as n=2 or 6 mod 8.

Let tr: h*(Spm(n—l))-+h*(SO(n—l)) be the transfer where h=KO or K.
Then observation of the definitions of it and K ([9], [10]) gives

tr(κ) = K

because of tr(β(Δ))=β(£) and

Therefore we have from the formula on K given in § 1

(2.6) Ψ (κ,0)= lx«, ψ(0, *)= -IXΛ-hfc

We now show that

(2.7) ψ(υ,0)= lχu,<ψ>(0,v)= lxw+7Ϊί x (lζ+l) (1=0, 1).
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The first equality is clear. To prove the second one we define maps

m: w

m'\ S»-lxSpm(n-l)-+ Spin(n-l),

m0: P»-2xSpm(n-l)-»SO(n-l)y

m,: S»-2xP«-2xSpin(fl-l)->P''-2xSpin(w-l),

m2: S»

m'2ι S»

m3: Spin (n— l)x Spin (n—l) -*• Sρin(n— 1)

by

= ^1^1Λ?, m3(g,g')=gg'g

for Λ:, j eί'11"2, ̂ ,^'eSpin(w— 1). Here by π we denote the obvious projection.
Moreover we define embeddings

Σ: S»~2 ~> Spin(n-l) , t: P"'2 -+ SO(n-l)

by I(x)=xel9 ι(π(x))=π(xe1).
According to [9] and [10], m0 yields a monomorphism

/: KO*(SO(n-l)) -* .fi:θ*(PΛ-2X Spin(w-l))

and by [9], (4.17) and [10], (4.20) we have

/(y) =

where P denotes vn_2 or μw_2 of KO~n(Pn~2) as in [9] or [10] according as n=2
or 6 mod 8. From this equality it follows readily that

π*(v) = 77^ and ι*(υ) = V .

Let

δ: KO-"(P»-2) = KθGn(S»-l °) -> £θjf "(Σ*-1'0)

be the coboundary homomorphism appeared in the exact sequence of (B*~l °,

S*"1'0). Furthermore we then see that 8(P) is a generator of ^O^~n(2n"1'°)^Z2

and the forgetful homomorphism ϋ:θίr>l(Σ>| "1 0)-*/iΓO1"<l(S11"1) becomes an is-
omorphism. From these facts we obtain

(a) τr*(P) = 17? t, so that l*^) = 17! ί .

Since mί(jff(Δ))=2/β(Δ)x 1 + 1 X/8(Δ) in KO or -ΛΓH-theory, we have
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(b)

By (a), (b) we get

So, using (a) again gives

This and (a) imply

m$(V) = 1 xP+ίx* for some x^KO~2(Pn~2) .

Since degree P=— n and degree t=2—n, we can infer from the structure of

KO~2(P"-2) that

x = 0 or 97?γ

where 7 denotes also the restriction £*(γ) to PM~2. Therefore

so that

(c) m f ( P χ l ) = l χ P χ l + 7 Ϊ ί X / 7 X l (/=0,1)

On the other hand, the argument parallel to that about (pd)* in § 1 yields

Hence

From this and (c) it follows that

mfl(υ)= lχ lx^«+i7Ϊίx(/7+l)xl + l X P X l (/ = 0,

and so

Since #O*(SO(n-l)) is ^O*(+)-free, we see from the injectivity of / that
(1 X ;«0)* is a monomorphism. Therefore

m*(v)=lxv+ηltx(lξ+l) (7=0,1),

which is the required result because m=pd. This completes the proof of (2.7).
Further, clearly we have
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Using (2.5), (2.6), (2.7) and these formulas, we obtain easily the following result

concerning ψ> and φ of (2.4)

(2.8) As KO*(-{-)-modules, Coker ψ is generated by elements of the form txP,

and tXη^υPy and Im φ by elements of the form (P, P)y 2(κP, κP)> ηι(υP, υP),

(fcP, fcP) and η^xP, κP) Here P denotes a polynomial as in (2.5).

Now we add some generators for KO*(SO(ri)) to the ones given at beginn-
ing of this section. Since \=S(t X£), we have

tr(\) = S(tx«) in KO2~»(SO(ri)) ,

for which we write tr λ simply.

By (2.7) and exactness of (2.4) there is an element v^KO'^SOfa)) such

that

But we need to choose such an element so that

(2.9) /(*Ί) = SWιXl

where a-\-l is reduced mod 4. The equality φ(v1)=η1(υ, v) follows from (2.9).

Because ί'*(Pβ+ι)=i7ιy, ^*(λβ+1)=i7?/c and I(υ)=l X^/c+PX 1 where i denotes the
inclusions p«-2cPw~1, Sρin(w— l)cSpin(rc). We construct such an element

actually. Let δ be as in (2.1) and set n=8k-}-2s where s=l or 3. Then by [9],

Lemma 3.4 we have 8(1 X μa+lβ(Δ+))=τϊk τ+ μa+ί c(ξ+l) and so

Also, we have S(μa+1 v X l)=τtk τϊ μa+l c(ξ+2) and hence we get

by using the facts that KOGs(^)=Z>r(r+

s μa+1) and τί*=-(Λ1 °®C7) τs

+. From
this and the fromula of (2.1) we have r(τί" μa+l) ξ=0 since 7^β+1— 0 and so we

have

This and using (2.1) give rise to the required element.

Define T<=KO~\SO(n)) and vteK&- (SO(n)) as

τ = 8(tXv) and v3=-S(tx(ξ+ί)).

Here let δ be as in (2.4). Then using the formula after (1.6) we have



312 H. MINAMI

8(<χi*(P))=

δ (/ X *i*(P)) = (tr λ) P , 8 (ί X wi*(P)) - rP

where P is a ploynomial as in (2.3). Moreover as stated above

<p(vι) = yι(v>v)

and by definition we have

= 2(ιc, *), η\(κy K), 974(/c, *) or 0

according as /= — Λ, 1— α, 2— a or 3— # mod 4. From (2.8) and these equalities
we obtain immediately

(2.10) As a KO*(+}-moduley KO*(SO(ri)} is generated by elements of the form P,

(tr λ) P, rP, ViP, vzP3 £-aP, £ι-aP and 62_ΛP where P denotes a polynomial in ζ,

β(λ.lp), •••, βfa^p) and the indices of 8 are reduced mod. 4.

In (2.10) we find that £X_Λ can be expressed by the other generators.

To show this we need some results. Define a map m: Pn~l X Sn~1-*Sn~1 by

m(π(x)y Φ(g))—Φ(eι χg) for x^S"'1, ^eSρin(n— 1). Then from construction of
/3(S) and v it follows that

This implies that

c(

because cδ(t)=μ~a~lβ(ΰ) and so using (1.1) we have

for some seo-^P"-1), yeXO- -^P"-1). Since /(δ(ίχ !))==(! xφ)*»*δ(ί),
φ*δ(ί)=λ_β_1 by the result just before Proposition 1.7, 571λ_α_1=0 and φ*(;y)=0
for the reason of dimension, we obtain

so that

(2.11)

because of rγΐ).a.l— 0 where also a+l is reduced mod 4.
By [9], Therofem 3.5

2ac(ξ) = 0y so that 2a+ίξ = 2a

η,ξ = 0.

On the other hand ι*(ξ)=γ and ί*( 4̂ ξ)—η^ are the generators of



THE REAL K-GROUPS OF SO(ri) 313

Z2«+ι and KO~4(P"~1)^Z2a respectively where ι is an embedding of Pn~l in SO(n).
Hence we get

(2.12) The orders of ξ and η4ξ are 2a+1 and 2* respectively.

From (2.2), (2.9) and (2.11) it follows that

/(«ι+2ιvn) = /(δι+w.«) = 0

because of 97^+3 = 2vβ+l, ^\a+3=2\a+1. So, by (2.3)

«i+2iwi = 2 ~l ξδl P, δi+Wrt = 2-1 fδ, P'

for some ploynomials P, P' as in (2.3). This and (2.12) mean that

(2.13) 2-1 f δ, = -2Έ,vn = -2-' ,£„.„ .

Again by (2.2), (2.9) and (2.11) we have

= 0 or /

according as n=2 or 6 mod 8, because γp^γpg— 0.
In any case, by (2.3) and (2.13) we therefore see that G^ can be described

by ξ, i/u ι/3. Thus, by (2.10) we obtain

Lemma 2.14. As a KO*(+)-module, KO*(SO(ri)) is generated by elements
in the form P, (tr λ) P, rP, vf, v3P, 8_aP and ε2-aP where P is a polynomial as
in (2.10) and the indices of 8 are reduced mod 4.

Further we provide a lemma. Because of v3= — δ(tx(ξ+l))> (2.13) yields

that is, 2Λ~1£δ1eIm δ where δ is as in (2.4) and θ as in (2.5). Clearly Coker
-ψ ̂ Im δ and this isomorphism sends — t X 2a~l θξί*(P] to 2a~l ξ δjP where P is a
polynomial as in (2.3). From (2.3), (2.8) and (2.13) we therefore have

Lemma 2.15. As a KO*(+)-module

Im/= Λz2(/?(λV), -.tfpt-V)) {2β^Λ+1}

αwrf ^rlrn y=0 /or z=ξ, rji and η4 where the index of v is reduced mod 4.

3. The algebra structure of KO*(SO(n))

For our aim we need the formulas for I(tr λ) and I(τ) similar to those of

(2.2). We begin with calculating I(tr\). Since c(λ)=μ3/8(Δ+) /3(Δ~) and
πr*(/3(£)-/3(δ))=^(Δ+)+/3(Δ-) by construction of β(G) and /3(δ), it follows
that c(λ)=^3/3(Δ+) π*(β(G)—β(δ))9 so that we have c(tr \)=μ2β(δ) β(G) because
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tr(β(Δ+))=β(8) and β(6)2=0. From this and [9], Lemma 3.2, iii), iv) we get

c(I(tr λ)_-((Ύ+2)χλ-P3Xλ0)) - 0 .

So, by (1.1) and Lemma 1.7 we can write

(a) I(tr λ) = (γ+2)xλ— PaXλo+^α and

a — Ixx1+
fγxx2+^1xx3+ιj3xx4

for some #, e.KO*(Sρin(w)).

Let SΛ-2 °-5Λ'°n{(^, -,O; ^-^-0} and P«-3=S«-2 °/G. Define a
map

by m(Λ?, ar(jO, ̂ )=(^ yxyel9 π(el yg)) for #6Ξ Sn~2,y<= S«-2'°, ̂ e Spin(rc- 1). Then
the following diagram with δ as in (1.6) is commutative.

δ
KO*(Sn~2 x SO(n- 1)) ->

Also, obviously m*=(j'xl)*/ where j denotes the inclusion of PΛ~3 in Pn~l.
Apply (jxl)* to both sides of the first equality of (a). Then considering the
order of <y we have

(b) m*(tr\) = (7+2)x\+η1Xxl+τίl7Xx2

where γ denotes j*(y). On the other hand by discussion similar to that about
(pd)* in § 1 we get

(c) m*(fxl) = fx(γ+l)xl+*

for some x<= (1 X 2γ x 1) KO*(S»-2 X Pn~* X Spin(w)). Moreover, by [9], Lemma
4.14, iii) and [10], Lemma 4,. 18, iii) we have I(κ)=(fγJ

Γ2)Xίc. From this and
(c) we have m*(tx/c)=tx(γ+2)xίc. Since tr \=8(tXκ) and λ=δ(*X£), it
therefore follows from the commutativity of the above diagram and (b) that

^iXtfi+^γx^^ o.
Hence we may put

a = PιX* s+23X*4>

so that we have

(3.1) 7(fr λ) - (7+2)xλ-

and there hold the relations η2

la—rγa=a2=Q.
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Since /(v)=l X^ff+PX 1 and c(p)=2β"1 μβ+1 c(γ) we get c(υ)=2Λ~l μa+l c(ξ).
Also, by (2.11) and [9], Lemma 3.3, iii) we have c(vz)= — μa+3 β(S). Using these
facts we obtain

Analogously from this equality we can show that

(3.2) /(r) = (<y+l)X97ιλ+2<-1γxλ(ΓH71/3

and there hold the relations ηlβ=jβ=β2=0.
We are now ready to obtain

Theorem 3.3. As a KO*(+)-module

KO*(SO(n)) = ΛKO*M (βfrp), ->

®z(Z 10Z2 u ί 0Z2 τ0Z frλ)

in which the following relations hold:

ξ* = -2ξ,

=0, £}=v}=(tr λ)2 = τ2 = 0 ,

= f tr λ = β, ίr λ = ̂ T — i/y tr λ — ι//τ = 60 ̂ 2 — rίr λ = 0 ,
τ» ?τ = ?7ι ίr

= 2tr λ

for i—Q, 2,j=\, 3 // ί/^ indices of 6 and v are reduced mod 4 #mί ®z w fe/ί out.

Proof. From Lemma 2.15 we see that / induces a monomorphism

KO*(SO(n)}l(2a ξva+1) -* KO*(P»~l x Spin(n)) .

Let R denote the right-hand side of the equality stated in the theorem. Then a
computation, using (2.2), (2.9), (2.11), (3.1), (3.2), Lemmas 1.7 and 2.14, shows
that as a A:O*(+)-module

KO*(SO(n)}l(2* ξva+1) = R/(2a ξva+1)

in which there hold the above relations reduced mod (2a ξva+l). So, if it is
shown that in KO*(SO(n)) these relations hold, then the theorem follows im-
mediately.

We now consider the relations. The first relation is clear. The second one
and the relations z/y=0 are due to [5], §6.

= X8(μi+lβ(6)) = 0 since Xδ = 0 in (1.1).
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By definition η\ v1=Sc(v3)=Q. So, by exactness of (1.1) there is an element
x^K*(SO(n)) such that

ηι Vl = r(x) .

Then rl(x)=2β'lθfγxl by Proposition 1.3 where θ is as in (2.5). Observing
Γm r/, we get I(x)=2a~2 c(θfγ) X 1. Since / in complex case is injective, we have

and so

By arguing as above we get also another relation ηλ z/3=2β~2

)) = rc(vj+2) = 2^+2 since c(^) = -μ*+* β(δ)

)=Q by (2.5).

= (-iγ28(μ2ί^β(β)β(8)) since y8(6)* - β(e)-c(ξ+2)β(6)

= (-l)ί+1δc(€2i,av1) = 0 since δc = 0 in (1.1) .

T

2 = δ(ίxm'*(τ))-:0 since ί*(τ) = 0 .

(tr λ)2 — tr(π*(tr λ) λ) = 2ίr λ2 = 0 since λ2 = 0 .

Similarly the others can be shown, so we omit the proof of them. Thus the
theorem follows.

Finally we show how we can get the explicit description of ^ι/S(λ2(λ*p))
appeared in the second relation of Theorem 3.3. Analogously to the case of
_SΓO*(Sρin(τz)), also in the present case it suffices to check ^(λ'p) and
(λβ+1p). We now prove the following

(3.4) ?ι£(λ +1p) = 0 in KO*(SO(ri)) or

and η1(β(λ°p}+β(\a-2p)+ ) = 'η1τ+ηltr \ in KO*(SO(n)) or

= 97?λ in

according as p is viewed as a representation of SO(n) or Sρin(w).

As shown in [10] we have

) ----- β(\lp) in KO*(SO(n+l)) ,

-)S(λV) ----- β(\lp) in

Here θ is as in (2.5), κ=/cn+l or β(8n+l) and ίc=ίcn+l or /3(Δn+1) as in [10] ac-
cording as n=2 or 6 mod 8 and p denotes also the (w+l)-dimensional stan-
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dard representations of SO(n+l) and Sρin(w+l). So it follows that in either
case

7l(/?(λ »p)+/3(λV)+ +/3(λV)) = 0 .

By restricting this to SO(n) or Spin(w) according as we consider p as a repre-
sentation of SO(n+l) or Sρin(w+l) we get readily

^(λ'+V) = 0 .

By Proposition 1.4 571 λ=λ2=/3(r(Δ+))2 and so from the square formula of
[5] it follows that

η\ λ = ηβ(\\r(ίS)}) .

Considering the character of Δ+ on a maximal torus of Spin(w) ([8], §13, Prop.
9.4) we see that

λ2(r(Δ+)) =

for some integer s. Hence we have

) in KO*(Spin(n)) .

To show the remaining case we recall the equality Δ+®cΔ~=£(λβp+λβ~2p
+ •••) from [8]. This gives c((β(\ap)+β(γa-2p)+ )-2a X0)=0. Therefore
we may put

where P,P',Q and Q' are polynomials in β(\1ρ)y •••, β(\a~lρ) as in (2.3).
Since, by [10], β(\ap)+β(\°-1p)+-=2aθίc in ^O*(Spin(w-l)), comparing
this equality with the restriction of the above to Sρin(ra— 1) yields P=P'=0
and so the previous result implies Q=l. Hence

(a) β(\ap)+β(\°-2p)+' '=2a\0+ηι\+tf\Q' in KO*(Spin(n)) .

Also we have

c((β(\"p)+β(\°-2p)+ )-2°-1εa-τ) = 0 in KO*(SO(n)) .

So we can set

(b) /3(λV)+/3(λ'-2/>)+ = 2"-1ε0+τ+Vι x

for some xeKO*(SO(ri)). Apply π* to both sides of (b) and compare this
with (a), then we have

»*(*) = 7ι λβ'.



318 H. MINAMI

On the other hand, applying / to both sides of (b) again and using (a) yield

I(nι x+Vi tr λ+?7ι(f +1) rQ')=^ β where β is as in (3.2). Since ι?ι/3=0 and
Ker /=07? (f +1) T) by Theorem 3.4, it follows that I(ηl(x+tr λ))=0, so that we
can set

for some polynomial R in yδ^p), •••, ̂ (λ'"1^) as above. By observing the
relations of Theorem 3.4 we therefore see that x-\-tr λ+(f+l)τl? is described
in terms of £0, £2, *Ί and ^3 and so ̂  λj2'+2λ+?71 λΛ in terms of λ, (ί=0, 1, 2, 3)
because of TT*^)^, λζ)', τr*(frλ)=2λ, »*(τ)=^1λ, 7r*(£0)=2λ0, τr*(£2)=2λ2,
TT*^)— — λα+1 and 7r*(z/3)=— λ-β_!. Hence, from the relations of Proposition
1.4 we infer that Qr and R are divisible by ηlt This implies η\x=η\tr\.
Thus by (b) we have

tr X in
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