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In [3], [4] Harada has studied the following conditions:

(*) Every non-small right R-module contains a non-zero injective submo-
dule.

(*)* Every non-cosmall right R-module contains a non-zero projective di-

rect summand.
And he has found two new classes of rings which are characterized by ideal
theoretic conditions: one is perfect rings with (%) and the other one is semi-
perfect rings with (x¥)*. In [9], Oshiro has studied these rings by using the
lifting and extending property of modules, and defined H-rings and co-H-rings
related to (*) and (*)*, respectively.

A ring R is called a right H-ring if R is right artinian and R satisfies (*).
Dually, R is called a right co-H-ring if R satisfies (*)* and the ACC on right
annihilator ideals.

A right R-module M is said to be an extending module if for any submodule
A of M there is a direct summand A* of M containing A such that A4, is
essential in A%. If this “extending property” holds only for uniform sub-
modules of M, so M is called a module with the extending property for uniform
modules.

The following theorem is proved by Oshiro in [9, Theorem 3.18].

Theorem. For a ring R the following conditions are equivalent :

1) R is a right co-H-rings.

2) Every projective right R-module is an extending module.

3) Every right R-module is expressed as a direct sum of a projective module
and a singular module.

4) The family of all projective right R-modules is closed under taking essen-

tial extensions, i.e. for any exact sequence O-—»P—?»M, where P is projective and
im @ s essential in M, M is projective.

In this paper we shall consider the case that R is a right perfect ring with
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(*)* and give a new characterization of right co-H-rings. More precisely we
shall prove the following theorems.

Theorem 1. Let R be a right perfect 1ing. Then the following conditions
are equivalent : ‘
1) R satisfies (x)*.
2) Rh:=Rz®D:: DRy is an extending module for each k< Jl.
\——-——ww
k summands
3) R%: is an extending module.

Theorem II. A ring R is a right co-H-ring if and only if
1) R is right perfect,

2) R satisfies the ACC on right annihilator ideals and

3) R%:=RxPRy is an extending module.

In the case that R is right non-singular, the condition 2) of Theorem II can
be omitted as the following theorem shows.

Theorem III. Let R be a right non-singular, right perfect ring. Then the
following conditions are equivalent :

1) R% is an extending module.

2) R has finite right Goldie dimension and R% has the extending property
for uniform modules.

3) Ris a right co-H-ring.

4) R is Morita-equivalent to a finite direct sum of upper triangular matrix
rings over division rings.

We note that the equivalence between 3) and 4) is proved by Oshiro in
[9, Theorem 4.6].

1. Preliminaries. Throughout this paper we assume that R is an as-
sociative ring with identity and all R-modules are unitary right R-modules.
For a module M over R we write M (zM) to indicate that M is a right (left) R-
module. We use E(M), J(M), Z(M) to denote the injective hull, the Jacobson
radical and the singular submodule of M, respectively. For a submodule N of
a non-singular module M (i.e. Z(M)=O0), E;(N) denotes the unique maximal
essential extension of NV in M.

For two R-modules A and N, the symbol MCN means that M is R-iso-

morphic to a submodule of N. The symbols M, ,N, M G®8N mean that M is
an essential submodule, respectively a direct summand of N. The descending
Loewy chain {J;(M)} of a module M is defined as follows:

J(M)=M, J(M)=]JM), JAM)=]JJ(M)),
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An R-module M is said to be small if M is small in E(M), and if M is not
small, M is called non-small. Dually, M is called a co-small module if for any
projective module P and any epimorphism f: P—M, ker f is an essential sub-
module of P. M is called a non-cosmall module if M is not cosmall. For
basic properties of these modules we refer to [3], [4], [10].

Let R be a ring and e be a primitive idempotent of R. We say that e is a
right non-small idempotent if eR is a non-small R-module (cf. [4]), and e is
called a right-t-idempotent if for any primitive idempotent f of R, every R-
monomorphism of eR in fRis an R-isomorphism. For a ring R we shall use the
following symbols:

N,(R) = {eR|e is a right non-small idempotent of R}
T,(R) = {e=R]e is a right-t-idempotent of R} .

Following [11], a ring R is called a right QF-3 ring if E(Rp) is projective.
The following results are useful for our investigation in this paper.

Theorem A ([3, Theorem 3.6]). A semiperfect ring R satisfies (*)* if
and only if for a complete set {e;} U {f;} of orthogonal primitive idempotents of R
with each e;R is non-small and each f;R is small.

a) Each e;R is an injective R-module.

b) For each e;R, there exists ;>0 such that J,(e;R) is projective for all
0<t<t; and ], .,(e;R) is a singular module.

¢) For each f;R, there exists an ;R such that f,-RSe,-R.

Lemma B ([3], [10]). The following statements hold about non-cosmall
modules:

1) An R-module M is non-cosmall if M ==Z(M).

2) If an R-module M contains a non-zero projective submodule, then M is
non-cosmall.

A ring R is called right perfect if each of its right modules has a projective
cover (see [2, Theorem P] or [1, Theorem 28.4]).

Lemma C ([7]). If R is a right perfect ring, then R has ACC on principal
right ideals.

From the definition of non-cosmall modules and Lemma B we have:

Lemma D. For a ring R and a cardinal o the following conditions are
equivalent :

1) ELvery a-generated right R-module is a direct sum of a projective module
and a singular module.

2) R‘,?’::GIBRR is an extending module where card I=q.
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2. The main results. We start our investigation by proving the follow-
ing lemma.

Lemma 1. Let R be a semiperfect ring. Then N,(R)C T,(R).

Proof. Lete€N,(R). In order to show that e T,(R) it suffices to prove
that for any primitive idempotent f of R, every R-monomorphism of eR to fR
is isomorphic. Since R is semiperfect, J(fR) is a unique maximal submodule
of fR. Let a be an R-monomorphism of ¢R to fR and suppose that a(eR) = fR.
Then a(eR) is small in fR. It follows that a(¢R) is a small module by [3,
Proposition 1.1]. Hencd eR is also a small module, a contradiction. Therefore
a(eR)=fR.

We pote that M is an extending module if and only if every closed submo-
dule of M is a direct summand. Hence we have

Lemma 2. Let R be a ring and P be a projective right R-module. If P is
an extending module, so is every direct summand of P.

Proposition 3. Let R be a right perfect ring and eI, (R). If RyDeRy is
an extending module, then eRy, is injective.

Proof. Since R is right perfect.
Ry = e,RD:-Pe,R,

where {¢;} 7.1 is a set of mutually orthogonal primitive idempotents of R. Since
RyPeR; is an extending module by assumption, Lemma 2 shows that Ry is an
extending module, furthermore each ¢,R is an extending module. It follows
that fR; is uniform for each primitive idempotent f of R.

Now we prove the injectivity of eR, with e as in Proposition 3. Let U
be a right ideal of R and a be any R-homomorphism of U in eR. We show
that a is extended to one in Homg (R, eéR). We can assume that Uy is essential
in Rp. Since M:=Ry@PeR is an extending module, there is a direct sum-
mand U* of M such that {u—a(u)|ucU} G, U*. Then U*NeR=0 and U*P
eRC M. Write M=U*@M'. Sinc eR is uniform, M’ is indecomposable.
On the other hand, since R has the Azumaya’s diagram, so does M (=e,RP -+
@e,RPeR). Therefore there is some primitive idempotent e; such that M’=
¢,;R. Let € be an R-isomorphism of M’ onto ¢;R. Consider the projection

U*GBM'£>M’ and put p,=p|.z. Then p, is a monomorphism. Hence we

have a sequence

&
0—>eR-1-)*lM'—>e,-R,
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therefore @:=&p, is an R-monomorphism of eR in ¢;R. By the definition of e,
@ is an isomorphism,. From this, ;R= @ (eR)=(Ep,)(eR)=E&(p,eR). Hence
pi(eR)=M’, since € is an isomorphism. It follows that p (eR)=M’, and then
U*@eR=U*PM'=M. Let = be the projection of U¥*@eR on eR. Then
7|z is an extension of @. The proof of Proposition 3 is complete.

Corollary 3. Let R be a right perfect ring. If Re@Rjy is an extending
module, then R is a right QF-3 ring. (This is equivalent to the fact that eRjy is
injective for each e N,(R).)

Proof. Let R be right perfect. Inview of [3, remark after Proposition 1.2],
N,(R)%¢. LetesT,(R). ByLemmal, e€T,(R). By Lemma 2, R;PeRy; is
an extending module. Hence eRp is injective by Proposition 3. Therefore R is
right QF-3 by [3, Theorem 1.3].

Theorem 4. Let R be a right perfect ring. Then the following conditions
are equivalent:

1) R satisfies (*)*.

2) R% is an extending n odule for each ke J1.

2) bis Every k-gemerated right R-module is expressed as a direct sum of a
projective module and a singular module.

3) R% is an extending module.

3) bis Every 2-generated right R-module is expressed as a direct sum of a
projective module and a singular module.

Proof. It is casy to see that the equivalence of 2) and 2) bis, as well as of
3) and 3) bis follows Lemma D.

1)=>2). Remark: Let R be a right perfect ring. Then Ry=¢R® .-
De,R where {e;}7.1 is a set of mutually orthogonal primitive idempotents of R,
furthermore Endg (¢;R) is local. Consider the module F:=R% and let B be a di-
rect summand of F. Then B is projective, and hence there is a decomposition
B=B,®---@B, with B; indecomposable. Since F has the Azumaya's dia-
gram, it follows that ¢t <kn.

Now suppose that R is right perfect and 1) holds. Let M be a submodule
of F. Consider the set

M= {M'| MCM'C®F} .

By the remark above, it follows that M has a minimal element, M* say. We
shall show that MG, M*. Indeed, if not, then C:=M*/M is a non-cosmall
module, since M* is projective. By 1), C contains a non-zero direct summand
which is projective, say C=M,/M @ M,/M with M,/M is non-zero projective.
Form this M*|M,=(M*|M)|(M,/M)=<M,/M. Therefore M*=M,PD, where

=M,/M is a non-zero projective module. Thus MCM,C8M* with
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M,==M?*, a contradiction to the minimality of M* in M. Hence we must have
M ,M*. This shows that F is an extending module, i.e. it holds 2).

3) follows from 2) immediately.

3)=>1). Assume 3). In order to show that 1) holds, we shall show that
R satisfies a), b) and c) of Theorem A. We check it in three steps.

Step 1. Since R is right perfect, in view of the remark of Harada in [3,
after proposition 1.2], there exists a complete set {g;} of mutually orthogonal
primitive idempotents such that 1=3]g;,. Furthermore we can devide {g;}
into two parts {g;} ={e;}’-1U {f;} =1, where each ¢;R is non-small and each
f;R is small and we always have #>1. Hence by 3) and Corollary 3’, it follows
that each ¢;R is injective. Thus R satisfies the condition a) of Theorem A.

Step 2. Put e:=e; where ¢;R is injective. The following remark will be
used in the step. Let UCeR with U=u#R+oR for some u, v in U. Then
Lemma D shows that U is either projective or U is singular.

Now let J/;=]J(eR). We shall show that if J; is not a singular module, then
Ji is projective. Assume that ] is not singular. Then there is an Ox& [,
such that xR is not a singular module. As noted above, xR is projective. Then
the set P of non-zero projective submodules of J, is non-empty. For any P in
P, P is uniform. Since R is right perfect, P== fR for some primitive idempo-
tent fin R. In particular we see from this that every element of P is a principal
right ideal of R. By Lemma C, the ACC holds in P. Let P* be a maximal
element in P. We show that P*=],. Assume that P*== J,. Then there
exists an x& J, but xeEP*. Put P*=pR for some p&P*, and consider the
module B:=xR+pR. Then by the remark in the step, B is either projective or
singular. But clearly B can not be singular, so B is projective. Therefore B is
contained in P, a contradiction to the maximality of P*. Hence we must have
P*=],, i.e. J, is projective. Let J,=J(J,). Since ] is projective and cyclic, /,
is the unique maximal submodule of J;. Using the same argument as above,
we see that J, is either projective or singular. If J, is projective, J, is a cyclic
module and J(J,) is the unique maximal submodule of J,. Continuing this way
we have a descending chain of cyclic projective right R-modules J;

(1) eR = Jo2 Ji>

where J;/J;+, is simple for each /=0, 1, -« Now, since J; is projective and
cyclic, for each J; there is a primitive idempotent f; of R such that J;=f;R.
This and the fact that R is right perfect show that in (1) there are J; and J;
such that J;= J,. Let @ be this isomorphism. Then ¢ can be extended to an
R-monomorphism of eR to eR. We know also from (1) that the composition
length of eR/[]; is ¢ and that of eR/J; is j. From these and the fact that eR is
indecomposable injective, we must have J;=J;. Thus J;,, is singular. We
have shown that R satisfies b) of Theorem A.
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Step 3. In this step we shall show that R satisfies the condition c) of
Theorem A. Let f be any primitive idempotent of R. Then fR is uniform
by Lemma 2. By Corollary 3, R is right QF-3, hence the injective hull E(fR)
of fR is projective. Therefore E(fR)=@®e;R. It follows E(fR)=¢¢;R for some
e;. 'This shows that fRSe,-R.

Now using Theorem A we get that R satisfies (*)*. Thus 1) holds. The
proof of Theorem 4 is complete.

Let R be a right co-H-ring. Then it is easy to see that R is right perfect
and RyPR; is an extending module. Moreover, by Theorem 4 we have the
following result.

Theorem 5. A ring R is a right co-H-ring if and only if R satisfies the fol-
lowing conditions:

1) R is right perfect.

2) R has the ACC on right annihilator ideals.

3) RiDBRy is an extending module.

Remarx. In [8], Kato has given an example for a semiprimary ring R
which is an injective cogenerator in the category of all right R-modules but R
is not a QF-ring. It follows that R is not a right co-H-ring. However by
Theorem 4, R satisfies (¥)*. This shows that the class of rings considered in
Theorem 4 properly contains the class of all right co-H-rings.

We now consider the case where R is right non-singular, i.e. Z(Rg)=0.
Let M be a module and U be a submodule of M. By Zorn’s Lemma, there is
a maximal essential extension Ey(U) of U in M. As s well-known, if M is
non-singular, E,(U) is determined uniquely.

Lemma 6. Let M be a non-singular module with finite Goldie dimension.
If M has the extending property for uniform modules, then M is an extending module.

Proof. Let M be a module having the properties as in Lemma 6. By [5]
we know that every direct summand of M has also the extending property for
uniform modules. Let 4 be a non-zero submodule of M. Then A has also finite
Goldie dimension, k say. Clearly, the Goldie dimension of E,(4) is also k.
Let V7, be a uniform submodule of 4. Then E,(V,)GEy;(4), since Z(M)=0.

Hence by assumption we have
(1) M =Ey (V,)®M,,

From this, Ey(A)=E,(V,)® A4, where A;=E,(4A)NM, If A,%0, 4, contains
a uniform submodule V, for which we have E,(V,)CM,; and M,=E,(V,)PM,,
Eu(V)GEu(A). By (1), M=E,(V)@Eu(V,)®M, Then Ey(A)—Ey (V)&
En(V,)®PA4, with 4,=E,(A)NM,. Since the Goldie dimension of 4 is &, we
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get after k steps
M = E(V))D- DE(V:) DM,
with E(A4)=Eu(V,)®-DEy(V}), proving the extending property of M.

Theorem 7. For a right non-singular ring R the following conditions are
equivalent:

1) R is right perfect and R, Ry, is an extending module.

2) R is right perefect with finite right Goldie dimension and RxD Ry, has the
extending property for uniform modules.

3) Ris (right and left) perfect and Ry@ Ry has the extending property for
uniform modules.

4) R is a right co-H-ring.

5) R is Morita-equivalent to a finite direct sum of upper triangular matrix
rings over division rings.

Proof. 4)<5) is proved by Oshiro [9, Theorem 4.6]. 4)=>3) is clear.

3)=2). Assume 3). R has a decomposition Ry=e,R®-:-De,R where
{e;} 1.1 is a set of mutually orthogonal primitive idempotents of R. Since R
is left perfect, every e;R contains a minimal submodule. Moreover by [5,
Proposition 1], each ¢;R has also the extending property for uniform modules.
Then it is easy to see that the Goldie dimension of Ry is finite. Hence we have
2).

2)=>1) holds by Lemma 6.

1)=>4). Assume 1). R has the above decomposition related to e;R’s. By
Theorem 4, R satisfies (*)*. Hence Theorem A shows that ¢;R has finite
composition length if ¢;R is injective, since Z(Rz)=0. Now if ¢;R is not in-
jective, we consider E(e;R). Clearly E(e;R) is non-co-small. Since ¢;R is
uniform, E(¢;R) must be projective by (*¥)*. Hence there is a primitive idem-
potent f with E(e;R)== fR, therefore E(e;R) has finite length. These facts show
that R is right artinian. Therefore R is a right co-H-ring. The proof of
Theorem is complete.
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