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In [3], [4] Harada has studied the following conditions:
(*) Every non-small right /?-module contains a non-zero injective submo-

dule.
(*)* Every non-cosmall right /2-module contains a non-zero projective di-

rect summand.
And he has found two new classes of rings which are characterized by ideal
theoretic conditions: one is perfect rings with (*) and the other one is semi-
perfect rings with (*)*. In [9], Oshiro has studied these rings by using the
lifting and extending property of modules, and defined //-rings and co-//-rings
related to (*) and (*)*, respectively.

A ring R is called a right //-ring if R is right artinian and R satisfies (*).
Dually, R is called a right co-//-ring if R satisfies (*)* and the ACC on right
annihilator ideals.

A right /2-module M is said to be an extending module if for any submodule
A of M there is a direct summand A* of M containing A such that AR is
essential in Aξ. If this *'extending property" holds only for uniform sub-
modules of M9 so M is called a module with the extending property for uniform
modules.

The following theorem is proved by Oshiro in [9, Theorem 3.18].

Theorem. For a ring R the following conditions are equivalent:
1) R is a right co-H-rings.
2) Every projective right R-module is an extending module.
3) Eveiy right R-module is expressed as a direct sum of a projective module

and a singular module.
4) The family of all projective right R-modules is closed under taking essen-

φ
tial extensions, i.e. for any exact sequence O->P-*M, zΰhere P is projective and
im φ is essential in M, M is projective.

In this paper we shall consider the case that R is a right perfect ring with
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(*)* and give a new characterization of right co-if-rings. More precisely we

shall prove the following theorems.

Theorem I. Let R be a right perfect ring. Then the following conditions

are equivalent:
1) R satisfies (*)*.

2) Rk

R: =RRξ& •• ξ$RJίis an extending module for each k&3l.

k summands

3) R\: is an extending module.

Theorem II. A ring R is a right co-H-ring if and only if

1) R is right perfect,

2) R satisfies the ACC on right annίhilator ideals and
3) R2

R:=RRQ)RR is an extending module.

In the case that R is right non-singular, the condition 2) of Theorem II can

be omitted as the following theorem shows.

Theorem III. Let R be a right non-singular, right perfect ring. Then the

following conditions are equivalent:

1) R2

R is an extending module.

2) R has finite right Goldie dimension and R2

R has the extending property
for uniform modules.

3) R is a right co-H-ring.

4) R is Morita-equivalent to a finite direct sum of upper triangular matrix

rings over division rings.

We note that the equivalence between 3) and 4) is proved by Oshiro in

[9, Theorem 4.6].

1. Preliminaries. Throughout this paper we assume that R is an as-

sociative ring with identity and all JR-modules are unitary right JR-modules.

For a module M over R we write MR (RM) to indicate that M is a right (left) R-

module. We use E(M), J(M), Z(M) to denote the injective hull, the Jacobson

radical and the singular submodule of M, respectively. For a submodule N of

a non-singular module M (i.e. Z(M)=O)y EM(N) denotes the unique maximal
essential extension of N in M.

For two Λ-modules M and N, the symbol Mζ^N means that M is jR-iso-
/%•/

morphic to a submodule of N. The symbols MC^ΛΓ, MQΘΛΓmean that M is

an essential submodule, respectively a direct summand of N. The descending

Loewy chain {J, (M)} of a module M is defined as follows:

, J2(M) =
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An jR-module M is said to be small if M is small in E(M), and if M is not
small, M is called non-small. Dually, M is called a co-small module if for any
projective module P and any epimorphism /: P->M, ker/ is an essential sub-
module of P. M is called a non-cosmall module if M is not cosmall. For
basic properties of these modules we refer to [3], [4], [10].

Let R be a ring and e be a primitive idempotent of R. We say that e is a
right non-small idempotent if eR is a non-small J?-module (cf. [4]), and e is
called a right-t-idempotent if for any primitive idempotent / of /?, every R-
monomorphism of eR in fR is an /2-isomorρhism. For a ring R we shall use the
following symbols:

Nr(R) — {e^R\e is a right non-small idempotent of R}

Tr(R) = {eeΛ|e is a right-t-idempotent of R} .

Following [11], a ring R is called a right £λF-3 ring if E(RS) is projective.
The following results are useful for our investigation in this paper.

Theorem A ([3, Theorem 3.6]). A semiperfect ring R satisfies (*)* if

and only if for a complete set fe} U {//} of orthogonal primitive ίdempotents of R
with each e{Ris non-small and eachf{R is small.

a) Each e{R is an injectίve R-module.
b) For each e^R, there exists £, >0 such that J/( £, /2) is projective for all

and Jti+ifaR) is a singular module.
c) For each fjR, there exists an e{R such

Lemma B ([3], [10]). The following statements hold about non-cosmall

modules:

1) An R-module M is non-cosmall if M Φ Z(M).
2) If an R-module M contains a non-zero projective submodule, then M is

non-cosmalL

A ring R is called right perfect if each of its right modules has a projective
cover (see [2, Theorem P] or [1, Theorem 28.4]).

Lemma C ([7]). If R is a right perfect ring, then R has ACC on principal
right ideals.

From the definition of non-cosmall modules and Lemma B we have :

Lemma D. For a ring R and a cardinal a the following conditions are
equivalent :

1) Every a-generated right R-module is a direct sum of a projective module
and a singular module.

2) R($: = ®RR is an extending module where card I— a.
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2. The main results. We start our investigation by proving the follow-
ing lemma.

Lemma 1. Let R be a semiperfect ring. Then Nr(R) C Tr(R).

Proof. Let e^Nr(R). In order to show that e^ Tr(R) it suffices to prove
that for any primitive idempotent / of R, every jR-monomorphism of eR to fR
is isomorphic. Since jR is semiperfect, J(/R) is a unique maximal submodule
of fR. Let a be an Λ-monomorphism of eR tofR and suppose that a(eR)^fR.
Then a(eR) is small in fR. It follows that a(eR) is a small module by [3,
Proposition 1.1]. Hencd eR is also a small module, a contradiction. Therefore
a(eR)=fR.

We note that M is an extending module if and only if every closed submo-
dule of M is a direct summand. Hence we have

Lemma 2. Let R be a ring and P be a projective right R-module. If P is
an extending module, so is every direct summand of P.

Proposition 3. Let R be a right perfect ring and e^Ir(R). If RR@eRR is
an extending module, then eRR is injective.

Proof. Since 1? is right perfect.

where {*,•}?. i is a set of mutually orthogonal primitive idempotents of jR. Since
RR®eRR is an extending module by assumption, Lemma 2 shows that RR is an
extending module, furthermore each e^R is an extending module. It follows
that/Rfc is uniform for each primitive idempotent / of jR.

Now we prove the injectivity of eRR with e as in Proposition 3. Let U
be a right ideal of jR and a be any 72-homomorphism of U in eR. We show
that a is extended to one in HomR(RR) eR). We can assume that UR is essential
in RR. Since M:=RR@eR is an extending module, there is a direct sum-

mand t/* of M such that {u—a(u) \u& U} C<^* Then £7* Π eR=Q and t/*0
eR(^eM. Write M=C7*0M'. Sine eR is uniform, Mr is indecomposable.
On the other hand, since R has the Azumaya's diagram, so does M (=e1R®
@enR®eR). Therefore there is some primitive idempotent et such that M'̂
esR. Let 8 be an ^-isomorphism of M' onto e{R. Consider the projection

P
U*®M'—>M' and put pι—p\eR. Then p1 is a monomorphism. Hence we
have a sequence
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therefore φ\=^Bpγ is an JR-monomorphism of eR in e{R. By the definition of e,
φ is an isomorphism,. From this, eiR=φ(eR) = (εp1)(eR) = 8(p1eR). Hence
p1(eR)=M'9 since β is an isomorphism. It follows that^> (eR)=M'y and then
U*®eR=U*@M' =M. Let π be the projection of U*@eR on eR. Then
π I R is an extension of a. The proof of Proposition 3 is complete.

Corollary 3'. Let R be a right perfect ring. If RR®RR is an extending
module, then R is a right QF-3 ring. (This is equivalent to the fact that eRR is
injectivefor each e

Proof. Let R be right perfect. In view of [3, remark after Proposition 1.2],
Let *e Tr(R). By Lemma 1, *e Tr(R). By Lemma 2, RR®eRR is

an extending module. Hence eRR is injective by Proposition 3. Therefore R is
right QF-3 by [3, Theorem 1.3].

Theorem 4. Let R be a right perfect ring. Then the following conditions
are equivalent:

1) R satisfies (*)*.
2) RR is an extending nodule for each k^Jl.
2) bis Every k-generated right R-module is expressed as a direct sum of a

projective module and a singular module.
3) R2

R is an extending module.
3) bis Every 2-generated right R-module is expressed as a direct sum of a

projective module and a singular module.

Proof. It is easy to see that the equivalence of 2) and 2) bis, as well as of
3) and 3) bis follows Lemma D.

1)=Φ2). Remark: Let R be a right perfect ring. Then RΛ = elR®
®enR where fe}?=ι is a set of mutually orthogonal primitive idempotents of Ry

furthermore EndΛ(^ JR) is local. Consider the module F\=Rk

R and let E be a di-
rect summand of F. Then E is projective, and hence there is a decomposition
B=B1(& Q)JBt with jBt indecomposable. Since F has the Azumaya's dia-
gram, it follows that t <kn.

Now suppose that R is right perfect and 1) holds. Let M be a submodule
of F. Consider the set

M= {M'\M(^MfC?F} .

By the remark above, it follows that M has a minimal element, M* say. We
shall show that Mζ^eM*. Indeed, if not, then C:=M*IM is a non-cosmall
module, since M* is projective. By 1), C contains a non-zero direct summand
which is projective, say C=M1/Mξ&M2/M with MJM is non-zero projective.
Form this M*/M2^(M*/M)/(M2/M)^M1/M. Therefore M*=M2ΘD, where

is a non-zero projective module. Thus MζM2ζ
θM* with
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M2ΦM*, a contradiction to the minimality of M* in M. Hence we must have
M C^M*. This shows that F is an extending module, i.e. it holds 2).

3) follows from 2) immediately.

3)=»1). Assume 3). In order to show that 1) holds, we shall show that

R satisfies a), b) and c) of Theorem A. We check it in three steps.

Step 1. Since R is right perfect, in view of the remark of Harada in [3,
after proposition 1.2], there exists a complete set {g{} of mutually orthogonal

primitive idempotents such that 1=Σ& Furthermore »ve can devide {g{}

into two parts {#,•} = fe}?-ιl) {//}yLi, where each e{R is non-small and each
fjR is small and we always have n^ί. Hence by 3) and Corollary 3', it follows

that each e{R is injective. Thus Λ satisfies the condition a) of Theorem A.
Step 2. Put e:=e{ where e{R is injective. The following remark will be

used in the step. Let Uζ^eR with U=uR+vR for some u, v in U. Then
Lemma D shows that U is either projective or U is singular.

Now let/1=J(^jR). We shall show that if Jl is not a singular module, then

Jl is projective. Assume that Jλ is not singular. Then there is an OφΛje/j

such that xR is not a singular module. As noted above, xR is projective. Then

the set P of non-zero projective submodules of Jl is non-empty. For any P in

P, P is uniform. Since R is right perfect, P^fR for some primitive idempo-

tent/ in R. In particular we see from this that every element of P is a principal

right ideal of R. By Lemma C, the ACC holds in P. Let P* be a maximal
element in P. We show that P*=/1. Assume that P*Φ/lβ Then there

exists an x^Ji but #$P*. Put P*—pR for some />eP*, and consider the
module B:=xR+pR. Then by the remark in the step, B is either projective or
singular. But clearly B can not be singular, so B is projective. Therefore B is

contained in P, a contradiction to the maximality of P*. Hence we must have

P*=Jly i.e. Jl is projective. Let/2=J(/ι) Since/j is projective and cyclic, J2

is the unique maximal submodule of Jλ. Using the same argument as above,

we see that J2 is either projective or singular. If/2 is projective, J2 is a cyclic

module and J(/2) *s the unique maximal submodule of/2. Continuing this way
we have a descending chain of cyclic projective right Λ-modules Ji

(1) «R=/oP/ιP-

where /, //ί-n '1S simple for each /=0, 1, ••• Now, since /,- is projective and
cyclic, for each Ji there is a primitive idempotent ft of R such that Ji^fiR.

This and the fact that R is right perfect show that in (1) there are /t and Jj
such thatjj^jj. Let φ be this isomorphism. Then φ can be extended to an
/2-monomorρhism of eR to eR. We know also from (1) that the composition

length of eR/Ji is / and that of eR/Jj is j. From these and the fact that eR is

indecomposable injective, we must have /,-=//. Thus Ji+l is singular. We

have shown that R satisfies b) of Theorem A.
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Step 3. In this step we shall show that R satisfies the condition c) of
Theorem A. Let / be any primitive idempotent of R. Then fR is uniform
by Lemma 2. By Corollary 3, R is right QF-3, hence the injective hull E(/R)
of fR is projective. Therefore E(/R) β* 0 &R. It follows E(/R) ̂  e{R for some
βf. This shows that fR^R.

Now using Theorem A we get that R satisfies (*)*. Thus 1) holds. The
proof of Theorem 4 is complete.

Let R be a right co-H-rmg. Then it is easy to see that R is right perfect
and RR($RR is an extending module. Moreover, by Theorem 4 we have the
following result.

Theorem 5. A ring R is a right co-H-ring if and only if R satisfies the fol-
lowing conditions:

1) R is right perfect.
2) R has the ACC on right annihilator ideals.

3) RR®RR is an extending module.

REMARK. In [8], Kato has given an example for a semiprimary ring R
which is an injective cogenerator in the category of all right 72-modules but R
is not a £λF-ring. It follows that jR is not a right co-if-ring. However by
Theorem 4, R satisfies (*)*. This shows that the class of rings considered in
Theorem 4 properly contains the class of all right co-H-rings.

We now consider the case where R is right non-singular, i.e. Z(RR)=Q.
Let M be a module and U be a submodule of M. By Zorn's Lemma, there is
a maximal essential extension EM(U) of U in M. As is .well-known, if M is
non-singular, EM(£7) is determined uniquely.

Lemma 6. Let M be a non-singular module with finite Goldie dimension.
If M has the extending property for uniform modules 3 then M is an extending module.

Proof. Let M be a module having the properties as in Lemma 6. By [5]
we know that every direct summand of M has also the extending property for
uniform modules. Let A be a non-zero submodule of M. Then A has also finite
Goldie dimension, k say. Clearly, the Goldie dimension of EM(A) is also k.

Let V1 be a uniform submodule of A. Then EΛf(F1)CEΛf(^4), since Z(M)=0.
Hence by assumption we have

( 1 ) M = ΈM(VΊ)®M19

From this, EM(A)=EM(Vl}®Al where A^ΈM(A) ΠM v If ^ΦO, Aλ contains
a uniform submodule V2 for which we have EM(V2)<^M1 and M1=EM(F2)0M2/

(̂ ). By (1), M=EM(Vl)φEM(V2)®M2. Then EMμ)=Eίί(F1)θ
with A2=EM(A) Π Λf2. Since the Goldie dimension of A is k, we
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get after k steps

AΓ=

with EM(^4)=EJί(F1)φ 0EAf(FA), proving the extending property of M.

Theorem 7. For a right non-singular ring R the following conditions are

equivalent:
1) R is right perfect and RR®RR is an extending module.
2) R is right perefect with finite right Goldie dimension and RR®RR has the

extending property for uniform modules.
3) R is (right and left) perfect and RRξ£)RR has the extending property for

uniform modules.
4) R is a right co-H-ring.
5) -R is Morita-equivalent to a finite direct sum of upper triangular matrix

rings over division rings.

Proof. 4)^5) is proved by Oshiro [9, Theorem 4.6]. 4)=^3) is clear.
3)=Φ>2). Assume 3). -R has a decomposition RR=elR® — ®eΛR where

{et}*.\ is a set of mutually orthogonal primitive idempotents of jR. Since R
is left perfect, every e{R contains a minimal submodule. Moreover by [5,
Proposition 1], each e{R has also the extending property for uniform modules.
Then it is easy to see that the Goldie dimension of RR is finite. Hence we have
2).

2)=Φ> 1) holds by Lemma 6.
1)=Φ>4). Assume 1). jR has the above decomposition related to £f jR's. By

Theorem 4, R satisfies (*)*. Hence Theorem A shows that e{R has finite
composition length if e{R is injective, since Z(RR)=0. Now if e{R is not in-
jective, we consider E(£,J?). Clearly E(£, jR) is non-co-small. Since e>R is
uniform, E(tft R) must be projective by (*)*. Hence there is a primitive idem-
potent /with E(eiR)^fR> therefore E(£, jR) has finite length. These facts show
that R is right artinian. Therefore R is a right co-/f-ring. The proof of
Theorem is complete.
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