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1. Introduction

Let Z2 denote the square lattice and put Ω={— 1, +l}z2. We call Ω the
space of spin configurations on Z2 and equip it with the usual topological Borel
σ-algebra £?. The Hamiltonian Hγ of our model in a finite set V with bound-
ary configuration ω€ΞΩ is a function from {—1, +1}7 to R defined by

(1) Hy(σ)=~ Σ σ(x)σ(y)-h Σσ(x)- Σ σ(x)ω(y)

\χ-v\=ι l*-y|=ι

where h is a real parameter called the external field. A Gibbs state for the
system of Hamiltonians {Hv'> ω^Ω, V is a finite subset of Z2} and at the in-
verse temperature /3>0, is a probability measure μ on Ω satisfying the DLR
equation:

(2) μ({ω(X) = σ(*), *<Ξ 7} |3>0 (ω) =

for μ— a.a. ω, for every finite FcZ2 and σe {1, +1}F, where

ffpjr denotes the σ-algebra generated by {ω(x)\ #e W} for W^cZ'2, and μ( \3W}

(ω) is the regular conditional probability distribution of μ conditioned on 3?w

It is well known that this model exibits the phase transition:
(i) If h Φ 0, then for every β > 0 the Gibbs state for the parameter (/3, h)

is unique.
(ii) There exists a critical value βc such that the number of Gibbs states

for (β, 0) is more than one if β > βc, and the Gibbs state for (/3, 0) is unique

if β<βc.
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We are interested in the case where β<βc\ for such β and every h we have
an unique Gibbs state, which we will denote by μβth. This μβth has several
nice properties as listed below.

[a] (Spacial Symmetry) μβth is invariant under ^-translations, rotations
by right angles and reflections with respect to (w.r.t.) x1- and Λ^-axes.

[b] (Symmetry vΰ.r.t. Spin Reversing) If R: Ω-»Ω is defined by

(Rω) (x) = —ω(x) for every x&Z2 ,

then μβ>k°R = M0,-A ,

in particular, μβfQ is invariant under R.
[c] (FKG Inequality) Introduce the order < in Ω by the componentwise

inequality: a><?7 iff ω(x)<η(x) for every x€ΞZ2\ and say that a function/ on
Ω is increasing if f(ω)<f(η) whenever ω<rj. Then μβιh satisfies

(3) Eβ.h(f.g)^Eβ.h(f)Έβ.h(g).

for bounded increasing functions / and g, where Eβth denotes the expectation

w.r.t. μβ>h.
[c'] (Monotonίcity) For any bounded increasing function/ on Ω, if h<h'

then

(4) Eβth(f)<Eβth,(f) .

[d] (Tail Triviality) If we define the tail σ-algebra 3Όo by

SΌo = Π 92v ,
V finite cz2

then μβ,k(A) = 0 or 1 for every

[e] (Strongly Mixing Property) μβth is strongly mixing in each direction

with mixing coefficient ψt

β,h(n)' i e there exists a sequence ψχλ(^)> n = 1, 2, •••,
decreasing to zero as n goes to oo, such that for each τz>l

(5) I μβ.k(A n B)-μβth(A) μβ>h(

for every A^3fLtQ and BeS^, ί = 1, 2, where for / = 1, 2, and for an integer
ky 3^tk (or £FL,*) is the σ-algebra generated by

{ω(x)', x = (xl

y x?)> x*>k (or x'< —k, resp.)} .

REMARK 1.1. The strong mixing property [e] is studied in [11], where it
is proved that the mixing coefficient Λjrβth(n) decays exponentially in n. This
exponential decay is based on the exponential decay of the covariance function
(so-called the truncated pair correlation function)

pj.»(0, *) = £Λ4(ω(0) ω(X))-Eβ,k(
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Since by GHS inequality [8], the covariance function is increasing in h if

h < 0, and decreasing in h if h > 0, it takes the maximum value when h = 0.
Further, if h=Q and β<βc then the single spin expectation E"β>0(ω(0)) is equal

to zero, and the covariance function is equal to the correlation function EβtQ(ω(0)

ω(x)). By Griffiths' inequality, this correlation function is increasing in β (see

for example [7]). Hence for any β<βι<βc and any AeJB, the covariance

function pjί, /&((), x) is dominated by the covariance function pβlto(Q,x), which

decays exponentially. Therefore every μβth from iμβ,h}h<=R β<βί is strongly mix-
ing in each direction with the same coefficient ψβlto(ri), which decays exponen-

tially in n.

Now we introduce our notations and terminologies for the percolation

problem, Let Jβ be the planer graph whose vertex set is just equal to Z2^ and
whose edge set is the collection of all nearest neighbour pairs {#, y} of JZΓ2, i.e.

I x1— y1 1 + I of—y2 1 = 1. We denote by _£* the matching graph of _£: the vertex
set of _£* is also 2Γ2, and the edge set of _£* is the collection of all * nearest

neighbour pairs {xyy} of Z2

y i.e. max.{\x1—y1\, \x?—y2\} = l. Let S~~C or
_£*. We call a sequence of points {x19 x2, •••, xn} dZ2 a (self-avoiding) S-pαth

if (a) Xi^pXj whenever i=f=j, and (b) for every k with 0<k<n— 1, xk and xk+1 are

joined by an edge of 3. A ώ'-path γ={x0y XΊ, * ,^«} is called a S-cίrcuit if
rγf={xlJ χ2, •••, Λ?M, Λ?O} is also a ώ'-path. A set VdZ2 is said ^-connected if for

every pair •fo yj cF' there exists a ώ'-path 7={^0>^D *">xn} in F such that
x0=x, and Λ^Λ=J.

For ωeίl and x^Z2, we denote by Cϊ (3) = Cί (5; ω) the maximal 5-

connected component of αΓ^+l): ={y ^Z2\ ω(y)= + ί} containing the point

x. Also C^(3] is defined in the same way for ω-1(— 1).
Our main concern is to investigate how the probability

changes as we vary parameter (β, K) under the condition β<βcy where for

FcZ2, Φ V denotes the cardinality of V. The first answer to this problem

was given by Coniglio et al. [5].

Theorem ([5]).

A*Λβ(# Coβ(-£) = oo) = 0 for both 8 = + and —, for β<βc .

REMARK 1.2. The first result of this type is in the work of Miyamoto
[17], where the bond percolation problem is considered w.r.t. a probability

measure on {—1, +1}̂  (B2 is the set of all bonds in Z2), having properties
corresponding to [a]~[d]. Both the above theorem and the result in [17] are
dependent versions of Harris' result [10] for the Bernoulli percolation.

On the contrary, it can be shown that for sufficiently small /3, there exists
a positive he(β) such that
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(6) μβ>h(φCl(j:*) = oo)>0 for both ε = + and - ,

if I A I <hc(β) (see for example [12, 15]).
Our original problem is the following:

Problem. Can one find a positive he(β) for every β<βc such that (6)
holds if |A|<A,03)?

In order to handle this problem, it may be helpful if we have an RSW-
type theorem, since in the Bernoulli percolation case it was so powerful to an-
alyze the two-dimensional percolation problem. The idea is to introduce
"sponge percolation probabilities".

For each n> 1, L> 1, let Vn>L be the rectangle defined by

For £= + or -, Q=X or _£* and for n, L> 1, let AltL(3) be the event that
the two horizontal sides of VΛtL (i.e. {(#*, of} e Vn>L x?=L} and {(x1

9of)^VntL:
x2=—L}) are connected by a <?-path lying entirely in the set VntLΓ(ω~\£)y i.e.

f there exists a £-path <y C FΛ,L Π ω"1^) )
AntL(y): = ] ω^iz; . - 1 1 1 - i • ; /- τ^ r

( intersecting both horizontal sides of VntL )

where of course ω"1(£)=ω"1(+l) if 5= + , and aΓ^-l) if 6=-.
Finally, if β=J2 or _£* then we denote by '̂ the matching graph of Q\ i.e.

if 5=^ then £'=_£*, and if ̂ =^* then Q'=£.

DEFINITION. For a given probability measure μ which satisfies [a], [c] and
[d], we say that the RSW theorem holds for μ if for each £e {+, — } and for
each Q e {_£, _£*} , the following five statements are equivalent.

(7)

(8) lim μ(Aln.n(ff)) = 1 ,
«-> oβ

(9) lim μ(Al.n(3)) = 1 ,

(10) lim μ(A'n,3n(3)) = 1 ,
Λ-^oo

(11) ^(*Co-8(£'))<~>

where — £ is the opposite sign of £, {6, — £} = {+, — } .
The famous result of Russo [18], Seymour and Welsh [19] is then rephrased

in the following way:

Theorem ([18, 19]). For every p^ [0, 1], the RSW theorem holds for vp,
ΊJΰhere vp is the Bernoulli probability measure with density p.

In this paper, we show that we can assume that the RSW theorem holds
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for μβth (AeΛ, /9</3c), so far as our original problem is concerned. Namely,
our result is the following:

Theorem 1. Let β<βc. Then either one of the following statements holds :
(i) There exists a positive hc(β) such that (6) holds for \h\ <hc(β),

or
(it) the RSW theorem holds for μβιh for every h^R.

REMARK 1.3. Recently, two remarkable results were obtained by J.T.
Chayes-L. Chayes-Shonman [3] and by Gandolfi [6] related to the percolation
for the Γsing model. In [3], it was proved that the connectivity function

μβto(#^CV (-£*)) decays exponentially as |#|->oo for β>βc, where μ,β,0 is the
extremal Gibbs state obtained from the+boundary condition. (In [14], the
author was trying to prove this, but succeeded only with the logarithmic factor:

for some positive constant Δ.) With this exponential decay of the connectivity
function, we can discuss the similar phenomena as in [9] (see [15]). This is
well explained in the case of Bernoulli percolation in [4]. In [6], it is shown
that the number of the infinite connected components of ω'^+l) is at most
one a.s. with respect to any stationary Gibbs state corresponding to some class
of interactions in Zd, d>2 (for example finite range). This is a nice extension
of the independent case result [2],

2. Sponge percolation for strongly mixing random fields with FKG
inequality

In this section, we consider general relation between the statements (7)~
(11), mainly under the condition that μ is strongly mixing in each direction
with the coefficient ty(ri) decreasing to zero as n tends to oo.

Lemma 2.1 ([18], Proposition 1). If μ is invariant under If -translation,
then (11) implies (7) for each £<Ξ {— 1, +1} and for each QSΞ {X, £*} .

Lemma 2.2. Assume that μ satisfies [a], [c] and that μ is strongly mixing

in each direction ([e]). If

(12) lim inf
»-><»

then for every ξ>0, there exists M>0 such that

(13) lim inf μ(Bl(M;
-

zΰhere B*n(M, 3) is the event that there exists a Q-cίrcuit surrounding the origin in

»-\€)t\VMnJtn\Vn.n. (See Fig. 1.)
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REMARK 2.1. This is a variant of Lemma 4.2 of [15]. The new part of
this lemma is only that we need no additional condition for the decay rate of

as

Fig. 1 event Bl(M-y Ω)

The curve r is a ^-circuit in ω~1(ε)Π VMtt,Mn\Vn,n surrounding the origin.

Before we go into the proof, we prepare notations. For x^Z2 let τ(x)
denote the ^-translation, i.e.

and

τ(x)A = {τ(x)ω\

The rotation by the right angle is denoted by rot: Ω->fϊ, i.e.

(15-a) (rot ω) (x\ x2) = ω(-of, x1) (x\ x2)^Z2

9 ω<ΞΩ ,

and

(15-b) rot A = {rotω;

We call that an event A is increasing (decreasing) if its indicator function
IA(ω) is increasing (decreasing).

Proof of Lemma 2.2. Fix n>\ arbitrarily, and set M(k)=ykn for k>l.
Define

Ekti = (rot)' (τ(2M(k),

forO</<3(Fig. 2),
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Fk == Γ) Ekti, and Gk = U F,. Then

213

./ n [(£*.„ n £,,2)' u (£M n £

,o n ̂ .2)
c n (̂ w n £

-Λf(*)/3

MA)/:

Fig. 2 Event £4,0 and event Gt-i

Gt-ι is the event occuring in the shaded square. The curve r connecting the
top and the bottom sides of the rectangle [M(k), 3M(k)]x[-3M(k), 3M(k}\ is
a <?-path in ω'1(ε).

are a11 increasing or all decreas-Note that either {Gj}^^k, {£,-.,•} osiis isyί* are a11 increasing or all
ing events. Therefore we can use FKG inequality [c] so that we obtain

The strong mixing property [e] implies that

μ(Gt.1

tΓ\(Ellι0f]EtΛ)
e)

<μ,(Gk.{) (l-μ(Et,0)

(see Fig. 2). Similarly, we have
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Combining these inequalities with the translation invariance [a], we obtain

(16)

For any given ξ>0, we take k> 1 large enough so that

(17) 2{l-(α/2)V <l -

Depending on this k, we take «0^ 1 large enough so that

(18-a) μ(Alt3Λ(3))>aβ for every n^n0.

and

(18-b) 6ψ(6κ)^ {l-(α/2)4}*-f-1 for every n>na .

Starting from some n>n0, we define M(k) as before, and set M=M(k). Then
from (16)~(18), we obtain

Since B*n(M\ £)l)Gk, we obtain from the above estimate

for every n>n0. Π

Lemma 2.3. Assume that μ satisfies [a], [c] and [e]. If in addition (8)
and (12) hold for μ, then (9) and (10) hold for μ, too.

Proof. Let £>0 be given arbitrarily. From (12) and Lemma 2.2, we can
find M>0 and n0>l such that

(19) μ>(Bl(M\ 3))>l~ξ for every n>n0 .

On the other hand, the condition (8) implies that for any δ>0 we can choose
nλ > 1 such that

(20) μ(Alntn(S))> 1-S for every n>n, .

We divide the lower side of V3n>n into 3M pieces {/j, 72, •••, 73M} such that
the length \ Ij \ of each Ij satisfy

where \u\ denotes the integer part of u^R. This can be simply done when
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we take |/y|=2[n/Λf] for j=l, 2, -, 3M-1, and |/3Λf | =6n-2(3M-l) [n/Λί],
if rc is so large that 2[n/M]>6M. Let n2=n2(M): =mm {n; 2[n/M]>6M}y

and w>w2. For j=l, 2, •••, 3M, we define the event Dltj(3) by

ί Ij is connected to the upper side of
»j( ) = Iω(Ξ > y^ by a .̂path in ω-i(£) η

d e o f )

3n,n )

Then the collection of the events {Dltj(S)}^^3N are all increasing if £= + ,
and are all decreasing if β= — . It follows from (20) that there is at least one

k for which

(21)

for otherwise, from FKG inequality [c] we have

) = μ( JΠ Π

which contradicts (20). Let k be the number for which (21) holds, and let

f>l.k(3} be the ^flection of the event Dltk(3] w.r.t. the line {*?=— n— l/J/2}.
Consider the event

where Λ(H, A) = (-3n+

|/J/2, —w—l/J/2). It is easy to see that if ωeίfnjfe then the two

Fig. 3 event Hn,k

The curves Γi and γ* are ^-paths in ω-^e), Γ2 is a ^-circuit in ω~l(e) surrounding
Ik in the dotted square.
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horizontal sides of the rectangle A={—3n<x1<3ny —Zn<of<n} are connected
by a <?-path in ω"1^) Π Λ. (Fig. 3) Using FKG inequality [c] and the spacial
symmetry [a], we obtain that

μ(Hntk)>μ(Dl>k(β)γ μ(B\Iku2(M;β))
>(l_δl/3M)2 (1_f)

for every n>MnQ-\- n±-\- n2. Since δ can be chosen arbitrarily small, we can
make the right hand side of the above inequality greater than ί—2ξ if nλ is
sufficiently large.

The translation invariance of μ implies that

two horizontal side sides of Λ are connected \

J

and hence we obtain

for ft>Mra0+w1+fl2. Since ξ is arbitrary, we end up with

(22) lim μ(A\nt2n(3)) = 1 .
Λ °̂°

Starting with (19) and (22) again, the same argument leads us to

(23) \\m μ,(AlnΛn(β)) = \ .

Therefore repeating this argument several times, we obtain

(24) lim μ (A\n>2kn(3)} = 1 for every k > 1 .

It is now easy to deduce (9) and (10) from (24). Π

Corollary 2.4. Let μ satisfy [a], [c] and [e]. If (7) and (12) hold for μ,

then (8)~(10) hold for μ, as well

Proof. It is sufficient to show that (8) holds for μy because of the above
lemma. But this is proven in [18], Lemma 2, and in [16], Lemma 5.1, where
the independence is not acutally employed. Both proofs are quite simple, and
here is presented one of them for the convenience of readers.

In our situation, it is simpler to quote Kesten's proof [16]. Assume that
(7) holds for μ. Then for any £>0 we can take nQ>l such that

there exists a <?-ρath γ in \

ω-^Π V3n,3n\Vn,n connecting > ί-ξ

FΛ3 r t /
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for every n>n0, where dVkfk=Vktk\Vk^ltk,l9 because the event that there exists
an unbounded ί?-path in ω~\+l) is invariant under the Z2-translation and [e]
implies that μ is ergodic in each direction. It is easy to see that if a ^-path γ
connects QVntn with 9V3nf3n in the annulus V3nt3n\Vntny then there is at least one

rectangle Λ among

Λ2 = {-

and Λ3 =

such that 7 Π Λ connects (in <?) two longer sides of Λ (Fig. 4).

-3n

Fig. 4

The curve r is a ^-path connecting F«0,«0 with 9F8».3». In the above
picture, 7- connects two longer sides of Λ3.

This implies that

μ( U (rot)' τ(0, 2ιι) ̂ L. L.H.S. of (25)

for every w>w0. Using the spacial symmetry [a] and the FKG inequality [c],

as in the proof of Lemma 2.2, we obtain

μ(Aln>n(S)}>l-ξl/* for every . Π

By appealing to the rescaling argument in [1], we can obtain even a stronger
result than Lemma 2.3. The cost we have to pay for it is that we need a little

more delicate argument.
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Lemma 2.5. Assume that μ satisfies [a], [c] and [e]. If vΰe assume in ad-
dition (12) and that

(26) lim
»•*•«>

for some k^>l, then we also have (8) ~(10) for μ.

Proof. First we observe that

4Γ.W1?') U rot (Aln.n(0)) = Ω , and

because every ί?'-ρath 7' in VΛtkn connecting two horizontal sides of VUrkn

intersects any ώ'-path 7 in Vn>kn connecting two vertical sides of Vn>kn. By
the rotation invariance of μ, (26) therefore implies that

(27) lmsupμ(Alntn(£))=l.
«-><*>

The same argument as in the proof of Lemma 2.3 can be applied to con-
clude from (12) and (27) that

(28) Jim supμ «*.(£))=!.
«-*<»

On the other hand, it is easy to see that

τ(0, (A-l) n) Alιkn(3) Π rot Al>n(2) Π τ(0, -(*-!) Λ) ̂ (̂ί)

is a subset of A*nt(2k-vn(S}. Hence from FKG inequality [c], we obtain

Using this inequality twice, we obtain

(29)

for every M^ 1. Since

Aln.9a(β)=)τ(2n, 0) Al,9n(β) Uτ(-2n, 0) A°β,

the strong mixing property [e] implies that

(30)

The inequality (29) and the fact that 2u—ιf is increasing in «e([0, 1], imply
that the right hand side of (30) is not smaller than
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Letf(u)=2u7—uu, and w* be the unique solution of u=f(u) in the interval

(0, 1). Take δ>0 small enough so that the equation u+S=f(u) has two so-

lutions a<a' in (u*> 1). Choose n0>ί large enough so that ψ(ri)<S for every
n>n0 and μ(Al0ι3no(S))>a. The latter inequality is possible because of (28).
Putting nk=3kn0 and ak—μ(A*nkt3nk(£))y we obtain

(31) ^+ι>/K)— Ψ(»*) for every

Taking the inferior limits of the both sides, we obtain

(32) γ: = liminf ak>f(<γ).

But since a0>a and ψ(nk)<8 for every &>1, (31) also implies that

f(a')—δ=a', and hence we have 7=1, i.e.

(33) lim ak = 1 .
*-><*»

Again by the argument in the beginning of this proof, we can obtain from

(33),

(34) Km A*(4W^» = l >

which is sufficient to prove (10). Π

Lemma 2.6. Assume [a], [c] and [e] with the mixing coefficient τjr(n) satisfying

(35)

where ty(u) is a step function on [0, oo) induced from ψ(ri). Then (10) implies
(11).

Proof. From (10), for any £>0 we can find n0>l such that

μ (A*n>3n(£)) >l—ξ for every n>n0 .

Let n>nQ be arbitrarily fixed and let Ekti> 0<ί<3, Fk and Gk be as in the
proof of Lemma 2.2, with M(k)=?>2kn.

Let

(36) π\m; 3) = μ(Cl(β) Π 8F»t.Φφ) .

Then it is easy to see that

(37) π-*(M(k); 3')^μ(Gk°) .

Noting that Eμ(ΦCo'(S'))<, Σ ?>m π~\m , S'), we know that the only thing we
m=l

have to do is to ensure the convergence of the series in the right hand side of the
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above inequality. For M(k—l)<sm<ίM(k\ we have

m'π-\m;β')

<M(k)'μ(Gk<)

+6Σ{l-(l-£)4.
y=ι

Since M(k)=yk n, Eμ(Cϊ*(£')) is finite if both

(38) f

and

/"^Qλ V* ^4* V* /^y; 2ji •> 2j 1

But since ξ>0 can be chosen arbitrarily small, (38) is possible. Changing the
order of the summation in the left hand side of (39), we obtain

Σ
which is convergent if

This is equivalent to (35) by the change of the variables t=9u. Π

3. Proof of Theorem 1

The symmetry property [b] implies that if RSW theorem holds for μ=μβ >A,
then it also holds for μ—μβf_h. Therefore we can assume that A>0. We start
with the special case where A=0, <?=_

Lemma 3.1. Let Q<β<βc, .£=_£* and 6 e {+,-}. Then (7)~(11) are
equivalent for μ=μβo.

Proof. In [13], the author has proved that under the assumption of the
lemma, (12) holds for μ=μβf0 with α=2~23. Lemma 2.3 assures that (8)^(10)
are equivalent under (12). Further, from Corollary 2.4, we know that (7) im-
plies (8)< — '(10). Since /3</3c, μ=μβtQ satisfies [e] with exponentially decreasing
mixing coefficient tyβ^ri). Therefore we can use Lemma 2.6 to conclude that
(10) implies (11).

Finally, (11) implies (7) by Lemma 2.1. Π

Corollary 3.2. Let Q<β<βcί A>0, Q=JC* and 6= + . Then (7)~(11)
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are equivalent for μ=μβth.

Proof. As we have seen in the proof of Lemma 3.1, (12) assures the equi-
valence of (7)~(11). Since (12) holds for μ=μβ>0, Q=£*, £=+, the mono-
tonicity [c'] implies that (12) holds for μ=μβ>k, £F=-£* and €= + , if h>0.
Therefore (7)^(11) are equivalent for μ=μβ th, h>Q, Q—JC* and £= + . Π

The key observation is the following proposition, which we will prove in
the next section.

Proposition 3.3. Let 0<β<βe. If we have

(7)' /W*C0-(^*)=oo)>0,

then there exists some hc(β)>0 such that (6) holds if \h\ <hc(β).

Lemma 3.4. Let 0<β<βc, λ> 0, £e {£, £*} yandε= + . If we assume
that (7)' does not hold, then (12) holds for μ=μβfk and (7) ~(11) are equivalent for

μ=μ>β,h

Proof. Since we have the equivalence of (7)~(11) when <?=-£**, the only
thing we have to do is to show the equivalence of (7)~(11) when S=J2. As
we have mentioned in the proof of Corollary 3.2, it is sufficient to show (12) for
μ=μβi0, β=-C and £= + . To do this, first we use Lemma 2.5 for S=-C*,
μ=μβt0 and 8= — . As was already noted in the proof of Lemma 3.1, (12) is
true in this case, i.e. we have

liminf
n-^«*

Therefore if we assume that

(26)' lim inf μβt»(A^n(Λ)} = 0 ,
«->«>

then from Lemma 2.5 we obtain for example

(8)' lim μβt,(A-n(£*)} = 1 ,
»->o*

which, by Lemma 3.1, contradicts our assumption that (7)' does not hold. Π

To finish the proof of Theorem 1, it is, in view of Proposition 3.3, enough
to show that all the statements (7) ~(11) are vacant for μ=μβ ιh, 0<β<βc, h>0,
3tΞ{j;,j:*} and £=-, provided that (7)' does not hold. Assume that (7)'
does not hold. Since the event {Φ Co" (-£*)= 00} is decreasing, the monotonicity
[c'] implies that
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i.e. (7) does not hold for μ=μβth, 0<β<βc, λ>0, 3= £* and £=-. By
Lemma 3.4, we know that (12) holds for μ=μβtQy 3=J2 and £= + > from the as-
sumption that (7)' does not hold.

Therefore we know by duality that all the statements (8)^(10) do not

hold for μ=μβιQί 0</3</3c, £=Λ*9 6=-.
Finally, by Lemma 2.1, (11) fails (since (7) fails) for μ=μβtQ, £=-£* and

ε= — . Thus, (7)~(11) are all vacant for μ=μβ>ΰ, 3=X* and 6= — . By
monotonicity [c'j, this implies that (7)^(11) are all vacant for μ=μβth>h>0,

=-. Π

4. Something more about the RSW theorem

First, we prove Proposition 3.3. This is done by using our previous
result in [14]. To explain this, we need some notations. Let μ be strongly
mixing in each direction with mixing coefficiant ^r(n), decreasing exponentially
as w-»oo. Then we can find some OO and N0>1 such that

(40) n2d~l ^(n)<e"Cn for every n> N0 .

As in [14], section 1, we take N1^2N0 large enough so that

(41) log (Λ^-l^max {2 log t-t log 2} +3 log 10+

+21og{3(2ΛΓ1-l)/(22V1-3)}.

For n>Nly let τr8(n; 3) denote the ^-probability of the event that the origin
is ^-connected to the boundary dVn>n={(x1

J x2)^Z2', max {|^!| , |#2|}=w} in
ω~\6 ). Finally we define the subsequence {n(K)\ by

*(!)=#!, n(k+l)=2n(k)+[2n(k)lk'] k>\. Then we have the following
fact:

Proposition 4.1. (11) holds if there exists k0>l such that

(42) π-*(n(k0) ,S') (2n(kQ+l)+l)<W-2.

This is a direct consequence of Corollary 2 of [14]. Note that (42) follows
automatically from (11). From this we can obtain the following:

Theorem 2. The parameter region

3)(3',B) = {(/?, A); 0</3<&, (7)~(11) holds for μ = μ,^

is an open set in R2 for each 3^ {J2y -£**} and for each 8 e {+, — } .

Proof. Let (β, h)ξ=3)(β\ 8), and β^(β, βc}. Then by Remark 1.1, every
μ from the family {μβth\^<β<β^ h^R} is strongly mixing with the same
mixing coefficient ^βl(n), which decays exponentially as n->oo. Therefore we
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define ΛΓ0, JVi for tφt(n)= ^τβί(n) as above.
Since (β, lι)^3)(Qy £), we have (11) for μ=μβ h. In particular, we have

(43) \\mn-\n\ 3') n = Q for μ = μβ h .»•*<» '

Therefore there exists k0> 1 such that

(44) w-

for μ=μβh. Since τr"~8(n, ώ") is an expectation w.r.t. μ=μβth of a bounded
continuous function on Ω, and since μβfh is continuous in (β, λ)EΞ(0, βc)χR, we
can find δ>0 such that (42) holds for μ=μβtτ whenever \β— β \ + \ h— h\ <8.

Hence by Proposition 4.1, we obtain (11) for μ=μ'βfh if \β— β I + \h— h\ <δ.
But from Theorem 1 of [15], (11) implies (10). Combining this with Lemma
2.1, we obtain that all the conditions (7)~(11) hold for μ=μ-βj;ί \β— /§ | +

|A-X|<δ. Π

Corollary 4.2. Let StΞ {X, _£*}, 6e {+, -} and &={tf, A); 0<β<βc,
the RSW theorem holds for μ=μβth} . Then we have

(0

(ίί) // we define ΆQ(3\ 6) by

&,(3; 8) ={(β, h) e Si (7) Ao2& /or μ = μβth} ,

SIQ(3\ B) is an open set in the space 31 in the sense of the relative topology
in R2.

Proof, (i) is a consequence of Lemma 3.1, Lemma 3.4 and the symmetry
[b] for μ=μβt0. (ϋ) is obvious from Theorem 2. Π

Proof of Proposition 3.3. Immediate from Corollary 4.2, (i) and Theorem

2. D
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