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1. Introduction

In this paper we shall study some sample path properties of self-similar
processes with ergodic scaling transformations, in particular, a class of stable
self-similar processes which includes the fractional stable processes. A large
number of papers on sample path properties have been devoted to Gaussian
processes and Lévy processes, i.e. stochastic processes with independent,
stationary increments. In case of the Brownian motion, especially, we have
Kolmogorov’s test as a refinement of the law of the iterated logarithm and
Chung-Erdos-Sirao’s test (cf. [4]) as a refinement of Lévy’s modulus of con-
tinuity.

We shall show some zero-one laws on sample path properties for general
self-similar processes with ergodic scaling transformations in Sections 2 and
5. In Sections 3 and 4, we shall be concerned with a class of stable self-
similar processes having stationary increments. We shall give integral tests for
upper and lower functions with respect to the local growth of sample paths, which
correspond to Kolmogorov’s test and also to the results of Khinchin [15] for
strictly stable processes. With respect to the uniform growth, in case of fractional
stable processes with continuous sample paths, we shall give criteria for upper
and lower functions. Furthermore, we shall show the existence of function
which is neither an upper nor a lower function. This fact sharply ccntrasts with
the Brownian motion case (cf. [4]).

Various sample path properties of self-similar processes with ergodic
scaling transformations can be shown to hold with probability zero or one.
Among such properties, we shall study growth properties in Section 2 and
Hausdorff measure properties in Section 5. The results in Section 2 enable us
to prove the above mentioned results in Section 3 by using an extension of Borel-
Cantelli’s lemma given in [16] rather than that of [3]. These zero-one laws on
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sample path properties also have their own interest and their original version can
be found in Lévy [21] (cf. also Taylor [35]), where a Hausdorff measure property
of range of Brownian paths was treated.

In case of the Brownian motion, the law of the iterated logarithm means
that the exponent of local growth order of sample paths is equal to 1/2 with
probability one, and Lévy’s modulus of continuity implies that the exponent of
uniform growth order of sample paths is equal to 1/2 with probability one. The
Brownian motion is, of course, a self-similar process with exponent 1/2. For
the fractional Brownian motion, these three exponents are known to be equal to
one another. Thus, there naturally arises the following question: do the above
three exponents still coincide in case of non-Gaussian self-similar processes with
dependent increments and having continuous sample paths?

In Section 2, it will be shown that the above three exponents are equal to
one another for a self-similar process X with stationary increments if the tail prob-
ability of marginal distribution of X decays in an exponential order. By this
fact, an affirmative answer to the above question will be given for self-similar
processes represented by multiple Wiener (or Wiener-It6) integrals (cf. Section
2, Example 2). In contrast with this, Theorem 3.4 will give a negative answer
to the question for (o, B)-fractional stable processes with 8>0: the exponent of
uniform growth order is equal to 8 and strictly less than the exponent, 1/a+23,
of self-similarity, while the exponent of local growth order is still equal to 1/a+g.

The author would like to express his gratitude to Prof. T. Komatsu for kind
encouragement and advice. Thanks are due to Prof. M. Maejima who informed
Rosinski’s works and sent copies of preprints in the course of the preparation of
this paper. Thanks also to Prof. M. Fukushima who read the first draft of this
paper and gave kind advice. The author is also grateful to the referee for his
helpful comments, especially the former part of the proof of Remark 2.3 in
Section 2 is due to him, and moreover, the results on uniform growth properties
of fractional stable processes have been improved substantially by his comments.

2. Preliminaries and growth properties

In this section we shall first make some preparations for notions and nota-
tions on stochastic processes, and then, we shall show some zero-one laws on the
local and uniform growth of sample paths for self-similar processes with ergodic
scaling transformations.

Stochastic processes considered in this paper will be assumed to be real-
valued and continuous in probability. Thus, we can take a separable version
of such process without loss of generality. Moreover, whenever the process
allows a version in D([0, o0)—R) or C([0, co)—R), we shall take this version.
For a stochastic process X={X(¢): t>0} and for x>0, a>0, a scaling transfor-
mation S, , of X is defined by
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(S X) (£) = a~* X(at), t>0.

DreFINITION 2.1. A stochastic process X={X(#): t>0} is called a self-
similar process with exponent «, k>0 (shortly «-self-similar process), if for any a>0,
the process {(S,,, X) (£): £>0} has the same distribution as that of X.

Throughout this paper, X will denote a self-similar process and « will denote
the exponent of X. Since, in this paper, scaling transformations will be always
considered for self-similar processes, we shall write simply S, for S, ,. By Def-
inition 2.1, a scaling transformation S, of X clearly preserves the distribution of
X, and so the notion of ergodicity or mixing of S, can be defined in the usual
way (cf. [5]). From this point of view, we shall call X a self-similar process with
ergodic (or strong mixing resp.) scaling transformations if S,, a>0, =1, is erg-
odic (or strong mixing resp.). For any fixed x>0, x-self-similar processes are
characterized as follows (cf. Lamperti [19]): let X, be the space of x-self-similar
processes X with X(0)=0 «.s., and U be the space of strictly stationary proc-
esses Y={Y(¢): —oo<t<<oo}. Then, there is a bijective mapping 7,: X, —Y,
defined by

T X) (1) (= Y(t)) = ™ X(e), —oo<t<<oo.

A scaling transformation S, of X corresponds to a shift transformation 4, of Y,
i.e. 7,08,=0,07,, where u=log a and 0, is defined by

@.Y)(t)= Y(t+u), —oco<it<oo,
Furthermore, S, is ergodic (or strong mixing resp.) if 4, is ergodic (or strong
mixing resp.).
We shall assume, in this paper, the following:

HypotHeses. X={X(¢#): t>0} is a self-similar process with exponent #>0,
and X(0)=0 a.s., which is separable and continuous in probability. Any scaling
transformation S,, a>0, 1, is ergodic.

Next, we shall state zero-one laws on growth properties of sample paths of
self-similar processes with ergodic scaling transformations. For this aim, we
prepare some notions and notations on growth order properties. For a positive
function g, consider the following events :

E, = [there is 6>>0 such that | X(z)| < g(¢) for 0<z<8],
E7 = [there is N>0 such that |X(z)| <g(t) for t>N],
F; = there is >0 such that

[ | X(1)—X(s)| <g(|t—s]) for s, tel,|t—s]| <8J ’

where I is an interval of [0, o). In case I=[0, 1], we shall write shortly F, for
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DEFINITION 2.2. (i) A positive function g is called an upper function (or
a lower function resp.) with respect to the local growth at 0, if P(E,)=1 (or 0 resp.).
(ii) g is called an upper function (or a lower function resp.) with respect to the
local growth at oo, if P(E7)=1 (or O resp.).
(iii) g is called an upper function (or a lower function resp,) with respect to the uni-
form growth, if P(F,)=1 (or 0 resp.).

We shall denote the space of upper functions with respect to the local growth
at 0 or oo, or with respect to the uniform growth by U,, U7, or U, resp., and
also denote the space of lower functions with respect to the local growth at 0 or
oo, or with respect to the uniform growth by _£;, L7, or L, resp.

In addition, define the following functionals for A>>0 and a positive function

¢:
L, 4 = lim sup,,, ltf(q(bt()t;
Ly, = lim sup;.. 'tffd(f()t;
Uis=1lm su | X(8)—X(s)]|

K10 stenit-si<h |f—g|* qS([t—S])

where I is an interval. We shall write simply U, 4 for UY4’. Note that
Pop()eU, (or UT, U, resp.) if Ly =0 (or Ly 4=0, U, 4=0 resp.) a.s., and that
Bo(t)yeL, (or L7, L, resp.), if L, =00 (or Ly g=00, U, g=00 resp.) a.s.

In this and the next sections, we shall sometimes assume the stationarity
of increments of processes: a stochastic process X is said to have stationary in-
crements if for any £,>0, the process {X(¢-+12,)—X(t,): t=0} has the same dis-
tribution as that of X.

We shall now state our results on growth properties of sample paths of self-
similar processes with ergodic scaling transformations, first, the following zero-
one law on the local growth.

Proposition 2.1. For a positive monotone function ¢,
PE.4)=0o0r1 and P(EZy)=00o0r 1,
where E, 4 (or Egy vesp.) denotes E, (or Eg resp.) with g(t)=t"¢(t).

Proof. First, we prove that P(E, 4)=0 or 1.
Case (i) For some 4>0, assume that ¢(u/a)>¢(u), u>0. Put S=S,. If
| X(t)| <t ¢(t), 0<t<$, for some §>0, this implies that | X(¢)| <#* ¢(¢/a). Put
u=t[a. 'Then,
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[(SX) (u)| = | X(au) | [a"<u"Pp(u), for O<u<d/a.

This means that E, 4CS™'E, 4, and P(E, 4 A S7'E, 4)=0. Since S is ergodic,
we have P(E, 4)=0 or 1 (cf [5]).

Case (i) For 4>0, assume that ¢(u/a)<¢p(u), u>0. If |(SX) (2)| <t'¢(?),
0<<2<d’, for some 8'>0, this implies that

| X(at) | < (at)'d(at]a) < (at)p(at)

Put u=at. Then, |X(u)| <u‘¢p(u) for 0<u<ad’. This means that S7'E, 4C
E.s. 'Thus again, P(E, 4)=0 or 1.

The proof for the second assertion goes similarly with slight modifications,
such as letting N take the place of & and the phrase “4>>N" take the place of
“0<t<8”, etc., and so we omit its details. q.e.d.

Corollary. For a positive, monotone function ¢, there exists a constant
G, 0= 900 (07 €79, 0< 672 g < 00 7esp.) such that

L.y = ce(or L3y = coy resp.) a.s.
Especially, for N, =k, and for ¢, slowly varying at 0 (or oo resp.),
Ly (or Ly g resp.) =0 as. or oo as.

Proof. Put ¢, ¢=sup {¢=>0: P(E, 4)=0}. Then, it is easily verified that
L, 4=ccs a.s. In case A=k, put Yr(f)=""¢(t). Although 4 is not monotone
in general, it is easily shown, for example, that for some positive a, Jr(t/a) >y(t)
on some neighborhood of 0, if ¢ is slowly varying at 0. This is sufficient for
the proof of Proposition 2.1 for E, y. Thus, the last assertion can be derived
from the fact that the event [L, y=1L, ¢=¢, ] has probability one and should be
invariant with respect to any scaling transformation. The proof goes similarly
for L74. g.ed.

Next, we give a sufficient condition for the exponent of local growth order
not less than «.

Proposition 2.2. Assume that X has stationary increments. If there exists
>0 such that

(2.1) E[|X(1)|"]<oo, and yr>1,
for any €>0 and for a positive function ¢, slowly varying at O (or oo resp.),
Ly g4(or Lo g resp.) =0 a.s.
Proof. By (2.1), for any s, £, 0<s<t<<oo,
E[|X(t)—X(5)]"] = E[| X(t—s)|"] = |t—s|™ E[|X(1)|"]<oo .



164 K. TAKASHIMA

Because of y«>1, we can apply Theorem 1 of Mbricz [28], and we obtain the
following estimate for moments of M=max,g,<,| X(?)|:

EM]<Cy E[1X(1)|]<0o0,
where Cy, is a positive constant depending only on yx. By scaling property,
P(IX(0)] 2% = P(1X(1)| =)<t E[|X(1)|"]
and
P(max,-r-1g,<,-| X(£)—X(27*71) | >27*"9)
= P(maxy<;<,-»| X(2)| >27"*"%) = P(M>2")
<c2™",
where c is a positive constant independent of #. Using these estimates, we have
Sin-1 P(max,-n-1gpcp-#| X(2) | >27")
< U P (max,- -1y n] X()— X(271) | 22701
+P( X (27| 2270
<c¢' 3pa1 27 <00,
By Borel-Cantelli’s lemma, with probability one, there is a number #, such that
Max,-n-1gp<p-n| X(£) | <2779 for n>n,.
This implies that
| X(@)|[re<2e, for 0<z<27™.

By Corollary to Proposition 2.1, we have L,_, ;=0 a.s., where L, , denotes L, 4
with ¢(t)=1. Since & is arbitrarily positive, this means that L,_, 4=0 a.s., for
any slowly varying function ¢.

For the second assertion, since we have E[M?"]<<oo, the proof is completed
by tbe result of Kono [18]. q.e.d.

ReMARK 2.1.  Vervaat [36] proved that if X is not degenerate, i.e. P(X(1)=
0)=0,
Le,(or L) =x, a.s.,
where

(2.2) %y = sup {x>0: P(| X(1)| =>x)>0} .

This implies that the exponent of local growth order of sample paths is not
greater than «. 'Thus, if X is not degenerated and satisfies the condition (2.1),
the exponent of local growth order of sample paths of X is equal to k. There
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are two typical cases that the moment condition (2.1) is not fulfilled: the first is the
case that X is a strictly stable process with exponent @. Although X does not
satisfy (2.1), the exponent of the local growth of X is equal to x=1/a (cf. [15]).
On the other hand, when X is an («, B)-fractional stable process with 0<a<1
and —1/a<<B<1—1/a, no positive bounded function can be an upper function
by the result of Maejima [23].

Next, we shall discuss the uniform growth of sample paths, and we give the
following result for U, 4, which shows a difference between local growth proper-
ties and uniform growth ones.

Proposition 2.3. Let ¢ be a positive function, slowly varying at 0.
(1) There exists a constant ¢4, 0<c, ¢< o, such that

Uio =Cep as.
(ii) For any \, 0<\ <k,
P(U,e=0), PO<U, ¢<o), P(Uypg =)=0 or 1.
Moreover, assume that X has stationary increments. For any ¢, 0<<c<<oo,
P(0<U, $<c), P(c<U, ¢<o0)<1.
Proof. Put S=S,. First, note that for any A,
(2.3) UL41eS = ULy o™, a>0,

where U370 S denotes Uy for the process {(SX) (¢): £>0}.
(i) By (2.3), for a>1 and ¢>0,

STUSP<d] = [URP < c[USP<d].

By the ergodicity of S, we have P(U, <c¢)=0 or 1. Put ¢, ¢=sup {¢>0:
P(U, 4<c)=0}. Then,

Uio = o as.

(ii) By (2.3), the events [U, 4=0], [0<U, ¢<oc], and [U, g4=0o0] are invariant
with respect to S. Thus, these events have probability zero or one.

Next, Assume that X has stationary increments and that there is ¢>0 such
that P(0<U, ¢<c)=1. Again by (2.3), we have

PO<U¥#P<ca™ =1, for a>0.
On the other hand, because X has stationary increments, we have

PO0<Uls*<ca* =1, for O<a<l.



166 K. TaArkAsSHIMA

Take a, 1/2<<a<<1. Then, since
Ure = max {USS", UK},
we obtain
PO<U,¢<ca"™=1.

By iterating this arguement, since a<<1, we have

P(0<U,4k50)=1.
This is a contradiction, and it is verified that

P(0<l, 4<0)<1, for any ¢, 0<c<<oo.

The proof goes similarly for P(c< U, g<<oo)<1. q.e.d.

REMARK 2.2. As is shown in Proposition 2.1 and its corollary, for any pos-
itive, monotone function ¢, #¢(¢) belongs to either U, or £, and L, 4 is equal
to a certain constant with probability one. In contrast with this, with respect to
the uniform growth, Proposition 2.3, (ii), shows the possibility of existence of a
positive function 4, slowly varying at 0, and a positive number A, A<«, such
that

PO<Uyy<oo)=1.

In this case, for any ¢>0, ct*Jx(t) can be neither an upper nor a lower function
with respect to the uniform growth, because the infimum of support of distri-
bution of U,y is equal to 0 and its supremum is equal to 0. In Section 3, we
shall show that for an (a, B)-fractional stable process with 8>0,

PO<Up,<e0) =1,

and the support of distribution of Up, is (0, o). This means the impossibility
of general zero-one law for upper and lower functions with respect to the uni-
form growth, analogous to Proposition 2.1.

ReEMARK 2.3, For A>>, it is verified analogously that U, 4=0 a.s. or oo a.s.
From the following facts, it is clear that U, 4=o° a.s, for non-degenerate proc-
esses: assume that X has stationary increments. Then,

(1) if X is not degenerate, U, ,=x, a.s., where x, is defined by (2.2).

(i) If the tail probability of |X(1)| decays in an exponential order, i.e.
there exist positive constants C;, C, and ¢ such that

P(|X(1)| =x)<C,exp {—C, x"} for large x,

Us-e,=0 a.s., for £>0.
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Proof. (i) (This proof is due to the referee.)

By the definition, U, ;>L,,. Thus, itis clear that U, ,>x, a.s., by Remark
2.1. In case xy<<oo, put E, ,=[| X(t)—X(s)|/|t—s|*>x,+8] for any positive &.
Then, since X is self-similar and has stationary increments, P(E, ;)=0, by the
definition of x,. Thus, the union of E, , over rational s, ¢ of [0, 1], has probablity
zero. 'This means that U, ,<x, a.s.

(i) By Theorem 1.1 of Bernard [1], there is a positive constant M such that
Mer—rteqy,, if

[, PUX)I 20 de<oo

This is easily checked by the above condition. Thus, U,_,,;<M a.s. This
implies that U,_, ,=0 a.s., by Proposition 2.3. q.e.d.

In case X satisfies the conditions of (i) and (ii), #*** belongs to U, or _L,, ac-
cording as £€<0 or >0, i.e. the exponent of the uniform growth of sample path
of X is equal to «.

In the rest of this section, we shall make some remarks on ergodic proper-
ties of scaling transformations of self-similar processes. With respect to many
known self-similar processes, scaling transformations can be shown to be ergodic.
We shall here show that scaling transformations are strong mixing for several
typical examples, other than stable self-similar processes, with respect to which
we shall discuss in the next section.

ExampLE 1. Let X be a Gaussian process with mean 0, and covariance
E[X(s) X(t)] = {*+t*—|t—s|*} /2, 0<e<1.

We can easily show the strong mixing of X by applying the criterion of Maruyama
[25] on strong mixing of stationary Gaussian processes to the process Y (=

Tn(X))

ExampLE 2. ([27]) Let m be a positive integer and consider the self-similar
process X defined by

X() = SL Qu(t4y, **, thy) dB())-++dB(u), >0,

where {B(f): —oo<t<<oo} is a Brownian motion and @, is a square integrable
function on R”, invariant under permutations of arguments, with @,=0 and
Qat(auv ) aum)zax_mlz Qt(uu % um)
Qt+h(ulv ° um)—Qt(ul’ R um) = Qh(ul'—tv R um_t)
for a,t>0 and A2>0,

where 0<k<<1. Then, X is a w-self-similar process (cf. Mori and Oodaira
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[27]). In[27], the law of the iterated logarithm is proved. Dobrushin [7] stud-
ied analogous self-similar processes represented by multiple Wiener-It6 integrals.
Surgailis [33] discussed ergodicity of shift transformations of stationary random
fields represented by stochastic integrals based on Poisson random measure. He
introduced a notion of ‘subordinated’ which corresponds to the notion of ‘factor’
in the ergodic theroy except the necessity of taking an appropriate version of sto-
chastic integral. In this example, it can be similarly shown that a scaling trans-
formation of the above process X is a factor of a certain scaling transformation
of the Brownian motion B. Thus, the strong mixing of scaling transformation
of X is deduced from a well-known fact in the ergodic theory (cf. for example,
Cornfeld, Fomin and Sinai [5], p. 230-231). It is also known that the tail prob-
ability of | X(1)| decays in an exponential order (cf. [24], [27]).

ExampLE 3. ([14]) Let X be a process defined by
X(t) = S” Ly(x) dZ(x), £>0, and X(0)=0,

where Z={Z(x): —oo<<x<{oo} is a strictly stable process with exponent «,
0<a<2, and Ly(x) is the local time at x of a strictly stable process Y with ex-
ponent B, 1<B8<2, which is independent of Z. Then, X is a self-similar
process with exponent k=1—1/8+1/(aB) (cf. Kesten and Spitzer [14]). Asin
the above example, by taking appropriate versions of stochastic intergral and local
time, we can show that a scaling transformation of X is a factor of direct product
of a certain scaling transformation of Z and a transformation of L,(x) induced
from a certain scaling transformation of Y. Since a direct product of strong
mixing transformations is strong mixing (cf. Cornfeld, Fomin and Sinai [5],
Chapter 10, Section 1, Theorem 2, for example), any scaling transformation of X
is strong mixing.

ExampLE 4. ([12], [13]) Let {U(x): x>0} and {M(x): x>0} be strictly
stable processes with exponents &, 8, 0<a, 8<1, which have increasing sam-
ple paths a.s. Let {B(t): >0} be the standard Brownian motion. Assume that
these processes are independent one another. Define a process {V(¢): t=>0} by

V(t):S: L(U(x)) dM(x), £>0, and V(0)=0,

where L,(x) is the local time at x of B. Let X be a process defined by
X(t) = U {(B(V7'(¢))), >0, and X(0)=0.

Then, X is a self-similar process with exponent k=ag/(a+ ) (cf. Kawazu [12],
Kawazu and Kesten [13]). Taking an appropriate version of the local time
Ly(x), we can show that a scaling transformation of X is a factor of triple direct
product of scaling transformations of U, M and B. Thus, X is strong mixing
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as in the previous examples.

3. Growth properties of stable self-similar processes

Pushing forward the general arguements in the previous section, we shall
consider growth properties of sample paths of a class of stable self-similar proc-
esses. We shall call a stochastic process stable if its finite-dimensional distri-
butions are stable distributions. We now define a class of stable self-similar
processes as follows: let 0<a<<2and 8>—1/a. For a function f, %0, satisfying

3.1 0<{” 1f@)1* ds<coo,
put

_ (#1610,

Ji) = { 0 ,t=0.

Let X=X, g ; be a process whose finite-dimensional distribution is given by
Elexp {i 33410, X (t)}]
(3:2) =exp {|”_w(Sha S0 dt,
for —“°°<01)"', €n<°°’03t1<“'<tﬂ<°°’n21 ’

where

[ 1) n(ax) ,0<a<1,
(33) w(®) =1 | (¢ —1—itx Ine0) v(de), a=1,

S (@ 1—itx)w(dy)  ,l<a<2.
Here »(dx) is a Lévy measure on R— {0}, given by

v(dx) = a{C* It,sq+C Irecq} | x| ~* 1 dx,

where C*, C~>0, C*+C~>0 (in case a=1, C*=C"), and I 1 denotes the indi-
cator function. Then X is a stable self-similar process with exponent x=1/a+
B. We shall denote this class of stable self-similar processes by S(, 8):

S(a, B) = {X, 5, fsatisfies (3.1)}.
Any X of S(a, B) is continuous in probability, and can be represented as
X(t) = S" £(5) dZu(s) as.,  for >0,

where {Z,(s): —oo<s<<oo} is a strictly stable process with exponent @, whose
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characteristic function is given by
Elexp{iEZ,(5)}] = exp{s ¥(§)} .

Proposition 3.1. Any X of S(a, B) is an infinitely divisible process in the
sense of Maruyama [26] (cf. also Lee [20]) and is strong mixing of all order.

This proposition will be proved in the next section.
In addition, we define a subclass S*(a, B) of S(«, B) by

S*(a, B) = {XeS8(a, B): X has stationary increments} .

If =0 and f(s)=1,y(s), then X is Z, itself and belongs to S*(at, B). Next con-
sider a function f defined by

(3-5) f() = a*{(1—9)i—(—9)i} +a {(1—9)2—(—95)2},

where x,=max {x, 0}, x_=max{—ux, 0}, —1/a<B<l—1/a, B+0, —c0o<a*,a”
<oo, |a*|+|a"|#0.

In this case, X is called a fractional stable process (cf. [11], [22], [23] and
[34]). We shall call X an (a, B)-fractional stable process when we want to
indicate a, B explicitly. Clearly, f, induced from this f satisfies the following
relation:

(3.6) Jeeu()—fe(s) = fu(s—1t) a.e. ins, for any fixed ¢, £=>0.
Thus, («, B)-fractional stable processes belong to S*(a, 8).

We shall now discuss growth properties of sample paths of these stable self-
similar processes. First, we give integral tests for upper and lower functions
with respect to the local growth.

Theorem 3.1. Let 1<a<2, 8>0, and ¢ be a positive monotone function.
With respect to any X of S*(a, B),

ro()eU, (or Ur resp.)
if the integral
I, = S ) dt (or I° = | g0 e resp)
0+ o
converges, where k=1/a+B. In this case,
Leo=0(or L3y = 0 resp.) a.s.

Therem 3.2. Let 0<a<?2, 8>—1/a and ¢ be a positive monotone func-
tion. Assume that there exists 8,0 such that
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(37 [ ts1% f01° ds<coo,

(3.8) [~ 151 ds<oo.

Then, with respect to any X, g ; of S(a, B),
t'p(t)yeL, (or L7 resp.)

if the integral I, (or I, resp.) diverges.

In this case, L, g=00 (or Lyg=00 resp.) a.s.

Remark 3.1. (i) If X is a fractional stable process, i.e. f is given by (3.5),
the conditions (3.7) and (3.8) are satisfied.
(ii) Put

¢(t) = |10g tlllallog(z) t]l/a... Ilog(") t|1/¢+e ,

where n>1 and log, is the logarithm function iterated % times. Then, t“¢(¢)E
U, and U7 if €>0, 1<a<2 and B>0, +* ()L, and L7 if €0, 0<a<2
and 8> —1/a.

(iii) In case X is an (a, B)-fractional stable process with 0<a<1, any
positive bounded function becomes a lower function and the assertion of Theorem
3.2 is meaningless, since any version of X is nowhere bounded (cf. Maejima

[23])-

Next we shall discuss the uniform growth properties of sample paths of frac-
tional stable processes. From Propesition 2.3, it can be expected that there are
some aspects of problems of the uniform growth, different from those of the
local growth. In the rest of this section, we shall investigate behavior of sample
paths with respect to the fractional stable processes with continuous sample
paths and show a remarkable difference of their uniform growth properties from
their local growth properties. These results also contrast sharply with known
results on Gaussian self-similar processes (cf. for example, Chung, Erdos and
Sirao [4]).

Let 1<a<2,0<B<1—1/a and let f; be a function induced from f defined
by (3.5), i.e.

£5) = @ {t—s)i— (98t +a~ {(—s—(—5)t} .
Condider
X(0) = Xap )= {"_£i) 42

We take a version of Z, whose sample paths are right-continuous and have left-
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limit with probability one. We also take a version of X having continuous
sample paths with probability one.
We denote jumps of Z, at time ¢ by A,(?), i.e.
Ay(t) = Z(t)—Z(t—0), —oo<t<<oo .

Of course, X satisfies the conditions of Theorem 3.1 and Theorem 3.2. There-
fore, upper and lower functions with respect to the local growth are determined
by the integral tests and the exponent of local growth order is equal to k=1/a
+R8. The following theorem, however, shows that almost all sample paths of
X have certain times at which they behave like 8-Holder continuous functions.

Theorem 3.3. Let 1<a<?2, 0<B<1—1/a and X=X, g ; with f defined
by (3.5). Then,

limy o X (24-B)— X (1)) hP = a*Ag(t), 0<t<1, a.s.
limyo(X () — X (.—h)) h~F = —a~Ag(t), 0<t<1, as.

Corollary. Let f’ be also defined by (3.5) with certain a’* and a’~. Then,
for some constant c=+0, X, g ; and cX, g ,» have the same distribution if and only if

f=cf".

ReEMARK 3.2. Cambanis and Maejima [2] proved the result of this corollary
for the case that 1<a<2, —1/a<B<1—1/a and Z, is a symmetric stable proc-
ess. We obtain their result only for 0<B<1—1/a but without the symmetry
of distribution of Z,.

We next consider the functional Ug; and show that U, behaves a little dif-
ferently than as it is expected from the last theorem.

TueoreM 3.4.  Under the same assumptions in Theorem 3.3,
Up,1 = MaX_w<scw| f(5) |SUPosi<i | AZ(B)], aus.
ReMARK 3.3. In case at a= >0,
MAX_w<ecw | ()| = max {|a*], |a"|} .
On the other hand, in case a* a~ <0,

MaX_ o< | f(8)| = |a* | {|a"[a* [O-B 4 1}1-F

>max {|a*|, |a”|} .

Corollary. Under the same assumptions in Theorem 3.4, let ¢(t) be a pos-
ttive function defined for t>0.
(i) Assume that limy,, p(f)=o0. Then, t*¢p(t) €U, and Ug =0 a.s.
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(ii) Assume that lim,,, $(£)=0. Then, t*p(t)e L, and Ugg=co a.s.
(i) Assume that

0<lim inf,, ¢(2) <lim sup,y, P(2)<oo .

Then, t2p(t) belongs to neither U, nor L,, and the support of the distribution of
Usg,s 75 (0, o0).

The first version of the results on the uniform growth was unsatisfactory
and improved by referee’s suggestions.

4, Proofs for results of Section 3

Before giving proofs for main theorems, we first verify the strong mixing
of all order of stable self-similar processes.

Proof of Proposition 3.1. Since every finite-dimensional distribution of X
is stable by the definition, X is clearly an infinitely divisible process in the sense
of [26].

From (3.2), the characteristic function of (Y(0), Y(#)), Y=r.(X), is given by

Elexp {i(0Y(0)+2Y(£))}]
= exp {{ | fexp x(0f () +ng(us D —1
—ta(x) (0f (u)+ng(u; 1))] v(dx) du}
where g(u; t)=f(ue™*) e and
0 , If O<axl,
a(x) = | xlpacn(x), if a=1,
x , If l<a<?2.

Since Y has no Gaussian component, it is enough for verification of the con-
ditions of Theorem 6 of [26], to show the following:

(A) lim, .. SS L, dx) =0, for §>0,
F(t,

(B) limyyer ﬁm | f() g(u; 2) | 2% v(dx) du = 0,

where

F(t, 8) = {(x, u): | f(u) g(u; t)|x*>8}, and
F(t) = {(x, u): 0<x<<(f(u)*+g(u; t)*)~*%.

(A) is derived from the fact that for any fixed §>0,

ng,u || 7™ dx du<c S | f(u) g(u; 2)|** du
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and (B) is derived from the fact that

[y 170080017 s {10 gt )1 s,

where ¢ and ¢’ are positive constants, independent of ¢, because | f(%)|** and
| g(u; )| ** are square integrable and so

Slf(u)g(u; 0)|*? du—0 as t— oo . q.e.d.

We shall now turn to proofs of theorems in Section 3. Let X be a process
of S*(a, B). First, note the following fact: there exist positive constants K, K,
such that

K, x*<P(|X(1)| =>x)<K,x™*,
and

(4.1) Kilt—s|* x*<P(| X(t)— X(5) | 20) <K, | t—s| = ™,
for 0<s,t<<co, and for x>1.

This is derived from a well-known estimate for tail probability of stable dis-
tributions (cf. Gnegenko and Kolmogorov [8], p. 182). In case ax>1, i.e.
B>0, by using Theorem 3.2 of Moricz, Serfling and Stout [29], we can obtain
the next estimate for maximum of X, which plays an important role in the
proof of Theorem 3.1.

Lemma 4.1. For a process X of S*(at, B), there exists a positive constant
K, depending on o, B and K, such that

P(maxyg<, | X(t) | =2) < Kz x™* for x>1.

Outline of proof. Fixn>1. Using the notations of [29], put X,=X(k/n)—
X((k—1)/n), and g(z, j)=K, | (j—7)/n|™ and ¢(t)=t", for 1<k<n, 1<i, j<n and
t>0. Let ax take the place of & in [29]. Then, it is easily verified that each
condition in [29] can be satisfied. Thus,

P(max, <4<, | X (k/n)| Z>2) < Kyx~* .

By Theorem 3.2 of [29], K; depends not on 7, but only on @, B, K,, and so
we have the assertion of lemma by letting n—co. q.e.d.

Using this lemma, we prove Theorem 3.1.

Proof of Theorem 3.1. We start from the proof for U,. It is enough
to prove the theorem for a decreasing function ¢, by Remark 2.1. For ¢>0,
define events
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E, = [|X(2")[2">c $(2)],
F, = [mas,-s-1ggyr| X ()= X (2" 2 27 $(27)] .

By (4.1) and Lemma 4.1,

S PB) <6 S 627 < | g <o,
St P(F) <51 P(M>c 2°¢(27"))
<6 Sl $(277) <, SH £ p(t) dt<oo ,

where M=max,<,<, | X(#)], and ¢, ¢,, c3, ¢, are positive constants independent of
n. By Borel-Cantelli’s lemma, with probability one, there is a number 7, such
that

IX@I<IXEC™ Y+ X(@)—X2)]
<2027 G2 <2 o B(F)
for 27"71<t<27% n>n,.

This implies that L, 4<2**c a.s. Since c¢ is arbitrarily positive, this means that
L, 4=0 as.; and that $=U,. For the local growth at oo, the proof goes simi-

larly with trivial modifications. q.e.d.

We now proceed to the proof of Theorem 3.2. For this purpose, we
prepare the following estimate for tail probability of two-dimensional distribu-

tion of X.

Lemma 4.2. Let X be a process of S(a, B). There exists a positive constant
K, such that for a, b>0 and for 0<h<1,

P(IX () h*>a, | X(1)| 2b)< K, {h*(ab)y*"+(ab)} ,
where §=min {8, 8,/(a+ &)} /4-

Proof. Let p(x), —oo<<x<Coo, be a non-negative, infinitely differentiable,
even function such that |p(x)| <1 and

” {1 if (x| <1/2,
X) =
P 0 if [|x|>1,

and p(£) be its image of Fourier transformation, i.e.

p@) = () | e (e d -
Put X'=X(%) h~*, X"=X(1) and

Oy/(£) = E[exp({EX")], Dx~(n) = E[exp(inX")],
@y, xE, 7) = Elexp (EX'+inX")]
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Note that

@) (7 pE)dE = p0) =1.
Using this relation, we have the following estimate:

P(1X(h)|h*=a, | X(1)| >b)
<E[(1—p(X'[a)) (1—p(X"[B))]

= ey BL] (1—e#') p(g) diy 4 (1—emx") () )

= 2)* [[{1— @ (El0)— @ rIB) + @ x(El, 2[B} P(E) () dE

= (2n) ([ 1@ x(Ela, n/b)— @ AE]0) D xnfB)} PE) () dE dn
+(@my ([ 11— @la)} (1— @0t} 2(8) o) dE dn

= 22)* || @ e, njt) 11— 22 CELD) DoralB)y ey i) a

Dy, x/(&/a, 7/b)
+E[1—p(X’|a)] E[1—p(X"[B)] .

It is enough to estimate the first term in the last side, because we have the fol-
lowing estimates for the second term:

E[l—p(X'Ja)|<P(1X’| 2a/2)<c,a",
E[1—p(X"[B<P(IX"| 2b[2)<c, b7,

where ¢, is a positive constant independent on a, b and 4. By (3.2),
®x(8) = exp | w(Ef(wih) o) du
@) = exp| Winf @) dut ,
@, (€, 7) = exp A Y(ES(ulh) h"-nf () dusp .
Here  is given by (3.3). Thus,
) P 0) . exp [ t9E ) ) a0
—ESWh) I fu))} du

It is easily derived from (3.3) that

)+ (E+n) | el | (e 1) (e —1) x| == i
<6l E| ]|

where ¢, and ¢; depend only on C*, C~ and . Therefore, by Schwarz’ inequality,
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we have

[ 1 ) 1) o f )~ () B4 f ) |
<alen|* | ) fuih) fu) | du
<cs|En|*”.

Thus, we have

_ DulEla) Dxralb) || e 5
[ 11— T S 16(@) o) dE d

<cs{(ab)™" SS{S B2 F(ulh) £(1) | du} | En| 7| B(E) B (n) | dE dn
+SS|Eﬂl>ab|ﬁ(E) p(n)|dE dn} .

Because p is infinitely differentiable, § has moments of all order and we have

SSIE"I|>ablp(E) P(n) | d€ dn<c,(ab)™*.

Getting these estimates together, we have
P(IX()|h™*2a, | X(1)| =b)
<a (@) | 1| fuh) f0) | dut-(ab) 2}

where ¢, ¢, ¢, ¢; and ¢g are positive constants independent of a, b, h, £ and 7.
Therefore, by the following lemma, the proof is completed.

Lemma 4.3. Under the same assumptions and by the same notations as in
Lemma 4.2, there exists ¢'>>0 such that

[ e fuim 1o duse i, for 0<h<1.
Proof. Put

F(x):S 1f@)I"du  for >0

[lul>x

Divide the integral into three parts:

[ e s pon du = 0 [
= L+L+1;.

We give estimates for these three integrals by using Schwarz’ inequality. For I,
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-V -V
LA 1" e fim)1® dupp
<{{” 1se1® dae o7 )1 de
<6 F(UVE)".
For I, and I,
Izgcm(F(O)—‘F(\/Z))l/z, L<c, F(1/VR)2,

where ¢,, ¢}, and ¢, are positive constants independent of A.
From the conditions (3.7) and (3.8), we obtain the following estimates for F(x)
by Holder’s and Chebyshev’s inequalities:

F(x)<cpx%, F(0)—F(x)<cys*, for x>0,

where ¢, and ¢,3 are positive constants independent of x, and §'=28,/(a-+8y).
Getting these estimates together, we verify the estimate of the lemma and
we complete the proof of Lemma 4.2. q.e.d.

Using Lemma 4.2, we now prove Theorem 3.2. In proving a function to
be a lower function, we usually use an extension of Borel-Cantelli’s lemma by
Chung and Erdés [3]. In this paper, we apply the following lemma by Kochen
and Stone [16], which we state here in a form convenient for our use.

Lemma 4.4. ([16]) Let E, be events and assume that

w21 P(E,) = oo,
lim infy,.. 33 .., P(E,NE,)/{ZV., P(E,)}?<oco .

Then, P(E, i.0.)>0.

Zero-one laws in Section 2 enable us to prove results by this lemma, whose
conditions are much more easily cheked than those of [3].

Proof of Theorem 3.2. First, we prove the result with respect to the
local growth at 0. It is enough to consider the problem for decreasing func-
tion ¢, because of Remark 2.1. Define events

E,=[|X2™"|2">c¢(27")], for ¢>0,n>1.
Then,
S P(B)26, S $27) 26 | 17 9(0) % dt = oo .

By Lemma 4.2, we have for n>m,
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P(E,NE,)
L {2757 {p(27") (27} "+ {P(27™) (27} 7%
where ¢,, ¢, and ¢, are positive constants independent of m and n. Therefore,

Smne1 P(E,NE,)<2 3. 3w P(E,NE,)
<26 Sy T 2780 G2 B2 S(27
<c (S B

Thus, by Lemma 4.4, we have P(E, i.0.)>0. This implies that L, 4=>c¢ a.s.
Since ¢ is arbitrarily positive, we have

L.y = o0 as., and t¢p(t)eL;.
The proof goes similarly for the growth at oo, with slight modifications. q.e.d.

Next we shall turn to the proofs for Theorem 3.3 and Theorem 3.4. The
following lemma is suggested by the referee and plays an important role in the

proofs.
Put

&(s) = —%, s%0, ¢, >0,
and

v) ="z a6 ds, >0,

Y(0)=0.

Note here that Y(¢) can be defined for almost all sample paths of Z,, because
by the results of Khinchin [15], for any £>0,

(4.2) lim Sup,.» 4| Zo(s) | | 5| ¥*(log|s)™*"* = 0 as.,
and |g(s)| = O(|s|®#?) as s—>zoo.

Lemma 4.5. The process Y=A{Y (t); t=0} has the same distribution as that
of X,p,5 t.e. Y is a version of fractional stable process X, g ;.

Outline of Proof. For N>0, using approximations of stochastic integral
N
[" fazs
and integral
N
[" 20 8 as

by Riemann’s sums, we can easily show that for any t>0,
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[ fits)az.o
and
[* 2.6 85) ds-HAiN) ZuN)~f(— ) ZA(— )

have the same distribution. Since | fi(s)| =0O(|s|?"!) as s— oo, we have by
4.2)

| f(N) Zo(N) |, | fi(—=N) Zo(—N)| >0 as N1t oo,

This implies that X(¢) and Y(¢) have the same distribution. To show that X
and Y have the same finite-dimensional distributions, it is needed only to re-

place f,(s) by
S 01 f1,(5), —00 << oo, 0K t< oo,
in the above arguments. q.e.d.

Proof of Theorem 3.3. Since the functionals under consideration are
measurable, it is enough to show the following

Lemma 4.6.

limy,o Y (t4+h)— Y(£)) kP = a*A,(t), 0<t<1, as.
limy (Y ()= Y (t—h)) b8 = —a"A,(t), 0<t<1, a.s.

Proof. First, note that for 2>0,
8+1(5)—&() = ga(s—2) and  gy(s) = K7 g (s/h)
where g(s) = —M, s=0, 1.
ds
This is derived from the fact that f, satisfies (3.6). Using this relation, we have
Y(t+h)—Y () = (" Zu6) (gresl)—25) ds
— W S" Z,(t-+hv) g(v) dv .

By (4.2), there is M >0 such that

| Z(t+hv)| <max {M, |v|*(log|v|)"/**'}
for —oco<w<<oo and 0<it<1.

Therefore,

| Za(t+hv) g(v) | <max {M, |v|"*(log|v|)"**} | g(v)].
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Since the right hand side is an integrable function of v, it is derived from Le-
besgue’s convergence theorem that

limy o ¥ (1) — Y (2)) hP = S" limy o Zu(t4-hv) g(v) do .
Here note that

Z()  if >0,
Z(t—0) if v<0,

[~ 8@) do = f(—o0)—f(e0) = 0,

limy, o Zy(t+hv) = {

and
[ 8(0) do = f(0)—f(00) = a*
Then, we obtain
limy,,o( Y (t+h)— Y () B8 = a*Ay(t), 0<t<1, as.
Next we prove the second assertion. For A>0 and ¢—A>0,
Y=Y (k) = | Z6) (2)~1-s(5)) &5
=" 2@ are—vas

— i S” Z,(t-+-hv) g*(v) do,

where g*(s) = —é%(—s—) ,

46 = —aH{(1+92— (2 —a {(1+95—(3}
%
gt = —LT) ana 19 = 26,

and in the above we use the following relations:

8($)—&e-u(s) = gif(s—27) and  gif(s) = K71 g*(s) .

Since | g*(v)| =0(|v|??) as v— =% oo, Lebesgue’s convergence theorem can be
again applied and we obtain

limpoo ¥ (O~ Y (¢—R) h? = [ limysg Zu(t-+-ho) g¥(o) do
= —a"AL1), 0<t<L1, as. q.e.d.

Proof of Theorem 3.4. As in the proof of Theorem 3.3, it is enough to
show the following
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Lemma 4.7.
lim  sup |Y(#)—Y(s)|h®

hy0  0<s<t<1,t—s<h
= MAX_.wse<e | f(5)|SUPost<i | A2(E)| aus.

Proof. Since sample paths of Z, are right-continuous and have left-limit,
for any £>0 and 0<¢<1 there is =7(¢, §)>0 such that

| Z(t—0)—Z,(s)| <&  for t—y<s<t, and
| Z(t)—Z,(s)| <€  for t<s<t+n.

Let € be fixed. Because [0,1] is compact, there are ¢, -, t,, of [0,1] such that
[0, 1]C U #=1(ts—m4/2, t+n4/2), where 5, is n corresponding to #,. Here note
that if 0<<¢<<1 and |A,(?)| >2¢, then t=t, for some 1<k<m. Put

By, = [ty—s tetm4]
and
B = (ti—m/2, titm/2) .
Put p=(t—s)/h for 0<h<1 and 0<s<t<1, t—s<h. Then,
YO -Y6) = | Z.) (e —2w) du
— Sf Z,(s+-hv) g,(0) dv .

Since | g,(v)| <|g(v)| for |v| =2, there is N>0 such that

SUPp<s<1 S
Possst )\

| Zu(s+1o) go(v) | dv

<SUPo<,s: S ,

. | Z,(s+hv) g(v) |dv<E,

and

[, la@ldo<| lg)ldv<e.

Now we have for s, ¢ of B¥,
(Y ()Y () b
N

= Z—0 8@ do+ [ Ast) Hi+hos 1) i) do
+] (@ulstho)—Zu(t—0)) (1~ H(s+ho; 1) ) do
+{7 (Glsth)—Zu(0) His-+hos 1) go(0) do

{5 Zolo+HH0) £3(0) do,
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1 if x>x,

where H(x;x°)={0 i x<x
o-

Because SN go(?) dv=0 and $| - | 8o(v) |dv <<€, we have
il oI>N

" a@ai<e and If" Zia—0)g00) dol < |Z(n—0)le.

Let py=min, <<, 7,>>0 and A<<n,/(2N). Then, s+hv belongs to B, for s of B¥
and |v| <N. Therefore,

1" 1@st+ho)—Zu(—0) (1—H(s-+hos 1))
+(Z(s+hv)—Z (t,)) H(s+hv; t,)} go(v) dv|
<e|” la@ldo<2e(lar | +1a]) pf
<2(la*|+[a7]).
On the other hand,
(" At Hs+ho;8) g0 do
— At folon—{ Bt Histhv; 1) g0) do,
where v, = (8,—s)/h.

We also have
| SM>N Ag(t) H(s+-hv; 8,) g4(0) do|

<181 18(0)|do< [0 e

Getting the above estimates together, we obtain
(Y)Y () AP —Az(t) fo(vs) |
<E{| Z,(ti—0) | +2(la” | +1a” )+ 1Ax() |}

for 0<s<t<1,s,teB¥, 0<t—s<h and h<x,/(2N). Note here that

o<:—ss<‘:.?.reaz pr(vk)l - —°£r<l;a§m If(u)l :

Then, we have

s | Y(O—Y () 1B P~ max | )l 1Azt |

ot -:Sh,:,tEB‘.‘

<€ {|Z.t—0) | +2(la* [+ [a” )+ | Az(t)]} -

Since {B¥, k=1, -+, m} is a covering of [0,1], this means
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1 — -8 __
llim sup |Y(t)—Y(9)|h™" — max |f(v)|sup [A;()] |
t—-s<h

<& {supicica| Zy(t—0) | +2(1a* |+ |a” 1)+ sup |A:(0)1} -

Thus, letting € | 0, we obtain the desired result. q.e.d.

5. Other sample path properties

In this section we shall consider sample path properties other than growth
order properties dealt in Section 2, especially, we shall discuss some properties
related to Hausdorff measures. First, we recall the definition of Hausdorff meas-
ures. Let ¢ be a positive, continuous function and A4 be a subset of R?, d>1.
Denote the Hausdorff measure of A with repsect to measure function x'¢(x) by
my ¢(A), defined as follows:

my o(A) = limg,, inf ZUecs (d(V)) $(d(U)),

where inf denotes the infimum over all coverings C; of 4 with balls U, d(U)<38,
and d(U) denotes the diameter of U, and ¢¥>0. In case ¢=1, my stands for

My, 6.

(1) Hausdorff measure of range of sample paths

In considering this problem, we assume that X takes values in R¢, d>2,
because in one-dimensional case this problem becomes trivial. Denote the
range of path by R,:

R, = {X(5): 0<s<4}, for >0.

P. Lévy made a comment on Hausdorff measure of range of Brownian paths in
R? in the introduction of [21]: for a positive, continuous function ¢, slowly
varying at 0,

mye(R;) =Ct  for >0, as,

where C is a constant, 0<C<oo. He gave only an idea of proof (cf. footnote
(2), he reduced arguments to Kolmogorov’s zero-one law). We shall derive
this fact from ergodicity of scaling transformations for general self-similar proc-
esses.

Proposition 5.1. Let ¢ be a positive, continuous, monotone function, slowly
varying at 0. There exists a constant C, 0< C< oo, such that

mys(R)=Ct  for t>0, a.s.
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Proof. For A>0, define an event E, by
E, = [myo(R)=Nt,t>0].
Note that
R;oS = {a™* X(as): 0<s<t} =a*R,,

where S=5S,, R,oS denotes R, with respect to the process {(SX) (s); s=>0} and
c A={cx:x€A}. Since ¢ is slowly varying,

My, (@™ Rar) = My, o(Rar)a -
Thus, we have S™' E,CE,. Therefore, P(E,)=0 or 1. Put
C=sup {A: P(E\)=1}.
Then, the assertion of the proposition can be proved. q.e.d.
(2) Hausdorff dimension of zero points

Put Z,={s: 0<s<t, X(s)=0}. Taylor [35] made another approach to zero-
one law for Hausdorff dimension of Z, in case X is the Brownian motion (cf.
[35], Lemma 1). He reduced arguments, in contrast with [21], to strong
Markovian properties of the Brownian motion. We give an extension of Lemma
1 of [35] to general self-similar processes with ergodic scaling transformations.
The Hausdorff dimension of a subset A is defined by

dim 4 = inf {y>0: my(4) = 0} .
Proposition 5.2. For any y>0,
Pmy(Z)>0)=0 or 1.
Furthermore, there exists oy, 0<v,<1, such that
dim Z, = ¢, a.s.

Proof. Consider an event F=[my(Z,)>0]. Let 0<a<1, and S=S,.
Then, we have S™' FCF, since Z,0S=Z,, where Z,oS denotes Z, for the proc-
ess {(SX)(s): s=0}. This implies the first assertion. For the second asser-
tion, the proof goes similarly as in [35]. q.e.d.

(3) Hausdorff dimension of graphs of sample paths
Denote the graph of path by G;:
G, = {(s, X(5)): 0<Zs<t} .

Proposition 5.3. There exists vy, 0<y,<2, such that
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dim G, =9, a.s.
Proof. It is enough to show that for any >0,
P(my(G,)>0)=0 or 1.
Note that
GoS = {(s, a"X (as)): 0<s<1}
= {(u/a, a "X (u)): 0<u<a},

where G,oS denotes G, for the process {SX(s): s>0}. This implies that
my(G,0S) < cmy(G,) for some constant c. Take a, 0<<a<<l. Then, S™'[my(G,)>0]
C [my(G,)>0], and so we have the above assertion. q.ed.

Kono [17] gave some estimates for the Hausdorff dimension of graph and
range of sample paths. Checking his conditions by using well-known fact about
the density of stable distribution (cf. Ibragimov and Linnik [9]), we have that
the Hausdorff dimension of graph of («, B)-fractional stable process is equal to
2—k for 1<a<2 and 0<B<1—1/a. From this fact, we expect that the
Hausdorff measure properties of sample paths are closely related to the local
growth properties rather than the uniform growth property.

(4) Slow points

Kahane [10] showed the existence of slow points for Brownian paths and
recently this problem attracts interests of probabilists (cf. [6], [31]). A point
T is called a slow point of a sample path if

lim supsyo| X(TH8)—X(T) |87 <o .
Proposition 5.4.
P( there exist slow points) =0 or 1.
Furthermore, there exists v,, 0< v, <1, such that
dim { slow points} = v, a.s.

Sketch of proof. If T is a slow point of a path, aT is a slow point of SX.
Thus, the first assertion is easily derived from the ergodicity of S. The second
assertion is derived similarly as in the proof of Proposition 5.3 with slight mod-
ifications such as letting the set of slow points take the place of Gy, and so we
omit its details. q.e.d.

(5) Irregularity points

Orey and Taylor [30] studied the Hausdorff measure properties of ir-
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regularity points of Brownian paths. This problem will be formulated for self-
similar processes as follows: put
X(t+h)—X(2)
i (k)
E, ;= {s: 0<s<t, Ly(s)=>r} ,

L(2) = lim supjo

for a positive, slowly varying function ¢ and A>0.
Proposition 5.5. There exists a constant C,, 0< C\ <1, such that
dim E, , = C, a.s.

Proof. Since ¢ is slowly varying, Lg(t)oS=Lgy(at) and E, ;0S=E, ,, where
S=S, and Ly(t)oS and E, ;oS denote L4(t) and E,, for the process {SX(s):
s>0}. This means that

S [my(Ey,1)>0]C [my(E;,))>0]
for any v>0 and 0<<a<<1l. Therefore,
P(my(E, )>0)=00r1l.

The uniqueness of the dimension is proved similarly as in the proofs of the
previous propositions. q.e.d.
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