AN EXAMPLE OF THE COMPLETION OF RANK FUNCTIONS OVER SIMPLE UNIT REGULAR RINGS

JIRO KADO

(Received September 7, 1987)

In this note, we are concerned with Von Neumann regular rings having (pseudo-) rank functions. Let R be a regular ring and N a pseudo-rank function on R. Then N induces a pseudo-metric topology on R, and \overline{R} , the completion of R at this pseudo-metric, is a right and left self-injective regular ring. If N is an extremal pseudo-rank function, \overline{R} is simple moreover. It is known that there exist uncountable nonisomorphic simple right and left self-injective regular ring: [1, Cor. 2. 9].

From this observation, K.R.Goodearl asked for two different extremal rank functions P, Q on a given simple unit-regular ring R, whether the P-completion of R is isomorphic to the Q-completion of R or not. ([3, Open problem 38]). Now we answer that this problem is negative. Let F be any field and K_i (=1, 2) any qudratic extensions of F. We give an example of a simple regular F-algebra R with two extremal rank functions P_i such that the center of the P_i -completion of R is K_i (i=1, 2). In prarticular, put F=Q, $K_1=Q(i)$, and $K_2=Q(\sqrt{2})$. Then, since Q(i) is not isomorphic to $Q(\sqrt{2})$ over Q, the P_1 -completion of R is not isomorphic to the P_2 -completion of R.

We use most of our terminologies and notations from Goodearl's book [3].

1. A construction an example

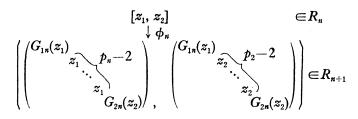
Let K_1 , K_2 be quadratic extension fields of a field F and $g_i: K_i \rightarrow M_2(F)$ (i=1, 2) matrix representations of K_i over F with respect to regular representation of K_i . We shall constract an F-algebra R, as a direct limit of a sequence $R_1 \rightarrow R_2 \rightarrow \cdots$ of semisimple F-algebras. We shall refer to K.R.Goodearl's example [2, Scheme I] and D. Handelman's one [4, p.1144]. Let p_1, p_2, \cdots be integers $(p_n > 2)$. Define positive integers $w(1), w(2), \cdots$ by setting $w_1=1$ and $w_n=(p_{n-1}+2)(p_{n-2}+2)\cdots(p_1+2)$ and put

$$R_n = M_{w(n)}(F) \otimes_F K_1 \oplus M_{w(n)}(F) \otimes_F K_2$$

Next we shall define *F*-algebra maps from R_n to R_{n+1} . Let $\{1, v_i\}$ be *F*-basis of K_i . Then any elemant of $M_{w(n)}(F) \otimes_F K_i$ is written by the following form; $x \otimes 1 + y \otimes v_i$, where $x, y \in M_{w(n)}(F)$. We use $x \boxplus y$ to denote the Kronecker product of matrices $x, y \in M_{w(n)}(F)$. Let I_n be the identity matrix in $M_n(F)$.

J. Kado

Define maps $G_{in}: M_{w(n)}(F) \otimes_F K_i \to M_{2w(n)}(F)$ by the rule; $z_i = x \otimes 1 + y \otimes v_i$ $\to x \boxplus I_2 + y \boxplus g_i(v_i)$. Define maps $\phi_n: R_n \to R_{n+1}$ by the rule;



where x, x', y and $y' \in M_{w(n)}(F)$.

Now define R to be the limit of $\{R_n, \phi_n\}$ and let $\theta_n: R_n \to R$ natural embeddings. Obviously R is a simple unit-regular F-algebra with the center F.

Next we shall determine all (exremal) rank functions on R. We use P(R) to denote the set of all rank functions on R. Put $R'_n = M_{w(n)}(F) \oplus M_{w(n)}(F)$ for each n. We consider R'_n as a sub-*F*-algebra of R_n by the embedding $[x, y] \rightarrow [x \otimes 1, y \otimes 1]$ where $x, y \in M_{w(n)}(F)$. Put $\phi'_n = \phi_n | R'_n$, then ϕ'_n is as follows:

$$\begin{bmatrix} x, y \end{bmatrix} \qquad \Subset R'_{n} \\ \begin{pmatrix} x & p_{n} \\ \ddots & \\ x \\ y \\ y \end{pmatrix}, \qquad \begin{pmatrix} x \\ x \\ y \\ \ddots & \\ y \end{pmatrix} \in R'_{n+1}$$

Define R' to be the limit of $\{R', \phi_n'\}$.

Lemma 1. P(R) is affinely homeomorphic to P(R') by the restriction map.

Proof. For any $N \in P(R_n)$ (resp. $P(R'_n)$),

$$N([A, B]) = \frac{\alpha \operatorname{rank} (A) + \beta \operatorname{rank} (B)}{w(n)}$$

, where $A \in M_{w(n)}(F) \otimes K_1$, $B \in M_{w(n)}(F) \otimes K_2$ (resp. $A, B \in M_{w(n)}(F)$), $\alpha = N([I_n, O])$, and $\beta = N([O, I_n])$ by [3, Cor. 16.6]. Then $P(R_n)$ is affinely homeomorphic to $P(R'_n)$ by the restriction map for all n. Since P(R) (resp. P(R')) is the inverse limit of $\{P(R_n), \phi_n^*\}$ (resp. $\{P(R'_n), \phi_n^*\}$), by [3, Prop. 16.21], P(R) is affinely homeomorphic to P(R').

The structure of P(R') has been determined by K.R. Goodearl [2, pp. 277–280]. For the sake of copmleteness, we shall again explain it.

Put u(1)=1 and $u(n+1)=(p_n-2)\cdots(p_1-2)$ for all $n\geq 1$. For $N\in P(R')$, there exist positive real numbers $\alpha_n(i)$ $(n=1, 2, \cdots; i=1, 2)$ such that

(1) $\alpha_n(1) + \alpha_n(2) = 1$ for all n

(2)
$$\alpha_{n+1}(i) = \frac{(p_n+2)\alpha_n(i)-2}{p_n-2} \quad \text{for all } n, i$$

(3)
$$N([A, B]) = \frac{\alpha_n(1) \operatorname{rank}(x) + \alpha_n(2) \operatorname{rank}(y)}{w(n)} \quad \text{for all } [A, B] \in R',$$

where $[A, B] = \theta_n([x, y])$ for some *n* and $[x, y] \in R'_n$. Convercely, if $\{\alpha_n(i)\}$ are any positive real numbers satisfing (1) and (2), then (3) defines a rank function N on R'.

Now we assume that $\lim_{n \to \infty} \frac{u(n)}{w(n)} > 0$. Put $\lambda = \frac{1}{2} \lim_{n \to \infty} \frac{u(n)}{w(n)}$ We define $\alpha_n(1) = \frac{1}{2} + \lambda \frac{w(n)}{u(n)}$ $\beta_n(1) = \frac{1}{2} - \lambda \frac{w(n)}{u(n)}$ $\alpha_n(2) = \frac{1}{2} - \lambda \frac{w(n)}{u(n)}$ $\beta_n(2) = \frac{1}{2} + \lambda \frac{w(n)}{u(n)}$

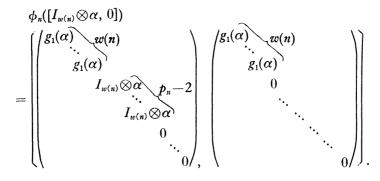
for all $n \ge 1$. Then $\{\alpha_n(i)\}\$ and $\{\beta_n(i)\}\$ satisfy the above conditions (1) and (2). Let N_1 (resp. N_2) be the rank function determined by $\{\alpha_n(i)\}\$ (resp. $\{\beta_n(i)\}\)$. by [2, Lemma 27], N_1 and N_2 are all extremal rank functions on R'. Therefore, by Lemma 1, N_1 and N_2 can be extended to extremal rank functions on R. N_i (i=1, 2) induce metrics on R given by the rule; $d_i(x, y) = N_i(x-y)$ for $x, y \in R$, which we call the N_i -metric [3, § 19]. Let T_i be the completion of R with respect to N_i -metric (i=1, 2). Then T_i are simple regular, right and left selfinjective F-algebras by [3, Th. 19. 14].

2. Caluculation of the centers of T_i

In this note, we shall calculate the center $Z(T_i)$ of T_i . Let I_k be the identity matrix for $M_k(F)$ and θ_n the natural embedding: $R_n \rightarrow R$.

Lemma 2. If $\sum_{1}^{\infty} 1/(P_n+2) < \infty$, then $\{\theta_n([I_{w(n)} \otimes \alpha, 0])\}$ (resp. $\theta_n([0, I_{w(n)} \otimes \beta]))$ is a Cauchy sequence with respect to N_1 -metric (resp. N_2 -metric) for each $\alpha \in K_1$ (resp. $\beta \in K_2$).

Proof. Put $K = K_1$ and $N = N_1$. For $\alpha \in K$ and each *n*, we see that



J. Kado

Therefore, we have

We can calculate that

$$N(\theta_{n+1}([I_{w(n+1)} \otimes \alpha, 0]) - \theta_{n}([I_{w(n)} \otimes \alpha, 0])) = N([I_{w(n+1)} \otimes \alpha, 0] - \phi_{n}[I_{w(n)} \otimes \alpha, 0]) = \frac{1}{w(n+1)} \cdot \{\alpha_{n+1}(1)(w(n) \operatorname{rank} (\alpha I_{2} - g_{1}(\alpha)) + 2w(n)) + \alpha_{n+1}(2)w(n) \operatorname{rank} (g_{1}(\alpha))\} < \frac{1}{w(n+1)} \cdot \{(\frac{1}{2} + \lambda \frac{w(n+1)}{u(n+1)}) + w(n) + (\frac{1}{2} - \lambda \frac{w(n+1)}{u(n+1)}) + w(n)\} < 4/(p_{n}+2)$$

Then $\{\theta_n([I_{w(n)} \otimes \alpha, 0])\}\$ is a Cauchy sequence.

By Lemma 2, we define $\tau_1(\alpha) = \lim \theta_n([I_{w(n)} \otimes \alpha, 0])$ (resp. $\tau_2(\beta) = \theta_n([0, I_{w(n)} \otimes \beta])$ for each $\alpha \in K_1$ (resp. $\beta \in K_2$). Then $\tau_i \colon K_i \to T_i$ is a map as *F*-algebra for i=1, 2.

Lemma 3.

(1) $\tau_i(K_i) \subseteq Z(T_i)$ for i=1, 2. (2) $\tau_i(a)=a$ for all $a \in F$.

Proof. (1) For any $r \in R$ and $\alpha \in K_1$, we shall show that $\tau_1(\alpha)r = r\tau_1(\alpha)$. Let $r = \theta_n([x, y])$ for some *n* and $[x, y] \in R_n$. Since $[I_{w(k)} \otimes \alpha, 0][x, y] = [x, y][I_{w(k)} \otimes \alpha, 0]$ for all k > n, we have, that $\tau_1(\alpha)r = r\tau_1(\alpha)$. Since T_1 is the completion of *R* with respect to N_1 -metric, we have that $\tau_1(\alpha)x = x\tau_1(\alpha)$ for all $x \in T_1$.

(2) Since $a = \theta_n([I_{w(n)} \otimes a, I_{w(n)} \otimes a])$ for all $a \in F$ and all n, we see that

$$N_1(a - \theta_n([I_{w(n)} \otimes a, 0]))$$

= $N_1([0, I_{w(n)} \otimes a])$
= $\alpha_n(2)$

Therefore we have that $a = \varinjlim \theta_n([I_{w(n)} \otimes a, 0])$, because $\varinjlim \alpha_n(2) = 0$.

Lemma 4. Let p_1, p_2, \cdots be integers such that $\varinjlim \frac{u(n)}{w(n)} > 0$ and $\sum_{n=1}^{\infty} \frac{4}{p_n+2} < \infty$. Then $\tau_i: K_i \rightarrow Z(T_i)$ is an isomorphism over F.

Proof. Put $T=T_1$ and $N=N_1$. We shall show that $\tau_1(K_1)=Z(T)$. First for any $x \in Z(T)$ and any real number $\varepsilon > 0$, there exists $r \in R$ such that $N(x-r) < \varepsilon/4$. And there exists $r_{k(1)} \in R_{k(1)}$ such that $r=\theta_{k(1)}(r_{k(1)})$. We note that $r=\theta_m(r_m)$ for all $m \ge k(1)$, where some $r_m \in R_m$. For any r_m , there exist $z_m \in Z(R_m)$ and $y_m \in R_m$ such that $N(r_m - z_m) \le N(r_m y_m - y_m r_m)$ by [1, Cor. 2.4].

Since
$$N(r_m - z_m) \leq N(r_m y_m - y_m r_m)$$
$$\leq N((r - x)\theta_m(y_m)) + N(\theta_m(y_m)(x - r))$$
$$\leq 2N(x - r)$$
$$< \varepsilon/2,$$

we see that for any $m \ge k(1)$,

(*)
$$N(x-\theta_m(z_m)) \leq N(x-r) + N(r-\theta_m(z_m))$$
$$\leq N(x-r) + N(r_m-z_m)$$
$$< \varepsilon \cdot 3/4.$$

Put $z_m = [I_{w(n)} \otimes \alpha_m, I_{w(n)} \otimes \beta_m]$ for some $\alpha_m \in K_1$ and $\beta_m \in K_2$. Since $\lim \alpha_n(2) = 0$, there exists k(2) such that $\alpha_m(2) < \varepsilon/4$ for all $m \ge k(2)$.

We see that for all $m \ge \max(k(1), k(2))$,

$$N(x - \theta_m([I_{w(n)} \otimes \alpha_m, 0]))$$

$$\leq N(x - \theta_m(z_m)) + N([0, I_{w(n)} \otimes \beta_m])$$

$$\leq N(x - \theta_m(z_m)) + \alpha_m(2)$$
<\varepsilon . (by (*))

Since $\sum_{n=1}^{\infty} \frac{4}{p_n+2} < \infty$, for \mathcal{E} , there exists a natural number k(3) such that

(**)
$$\sum_{i=n}^{l} \frac{4}{p_i+2} < \varepsilon$$
 for all $l > n \ge k(3)$.

Select some $k \ge \max(k(i) \ i=1, 2, 3)$. Then we have already seen that $\alpha_k \in K_1$ and $N(x-\theta_k([I_{w(k)} \otimes \alpha_k, 0])) < \varepsilon$. Put $\gamma = \alpha_k$. We shall show that $N(x-\tau_1(\gamma))$ $<\varepsilon$. There exists a positive integer k(4) > k such that for any $m \ge k(4)$,

$$(***) \quad N(\theta_{\mathbf{m}}([I_{\mathbf{w}(\mathbf{m})} \otimes \boldsymbol{\gamma}, 0] - \tau_{\mathbf{1}}(\boldsymbol{\gamma}))) \! < \! \boldsymbol{\varepsilon} \; .$$

We see that for some $m \ge \max\{k(i); i=1, 2, 3, 4\}$,

J. Kado

$$\begin{split} N(x-\tau_1(\gamma)) &\leq N(x-\theta_k([I_{w(k)}\otimes\gamma, 0])) \\ &+ N(\theta_k([I_{w(k)}\otimes\gamma, 0]) - \theta_{k+1}([I_{w(k+1)}\otimes\gamma, 0])) \\ &\cdots \\ &+ N(\theta_{m-1}([I_{w(m-1)}\otimes\gamma, 0]) - \theta_m([I_{w(m)}\otimes\gamma, 0])) \\ &+ N(\theta_m([I_{w(m)}\otimes\gamma, 0]) - \tau_1(\gamma))) \end{split}$$

, using the inequality in the proof of Lemma 2, (**) and (***)

$$<\!\!\!\varepsilon\!\!+\!\!\sum_{i=k}^{m-1}4/(p_i\!+\!2)\!+\!\!arepsilon$$

Since T is a simple ring, Z(T) is a field, so if ε is less than 1/6, $N(x-\tau_1(\gamma))=0$. Therefore x belongs to $\tau_1(K_1)$.

Now we shall give a negative answer for the Goodearl's problem No. 38 [3, p. 348].

EXAMPLE There exists a simple unit-regular ring R such that

- (1) R has two extremal rank functions N_1 , N_2 .
- (2) The N_1 -completion of R is not isomorphic to the N_2 -completion of R.

Proof. Set F=Q, $K_1=Q(i)$ and $K_2=Q(\sqrt{2})$. Put $p_n=n^2+4n+2$ for all n, and construct R accoding to the previous method. Since $\frac{w(n)}{u(n)}=\frac{2(n+2)(n+3)}{9n(n+1)}$, we have $\lim_{n\to\infty}\frac{u(n)}{w(n)}=\frac{2}{9}$. And we see that $\sum_{n=1}^{\infty}\frac{1}{p_n+2}<\sum_{n=1}^{\infty}\frac{1}{(n+1)(n+3)}=\frac{5}{12}$. By Lemma 4, the N_1 -completion T_1 of R is not isomorphic to the N_2 -completion T_2 of R, because $Z(T_1)=Q(i)$ is not isomorphic to $Z(T_2)=Q(\sqrt{2})$ over Q.

References

- [1] K.R. Goodearl: Centers of regular self-injective rings, Pacific J. Math. 76 (1978), 381-395.
- [2] ———: Simple regular rings and rank functions, Math. Ann. 214 (1975), 267– 287.
- [3] ———: Von Neumann regular rings, Pitman, London, 1975.
- [4] D. Handelamn: Centers of rank-metric completions, Can. J. Math. 37 (1985), 1134– 1148.

Department of Mathematics Osaka City University Sugimoto-3, Sumiyoshi-ku Osaka 558 Japan