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AN EXAMPLE OF THE COMPLETION OF RANK
FUNCTIONS OVER SIMPLE UNIT REGULAR RINGS
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In this note, we are concerned with Von Neumann regular rings having
(pseudo-) rank functions. Let R be a regular ring and N a pseudo-rank
function on R. Then N induces a pseudo-metric topology on R, and R, the
completion of R at this pseudo-metric, is a right and left self-injective regular
ring. If N is an extremal pseudo-rank function, R is simple moreover. It is
known that there exist uncountable nonisomorphic simple right and left self-
injective regular rings [1, Cor. 2. 9].

From this observation, K.R.Goodearl asked for two different extremal rank
functions P, Q on a given simple unit-regular ring R, whether the P-completion
of R is isomorphic to the ^-completion of R or not. ([3, Open problem 38]).
Now we answer that this problem is negative. Let F be any field and Kt (=1,2)
any qudratic extensions of F. We give an example of a simple regular .F-algebra
R with two extremal rank functions P, such that the center of the Prcomρle-
tion of R is Kg (i=\, 2). In prarticular, put F=Q, K1=Q(i)9 and K2=Q(\f2)
Then, since Q(i) is not isomorphic to Q(VT) over Q, the Pj-completion of R is
not isomorphic to the P2-completion of R.

We use most of our terminologies and notations from GoodearΓs book [3].

1. A construction an example

Let Kly K2 be quadratic extension fields of a field F and £, : Ki-*M2(F)
(i=l, 2) matrix representations of K{ over F with respect to regular representa-
tion of Kg. We shall constract an jF-algebra Ry as i direct limit of a sequence
Rι-^R2-

> of semisimple F-algebras. We shall refer to K.R. GoodearΓs
example [2, Scheme I] and D. Handelman's one [4, p. 1144]. Let ply p2, •••
be integers (pn>2). Define positive integers w(l), ztf(2), ••• by setting wί=^l

and ^=(Λ-ι+2)(ί.-2+2) -(A+2) and put

Rn = M

Next we shall define F-algebra maps from Rn to Rn+1. Let {1, v{} be F-basis of
Kt. Then any elemant of Mw(n)(F)®FKi is written by the following ίorm;
x®l+y®viy where xy y^MwM(F). We use x^y to denote the Kronecker
product of matrices Λ?, y^Mw(n)(F}. Let In be the identity matrix in Mn(F).
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Define maps Gin Mw(n)(F)®FKi-*M2w(n)(F) by the rule; #f =
- Define maps φΛ: jRΛ->ΛΛ+1 by the rule;

where x, x',y a.
Now define R to be the limit of {RH, φn} and let θn: Rn-^R natural em-

beddings. Obviously R is a simple unit-regular ^-algebra with the center F.
Next we shall determine all (exremal) rank functions on R. We use P(R)

to denote the set of all rank functions on R. Put Rί=MwM(F)®MwM(F)
for each n. We consider R'n as a sub-F-algebra of Rn by the embedding
[*,:v]^[*®l>:y®l] where x,y^MM(F). Put φ'n = φn\R'n, then φ£ is as
follows:

[*. y] e
*l/x\pλ

• Λ
x}

y ,
l \ V >

/Λ: \ '
X

y\p.
:\i V s ;

Define Λ' to be the limit of |R', φί}.

Lemma 1. P(R) is affinely homeomorphic to P(R') by the restriction map.

Proof. For any N eP(Λn) (resp. P(R'n))>

N(\A E\\ = a
U ' J;

ιo(n)

, where A *Ξ MwM(F) ® Kί9 B^MwM(F)®K2 (resp. A, B^MwM(F))9 a =
N([IU, O]), and β=N([O9 /J) by [3, Cor. 16.6]. Then P(ΛΛ) is affinely homeo-
morphic to P(R'n) by the restriction map for all n. Since P(R) (resp. P(R')) is
the inverse limit of {P(Rn), φ?} (resp. {P(/?i), φ?», by [3, Prop. 16.21], P(R) is
affinely homeomorphic to

The structure of P(R') has been determined by K.R. Goodearl [2, pp. 277-
280]. For the sake of copmleteness, we shall again explain it.

Put u(l)=l and u(n+l)=(pn-2)-(p1~2) for all rc^l. For
there exist positive real numbers an(i) (w=l, 2, •••; ί=l, 2) such that

(1) αβ(l)+αβ(2)=l for all*
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(2)
Pn —

for all «, ί

(3) N([A, B}]
w(n)

{or

where [A, B\=θΛ([x, y]) for some n and [x, y]^R'n. Convercely, if {«.(*)} are
any positive real numbers satisfing (1) and (2), then (3) defines a rank function

NonR'.

Now we assume that lim u^n'
—> w(n)

. Putλ-yUm^g-

We define
2

for all n^l. Then {an(i)} and {βn(i}} satisfy the above conditions (1) and (2).
Let Nλ (resp. N2) be the rank function determined by {ocn(i)}- (resp. iβn(i)})
by [2, Lemma 27], Λ^ and JV2 are all extremal rank functions on R'. Therefore,
by Lemma 1, Nλ and N2 can be extended to extremal rank functions on R. ΛΓt

(/=!, 2) induce metrics on R given by the rule; rft (#, 3/)=Λ^ (Λr--<y) for x, y^R,
which we call the Λ^-metric [3, § 19]. Let Tt be the completion of R with
respect to Nrmetric (/=!, 2). Then T, are simple regular, right and left self-
injective F-algebras by [3, Th. 19. 14].

2. Caluculation of the centers of T,

In this note, we shall calculate the center Z(T{) of T, . Let Ik be the identity
matrix for Mk(F) and Θn the natural embedding: Rn-*R.

Lemma 2. // ΣΓ l/(Pn+2)<oo> ίfen {5rt([4(n)®α, 0])} (resp.

θn([Q, /«,(») ®/?])) ίί ^ Cauchy sequence with respect to N^metrίc (resp. N2-meΐric)
for each a^^ (resp. β^K2).

Proof. Put K=^Kλ and N=Nlt For a^K and each n, we see that

—2
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Therefore, we have

J. KADO

We can calculate that

N(θn+1([Im(n+ύ®a,

1

o/J

,0])

• {an+1(l)(w(n) rank(α/1-A(α))+2w(n))+α.+1(2χn) rank (&(«))}

Then {#«( [/«,(„) ®tf, 0])} is a Cauchy sequence.

By Lemma 2, we define Tl(α)=lim ^([/^n)®^, 0]) (resp. τ2(/3)=0n([0, /«,(

for each a^^ (resp. β^K2). Then τ, : X"<-»Γf is a map as F-algebra for i=l, 2.

Lemma 3.

(1) T^JCZίΓ,) /of f =1,2.
(2) n(ά)=a f or all

Proof. (1) For any r^R and a^Kl9 we shall show that τ1(a)r=rτ1(a).
Let r = 0Λ([#, j]) for some w and [Λ?, y]^Rn. Since [/„,(# ®α, 0] [Λ;, y] =

[x, ^][/w(A)®of, 0] for all &>«, we have, that τ1(α)r = rτl(αr). Since Γj is the
completion of R with respect to Λ^-metric, we have that r1(a)x=xτ1(a) for all

(2) Since a=θn([Iw(n)®a, Iw(n)®ά\) for all a^F and all w, we see that

Θ^I^®^ 0]))

Therefore we have that α = lim#n ([/„,(„> ®^, 0], because limαn(2)=0.
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Lemma 4. Letply p2, ••• be integers such that lim^^X) and
— *w(ri)

ΣίΓ-i 4/(/>n+2)<oo. Then τ t: ^-»Z(Tt ) iί an isomorphism over F.

Proof. Put T=Tl and JV=ΛΓ1. We shall show that τ1(X1)=Z(Γ). First
for any x^Z(T) and any real number £>0, there exists reΛ such that N(x—r)<

£/4. And there exists rkω^Rkω such that r— 0*α)(r*ω) We note that r=θm(rm)
for all w^A(l), where some rm£ΞRm. For any rw, there exist zm€=Z(Rm) and
y.eΛ. such that N(rm-zm)£N(rmym-ymrm) by [1, Cor. 2.4].

Since ΛΓίr.-ar.) ̂ ΛΓ(rw yβ-,yβrβ)

£N((r-x)θm(ym))+N(θm(ym)(x-r))

we see that for any m^

(*) N(x-θm(zm)) £N(x-

Put sm — [!„(„) ®oίm, Iu(n)®βm] for some am^K1 and βm^K2. Since
lim α»(2)=0, there exists A(2) such that am(2)<6/4 for all m^

" We see that for all »ι^max(£(l), k(2)),

N(X-θm([Iw(n)®am, 0]))

<£. (by(*))

Since ΣΓ-i 4/(/>n+2)<oo, for £, there exists a natural number &(3) such that

(**) ΣU4/(^ +2)<£ for all

Select some &J>max(A(z) /—I, 2, 3). Then we have already seen that
and N(x—θk([IM®ak, 0]))<5. Put γ— αA. We shall show that N(x— Tl(γ))
<£. There exists a positive integer &(4)>& such that for any m

(***)

We see that for some w^max{Λ(z); /=!, 2, 3, 4},
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γ, 0]))

f, 0]))

r, 0]))

, using the inequality in the proof of Lemma 2, (**) and (***)

<66 .

Since T is a simple ring, Z(Γ) is a field, so if 8 is less than 1/6,
N(x— τ!(γ)HO. Therefore * belongs to r

Now we shall give a negative answer for the GoodearΓs problem No. 38
[3, p. 348].

EXAMPLE There exists a simple unit-regular ring R such that
(1) R has two extremal rank functions Nly N2.

(2) The Λ^-completion of R is not isomorphic to the ΛΓ2-comρletion of R.

Proof. Set F=Q, K1=Q(ί) and X2=Q(vr2"). Put pn=n2+4n+2 for all

n, and construct Λ acceding to the previous method. Since ̂  = 2(n+2)(n+3)
^ F u(n) 9n(n+l) '

we have lίm ?fW =-?-. And we see that ΣΓ-i — ̂ — < ΣΓ-i - - - =— .
— +ιo(n) 9 Pn+2 (n+l)(n+3) 12

By Lemma 4, the Λ^-completion 7\ of 1? is not isomorphic to the Λ^2-comρletion
Γ2 of R, because Z(T1)=Q(i) is not isomorphic to Z(T2)=Q(\/~2) over Q.
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